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Abstract

We study inference based on cluster-robust variance estimators for regression models with
clustered errors, focusing on the wild cluster bootstrap. We state conditions under which asymp-
totic and bootstrap tests and confidence intervals are asymptotically valid. These conditions
put limits on the rates at which the cluster sizes can increase as the number of clusters tends to
infinity. We also derive Edgeworth expansions for the asymptotic and bootstrap test statistics.
Simulation experiments illustrate the theoretical results and suggest that alternative variants
of the wild cluster bootstrap may perform quite differently. The Edgeworth expansions explain
the overrejection of asymptotic tests and shed light on the choice of auxiliary distribution and
whether to use restricted or unrestricted estimates in the bootstrap data-generating process.
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1 Introduction

Many applications of the linear regression model in economics and other fields involve error terms
that are correlated within clusters. In such cases, it is very common to use a cluster-robust variance
estimator (CRVE) to calculate t-statistics and Wald statistics, because neglecting the cluster struc-
ture can lead to severely biased standard errors and large size distortions (Moulton 1986). Although
CRVE-based t-statistics work well in many cases, this approach can fail (sometimes disastrously)
when the number of clusters is small, cluster sizes vary a lot, or the variable(s) of interest take
non-zero values for only a few clusters; see Cameron and Miller (2015) for a recent survey.

The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach, and Miller (2008) as a
way to obtain more accurate inferences in finite samples than using cluster-robust t-statistics with
critical values from a t distribution. Although it typically does provide more accurate inferences,
it too can fail in certain cases; see MacKinnon and Webb (2017a). Interestingly, MacKinnon and
Webb (2018) provides simulation evidence which shows that the ordinary wild bootstrap (WB)
seems to work better than the wild cluster bootstrap in some of those cases. A formal treatment
of the conditions under which the WCB (and the WB in a cluster context) yields asymptotically
valid inferences is clearly needed.

In this paper, we provide an asymptotic analysis of cluster-robust inference with particular
emphasis on the WCB and the WB. In particular, we first establish the asymptotic distribution
of the least squares estimator and associated cluster-robust t-statistic when the error terms are
clustered. We then establish the asymptotic validity of the WCB and the WB. All our results are
given under simple primitive assumptions and rate conditions on the heterogeneity of cluster sizes,
allow for heteroskedasticity of unknown form, and do not restrict dependence within clusters.

To assess the accuracy of the bootstrap relative to the asymptotic normal approximation, we
derive one-term and two-term Edgeworth expansions under somewhat stronger assumptions. These
expansions explain the overrejection of the asymptotic test found in simulations. The expansions
are also used to discuss the choice of auxiliary distribution, whether to use restricted or unrestricted
residuals in the bootstrap DGP, and the conditions under which the wild cluster bootstrap may
provide an asymptotic refinement.

Conditions for asymptotic validity of CRVE-based inference are given by White (1984, Chap. 6),
Liang and Zeger (1986), Hansen (2007), Carter, Schnepel, and Steigerwald (2017), and Hansen and
Lee (2019), among others. All but the last two of these works assume that clusters are equal-
sized. Carter, Schnepel, and Steigerwald (2017) considers linear regression with a cluster structure
and studies the effects of heterogeneity across clusters, but under stronger assumptions than ours.
Hansen and Lee (2019) derives a law of large numbers and a central limit theorem for clustered
samples under conditions that are very similar to ours and applies the results to several different
estimation problems, including regression. However, we are not aware of any previous work on the
asymptotic validity of wild bootstrap methods for clustered errors.

An alternative to the wild cluster bootstrap is the pairs cluster bootstrap, in which the bootstrap
samples are constructed by resampling the regressors and regressand together at the cluster level.
Several variants of this procedure were studied in Cameron, Gelbach, and Miller (2008) using
simulation methods. In almost all cases, the pairs cluster bootstrap produced less reliable inferences
than the wild cluster bootstrap; for additional simulation evidence, see MacKinnon and Webb
(2017b). This might have been expected, because the ordinary pairs bootstrap generally yields
less reliable inferences in regression models with heteroskedastic errors than does the ordinary wild
bootstrap; see, among others, MacKinnon (2002) and Davidson and Flachaire (2008).

Simulation evidence from previous studies is not the only reason for not studying the pairs
cluster bootstrap here. The fundamental problem with the pairs cluster bootstrap is that, unlike



the WB or the WCB, it does not condition on the regressor matrix, which makes it unattractive
for two reasons. First, when cluster sizes are not equal across clusters, the sample size will vary
across the bootstrap samples. Second, when any of the regressors is a dummy variable that varies
at the cluster level, the numbers of treated clusters and treated observations will vary across the
bootstrap samples. Indeed, when there are few treated clusters in the actual sample, there may be
none at all in some of the bootstrap samples, which would cause the regressor matrix not to have
full column rank.

The remainder of the paper is organized as follows. In Section 2, we present the model that we
study and the associated asymptotic theory. In Section 3, we demonstrate the asymptotic (first-
order) validity of both the wild cluster bootstrap and the ordinary wild bootstrap. In Section 4, we
present the results of some simulation studies, and in Section 5, we discuss higher-order asymptotic
theory. Based on all our results, we give some general practical guidance in Section 6, and Section 7
concludes. Appendices A, B, and C, provided in the supplementary material, contain preliminary
lemmas, proofs of main results, and additional simulation evidence, respectively.

2 The Model and Asymptotic Theory

Consider a linear regression model with clustered errors written as

Y1 X uq
Y2 X2 ug

y=| Y | =xpru=| 7 |8+ | W
Yya Xg ug

where each cluster, indexed by g, has N, observations. The total number of observations in the
entire sample is N = Zngl Ny, and the N x k matrix of covariates X contains k linearly independent
columns. The vector B is a k x 1 vector of unknown parameters. It is assumed that the k x 1 score
vectors, s, = X uy, satisfy E(sy) = 0 for all g and

E(sys)) =1(g=hE,, g,h=1,...,G, (2)

where I(-) denotes the indicator function and X, is a k x k matrix. In cross-sectional regressions,
it is common to make the stronger assumption that the regressors are exogenous. Under such
a condition, it would be assumed that E(uy|X) = 0 and E(u,u] | X) = I(g = h)Q, for all g, h,
where €, is an N, x N, variance matrix. However, this condition is not necessary for the first-order
asymptotic analysis, so we maintain only the weaker assumption in (2).

When Ny = 1 for all g, the model (1)-(2) reduces to the well-known linear regression model
with heteroskedasticity of unknown form and predetermined regressors. Hence, as a special case,
our results cover that model as well.

As usual, the OLS estimator of 8 is

B=(X"X)"'X"y. 3)

Let Q=N"'X"X and T = N2 Zngl ¥.,. The usual sandwich form of the variance matrix of B
is given by

V=(X"X)" (Zz ) (X'X) =@ 'rQ . (4)

We note that, under the assumption that the regressors are exogenous, V' is the conditional variance
of B given X. We now define the cluster-robust estimator of V, i.e. the CRVE, as

V=dQ 'I'Q, (5)



where I' = N723°0, 8,8) = N72Y°5 | X[ a 4] X, using §; = X 41, The multiplicative factor
d in (5) is a finite-sample correction that depends on N and/or G, and it is assumed throughout
that d - 1 as G — oo. For example, Hansen (2007) suggests using d = G/(G — 1), and Stata has
implemented d = G(N — 1)/((G — 1)(N — k)) as the default.

When N, = 1forall g, so that G = N, the estimator V reduces to the familiar heteroskedasticity-
consistent covariance matrix estimator (HCCME) of Eicker (1963) and White (1980); see also Arel-
lano (1987). Several variations of the CRVE have been proposed to reduce its finite-sample bias, in
the same way that variations of the HCCME (e.g., MacKinnon and White 1985) can reduce its bias;
see, among others, Kauermann and Carroll (2001), Bell and McCaffrey (2002), Imbens and Kolesar
(2016), and Pustejovsky and Tipton (2018). However, since our focus is on bootstrap inference, we
maintain the version of the CRVE given in (5), which is simple to compute and analyze.

We let By denote the true value of 8. For concreteness and simplicity, we restrict our attention
to the cluster-robust t-statistic R

_a'(B-ho)

VaVa
for testing the null hypothesis Ho: a'8 = a'By with a'a = 1 (a normalization that rules out

degenerate cases but is much stronger than needed) against a one-sided or two-sided alternative.
Of course, it would not be difficult to extend our results to Wald tests of r > 1 linear restrictions.

ta

(6)

2.1 Assumptions

To obtain the asymptotic limit theory for t,, we need the following conditions, where, for any
matrix M, |M| = (Tr(MTM))l/2 denotes the Euclidean norm.

Assumption 1. The sequence {s;} is independent across g and satisfies, for all g € N, that
E(sy) = 0 and E(sgs;) = X,. In addition, for some A > 0,

sup E| s

i,geN

< 00,

where s;, = Xi;uig denotes the score contribution of the i*" observation within cluster g, while
X4 and u;4 denote the i*" rows of X, and wug, respectively.

Assumption 2. The regressor matrix X satisfies Q £, =g, where E is finite and positive definite,
and

sup E||X£Xig||2+’\ < 00,

1,9€EN
where A > 0 is the same as in Assumption 1. Furthermore, there exist a non-random sequence
{un} and a non-random, finite scalar v, > 0 such that uy — oo and uya'Va £, Vg-

Assumption 3. For A defined in Assumption 1 and puy defined in Assumption 2,

24X

242X

N,
G —oo and puy supﬁgﬁo.

geN
Assumption 1 imposes the conditions that {s,} = {X u,} is independent across clusters, with
finite 2+ A moments, and that s, has zero mean and constant, but possibly heterogeneous, variance
matrix. Conditions like the first part of Assumption 2 are standard in asymptotic theory for linear
regressions. Because of the clustered errors in model (1), the order of magnitude of B —Bo depends in
a complicated way on the regressors, the relative cluster sizes, the intra-cluster correlation structure,



and interactions among these. This is captured in the second part of Assumption 2, where it is
assumed that the variance of aTB , as measured by a'Va with V defined in (4), multiplied by a
non-random sequence {uy}, converges to a finite, non-zero limit. Thus, puy can be interpreted as
the rate at which information accumulates. An important consequence of the studentization in our
results is that the rate uy does not need to be known, but only needs to exist.

Assumption 3 first requires the number of clusters G to diverge, which obviously implies that the
total number of observations N = 2521 N, also diverges. The second condition of Assumption 3
restricts the extent of heterogeneity of cluster sizes N, that is allowed. This restriction is related to
the order of magnitude of the variance of aTB , i.e. the magnitude of @' Va as represented by (the
inverse of) the sequence py, and to the moment condition in Assumption 1. Thus, Assumption 3
represents a trade-off between the extent of heterogeneity of cluster sizes allowed and the number
of moments assumed to exist.

To analyze the role of uy, we investigate two extreme cases, with all other cases lying in
between: (i) s;4 is uncorrelated across i and (ii) s;4 is correlated with s;, for all 7, j. Case (i) would
be obtained, for example, if the regressors were exogenous and the errors uncorrelated. In case (i),

it straightforwardly holds that 3, = Zfigl E(sigsiTg) = O(Ny) such that
IV[|=0p(N"!) and puy=N. (7)

Thus, in particular, B converges at rate Op(N~'/2) in this case. On the other hand, in case (ii) we
find that

NQ
2, =B( X susl,) = O0ND) ®)
ij=1
and it follows that
V|| = OP(N—1 sup Ng) and gy = N/sup N,. 9)
geN geN

Therefore, in case (ii), B converges at rate Op (N —1/2

and (9) that, under Assumptions 1 and 2,

SUp ey Ngl/2). In general, it follows from (7)

N,
G — oo and sup —Z — 0 (10)
geN N

is sufficient for consistency of B in model (1).

Clearly, (7) implies a stronger condition in Assumption 3 than (9). Specifically, in case (ii),
Assumption 3 is implied by (10), which is very simple and very weak. Thus, when there is a high
degree of intra-cluster correlation, so that the effective cluster size (as measured by the amount of
independent information contained in a cluster) is smaller than the actual cluster size (NNy), more
heterogeneity in Ny is allowed by the second condition of Assumption 3.

Because the exponent on py in Assumption 3 is decreasing in A, the condition is stronger when
fewer moments are assumed to exist, i.e. when A is lower, cf. Assumption 1. For example, if four
moments are assumed to exist (i.e. A = 2 in Assumption 1), as in much related work, then a
sufficient condition for Assumption 3 that does not depend on A is

N,
G — oo and ,u?f sup =< — 0. (11)

geN N

Alternatively, in view of (7) and (9), we can find a sufficient condition for Assumption 3 that does
not depend on iy, namely,

G — oo and supNg:o(Nﬁ) (12)
geN



The exponent in (12) is increasing in A, and with four moments, for example, a sufficient condition
that does not depend on either A or uy is that
G — oo and sup N, = o(N/3). (13)
geN

The second condition of Assumption 3, or either of the sufficient conditions in (11)—(13), allow
a variety of types of cluster-size heterogeneity. For example, the N, can be fixed constants as
G — o0, or the N, can diverge as in, e.g., N, = ¢,N®, where ¢, and « are fixed constants. The
former case, with the IV, being fixed constants, could be considered a prototypical case. When this
holds, then B is in fact Op(Gfl/Q); see also Assumption 4 in Section 5.

Because uy — oo, the second condition of Assumption 3 rules out the possibility that one
cluster is proportional to the entire sample. However, it does allow one cluster, say g = 1, to be
quite dominant, in the sense that N7 = N satisfies the second condition of Assumption 3 for some
a < 1. Specifically, allowing any intra-cluster correlation structure, including independence, (13)
shows that any o < 1/3 satisfies Assumption 3 when four moments exist. However, in case (ii)
above, where X, = O(NQQ), more heterogeneity of cluster sizes is allgwed, and any a < 1 satisfies
(11). In that case, we note from (9) that the rate of convergence of 8 can become very slow when
« is close to one.

The possibility that the rate of convergence depends on a correlation structure is certainly
not new. For example, Hansen (2007) showed that, if both the time-series and cross-sectional
dimensions in a panel setting diverge, then, in our notation, B is either v/N-convergent or v/G-con-
vergent depending on whether the degree of intra-cluster (time-series) correlation is strong or weak.
Gongalves (2011) extended Hansen (2007) to panels with both serial and cross-sectional dependence
and found that the rate of convergence depended on a parameter, denoted p, characterizing the
degree of cross-sectional dependence.

2.2 Including Fixed Effects

If the model includes cluster fixed effects, the matrix V defined in (5) is singular. The rank of
V cannot exceed G, but the number of parameters must be greater than G whenever there are G
fixed effects (and perhaps in other circumstances as well). With cluster fixed effects, the diagonal
block of I' that corresponds to the fixed effects is a zero matrix, because the vector 1y must be
orthogonal to the fixed effect for cluster g. This may (but typically does not) cause V' to have zero
diagonal elements for the coefficients of the fixed effects.

The presence of cluster fixed effects does not prevent us from using (5) to make inferences
about the remaining elements of 8. Instead of doing so directly, it is both computationally faster
and theoretically simpler to project the regressand and all the other regressors off the fixed effects
so that all variables are expressed as deviations from cluster means; see Pustejovsky and Tipton
(2018). We need to change Assumptions 1-3 slightly in order to allow for this.

Let Dy be an Ny x G matrix with the g™ column equal to a vector of 1s and all other elements
equal to 0, and let D be the N x G matrix formed by stacking the D, vertically. Then Mp =
Iy — D(D"D)™'DT is the projection matrix that takes deviations from cluster means. The g'h
diagonal block of Mp is the N, x Ny matrix M, =TI —¢(e"¢)71eT, where ¢ is a vector of N, ones.
In model (1), we can replace (y, X) by (Mpy, MpX) so as to partial out the fixed effects. For
cluster g, this means replacing (yg, X4) by (Myyg, MyX,). Of course, demeaning the data within
each cluster necessarily affects the pattern of intra-cluster correlation, introducing correlations even
where there were none originally.

The assumptions for the model involving the data demeaned within each cluster are as follows,
where §, = X J Mu, denotes the scores of the model for the demeaned data.

6



Assumption 1’. The sequence {$,} is independent across g and satisfies, for all g € N, that
E(3,) = 0 and E(8,3,) = ;. In addition, for some X > 0,

’2+)\

sup E||8;4] < o0.

1,gEN

Assumption 2’. The regressor matrix X satisfies N™1.X "MpX L= M, where 2y is finite and
positive definite, and

sup E[|(Xig — XQ)T(Xig - Xg)Hz—M < 0,

1,g€N
where X is the mean of the X, over cluster g and A > 0 is defined in Assumption 1’. Furthermore,
there exist a non random sequence {/iy} and a non-random, finite scalar ¥, > 0 such that fiy — oo
and uNaTVa —> U4, Where

V =d(X MpX)~ (Z )XTMDX)l. (14)

Assumption 3'. For \ defined in Assumption 1’ and iy defined in Assumption 2/,

24X

Ny
P sup =4 — 0.

G — 0o and
M geN N

To a great extent, Assumptions 1’-3’ are in fact implied by Assumptions 1-3. For example,
because §;, = (XgT ® u;)vec(Mg), the independence condition in Assumption 1’ is implied by
independence of { X, ® uy} across g. Moreover, it is trivial to see that E(s,) = 0 is implied by
Assumption 1, while the moment condition in Assumption 1" is implied (using the ¢, inequality) by
the simple additional condition that sup; ; ,en E[| X Jgligl|*t* < co. Similarly, the moment condition
in Assumption 2’ is trivially implied by the moment condition in Assumption 2. Thus, together
with Assumptions 1-3, the following assumption is sufficient for the model with cluster fixed effects.

Assumption FE.

1. The sequence { Xy ® u,} is independent across g and sup; ; jen E|| Xguigl** < oo.

2. The regressor matrix X satisfies N~1 X "TMpX L= M, where Bjy is finite and positive
definite, and there exist a non- random sequence {fiy} and a non-random, finite scalar v, > 0
such that iy — oo and uNaTVa £, Vg.-

3. Assumption 3 holds with uy replaced by iy defined in part 2.

The first two parts of Assumption FE strengthen Assumptions 1 and 2, but they are quite mild.
The key thing they rule out is regressors that only vary at the cluster level, because Mpx = 0 if
x is such a regressor, and this would violate part 2 of Assumption FE. Whenever a model involves
cluster fixed effects, we will assume that Assumptions 1’-3’ hold. As argued above, an alternative
is to assume that, in addition to Assumptions 1-3 for y and X, the conditions in Assumption FE
hold.

Of course, the variance matrix (14) for the model with fixed effects will be numerically different
from the variance matrix (5) for the model without fixed effects. The former will often yield larger
standard errors, but not always. The fact that X T X — X T MpX is positive semidefinite would
make the diagonal elements of (14) larger than those of (5), but this can be offset by the fact that
2521 i]g will generally be smaller than 2521 3,, because projecting the error terms off the fixed
effects reduces the amount of intra-cluster correlation.



2.3 Theory for Asymptotic Tests

Our first result in Theorem 2.1 below has several precursors in the literature, although these are
all obtained under assumptions that are very different from ours. In particular, White (1984,
Chap. 6) assumes equal-sized, homogeneous (same variance) clusters, and Hansen (2007) assumes
equal-sized, heterogeneous clusters. Thus, both these papers assume that N, = N/G for all g,
which trivially satisfies our Assumption 3.

More recently, Carter, Schnepel, and Steigerwald (2017) obtains a result similar to our Theo-
rem 2.1 that allows clusters to be heterogeneous. However, that paper’s Assumption 1.b. requires
that the fourth-order intra-cluster cross-moments of ug, i.e. E(ujgujqurguig) with 4,7, k,1 not all
the same, are identical to those of a multivariate normal distribution. It seems likely that this
condition rules out a great deal of empirical data in economics and related disciplines. Moreover,
that paper imposes very high-level assumptions to restrict cluster-size heterogeneity, and it is not
clear how to verify, or derive sufficient primitive conditions for, those assumptions. In contrast,
our assumptions are primitive and straightforward to interpret, and we only assume existence of
2 + X moments for some A > 0. Very recently (indeed after the first draft of the present paper was
written), Hansen and Lee (2019) derives a law of large numbers and a central limit theorem for
clustered samples under conditions very similar to ours. The paper applies those results to several
different estimation problems, including regression, but does not consider bootstrap inference.

Since we do not restrict the dependence within each cluster and wish to allow any structure
for the intra-cluster variance matrices, 3, or €24, we cannot normalize B — Bo in the usual way to
obtain an asymptotic distribution. Instead, we consider asymptotic limit theory for the studentized
(self-normalized) quantities (@' Va)~/2a" (8 — By), (a'Va)'a' Va, and t,. See, e.g., Hansen
(2007, Theorem 2) or Carter, Schnepel, and Steigerwald (2017) for related arguments.

In order to analyze the asymptotic local power of asymptotic and bootstrap tests based on the
cluster-robust ¢-statistic (6), we derive our results under the sequence of local alternatives,

a' (Bn — Bo) = (a"Va)'/?s, (15)

which is often referred to as “Pitman drift.” Under (15), the DGP is characterized by a drifting
sequence of true values of the parameter vector 8 indexed by N with drift parameter §. When
0 = 0, there is no drift, the null hypothesis Hy is true, and the DGP is given by 8 = B¢. In a more
conventional setting, without clustering, the factor that multiplies § would be N~1/2.

The following result establishes the asymptotic normality of B and t,.

Theorem 2.1. Suppose that Assumptions 1-3 are satisfied and the true value of B is given by (15).
It then holds that

(B~ Bw)
(zaTVa)lj/V2 5 N(O,1), (16)
a'Va P
Ve 1, (17)
to —% N(5,1). (18)

When the null hypothesis Hy is true, the following is an immediate consequence of Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1 and Hy, it holds that t, 4, N(0,1).

The result in Corollary 2.1 justifies the use of critical values and P values from a normal
approximation to perform t-tests and construct confidence intervals. However, based on results in
Bester, Conley, and Hansen (2011), it will often be more accurate to use the ¢(G — 1) distribution;
see also Cameron and Miller (2015) for a discussion of this issue.



An important consequence of the results in Theorem 2.1 and Corollary 2.1 is that the relevant
notion of sample size in models that have a cluster structure is generally not the number of ob-
servations, N. This is seen clearly in the rate of convergence of the estimator in (16), which is

(aTVa)'/2, or equivalently ,u]_vl/ ?_instead of N~1/2; see also the discussion around (9).

The proof of Theorem 2.1 may be found in Appendix B. In this proof, we make use of the scalars
Zg = Va Y QM%QN *1aTQflsg, which are indexed by cluster, and show that Ef;;:l zg converges in
distribution. This makes it clear that, in an important sense, G rather than N is the relevant
notion of sample size. Moreover, because we are summing over clusters, the clusters cannot be too
heterogeneous. In particular, the information cannot be concentrated in one cluster (or a finite
number of clusters), which is the reason why Assumption 3 imposes a restriction on supy Ng.

Theorem 2.1, specifically (18), gives the asymptotic local power of the cluster-robust t-test as
a function of 4. For example, for an a-level test against a two-sided alternative, the probability of
rejecting the null hypothesis when the DGP is (15) is given by the asymptotic local power function

l_q)(zlfa/2_5>+(I)(_Zlfoz/2_5)7 (19)

where ®(z) denotes the cumulative distribution function of the standard normal distribution, and
Z1_q 2 satisfies ®(21_o/2) = 1 — /2. The asymptotic local power function (19) may seem to be
too simple. However, the power of the t-test (or, equivalently, the asymptotic efficiency of the
estimator) implicitly depends on G, the N,, the ¥,, and X via the quantity (a"Va)'/? that
appears in (15). The interpretation of § implicitly changes whenever (a'Va)'/? changes.
Recalling the definition of V' in (4), we see that individual cluster sizes, N, impact the power
of the test in a way that depends heavily on the intra-cluster variance matrices of the scores, i.e.
¥,, and is also confounded with the influence of the regressors X. In general, the effects of the
Ny, the X, and the regressors on the power of the ¢-test cannot be disentangled. They interact in
a very complicated manner, so that the total number of observations cannot be relied upon as a
notion of sample size. MacKinnon (2016) provides simulation evidence which illustrates this point.

3 Asymptotic Validity of the Wild (Cluster) Bootstrap

In this section, we consider the asymptotic validity of inference based on the wild cluster bootstrap
(WCB) as an alternative to the asymptotic inference justified in Theorem 2.1. We consider two
versions of the WCB. One of them (WCU) uses unrestricted estimates in the bootstrap data-
generating process, and the other (WCR) uses estimates that satisfy the restriction Hy. The latter
is the version proposed in Cameron, Gelbach, and Miller (2008). However, that paper provides no
theoretical justification for the properties of the WCR bootstrap, nor any conditions under which
it is valid or expected to work well.

The key feature of the wild cluster bootstrap DGP is the way in which the bootstrap error
terms are generated. Let v7,v3,...,v5 denote IID realizations of an auxiliary random variable v*
with zero mean and unit variance. The bootstrap error vectors ug, for g =1,..., G, are obtained
by multiplying the residual vector @, (unrestricted) or @, (restricted), for each cluster g, by the
same draw vy from the auxiliary distribution.

This may be contrasted with the ordinary wild bootstrap (WB) DGP, which we also analyze
below. The WB was designed for regression models with independent, heteroskedastic errors but
has recently been suggested for the model (1) by MacKinnon and Webb (2018). For the WB,
the bootstrap error vectors uy, for g = 1,...,G, are obtained by multiplying each residual ;4
(unrestricted, WU) or ;4 (restricted, WR), by a draw v}, from the auxiliary distribution.



3.1 Wild Cluster Bootstrap

We next describe the algorithm needed to implement the WCU and WCR bootstraps for testing
the hypothesis Hy in some detail.! We then prove the asymptotic validity of both versions. To
describe the bootstrap algorithm and the properties of the bootstrap procedures, we introduce the
notation i, and B, which will be taken to represent either restricted or unrestricted quantities,
depending on which of WCR or WCU is being considered.

Wild Cluster Bootstrap Algorithm (WCU and WCR).

1. Estimate model (1) by OLS regression of y on X to obtain B defined in (3), unrestricted
residuals 4, and V' defined in (5). For WCR, additionally re-estimate model (1) subject to
the restriction a' 8 = a ' By so as to obtain restricted estimates B and restricted residuals @.

2. Calculate the cluster-robust t-statistic, t,, for Hy: a'8 = a' By, given in (6).
3. For each of B bootstrap replications, indexed by b,

(a) generate a new set of bootstrap errors given by u**, where the subvector corresponding
to cluster g is equal to u;b = v;bﬂg, and the v;b are independent realizations of the
random variable v* with zero mean and unit variance;

(b) generate the bootstrap dependent variables according to y** = X ﬁ + u*l:

(c) obtain the bootstrap estimate B = (X TX)" !X Ty* the bootstrap residuals @**, and

the bootstrap variance matrix estimate

G
V*b — d(XTX)—l (Z X;ﬁ;b’a;bTXg> (XT_X')fl;
g=1
(d) calculate the bootstrap t-statistic
A (B )
VaTV*a
4. Depending on whether the alternative hypothesis is Hy,: a'8 < a'By, Hr: a'8 > a' By, or
Hy: a'B # a'By, compute one of the following bootstrap P values:

*b __
t, =

. 1 B ~ 1 B . 1 B
b= 1 <ta), Ph=25) It >t.), or P5=—= I(|t2 > [tal).
Bbzl Bbzl Bb:l

If the alternative hypothesis is Hs, then the symmetric P value ]58* could be replaced by the
equal-tail P value, which is simply 2 min(F}, Pg).

We note that all the bootstrap P values defined in step 4 of the wild cluster bootstrap algorithm
are exactly invariant to the multiplicative factor d in the CRVE, as long as the same factor is used
for the original test statistic and the bootstrap test statistics. The factor d scales both ¢, and ¢
by the same amount, leaving the indicator functions in step 4 unchanged.

Our next result demonstrates the validity of the WCB. Let the cumulative distribution function
(CDF) of t, under Hy be denoted Py(t, < z). As usual, let P* denote the probability measure
induced by the bootstrap (WCB or WB, as appropriate) conditional on a given sample, and let E*
denote the corresponding expectation conditional on a given sample.

"With the WCU bootstrap, a slight modification of this algorithm can be used to construct studentized bootstrap
confidence intervals by calculating lower-tail and upper-tail quantiles of the ¢:° instead of P values; see Davidson
and MacKinnon (2004, Section 5.3). This is the principal reason for considering WCU. However, when an efficient
algorithm for computing WCR bootstrap P values is used, it is also easy to construct confidence intervals by inverting
WCR bootstrap tests; see Roodman, MacKinnon, Nielsen, and Webb (2019).
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Theorem 3.1. Suppose Assumptions 1-3 are satisfied and E*|v*|*** < oo for some A\ > 0, and
that the true value of B is given by (15). Then, for any € > 0,

P(sup Pr(t; <x)— Py(ty < x)‘ > e) — 0.
z€R

When the null hypothesis Hy is true, that is, when 6 = 0 in (15), Theorem 3.1 implies that
P values computed in step 4 of the WCU and WCR algorithms are asymptotically valid, as are
studentized bootstrap confidence intervals. More generally, Theorem 3.1 shows that, under the
sequence of local alternatives (15), the bootstrap distribution P*(t} < x) coincides with that of the
original ¢-statistic under the null hypothesis Ho, Py(t, < ), in Corollary 2.1. This implies that the
WCB test has the same asymptotic local power function (19) as the asymptotic test based on t,.

3.2 Ordinary Wild Bootstrap

We next describe the algorithm for the ordinary (non-cluster) WU and WR bootstraps, and we
then prove the asymptotic validity of both versions in the context of the clustered model (1).

Wild Bootstrap Algorithm (WU and WR).

All steps are identical to the corresponding steps in the WCU and WCR algorithms, except for
step 3.(a), which is replaced by the following:

3. (a) generate a new set of bootstrap errors given by w*?, where % = v*%ii;, and v*? denotes
g p g y Y 19 19 g 19

independent realizations of the random variable v* with zero mean and unit variance.

Note that, although this algorithm relies on the WB to generate the bootstrap errors, u;,, and
hence the bootstrap data, the WB test statistic is still computed using the CRVE based on the
bootstrap data, i.e. using V* Also note that, as with the WCB algorithm, the WB algorithm is
exactly invariant to the scaling factor d in the CRVE.

Theorem 3.2. Suppose Assumptions 1-3 are satisfied and E*|v*|*** < oo for some X\ > 0, and
that the true value of B is given by (15). Then, for any € > 0,

P(sup P*(t; <x) — Py(tq < x)‘ > e) — 0.
z€eR

Like Theorem 3.1, this result implies that P values computed using the ordinary WB algorithms,
WU and WR, as well as studentized bootstrap confidence intervals based on WU, are asymptotically
valid. Moreover, since Theorem 3.2 is obtained under the sequence of local alternatives (15), it
implies that the asymptotic local power functions of tests based on the WB coincide with those
based on either the cluster-robust t-statistic (6) or the WCB. In other words, perhaps somewhat
surprisingly, there is no loss of asymptotic efficiency or power from imposing independence within
clusters in the bootstrap DGP.

Although the result in Theorem 3.2 is identical to that in Theorem 3.1 on the surface, the
underlying theory differs in important ways. In particular, the WB is unable to replicate the intra-
cluster correlation structure in ¥, or {3, because the WB multiplies each residual by independent
draws of the auxiliary random variable v*, so that the WB bootstrap DGP has independent (but
possibly heteroskedastic) errors, even within clusters. In consequence, the WB estimator ,3* has a
different asymptotic variance matrix (conditional on the original sample) than do both the actual
estimator B and the WCB estimator (conditional on the original sample); cf. (16) and (B.15) in
Appendix B. However, the fact that a ' B* has the “wrong” variance does not invalidate the WB,
because ¢} is studentized appropriately and thus has the correct asymptotic distribution.
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Furthermore, because the normalization of a'8* under the WB is in fact of order N1/2 (see
(B.15) and (B.19) in Appendix B), the distribution of ¢} for the WB will in general approach
the asymptotic N(0,1) distribution more rapidly than the distribution of ¢,. This rules out the
possibility of asymptotic refinements for the WB. On the other hand, asymptotic refinements are
possible for the WCB, and we investigate them in Section 5. In practice, these issues might well
make it more difficult for the WB than for the WCB to mimic the distribution of ¢, when pn
is small, e.g. when G is small or the cluster sizes are heterogeneous and the ,. We study the
finite-sample performance of the WB and the WCB in the next section.

4 Simulation Experiments

In this section, we investigate the finite-sample performance of the procedures studied in Sections 2
and 3 using Monte Carlo experiments. Our main focus is on cases in which cluster sizes either do
not vary or vary to a moderate but not extreme extent, but we also consider cases in which the
rate condition given in Assumption 3 is either violated or close to being violated.

Our experiments are based on the DGP

Yg :ﬁl +52wg+ug7 E(“gu;—) = an g= 1)"'7G7 (20)

where £, is an N, x N, matrix with every element on the principal diagonal equal to 1 and every off-
diagonal element equal to p. Thus the error terms are equicorrelated with correlation coefficient p.
In all the experiments that we report, we set p = (.10, because rejection frequencies for all versions
of the WCB appear to be almost totally insensitive to the value of p, provided it is greater than
about 0.05. We provide evidence on this point in Appendix C.

The null hypothesis is that f, = 0; this is equivalent to setting @ = [0 1]T. To avoid the
possibly excessive symmetry of normal errors, the errors are generated by a normal mixture model
with skewness 1 and excess kurtosis 3. Let vp, ;g = (1 — p1)1/2£m,ig + p}/zem,g, m = 1,2, where
all component random variables are i.i.d. N(0,1), so that both vy, and vs;4 are N(0,1) with
intra-cluster correlation p;. Then u;4 equals puy + oq1v1 44 with probability p and ps + o2v2;4 With
probability 1 —p. To obtain the desired moments for u;4, in particular p = 0.10, we use p = 0.1967,
w1 = 0.7693, e = —0.1884, o1 = 1.5734, 09 = 0.6770, and p; = 0.2556.

The regressor z;, is a weighted sum of two x%(8) random variables, T1,49 and w24, both of
them recentered and rescaled to have mean 0 and variance 1, where z1;, is independent across
observations, and x4 varies across but not within clusters. The weights are chosen so that the
correlation of x;; with x4 for i # j is p,. Specifically, z;; = (1 — pm)l/%ug + p;lc/Q:):g,g. Thus the
regressor is both skewed and leptokurtic, and it can display any amount of intra-cluster correlation.
We also experimented with other ways of generating the x;4; see Appendix C. The amount of
skewness has very little effect on the rejection frequencies for WCR, but the ones for ¢(G — 1) and
WCU do increase noticeably as the regressor becomes more skewed.

Since we have to impose conditions like Assumption 3 on the cluster sizes, we expect inference
to be more difficult when cluster sizes differ; see MacKinnon and Webb (2017a) for some evidence
on this point. In order to allow cluster sizes to vary systematically, we allocate N observations
among G clusters using the equation

Nexp(v9/G)
5, exp(v5/G)

where v > 0, [-] denotes the integer part of the argument, and Ng = N — Zfz_ll Ny. When v =0
and N/G is an integer, N; = N/G for all g. As «y increases, cluster sizes become more unequal.

Ng:[ ],forgzl,...,G—l, (21)
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Figure 1: Rejection frequencies at 0.05 level, G = 25, N = 2500, p = 0.10
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In some of our experiments, v = 2. This implies that, when G = 25, the largest cluster size is 7.3
times the smallest. As expected, the performance of all methods deteriorates when we increase =y
from 0 to 2. Additional evidence on the effect of v is provided in Appendix C.

Every experiment has 400, 000 replications. We use such a large number because, in many cases,
the rejection frequencies for alternative methods are quite similar, and we need a large number to
estimate them accurately. Fortunately, a recently developed algorithm for computing wild cluster
(but not wild) bootstrap P values makes it remarkably inexpensive to perform such a large number
of replications for all the WCB methods; see Roodman, MacKinnon, Nielsen, and Webb (2019).

In the first set of experiments, the model is as described above, with G = 25, N = 2500,
and either v = 0 (100 observations per cluster) or v = 2 (between 32 and 234 observations per
cluster). The two panels of Figure 1 show rejection frequencies for seven tests at the 0.05 level.
The horizontal axis shows p,, which varies from 0.0 to 1.0 by increments of 0.05. We focus on p,
because past work, going back at least to Moulton (1986), has shown that the value of p, is very
important. When p, = 1, the elements of x, are constant within each cluster.

Throughout, we compare bootstrap rejection frequencies with ones for the cluster-robust ¢-test
as implemented in Stata. In particular, we use critical values taken from the ¢(G — 1) distribution,
which in this case is t(24), instead of standard normal ones, as advocated by Bester, Conley, and
Hansen (2011), and the CRVE is the one in (5) with the factor d = G(N — 1)/((G — 1)(N — k)).
Without this factor, or if we had used the standard normal distribution instead of the ¢(G — 1)
distribution, the overrejection by the t-test that is evident in Figure 1 would have been even more
severe. For all the bootstrap tests, we report symmetric P values based on B = 399 bootstrap
samples. For the ordinary wild bootstrap (WR and WU), the v* are drawn from the Rademacher
distribution. For the wild cluster bootstrap, they are drawn either from the Rademacher distribu-
tion (WCR-R and WCU-R) or from the two-point Mammen (1993) auxiliary distribution (WCR-M
and WCU-M).

Both the cluster-robust t-test and the two variants of the WCU bootstrap test always overreject
when p, > 0, and they do so more severely as p, increases. Interestingly, using the Mammen
distribution leads to considerably more severe overrejection than using the Rademacher. In some
cases, WCU-M actually rejects more often than #(24). In contrast, the WCR-R bootstrap works
very well in all cases, and the WCR-~-M bootstrap underrejects quite severely. The reasons for the
excellent performance of WCR-R, the underrejection by WCR-M, and the overrejection by WCU-R
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Figure 2: Rejection frequencies as G changes, v = 2, p = 0.10
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and WCU-M are analyzed in Section 5 using higher-order asymptotic theory.

The two ordinary wild bootstrap methods (WR and WU) perform almost perfectly when p, = 0,
overreject somewhat for moderate values of p;, but then improve as p, approaches 1. Because WR
and WU are always very similar, and are much more expensive to compute than all versions of the
WCB, we do not consider WU in later experiments.

Since our focus is on the bootstrap, the only non-bootstrap procedure for which we report
results is the ¢t-test implemented in Stata. Carter, Schnepel, and Steigerwald (2017) has proposed a
diagnostic called the “effective number of clusters” and denoted G*4. When it is small, tests based
on t(G — 1) are prone to overreject. For the experiments of Panel (a) in Figure 1, the average value
of G*4 declines from 9.55 to 8.51 as p, increases from 0.0 to 1.0. For the experiments of Panel (b),
it declines from 8.23 to 6.01. Thus the value of G*4 correctly predicts that the t-test will perform
better in Panel (a) than in Panel (b) and that its performance will deteriorate as p, increases, more
strongly in Panel (b). However, in both panels, the average values of G** decline sharply between
pz =0 and p, = 0.15 and very little thereafter. Thus using G*4 as a diagnostic fails to predict the
very substantial increase in rejection frequencies for t-tests as p, increases beyond 0.15.”

In the next two experiments, we vary the number of clusters G and the sample size together.
The results are shown in Figure 2. In Panel (a), we fix p, at 0.2, where WCR and WCU work quite
well. In Panel (b), we fix it at 0.7, where all procedures except WCR-R work much less well. In
both panels, we vary G from 10 to 30 by 5, then from 40 to 90 by 10, and finally from 100 to 200
by 20. The value of v is 2, so that cluster sizes change as GG, and therefore IV, increase. However,
the way in which they vary is essentially the same as G increases. The smallest sample size is 1000,
and the largest is 20,000.

There are four striking results in Figure 2. The first is that all the wild cluster bootstrap
tests improve rapidly as GG increases. This is true even for WCU-M, which rejects more often than
t(G — 1) in Panel (a) when G is small. The second is that WCR-R performs very much better
than WCR-~M and both variants of WCU, and indeed is easily the best performing test in Figure 2.
Its rejection frequency is essentially 0.05 for G > 30 in Panel (a) and for G > 40 in Panel (b).
This is consistent with the results of Davidson and MacKinnon (1999) and Davidson and Flachaire
(2008) and reflects the fact that the restricted residuals are better estimators of the error terms

2(Carter, Schnepel, and Steigerwald (2017, p. 707) discusses the use of critical values based on the t(G**) distri-
bution as an alternative to t(G — 1), but advises against this procedure and presents no Monte Carlo evidence.
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Figure 3: Rejection frequencies for six tests when there is one big cluster
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than the unrestricted ones, especially for high-leverage observations where the regressor happens
to be particularly large. The third result is that WCR-M underrejects severely when G is small,
but the underrejection essentially disappears by the time G = 200.

The fourth striking result in Figure 2 is that WR, the restricted ordinary wild bootstrap test,
improves less rapidly than all the wild cluster bootstrap tests as G increases. In both panels, it is
the second-best test, after WCR-R, when G is small. But it is clearly the worst bootstrap test for
G > 90 in Panel (a), and it is the worst bootstrap test for G = 200 in Panel (b). This is exactly
what we expect to see based on the discussion following Theorem 3.2.

In the next set of experiments, we investigate cases where one large cluster dominates all the
others, because this is a situation that is ruled out by the second condition of Assumption 3. Both
the regressor and the error terms are distributed in the same way as in the experiments of Figures 1
and 2, with p = 0.10 and p, = 0.70. We set N = 200(G —1) and N; = 500(N/1000)® for o < 1 and
then divide the remaining observations as evenly as possible among the remaining clusters. The
values of G are 11,21,...,101 and 121,141, ...,201. When « = 1, exactly half the observations are
always in the first cluster. When « < 1, this is still true for G = 11, but the fraction of observations
in the first cluster declines steadily as G increases. For example, when a = 0.9, N;/N = 0.371
for G = 201, and when a = 0.5, N;/N = 0.112 for G = 201. In contrast, for the experiments of
Figure 2, the largest cluster constitutes 21.3% of the sample for G = 10 but only 1.6% for G = 200.

The six panels of Figure 3 show rejection frequencies for CRVE t-tests, ordinary wild bootstrap
tests, and four wild cluster bootstrap tests for five values of o between 0.5 and 1. Since this
experimental design violates the rate condition given in Assumption 3 when a = 1, it is not

15



Figure 4: Simulated power, v =0, p = 0.1, p; = 0.7
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surprising that the rejection frequency for the CRVE t¢-test, in Panel (a), increases steadily with G.
This is also true when o = 0.9. For smaller values of «, rejection frequencies clearly drop as G
increases beyond some threshold value, which varies with o. However, even for the smallest values
of a, G would evidently have to be very large for t-tests to yield reliable inferences.

Interestingly, the rejection frequencies for the WR bootstrap, in Panel (d), look quite similar
to the ones for the t-tests in Panel (a). They are somewhat smaller for each value of G, but for all
values of a they vary with G in roughly the same way and always exceed 0.05.

Panels (b) and (c) show rejection frequencies for the WCU-R and WCU-M bootstraps, respec-
tively. For a = 1, they look very similar to the ones for the t-test, overrejecting more and more
severely as GG increases. However, for smaller values of «, they either rise at first and then drop
(for « = 0.9), or they drop monotonically as G increases. For G = 201, both of the unrestricted
WCB methods perform very much better than the t-test or the WR bootstrap.

Rejection frequencies for the WCR-R and WCR-M bootstraps, shown in Panels (e) and (f), are
much smaller than for any of the other methods. In fact, the WCR-M tests actually underreject
for G = 11, as they did for all values of G in Figures 1 and 2. However, except for a = 0.5, they
then overreject for all or most larger values of G. For both variants of the restricted WCB, the
rejection frequencies appear to be converging to 0.05 as G becomes large except for a = 1 and
possibly a = 0.9. For a = 0.5 and a = 0.7, both tests work almost perfectly for large values of G.

Up to this point, we have only studied test size. Figure 4 investigates the power of alternative
tests for the case of equal-sized clusters with IV, = 100. The horizontal axis shows the true value
of B for tests of B2 = 0. In Panel (a) there are 10 clusters, and in Panel (b) there are 25. We use
a very small number in Panel (a) to make it easy to distinguish the five curves.® Results for v > 0
(not reported) look similar to those in Figure 4, but, for any sample size and value of S, power
diminishes as v increases. This happens because the information content of a sample with clustered
error terms (and the same pattern of intra-cluster correlation for all clusters) is maximized when

3We did not calculate the power of the WR bootstrap because it would have been very expensive, and because
both our theoretical results (see the discussion following Theorem 3.2) and our simulation results (see in particular
Figure 2) suggest that it will rarely be the procedure of choice. For the same reasons, we also omit this method in
the last two sets of experiments, which we report below.
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Figure 5: Rejection frequencies with heteroskedastic errors, G = 25, N = 2500, v =0, p = 0.10
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all clusters are the same size.

In both panels of Figure 4, using the ¢(G — 1) distribution leads to substantial overrejection
under the null hypothesis and therefore to apparently high (but meaningless) power. Interestingly,
however, both WCU-R and WCU-M overreject about as severely as the t-test under the null but
have less power for large values of 3o. WCR-R performs extremely well under the null and therefore
has meaningful power. For larger values of (9, it even has more power than some of the oversized
tests. WCR-M is severely lacking in power for G = 10, much more so than the extent of its
underrejection under the null would suggest, and even for G = 25 it has noticeably lower power.

Overall, these results strongly favor WCR-R, the wild cluster restricted bootstrap using the
Rademacher distribution. Moreover, the fact that all the tests seem to be converging to similar
power functions as G increases from 10 to 25, which continues (in results that are not reported) as
G increases further, suggests that asymptotic theory probably provides a good guide to the power
of all tests provided G is not too small.

In all the experiments reported so far, the error terms are homoskedastic. Simulation results in
MacKinnon and Webb (2018) suggest that, when error variances differ across clusters, several pro-
cedures, including the asymptotic test and the WCB, can be less reliable than in the homoskedastic
case. However, those results were for difference-in-differences regressions. Here we investigate the
effects of heteroskedasticity in the model (20). The error terms in that equation are now multiplied
by (14 cx?g)l/ 2 where ¢ is a constant that we specify. When ¢ = 0, the errors are homoskedastic,
as before, and as ¢ increases the errors are increasingly heteroskedastic.

Panel (a) of Figure 5 is comparable to Panel (a) of Figure 1. In both cases, there are 25
clusters, each with 100 observations. However, in Figure 5, the value of ¢ is 1, which implies that
there is substantial heteroskedasticity. When p, = 0, so that the heteroskedasticity is solely at the
individual level, all procedures perform very similarly in Figure 5 and in Figure 1. As p, increases,
so that more and more of the heteroskedasticity is at the cluster level, the differences between
the two figures become more striking. For larger values of p,, the conventional procedure based
on t(24) critical values overrejects much more severely than it did before. So do the WCU-R and
WCU-M bootstraps, although they now perform better relative to the conventional procedure. The
restricted wild cluster bootstraps are hardly affected by this form of heteroskedasticity. Making
the errors heteroskedastic has not changed the relationships among the five methods.

Panel (b) of Figure 5 demonstrates that these results are not a consequence of the choice to
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Figure 6: Rejection frequencies with heterogeneous regressor, G = 25, N = 2500, v =0, p = 0.10

Rej. rate Rej. rate

0.12 0.12

0.10 0.10

0.08 0.08

0.06 0.06

0.04 0.04

0.02 0.02

0.00 = T T T T T T T T T Pz 0.00 T T T T T T T T T rb
00 01 02 03 04 05 0.6 0.7 08 09 1.0 0 1 2 3 4 5 6 7 8 9 10

(a)b=5 (b) p =0.9

set ¢ = 1. It shows rejection frequencies as a function of ¢ for p, = 0.9. Note that the horizontal
axis has been subjected to a square root transformation, because rejection frequencies are most
sensitive to the value of ¢ when it is very small. Even a small amount of heteroskedasticity that
varies at the cluster level evidently has a noticeable effect on rejection frequencies. However, the
effects of increasing ¢ diminish rapidly as c¢ increases beyond about 0.5.

In all the experiments reported so far, the regressor has the same distribution for all clusters.
In Figure 6, we relax this assumption by allowing for heterogeneity across clusters. We introduce
a parameter b > 0 which is used to generate the elements x;, of the vector x, in (20) as

rig = (1+ bgi_ll)wig, (22)
where the w;, are generated as weighted sums of x%(8) random variables in exactly the same way as
the x;, were generated for Figures 1-4. For (22), the variance of the z;4 increases with g for b > 0.
There is no effect on the first cluster, and the effect is largest for the G*™ one. Even for modest
values of b, there is substantial heterogeneity across clusters. In practice, we would be surprised to
encounter heterogeneity as extreme as that for the larger values of b in our experiments.

Panel (a) of Figure 6 is comparable to Panel (a) of Figure 1, and it looks very similar. The
main effect of setting b = 5 instead of b = 0 is that the t-test and the two unrestricted WCB tests
overreject noticeably more often for larger values of p,. The two restricted WCB tests are not
affected. Panel (b) of Figure 6 shows rejection frequencies as functions of b when p, = 0.9. As
b increases, the tendency of the t-test and the two unrestricted WCB tests to overreject becomes
more pronounced, but again there is no effect on the two restricted WCB tests. There is a simple
explanation for this phenomenon. Heterogeneity causes the observations associated with some
clusters to have much higher leverage than the ones associated with other clusters. This necessarily
affects the unrestricted residuals but not the restricted ones, because the latter are simply deviations
from sample means.?

Several striking regularities emerge from Figures 1-6. The conventional t-test always overrejects,
and it does so more severely for higher values of v or p,. The two unrestricted WCB tests always

4This may incorrectly suggest that our simulation results depend on the fact that (20) has only one regressor.
In Appendix C, we therefore add up to 8 additional regressors. Doing so often causes the rejection frequencies to
increase noticeably, but it does not change the ordering of the various methods.
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overreject, with WCU-M doing so more severely than WCU-R. The overrejection always becomes
more severe as p, increases. These results do not carry over to the two restricted WCB tests.
Except in Figure 3, where there is one big cluster, WCR-M always underrejects, and WCR-R has
very accurate size. When G is allowed to vary, in Figure 2, the rejection frequencies for all four
WCB tests approach 0.05 more rapidly than those of the ¢-test or the ordinary wild bootstrap test.
In the next section, we explain these results using higher-order asymptotic theory.

5 Higher-Order Asymptotic Theory

In this section, we first derive Edgeworth expansions for the CDFs of the sample t-statistic and the
WCB t-statistic. We apply these expansions to investigate several findings from the simulations
in the previous section, such as the overrejection by the asymptotic t-test, the choice of auxiliary
distribution in the WCB, and the choice between restricted (WCR) and unrestricted (WCU) boot-
strap DGPs. We also discuss whether the WCB can yield an asymptotic refinement over the normal
approximation under Hy, that is, whether the difference between P*(¢}; < z) and Py(t, < x) in
Theorem 3.1 can be improved to op(G~"/?) for m = 1,2, uniformly in z.

5.1 Edgeworth Expansions

For the higher-order theory, the analysis will be exclusively under the null hypothesis, so that P
and P, are the same, and to simplify notation we use only the former. We consider both one-term
and two-term Edgeworth expansions. The m-term Edgeworth expansion (m = 1,2) of the CDF of
tq is given, uniformly in z, by

Pty <) =®(x) + fj G7%q(x)p(x) + o(G™/?), (23)
j=1

where ® and ¢ are the standard normal CDF and probability density function (PDF), respectively,
and ¢ and g2 are even and odd functions, respectively. For the bootstrap, the expansion is

P*(t; <x)=®(x) + i G*j/Qéjj(m)tﬁ(x) +op(G™™/?), (24)
j=1

where §; and ¢ are even and odd functions, respectively. The bootstrap is said to provide an
asymptotic refinement if the first or both of the higher-order terms of the CDFs of ¢, and ¢} agree,
ie., if ¢ (z) £, ¢1(x) uniformly in x and possibly also ga(z) £, g2(x) uniformly in z.

For two-sided symmetric tests, we have the two-term (m = 2) expansion

P(lta| < 2) = P(ta < 2) = P(ta < —2) = 20(2) — 1 +2G ' ga(2)p(2) + o(G™Y), >0, (25)

because ¢ and ¢g; are even functions, while g2 is an odd function, and similarly for the bootstrap
counterpart. Thus, ¢; plays no role in two-term Edgeworth expansions for two-sided symmetric
tests, where the bootstrap provides an asymptotic refinement if go () N ¢2(x) uniformly in z.

To derive these expansions, we need to strengthen the conditions on the moments in Assump-
tions 1 and 2 and the conditions on the cluster sizes in Assumption 3. In particular, the latter is
replaced by the following:

Assumption 4. The number of clusters G — oo, and the cluster sizes satisfy supgey Ny < oc.
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In Assumption 4, we assume that the cluster sizes are bounded, which appears to be necessary
to keep the theory tractable. We note that, under Assumption 4, the rates uy, N, and G are
asymptotically proportional. This must be the case because, as N — 0o, no cluster can have more
than NZ"* = supycy Ny < 0o observations. Therefore, eventually, G must be proportional to N.
The rate of convergence of B can be described in terms of (the square-root of) any of the three
rates. That is, for some positive, finite constants ci, co, and cs,

N e, % S g, lfv S es, V(B - Bo) = Op(L); (26)
see also Theorem 2.1 and (B.8). Many summations that will be encountered in the higher-order
theory contain G terms, and, to avoid an asymptotic factor of proportionality, it will be important
to use v/G as the rate of convergence of 3. Consequently, all expansions will be in terms of powers
of v/G. This once more emphasizes the important role of G, and not N, as the most relevant notion
of sample size in the context of cluster-robust inference.

In what follows, we also need to assume the existence of more moments than in Assumptions 1
and 2. In particular, to derive the Edgeworth expansion of the CDF of ¢, in (23), we apply the
so-called “smooth function model”, e.g. Bhattacharya and Ghosh (1978) and Skovgaard (1981). In
the proof, see (B.21), we write t, as a function of

W, = (Wl—;, Vech(ng)T, Vech(ng)T, Vech(W4g)T, Vec(W5g)T)T, (27)

where, for a symmetric matrix A, vech(A) denotes the vector composed of the unique elements of
A, and we define

Wig = X, uy, Way=Wi W), Wy =X, X,, Wiy =Ws0 Wy, Wiy =Ws,@ Wi, (28)

We strengthen Assumptions 1 and 2 by imposing the following conditions. To allow for a
constant term in the notation, we define Wy to be equal to W, with any non-random variables and
redundant variables removed.

Assumption 5. The sequence {W,} is independent across g and SUp e E||W, |2t < oo for
some A > 0. In addition, E(uy|X,) = 0, and the smallest eigenvalues of G* Zngl Var(W,) and
G! Engl E(W3g) are bounded away from zero for G sufficiently large.

The conditions in Assumption 5 imply and strengthen those in Assumptions 1 and 2. In partic-
ular, the existence of additional moments in Assumption 5 is required to derive cumulants of (an
approximation to) the t-statistic, which are needed to derive the Edgeworth expansions. The pre-
determinedness condition, E(uy|X,) = 0, is quite standard in linear regression, and the condition
on G7! Zg’;l E(W3,) is equivalent to the positive definiteness condition on Z¢ in Assumption 2.
More generally, Assumptions 4 and 5 imply Assumptions 1-3.

Validity of Edgeworth expansions requires further regularity conditions. In particular, we use
“Cramér’s condition”, which is given as follows; see, e.g., Bhattacharya and Rao (1976, Thm. 20.6).

Assumption 6. The characteristic function x,(t) satisfies lim sup,_, o lim supjj¢| 00 [xg(¢)] < 1.

For the validity of the Edgeworth expansion of the CDF of ¢, in (23), we will apply Assumption 6
with x4(t) denoting the characteristic function of Wg. This condition will be satisfied if the
distribution of Wg is sufficiently smooth (has a non-degenerate absolutely continuous component),
which is the reason for the introduction of the notation Wg.

A similar condition is required on the characteristic function of the wild bootstrap auxiliary
random variables vy to prove validity of the Edgeworth expansion of the bootstrap distribution
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n (24). This is, of course, theoretically appealing, but it rules out all commonly applied discrete
distributions for vy, including the Rademacher and Mammen distributions. See, for example, Liu
(1988) or Kline and Santos (2012) for discussions in a non-cluster context.

In the next theorem, we show that, under Assumption 6, the Edgeworth expansions in (23)—(25)
are valid and derive the functions ¢; and ;. If Assumption 6 does not hold, then we call (23)—(25)
the “formal” Edgeworth expansions. It is quite common in the bootstrap literature, e.g. Mammen
(1993), to analyze the formal Edgeworth expansions even in cases where Assumption 6 is not
imposed and may not even hold. In those cases, the formal Edgeworth expansions are nevertheless
often used to explain finite-sample simulation findings, such as the overrejection of the asymptotic
test and superiority of the bootstrap, and also to shed light on the choice of the distribution of
the auxiliary random variables, vy, as well as the difference between the restricted and unrestricted
versions of the bootstrap. We partly follow this approach in some of the subsequent analysis.

Theorem 5.1. Suppose Assumptions 4 and 5 are satisfied for some X\ > 0, that Assumption 6 is
satisfied for the characteristic function of Wg, and that Hy is true, where Wg is defined in (27)
and the paragraph following it. Then the m-term Edgeworth expansion of the CDF of t, is given
by (23) for m = 1,2, while that of |ts| is given by (25) for m = 2 with

1 1
Q1($) = 2d71/2a—r’7171 3d3/2a 1, 10,(1’ — 1) and
1 1
ga(r) = — 1 ((aT'YLla) 5 Tr {53,351,1} + Tr{yi3} — CLT€1,1£3,3£1’1CL + 2aT€171£372)§c
1
1282 ( (a'y11a)” — &0 —6a' &11€33811a + 12aT£1,1£3,2) (z® — 3x)
- 18d3( T’YI ]_a)2($5 - 101’3 —+ 15$)’
where
G 1 G
Tmn = o Z a' Z1yZngZ,g).  Emn = IE Y E(ZngZ,,), (29)
g=1 g=1
and
Zyg = v, PETI Wiy, Zg=(a' Z4y)?, Zsy=W3E a, (30)
with

G N2
== Z E(X, X,) and yazaTE*?rE*la. (31)

If, in addition, E*|v* |2+2m+)‘ < 00 for some A > 0 and Assumption 6 holds for the characteristic
function of (v} Vg» Vg )T then the Edgeworth expansions of the CDFs of ti and |t%| are given by the
same expressions as those of t,, but with G; instead of q;; see also (24). The functions {; are
obtained from q; by replacing the population mean E(-) by the bootstrap analog E*(-) and replacing

Zig by Z;,, where
Zlg (1_1/2—‘_1W1_ga Z;g = (a’TZikg)27 Z;:g = W3gé'—1a’7 (32)
G
.. — 1 N
Wl*g = X;u;’ E=W;= 5 Z W3ga Vg = aTW3 L I I‘W5 . (33)

With the exception of the DGP for the simulation results reported in Figure 3 (one big cluster),
which violates even the conditions for the first-order theory, all the DGPs considered in Section 4
that satisfy the null hypothesis also satisfy the regularity conditions for the expansions of the CDF
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Figure 7: Edgeworth expansions of CDF of |¢,]
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of |ty|. In particular, they satisfy Assumption 6. Hence, we can explain the observed behavior of
the t-test in Section 4 by analyzing the parameters v, , and &, , in Theorem 5.1 and the functions
g;j(x). To this end, we now proceed to draw Edgeworth expansions of the CDF of |t,| for some of
the DGPs considered in Section 4.

In each panel of Figure 7, we plot the right tail of the CDF of the absolute value of a standard
normal random variable, i.e. 2®(z) — 1, along with CDFs of the absolute value of a random variable
that follows the (G — 1) distribution for G = 25, and also for G = 50 and G = 100 in the bottom
two panels where there is less overlap with other curves. In addition, and this is the point of the
figure, we plot the two-term Edgeworth expansions given in (25) and Theorem 5.1 for G = 25,
G =50, and G = 100. For the Edgeworth expansions, we calculate the parameters v, and &, »
in Theorem 5.1, and hence the functions g;(x), using the true values from the DGP, and then plot
the right-hand side of (25) against z, omitting the o(G™1) term.

The four panels of Figure 7 correspond to different setups from Section 4. In each case, the
DGP is (20) with p = 0.1, and the four panels differ in terms of p, (either 0.0 or 0.7) and ~ (either
0 or 2). These parameter values generate quite different behavior for the ¢-test, as documented in
Figures 1 and 2. In each panel of Figure 7, and most obviously Panels (c¢) and (d), it is evident
that the Edgeworth expansions provide a very substantial improvement over the CDFs of both the
reference normal approximation and the ¢(G — 1) distribution. One way to see this is to follow
the 0.95 percentile horizontally across a panel until reaching the CDF of the ¢(G — 1) distribution.
This, of course, is the critical value used for the t-test as implemented, e.g., in Stata. Following
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then a vertical line to the Edgeworth expansion, and after that a horizontal line across the panel,
will give one minus the size of the t-test as predicted by the Edgeworth expansion. For reference,
these lines have been drawn for G = 25 in all panels of Figure 7, and additionally for G = 50 and
G =100 in Panels (c) and (d).

In Panels (a) and (b) of Figure 7, where v = 0 and v = 2, respectively, with p, = 0.0 in both
cases, the Edgeworth expansions for G = 25 show that the t-test is oversized only very slightly. On
the other hand, in Panels (c¢) and (d), where p, = 0.7, size distortions are much larger, although
they decrease as G increases. Overall, this corresponds well with the simulation results for the
t-test presented in Figures 1 and 2, from which it appears that p,, and to a slightly lesser extent
also v, play an important role in the size distortion observed for the t-test.

More generally, Figure 7 shows how the Edgeworth expansions, via the parameters ~,, , and
&m,n in Theorem 5.1, can be used to analyze and “explain” the simulation findings for the t-test
presented in Section 4. We next turn our attention to the different variants of the WCB and use
the higher-order theory to shed light on the simulation results for them.

5.2 Refinements and Choice of Bootstrap

The bootstrap errors for one-sided and two-sided tests are given, uniformly in z, by

m

P*(ty < @) = Pt <) = Y G772(gj(w) — gj()(z) +op(G™?), m=1,2,  (34)
j=1
P*(|ts] < @) = P(lta| < ) = 2G7({2(2) — g2())¢(2) + 0p(G™). (35)

Based on the Edgeworth expansions in Theorem 5.1, (34) and (35) can be analyzed to discuss the
possibility of refinements, i.e. conditions under which a bootstrap procedure is able to eliminate the
leading term(s) on the right-hand side of either (34) or (35). We note that this carries the caveat of
existence, c.f. the discussion immediately following Assumption 6 above, to which we return below.

The next theorem gives results for the skewness and kurtosis terms that appear on the right-
hand sides of equations (34) and (35) after the functions §;(z) and g;j(x) defined in Theorem 5.1
are substituted into them.

Theorem 5.2. Suppose Assumptions 4 and 5 are satisfied for some A > 0 and that E*(v**) < oo.
Then it holds that

aT‘yl,la — aT‘yLla = aT'yLla(E*(v*S) —1) +op(1),
o0 — &2 = &2(E*(v*) — 1) + 0p(1).

In Theorem 5.2 we give results for the skewness correction term, aT‘)'q,la — aT'yLla, and the
kurtosis correction term, 5272 —&2,2. The names arise because aT7171a =G ! 25:1 E(aTzlg)?’ and
§o0 = G! Z?Zl E(aT Zlg)4 can be interpreted as measures of skewness and kurtosis, respectively,
ofa’ B (specifically of the random variable a " Z14). Although not presented in Theorem 5.2, the
remaining parameters appearing in the function Ga(x) in Theorem 5.1, i.e. 5"3,3, etc., can be shown
to be consistent for their non-bootstrap counterparts. We do not present these results because they
do not depend on the moments of the auxiliary random variable, v*, other than E*(v*?) = 1.

The expansions in Theorem 5.1 show that the first term on the right-hand side of (34) is the
skewness correction term, aT")'/Lla — aTﬂyLla. Theorem 5.2 shows that this is zero under either of
two circumstances. The first is when the skewness term, aT’yLla, is itself zero. The second is when
the distribution of the auxiliary random variable v* has third moment equal to one. This resembles
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the results found for the wild bootstrap by Wu (1986), Liu (1988), and Mammen (1993). Indeed,
our results specialize to their results in the special case in which N, =1 for all g.

In other words, Theorems 5.1 and 5.2 show that the WCB can achieve a refinement in the sense
of skewness correction, where the right-hand side of (34) is op(G~'/2), uniformly in z, instead of
op(1), uniformly in z, as in Theorem 3.1, under either of the two conditions mentioned in the
previous paragraph. To be rigorous, this would require Assumption 6 to hold for the distribution
of the auxiliary random variable, v*. Although there exist distributions with third moment of one
for which Assumption 6 holds (e.g., Liu 1988), they are rarely used in practice. The main reason
is that the fourth moment of such random variables is much greater than one.

The second result in Theorem 5.2 shows how a large fourth moment for the auxiliary distribution
is undesirable because that would inflate, rather than eliminate, the kurtosis correction term,
5“2,2 —&2,2, even asymptotically. Indeed, Theorem 5.2 shows that only an auxiliary distribution with
fourth moment equal to one, i.e. E*(v**) = 1, can eliminate the kurtosis correction term. Although
it does not satisfy Assumption 6, the Rademacher distribution is the only distribution with zero
mean and second and fourth moments equal to one. Therefore, only it can eliminate the kurtosis
term in the formal bootstrap errors given by equations (34) and (35).

This analysis reveals a trade-off between skewness correction and kurtosis correction, that is,
between the relative importance of the third and fourth moments. The Mammen (1993) distribution
is the most commonly applied auxiliary distribution that provides a skewness correction, while the
Rademacher distribution is the only one that provides a kurtosis correction. Consequently, while the
expansions in Theorem 5.1 can only be considered formal expansions for these choices of auxiliary
distributions, because neither of them satisfies Assumption 6, we can use the formal expansions to
inform the choice of auxiliary distribution.

We also note from Theorem 5.1 that the bootstrap errors in (34) and (35) depend on whether
restricted or unrestricted parameter estimates are used in the bootstrap DGP, via the estimates
Ym,n and £mn in Theorem 5.1. To avoid excessive reliance on theoretical analysis that is hindered
by the issue of existence and the conditions of Assumption 6 for the auxiliary random variables, we
instead take a graphical approach and plot the formal bootstrap errors in (34)—(35). We then use
these to inform both the choice of auxiliary distribution and the choice of restricted or unrestricted
estimates in the bootstrap DGP.

In Figure 8, we plot the formal bootstrap error for the two-sided case, i.e. the right-hand side
of (35), ignoring the op(G~!) term, for two common choices of auxiliary distribution, namely,
the Rademacher and Mammen distributions. As in Figure 7, the setup is the same as that in
Figure 1 (with p; = 0.7) and Panel (b) of Figure 2. In particular, therefore, the errors are skewed,
suggesting that the Mammen distribution may have an advantage in this case, or at least that there
is a nontrivial trade-off between skewness correction and kurtosis correction.

In Panels (a) and (b) of Figure 8 we plot the bootstrap error for the WCU bootstrap for v =0
(equal-sized clusters) and v = 2 (unbalanced clusters), respectively. The plots are shown for both
the Rademacher and Mammen auxiliary distributions and for G = 25, G = 50, and G = 100. Three
features emerge from these two panels. First, the maximum bootstrap error for the Rademacher
and Mammen auxiliary distributions is similar, although it occurs further to the right for the latter.
Second, for both auxiliary distributions, the WCU bootstrap has too much mass near the left, and
particularly in the center of the distribution, which results in the bootstrap distribution having too
little mass in the right tail. This implies that the WCU bootstrap will overreject. Third, while
the tendency to overreject is evident in both Panels (a) and (b), it is most noticeable in Panel (b),
suggesting that the WCU bootstrap will overreject more for higher values of . Indeed, these
three features for the WCU bootstrap correspond exactly to what was found in our simulations in
Section 4, and especially Figure 1.
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Figure 8: Bootstrap error (35) based on two-term expansions
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The corresponding plots for the WCR bootstrap are shown in Panels (c¢) and (d) of Figure 8.
Again, there are three noticeable features. First, the magnitudes of the bootstrap errors for the
WCR bootstrap are lower than for the WCU bootstrap, suggesting that the former should have
better size control than the latter. Second, the bootstrap error for the WCR bootstrap with the
Mammen distribution shows a very clear shift of mass from left to right, implying that the bootstrap
distribution will have too much mass in the right tail, leading to negative size distortion (under-
rejection). Third, comparing the Rademacher and Mammen auxiliary distributions, it is clear
that the former has much smaller bootstrap errors than the latter. Again, these three features
correspond exactly to our simulation findings in Section 4.

The WCR bootstrap with the Rademacher auxiliary distribution clearly has the smallest boot-
strap errors among all four bootstrap methods in Panels (a) and (c), and also among all four in
Panels (b) and (d). This may be surprising, because the error terms are skewed, which should
favor the Mammen distribution. Moreover, it is striking that, upon closer examination, all the
curves in Figure 8 seem to be approaching the zero line at rate G, except for the WCR-R ones,
which are clearly approaching it faster than that. This suggests that the skewness correction is less
important than the kurtosis correction in this case, which results in the smaller bootstrap errors for
the Rademacher auxiliary distribution. Of course, the finding that the Rademacher distribution is
superior to the Mammen distribution in the context of the wild bootstrap is not particularly sur-
prising. There is, in fact, a good deal of simulation evidence that, for the ordinary wild bootstrap
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without clustering, using a v* with third moment of one often does not work particularly well; see,
e.g., Davidson, Monticini, and Peel (2007) and Davidson and Flachaire (2008).

Finally, when the bootstrap error is very small in Figure 8, the bootstrap achieves the same
rejection frequency as the Edgeworth CDFs in Figure 7. Thus, the very small bootstrap error
for WCR-R in Panels (c¢) and (d) of Figure 8 gives a theoretical explanation for the excellent
finite-sample size control for WCR-R tests observed in Section 4.

6 Practical Guidance

The first-order asymptotic theory of Sections 2 and 3, the simulation evidence of Section 4 and
Appendix C, and the higher-order theory of Section 5 together provide a good deal of practical
guidance for making cluster-robust inferences.

Because Theorem 2.1 justifies the use of the CRVE V in (5) when the number of clusters G is
large, it might seem that we simply have to count clusters. However, this is not sufficient and can be
very misleading. For asymptotic inference based on cluster-robust standard errors and the t(G — 1)
distribution to be reliable when G is not very large, the clusters cannot be too heterogeneous, in
terms of either the cluster sizes N, or the matrices X J X, and X,. In addition, the extent to which
regressors vary between rather than within clusters can matter greatly. Thus, when attempting to
make inferences using a CRVE,; it is advisable to keep the following points in mind:

e Under ideal circumstances, asymptotic inference is probably reliable with G > 50 clusters.
However, circumstances are rarely ideal.

e The more heterogeneity there is across clusters, the larger is the number of clusters needed
for reliable inference. With extreme heterogeneity, it may be impossible (see Figure 3).

e The more the key regressor varies between rather than within clusters, the larger is the value
of G needed for reliable inference. If there are additional regressors that vary principally
between clusters, the number is probably even larger; see Appendix C.

e The “effective number of clusters” proposed in Carter, Schnepel, and Steigerwald (2017)
provides a useful diagnostic. When it is much smaller than G, and especially when it is small
in absolute value (say, less than 30), asymptotic inference cannot be expected to work well.

e The best version of the wild cluster bootstrap provides much more reliable inferences than
the t-test with G — 1 degrees of freedom. This is WCR-R, which employs restricted estimates
and the Rademacher distribution.

e The two variants of the wild cluster bootstrap that use unrestricted residuals (WCU-R and
WCU-M) generally reject more often than WCR-R, and their performance is closer to that of
the t-test; WCU-M is particularly unreliable. In contrast, WCR-M often underrejects. Thus,
both unrestricted residuals and the Mammen distribution should normally be avoided.

e Because the wild cluster bootstrap is remarkably inexpensive to implement when G is not
too large, even when N is very large (Roodman et al. 2019), we recommend using WCR-R
whenever there is any reason to believe that asymptotic inference may not be reliable.

e The ordinary wild bootstrap (WB) should rarely be used. In our simulations, it never seems to
perform as well as WCR-R.. Moreover, since it offers no asymptotic refinement, its performance
improves more slowly with G than that of the WCB. However, MacKinnon and Webb (2018)
discusses certain special cases where it may be desirable to use the WB.
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7 Conclusion

In this paper, we have provided a formal analysis of the asymptotic properties of CRVE t-tests, the
wild cluster bootstrap, and the ordinary wild bootstrap for linear regression models with clustered
errors. The analysis makes quite weak assumptions about how the number of clusters and their
sizes change as the sample size increases. This requires that, in the key results of the paper, we use a
self-normalizing rate of convergence that depends on the structure of the regressors and the variance
matrix of the error terms. It would be impossible to obtain conventional rates of convergence for
the least squares estimator B without making much stronger assumptions.

The principal results of the paper are grouped into three sets. First, Theorem 2.1 provides a
theoretical foundation for asymptotic inference based on cluster-robust ¢-tests and cluster-robust
confidence intervals. It differs from previous work in that it does not assume that the regressors are
exogenous, and it uses primitive assumptions which are straightforward to interpret. Second, The-
orems 3.1 and 3.2 provide a similar foundation for the wild cluster bootstrap (WCB) and ordinary
wild bootstrap (WB), respectively, in both their restricted and unrestricted versions. Third, The-
orem 5.1 provides higher-order asymptotic theory that explains the sometimes poor performance
of asymptotic tests, and Theorem 5.2 gives conditions under which the WCB may attain a higher-
order asymptotic refinement. It also sheds light on the choice of auxiliary distribution in the WCB
and the choice between restricted and unrestricted residuals in the bootstrap DGP. Both simulation
evidence and higher-order theory suggest that the restricted WCB using the Rademacher auxiliary
distribution is generally the best choice.
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Abstract

This supplementary material to Djogbenou, MacKinnon, and Nielsen (2019) contains three
appendices. Appendix A states and proves some preliminary lemmas. These are used in the
proofs of the main results, which are given in Appendix B. Appendix C presents some additional
simulation evidence to complement the simulation results in Section 4 of the paper.

Appendix A: Preliminary Lemmas

To prove our main results, we use the following preliminary lemmas. Throughout, C' denotes a
generic finite constant, which may take different values in different places.

Lemma A.1. Let {wy} be an independent sequence of random variables with mean zero satisfying
SUP en Elw,|? < 0o for some 6 > 1. Then Zg’;l wy = Op(Gma{1/6.1/2}),

Proof. First suppose 1 < 8 < 2. Let € > 0 be arbitrary and choose K such that K¢ = 2¢1 supg E]wg|9.
By Markov’s inequality and the von Bahr-Esseen inequality,

0
P(gzi:l wy > KG1/0> < E‘ ngeé;wﬂ < 225}{1@%9 < 2supg§§19E]wg|9 _ .
If 0 > 2, then we apply the same proof setting § = 2. O
Lemma A.2. Let Assumptions 1 and 2 be satisfied. Then,
sggN;9E|]sg]]9 =0(1) for1 <O <2+ A,
g

sugNg_eEHX;XgHG =0(1) for1 <0 <2+ \
g€



Proof. By the triangle and ¢, inequalities, for 8 > 1,

0 al o al ’ 6—1 al 0
Bllsy|” =B 3 sio| <B( 3 lsull) < Ny Y Blsi | (A1)
=1 =1 =1

By Assumption 1, sup; jen E|sig]|? < C when 6 < 2+ ), in which case (A.1) implies that E||sy||? <
CNg. It follows that sup ey N;‘)EHSQH(’ < C for 0 < 2+ A, which proves the first result. The
second result follows in the same way after replacing s, by X ; X, in (A.1) and applying the uniform
moment condition in Assumption 2. O

We next give three lemmas that will be used to derive the required moments for the higher-order
theory of Section 5

Lemma A.3. Suppose Assumptions 4 and 5 are satisfied. Let Zy,4 be given by (30) and (B.38)-
(B.46), and let pymg = E(Zpg). For any integer k > 2, for which the following moment exists, it

holds that i

= _ O(G~F/2) if k is even,

E( .H(Z’”f B “mf)> - { O(G=®+D/2) if k is odd.
7j=1
Proof. The left-hand side is

k G

> _ —k
E(H(ij _'“’mj)> =G Z (H ™mj.g; “mjygj)>’
J=1 G159k =1 Jj=1
where the summation indexes g1, . . ., gr must be equal at least in pairs because E(Z,, 95 umj,g].) =
0 for 5 =1,..., k. The result then follows directly because the normalization is G~ é 0

Lemma A.4. Suppose Assumptions 4 and 5 are satisfied. Let Z,,q be given by (30) and (B.38)—
(B.46), and let pmg = E(Zg). Then, when the following moments exist, it holds that

E(Z5) =G, E(Z§(Z2 — ji2)) = 3G *y66 + O(G™),

E(Z§) = G 5. E(Z§(Z — [i2)) = 6G 72 (€22 — &22) + 4G 956 + O(G™H),
E(Zg) = 3G + G (&2 — 3622), E(Z§(Z2 — 12)*) = G (S22 — &22) +2G 956 + O(G ™),
E(Zg) =15G% + O(G™), E(Z§(Zy — 12)%) = 3G 7% (&22 — &2.2) + 12G %456 + O(G™Y),
E(Zs(Zy — 12)) = G 6.6, B(Z8Z] Z5) = G*(Tr{v1,3} + 2£s1€32) + O(G™?),
E(Z§(Z — fia)) = G (a2 — &22), E(Z32) Zs) = G>(3Tr{mi 3} + 12661832) + O(G™Y),

and

E(((Z5 — 13)' 21)*) = G Tr {(&33 — €33)€11} + O(G™?),

E(Z§((Z5 — is) 21)2) =G T {(€33 — €33)€11} +2G %€61€33816 — 2G€61€33€16 + O(G™),
E(Z3Z] isZy) = G2 Tr {€33€11} + 2G %€61€3361.6 + O(G™2),

E(Z§Z) 14Zy) = 3G 3 Tr {€33€11} + 12G 61833816 + O(G™?),

where Em n — =G~ Zg 1 “mgﬂng



Furthermore, for my € {1,5,6}, mao, mg € {3,4,9,10,11,12}, and my4 € {2,8},

E(Z6 2, (Zmy — my)) = G2 Te{Ymy ms — Ymims }»
E(Z3 Zpyy (Zmy = fms)) = 3G Tr{Ymy my — Ymams } + 3G €6 my (mz2 — €ma2) + O(GY),
E(Z6Zm,(Zmy = Fimy) (Zing = Bima)) = G~ 2€6.m1 (Gmayma — Gnayma) + O(G ),
E(Z8Zy, (Zmy = bomy) " (Zmy — ms)) = 3G €6.m1 (Cmaims — Gmama) + O(G™Y),
E( _6 _r—l—zl(Zmz - ﬁmz)T(st Nms)) 256 ,mi (sz,ms - émz ms) + O( )a
E(Z§ Z, (Zins = Bms) " (Zing — Bimy)) = 3G €6,m1 (Cimasms — Cmayms) + O(G™Y),
where
_ 1 & - | _ 1 &
Ymn = a g;l E(ZGQng)Nng Cmn = a g;l E(ngan), Cmn = a g;l HmgHng

Proof. First, note that the Z,,, only appear in deviations from the mean, i.e.,

all summations

are over products of zero-mean random variables. The implication is that, in all summations, the
indexes must be equal at least in pairs; see Lemma A3.
For the moments of Zg we find by Assumption 5 that

G
=G> E(Z3)
g=1
G
=G Y E(Z,) =G
g=1

E(Z5)

G
=G E(Zy) =G i =G,
=1

G
=G 36, +3G7 Y E(Z2,)E(Z3,) — 3G~ Z

g,h=1

-2
76,65

g=1

E(Z8) = 15G~° XG: E(Z§,)E(Z8,)E(Zg;) + O(G™*) = 15G7° + O(G™™).

g,hi=1

For the cross-moments of Zg, Z1, and Zs, we note that Zsy = Z34Z64 and find

B(Z2Z] Z5) = G

G

b))

g1,---,94=1

T
E(Zﬁgl Z692 2193 Z5g4)

G

Zﬁg ) = G_3§2,2 + 3G_2 — 3G_352’2,

G
=G Y EB(ZE)E(Z)},Zs) + 2G4 > E(ZegZ\,)E(ZenZsi) + O(G?)

g,h=1

g,h=1

G G
=G> E(Zﬁnggzgg) +267 Y E(Z6gZITg)E(Z§hZ;>,h) +0(G™3)

g=1

g,h=1

= G 2 Tr{y13} +2G %€6.1€32 + O(G™?),

B(Z:Z] Z5) = G

G

>

g1,--,96=1

E(Z691 Z6g, Z6g3 Z694 Z1T95 Z5ge)

G
=3G"° ) B(Z5,)E(Z4)E(Z); Z5:)

g,h,i=1



G
+12G7% > E(Z8,)E(ZenZ13)E(Zei Zsi) + O(G™H)
g,h,i=1

= 3G~ 4ZE (Zog 21y Z3g) + 12G° Z (ZogZ1y)E(Z,Z5n) + O(G™Y)
g=1 g,h=1

=3G P Tr{vi3} + 12G 7 &61€32 + O(G™).

Next, the cross-moments of Zg and Z, are

G a
E(Z6(Z2 — [i2)) = G2 ) B(Zsg(Zag — pi2g)) = G2 E(ZogZ2g) = G~ 6.6,
g=1 g=1
— — G —_
E(Z§(Za — ji2)) = G2 B(Zi,(Zag — pag)) = G~ (S22 — &2.2),
g=1
- a
E(Z§(Z2 — [12)) = 3G~ Y E(Z3,)E(Zsn(Zan — pan)) + O(G™)
g,h=1
a
= 3G E(ZpgZ2g) + O(G3) = 3G %y56 + O(G™3),
g=1
o a el
E(Z§(Z> — ji2)) = 0 E(Z5,)E(Zg(Zan — pon)) + 4G Y E(Zgg)E(Z6h(ZQh — pion)) + O(G™%)
g,h=1 g,h=1
= 6G (S22 — &22) +4G 56 + O(GTH),
and
€] €l 2
B(Z( 2o~ o)) = G 3 B(ZE)E((Zan — pan)?) + 267 30 BZay(Zag — 1)) +0(G)
g:h=1 g=1
=G (&2 — &2) +2G 56+ O(G2),
E(Z§(Zy — ji2)?) = 3G™° Z ZGQ (Z3,)E((Zai — p2:)?)
g,h,i=1
a €] 2
+12G7°) " B(Z5,) ( > " E(Zen(Zan — m))) +0(G™)
g=1 h=1
= 3G (ba2 — &22) +12G 55+ O(G™Y).
Next, using the law of iterated expectations,
a
E(((Z3 - ﬁS)TZI)Q) = G74 Z Tr {E<(Z3g1 - I'I’SQI)TZIQQ(Z?)QS - N393)TZIQ4)}
g1,---,94=1

G

=G Y Tr{E((Zsg — pag)(Zsg — p3g) )E(Z102)),)} + O(G™?)
h=
G

g,h=1
G
=Gy Tr{E(ZgngTg)E(ZthlTh)} -Gy u;’—gE<Z1hZ1—|;L)ugg+O(G_3)
g,h=1 g,h=1

=G 2T {(€&33 — €33)€11} + O(G™?), and
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G
E(Z62((Z3 - ﬁS)TZ1)2) =G° Z Tr {E(Zﬁgl Z692 (Z3g3 - “393)TZ194(Z395 - /"’395)TZ196)}
g1,...,96=1

¢
=G % > E(Z,) Tr {E((Zsn — pan)(Zsn — pan) ) E(Z0u2Z);)}
Jhyi=1

G
+2G7% > Tr{E((Zsg — p3g)(Zsg — p3g) ' VE(ZenZ10n)E(Z6: Z1;)} + O(G™)
g,h,i=1

=G 3 Tr{(&33 — €3)€11} +2G*¢61€33€16 — 2G €61€33816 + O(G™).

Next, using pr4 = &3 3,

G
E(ZgZII_MZl) =G Z Tr {E(Z6g1 ZGQ2Z£J3£3,3Z194)}
gl7""g4:1

G G
=G Y E(Z8,) Tr{&3E(ZinZ1,)} + 26 Y E(ZsgZ1y)€s3E(ZnZin) + O(G™)
g,h=1 g,h=1

=G Tr{€3€1,1} +2G £6.1€33€16 + O(G™), and

G
E(ZZ| p1Z)) =3G™° Y E(Z§)E(Z5,) Tr{€s3E(Z1iZ)),)}
g,h,i=1

G
+12G7° > E(Z3,)E(ZenZ1),)€33E(Z6i Z1i) + O(G™Y)
g,h,i=1

=3G 3 Tr{€33611}) + 12G3¢61€33616 + O(G™).

Form; € {1,5,6} and mg € {3,4,9,10, 11,12} we have E(ZﬁznTn(Zm2 —fimy)) = G2 Tr{ Y, my—
Y1 ,ms } Dy definition and

G

E(Zgz;ru (Zmz - l]'m2)) = G_5 Z E(Zﬁgl Z692Z693 Zr—rrng5(Zm2g4 - p’m2g4))
g1,--,95=1
G
=3G™° Y E(Z3)E(Zeh Zom, 1 (Zimah — Bimah))
g,h=1

G
+ 3G_5 Z E(ZGQZTTMQ)E(ZGQh(ZmQh - ngh)) + O(G_4)
g,h=1

G
=3G"* Z E(ZGQZ;rrzw(ZmQQ - “ng))
g=1

G
+ 3G_5 Z E(ZGQZ’V—TI—llg)(E(ZQthQh) - N2hﬂm2h) + O(G_4)
g,h=1

= 3G73 Tr{')’mhmz - ﬁmhmz} + 3G73£6,m1 (£m272 - EmQ,Z) + O(G74)

If also my € {2,8} then, using the law of iterated expectations,

E(ZGZnTu (Zmz - ﬁmz)T(ZmAL - ﬂm4))



G

=G Z E(Z691 Z;ngg(zmw:s - Nm293)T(ZM494 - Nm4g4))
917"'794:1

G
=Gc Z E(ZGQZ;—MQ)E((ZWM - NmQh)T(Znuh — Bman)) + O(G_s)
g,h=1
= G72£6,m1 (Cm27m4 - §m27m4) + O(Gig)a
E(Zg)ZT;I—’Ll (Zm2 - ﬁmg)T(ZTm; - ﬁm4))
G
=G° Z E(Z691 Z6922693Z;11g4(zm295 - Nm295)T(Zm4g6 - l‘l’m496))

G
= 3G_6 Z E(ZGQg)E(ZGhZ;ruh)E((Zmﬂ - :u‘m2i>T(Zm4i - Nm4i)) + O(G_4)
g,h,i=1
= 3G_3567m1 (CM2,m4 - Emzym4) + O(G_4)'
Finally, for m; € {1,5,6} and mo, m3 € {3,4,9,10,11, 12},
E(Z@Z;Ll (Zm2 - [”mz)T(st - ﬁ’ms))
G

- T T
=G Z E(Z691 Zm1gz(Zm293 - Hngs) (stg4 - Hm3g4))
917"'794:1

G
= G_4 Z E(ZﬁgZ’V—:llg)E((Zmzh - H’mzh)T(ngh - ,U’mgh)) + O(G_3)
g,h=1
G G
=G Y B(Zog 2 B Zpy Zong) = G " B Zog Zyg) oyt + O(G ™)
g,h=1 g,h=1
= G72€6,m1 (sz,mg - sz,mg) + O(Gig), and

E(Zg’Z;l (Zm2 - ﬂ'mz)T(ng - ﬂmg))

G
= 3G_6 Z E(Zgg)E(Z(ihZ;uh)E((ZMQh - Nmzh)T(Zm3h - Nmsh)) + O(G_4)
g,h,i=1

G G
=3G"" Y B(ZogZy)E(Zypn Zimsh) — 3G > B(ZogZyp, o) Bamanbmsh + O(G ™)
g,h=1 g,h=1
= 3G73£6,m1 (szmg - sz,m:s) + O(G74)‘

Lemma A.5. Under the conditions of Lemma A.J it holds that

v6,11 = &€2,3€1,6, Yo,11 = €2,3€16 (A.
G111 = &6,1€3,381.6, G111 = €6,1€3,3€16, (A
Ci1,3 = &3,3€1,6 Cu13 = 33816, (A.
(312 = €3,981,6, (312 = 3016, (A.
(3,10 = Tr{€33611}, (310 = Tr {€33&11}, (A.
Ci12 = &112 = €6,1€3.2, Gz = &1,2 = &6,1€3,2, (A.

G = Tr{v1,3}, (38 = Tr{713}. (A.

0O J O Ut = W N
T — O D — D —



Proof. The proofs of the results in the second column are identical to those of the results in the
first column and are therefore omitted. Using Zﬁngg = a,TZ19Z1Tg, we find that aTﬁLl = &6,1 and
hence Z114 = &6,1Z34. It follows that

G
Yo,11 =G 1Y E((a' Z14)* Zsg)€16 = €2,3€16,

g=1
G
G =G €61E(Z3yZ4,) €16 = &6.1€3,38160
g=1
G G
G =G Y E(Z§¢16239) =G 'Y E(Zs3Z4,)616 = €3,3616, and
g=1 g=1
G
Gi12=E61G™" Y E(Z3gZog) = €6,1€32-
g=1

We also notice that Z195 = Zgs€11a = Zgy€16 and Z1oy = £1,1434, so that

G
(312 =G E(Z3,Z12) = C30€1,6, and

g=1
G
(310 =G> Tr{E(Z3,1,1259)} = Tr {€3361.1}-
g=1
Finally, Zg, = Z74a = Zngnga, which implies (A.8) by the definition of ~, 5. O

Appendix B: Proofs of Main Results

B.1 Proof of Theorem 2.1
Proof of (16). The left-hand side of (16) is
G G
(aTVa)fl/ZaTQlefl Z g = U51/2M11V/2GT561N71 Z s¢(1+op(1))

g=1 g=1
by Assumption 2 and Slutsky’s Theorem. Thus, we need to prove that

G
_ 1/2 Te—1 1 d
v, 1/2;;]\? a ‘ZOINZSH — N(0,1). (B.1)
g=1
We define 2z, = va 1 QM%QN *1aTEg 1sg, which, by Assumption 1, is an independent sequence

;) = v;luNN_QaTEAEgEala. By Assumption 2,

2521 E(zé) — 1, and then (B.1) follows from the Lyapunov Central Limit Theorem for het-

erogeneous, independent random variables if, for some £ > 0, it holds that 290:1 E|zg|2Jr£ — 0
(Lyapunov’s condition). We find that

G G

1 14+€/2) Tem— _9_
STE|z [P < o 2 la TR PN T2 E ST Els |
g=1 g=1

with mean zero and variance given by E(z

G
< Cu]l\}%ﬂN_z_f Z N92+§ < C,LL}V+§/2N_1_§ Sug NQH'g — 0, (B.2)
g=1 9¢€

where the second inequality is due to positive definiteness of 2y (Assumption 2) and Lemma A.2
(with 8 = £ + 2), and the convergence is due to Assumption 3 setting & = A.



Proof of (17). Because d — 1 as G — 00, we can proceed as if d = 1 in this proof without any
loss of generality. We first define Vy = &7 S\ Zngl YEy L and apply the decomposition

a'Va T 1T (Y T 1, T T

aTVa l1=(a'Va)"a'(V-V)a=(a Vya)  a (Al — Ay — A, + A3>a(1 +op(1)),

where we used Assumption 2 and

1 1 Z Tem—1 1 1 & 1
A= 5500 D 8980 50 — 380 D Te=o
g=1 g=1
1 & TyT
AQ:WEEIng(ﬁ—,@N) X, nggl, and
g=1
(A TyT 1
Az = 550" Y X)X, (B—Bn)(B— By) X, X, 55
g=1

Thus, we need to show that (a'Vpa) 'a'A,.a P, 0, or equivalently uya'A,,a P, 0, for
m=1,23.

To prove the result for m = 1, we use a truncation argument. Let ry, = Nﬁl(aTV{)a)*l/zaTEalsg,
such that (a'Vpa) la’ Aja = 25:1 7"3 — 1 has mean zero. Also define the truncated variable
qg = r¢l(|rg| <€) such that r} = 7 + rZI(|rg| > €). By the triangle inequality,

> (a2~ Blad) |+

g=1

G
Z (7“ I(|rg| > €) E(rgﬂ(h“g] > e)))‘ (B.3)

g=1

Zr —1‘<E

The second term satisfies

G G
> (r2100rg| > ) ~ E(r3(ry| > e)))\ <2 ZE(WWrwﬂ(\rﬂ > q))

g=1

E

—A ZE\T |2+A <Cu 1Jr)‘/QN_1 AsupNH’\ — 0,
g=1 geN

where the last inequality uses Assumption 2 and Lemma A.2, and the convergence is due to As-
sumption 3. To show that the first term of (B.3) is negligible, we use Jensen’s inequality and show
convergence in mean-square, noting that the truncated variable g, has all moments finite. That is,

G G G G

G
Var <Z qg) = ZVar(qg) < € ZVar(|qg|) < € Z E(qg) < € ZE(TS) =2,

g=1 g=1 g=1 g=1 g—1

where the last inequality is because E(qg) = E(rgﬂ(\rg| <e < E(rg) and the last equality holds
because Zngl E(rg) = 1. This proves the result for m = 1 since € is arbitrary.
Next, we analyze the case m = 2. By the Cauchy-Schwarz inequality,

1/2 1/2
‘(CLT‘/OG,)_IG/TAQCL‘ < <(aTVOa) ~—a .:Olz.sgs =y a) <(aTVOa)_1aTA3a>

= (1 + (aTVE)a)*laTAla)l/Q((aTVE)a)*laTAga)lﬂ,



such that the result for m = 2 follows by proving the results for m =1 and m = 3.
Finally, for m = 3 we first find the bound

G
1, A
lunva’ Asall < MNﬁ”:*olWHIB =Bl Y 11X Xl
g=1

Here we note that Zle 1X, X4l1* = Op(Zngl 7) = Op(Nsupyey Ny) by Lemma A.2 and
18 = Bx | = Op(|[V[[1/2) = Op(N~Y2sup,en Ny'); see (9). Tt follows that

H,U,NCLTA;),CLH == OP</LNN72 sup Ng2) == Op(l).
geN

Proof of (18). We use (15) to decompose the t-statistic (6) as

_[a'Va
“ \a'Va

~1/2
) ((a"Va)a" (B - By) +9).
and the result then follows directly from (16), (17), and Slutsky’s Theorem.

B.2 Proof of Theorem 3.1

Because the bootstrap is exactly invariant to the multiplicative factor d, we can, without loss of
generality, set d = 1 in this proof. We first give the bootstrap analogs of Theorem 2.1, which
establish the asymptotic normality of the WCB estimator and t¢-statistic. That is, for all z € R
and for all € > 0, we want to show that

* a'T(B* - 5)
P (W < :1:) L 3(a), (B.4)
a'V*a
<‘ aT“//a 1> e> 50, (B.5)
Pt < z) L ®(a). (B.6)

From Corollary 2.1 and (B.6) it follows that
Py(ty < z) — ®(z) and P*(t* < 2) 25 ®(z),

respectively. The desired result then follows by application of the triangle inequality and Polya’s
Theorem, given that ®(z) is everywhere continuous.

We thus need to prove (B.4)—(B.6), and we do so following the same outline as in the proof of
Theorem 2.1. Under the WCB probability measure, we define the score vectors 8, = X ; g, and

let I' = N2 Zngl égég = N2 Zngl X;'&gﬂ;Xg and V = Q'T'Q ! denote the bootstrap true
values (i.e., the values generating the bootstrap data). First note that, by identical steps to those

in the proof of Theorem 2.1, it holds that, under (15),

s .
‘mzop(n and 2 VA Py

(B.7)

It follows from (B.7) that aT(B - BN) = Op(uj_vl/ 2). However, a more readily applicable conse-
quence of (9), (B.7), and Assumption 2 is that

18— Bull = Op(N"2sup Ny/?) and  (a'Va)™! = Op(un). (B.8)
geN

9



Proof of (B.4). We define the bootstrap score vectors sy = X J u;, = X ; tgvy and the scalar

random variables z; = (aTVa)_l/QaTQ_lN_ls; so that (a"Va)~12a"(8* — B) = ZG 124, and
show that, for all x € R,
G
P ( Sa < x) ) (B.9)
g=1

In view of (B.7), this suffices to prove (B 4). To show (B.9), we apply the Lyapunov Central Limit
Theorem. Since E*(z;) = 0 and Z 1 E*(2;?) = 1 (because E*(v}) = 0 and E*(v}?) = 1 for
all g), this only requires verifying that the Lyapunov condition holds under the WCB probability
measure for some ¢ > 0 with P-probability converging to one; that is, we need to show that
ZG E*[25]*T¢ 50 for some & > 0.

We ﬁrst find that, because || X, Xy = Op(Ny) and ||sy]| = Op(Ny) by Lemma A 2,

Z | X, Xy|” = Op(NsupNg ™) and Z sll” = Op (N sup NJ~1). (B.10)
g=1 geN g=1 geN
Note that (B.10) only requires that Assumptions 1 and 2 hold for some A > 0, i.e. with two
moments. We then find, because E_J_*|vg|9 is a finite constant that does not depend on ¢ and using
the decomposition iy = u, — X4(B8 — Bn) together with the ¢, inequality,

G G G
*116 % .. 0 . 110
E* Y lsll” = B D 11X, dgugll” < O 1 X g

g—l g=1
<GZ||sg||9+cZ||XTX 118 = B |1” = Op (N sup Ny™), (B.11)
g=1 g€

where the last equality in (B.11) is due to (B.8) and (B.10). It follows that

G G 1+¢
.. N
| % —1— — —2—& 1k * 14+£/2
DB < (@ V)T QTN T EETY s = Oy sup ) (B12)
g=1 g=1

by (B.8) and (B.11). The right-hand side of (B.12) is op(1) by Assumption 3 setting & = A > 0.

Proofof (B.5). Wenote that 8; = Xgﬁ; = s;—XgTXg (ﬁ*—ﬂ), which implies the decomposition
(@'Va)la" (V' = V)a=(a"Va)la’ (Bik —-B;-B;" + B§>a

where, using also sy = §4vy,

ng TQ - 1),

g=1
B; = Q‘% S5yl - ATX]X,Q ", and
g:
1< X
Bi= Q7 X X5 A B X X,Q7
2

With this decomposition, it suffices to prove that, for any € > 0, P* (|(aTVa)_1aTB;fna| > €) L0
for m = 1,2,3. The proofs for each term roughly follow those for the corresponding term in the
proof of (17).

10



For m = 1, we use the truncation argument and define r; = N‘l(aTVa)_l/QaTQ_légv;‘ such

that (a"Va) 'a' Bfa = Z?:l ri? — 1 satisfies 2521 E*(ri?) — 1 = 0 because E*(v;?) = 1. We
then decompose E*| 25:1 7‘;2 — 1| as in (B.3), where for each term we use the same arguments as

for (B.3). For example, for the second term we apply the bound

G G
B > (3213 > €) = B(ry21(|r;| > e)))’ <2 B
g=1 g=1
-0 ( 1+A/2 pr—1-A NH’\) _ 1
=Op(uy sup N, ™" ) = op(1),

geN

using, in particular, (B.11) and Assumptions 2 and 3.
Next, for m = 2, we apply the Cauchy-Schwarz inequality to obtain the bound

1/2

. . 1 & 1/2 .
’(aTVa)_laTBSa < <(a,TVa)_1aTQ_1N2 Z S;SZTQ_ch) ((aTVa)_laTBgfa)
g=1

. 1/2 . 1/2
= (1 + (aTVa)*laTBfa> ((aTVa)*laTB§a> , (B.13)

such that the result for m = 2 follows by proving the results for m = 1 and m = 3. )
Finally, to prove the result for m = 3, we first note that E*||8* — B|> = Op(|V|) =
Op(N—t SUPgen Ng). Then we apply Markov’s inequality,

G
. . . B . _ PO |
P*(|(a"Va) 'a"Bja| > ¢) < e '@ Va) QN IPEY B - BIP X I1X) X, |
g=1

= Op(uNN_2 sup Ng2> =op(1), (B.14)
geN

using also the last term of (B.8) together with Assumption 2 and Lemma A.2.
Proof of (B.6). Follows immediately by (B.4), (B.5), and Slutsky’s Theorem.

B.3 Proof of Theorem 3.2

Because the bootstrap is exactly invariant to the multiplicative factor d, we can, without loss of
generality, set d = 1 in this proof. We first define some notation. Let 2_39 = Zf»\]:gl E(sigsiTg) denote
the variance matrix of the scores obtained by setting all the covariances between s;, and s;, to zero
for i # j, let T = N2 Zngl ig and V = Q7'TQ™'; cf. (2), (4), and Assumption 2. Notice that,
except in very special cases, V # V. We also let V = Q 'T'Q ! and I' = N2 Zngl Z?]:gl éigéiTg
denote the bootstrap true values under the WB probability measure (note that these are not calcu-
lated under the WB algorithm, but serve only as useful constructions for the proof of Theorem 3.2).

The WB analogs of (B.4)—(B.6), which establish the asymptotic normality of the WB estimator
and t-statistic, are as follows: for all x € R and for all € > 0,

* aT(B* - 6) I
P*(":LTT‘{*: —1>¢) Do, (B.16)
Pt < z) 5 d(a). (B.17)



From Corollary 2.1 and (B.17) it follows that
Py(te < ) = ®(z) and P*(t: < z) > ®(a), (B.18)

respectively. The desired result then follows by application of the triangle inequality and Polya’s
Theorem, given that ®(z) is everywhere continuous.

We note that (B.15)—(B.17) in fact hold without Assumption 3, but instead imposing only the
weaker condition in (10). This will be evident from the proofs given subsequently. However, this is
only a theoretical curiosity because the use of Corollary 2.1 in (B.18) requires Assumption 3.

Before proving (B.15)-(B.17), we note that

(@'Va)™l =0p(N), and ——— -1, (B.19)

where the first statement follows directly from Assumption 2 and (7). To prove the second statement
in (B.19) we use the decomposition

a'(V-V)a=a'(C1-C,~CJ +Cs)a,

where

G Ny

- 2 ZZ Slgszg slgs ))Q_

g=11i=1
G Ny

1
C;=Q" N2 DD sig(B—Bn) Xy XigQ ", and

g=1i=1
G Ny

Cs=Q g 30 Xy X (B — B)(B — ) X[ Xi0@ ",

g=11i=1

and show that (a' Va) 'a'C,a L 0form=1,...,3. Equivalently, since (a' Va)~™! = Op(N),
we show that Na'C,,a L5 0 for m = 1,...,3.

To prove the result for m = 1, for any conforming vector b, let w;y, = bT(sigsZE — E(sigsg))b,
which is independent across g and mean zero with E|wig\1+)‘/ 2 < o00. Hence, by Lemma A.1,
SO SN wiy = Op(N /043212 quch that [NaTCha| = Op(N™»{1/0+3/2),1/2}-1) —

( ) by Assurnption 2 and because A > 0.

For m = 2, we apply the bound

G Ny
[NaTCoal < NIQIPIA — Bxll g 3 3 I Xigllsigll = Op (N 2 sup NG/%) = op(1),
g=1li=1 g

using (B.8), Q= = Op(1), (10), and Assumptions 1 and 2. Finally, we turn to m = 3, where, by
an identical argument, we obtain

G Ny
_ - 1
|Na"Csa| < N|Q7'(18 - Bn| Qj}:uxgxingop( sgpzv) = op(1).
g=11:=1 g

12



Proof of (B.15). Wehave (a' Va) 2a T(B* B)Z(aTva)flp(l—i—OP( )a'Q TN~ 12 1Zz =

by (B.19). Under the WB probability measure, s ;g 1s heteroskedastic, but independent across both

i and g. Let 2, = (a"Va)~Y2aTQ 'N~1s;,, with E*(z;,) = 0 and X.¢, Y0 E*( 2) =1

The result follovvs by application of the Lyapunov Central Limit Theorem to Zg 1 Zz 1 Z;g, which
requires verifying the Lyapunov condition that, for some & > 0, Z " ZNH E*]z-g]2+§ L.

By the ¢, inequality,

G Ny G Ny G Ny
DD BT < 2ME YN B [+ 21 DD Y B M
g=1:=1 g=1i=1 g=1i=1

where 27;, = (aTVa)*l/QaTQlefls,’gv;‘g and 23;, = (aTVa,)*l/QaTQANlei;Xig(B — BN)vjy.
We first obtain the bound

G Ny B G Ny
DD E P < (@' Va) QPN TR Y Y B Isiguf, P
g=1i=1 g=1i=1

Since H = Z " 1 ZNg E*||sigvf,[|**¢ is a non-negative random variable, H = Op(E(H)), and we
find that, for § <A,

G Ng G Ng
=D D E(E sigvfy*) <O 0D Elisigl**,
g=1i=1 g=1i=1

which is O(N) by Assumption 1. It follows, using also (B.19) and Assumption 2, that

G Ny
DD BT = Op(NTH?) = 0p(1) (B.20)

g=1i=1

by choosing 0 < & < A. Next, by (B.8) and (B.19),

.. .. 2+¢
E*|25,,*"¢ < E'fogy S (@ Va) ¢ a @ IN T X X0 (B — Bi)|
—Op <N1+§/2N 3-3¢/2 sup N1+’5/2)||XTX ||2+§
geN
As in (B.10), >° HXZ-TgXigH2Jr€ = Op(N) by Assumption 2, so that

G Ny G Ny

D03 5yl = Op (N2 Csup NyHE/2) 5051 X X € = Op (N1 € sup Ny +12),
g=1i=1 g=1i=1 geN

which is op(1) by (10), and this proves (B.15).

Proof of (B.16). In light of the two results in (B.19), the result (B.16) follows if, for any € > 0,
P*(](aTVa)*laTV*a —1] > ¢) P, 0. To prove this, we apply the decomposition

a'(V*~V)a=a" (D} + D; - Dj - Dj + Dj)a

13



where

G Ny

1
Dl—Q1 QZZSZQS 19 1)’

g=11i=1
G Ny

22 Z SZQSJgQ VigUjg»

g=li#j=1

G
D =Q 'y 7 2 S8 - B X X, @
1 R A .
Di=Q "', Zl XX, (8"~ BB~ B X, X,Q"
Z

It suffices to prove that, for any € > 0, P*(|(aTVa)_1aTD;§1a| > €) £, 0, in probability, for
=1,...,4. Equivalently, by (B.19), we can replace (CLTVCL)*1 by either (' Va)™! or by N.
To prove the result for m = 1, we define wlg — E* (232 ), where 27 is defined in the proof
of (B.15), such that (' Va) 'a" Dia = Zg 1 ZZ L wiy. We Iet 0<¢< maX{A 2} and apply the
von Bahr-Esseen and Jensen inequalities,

G Ny 1+§/2 G Ny G Ny
BT > > wi <230 D B |72 <23 SR P
g=1i=1 g=1i=1 g=1i=1

which is op(1) by the Lyapunov condition in the proof of (B 15). This proves the result for m = 1.

For m = 2, we note that (a'Va)~! a'D3a = Z . ZZ# 1 %ig%;g, and we prove convergence

in mean-square. By independence of zj; across both g and 4 (under the WB probability measure),

G Ny
E*((a"Va) 'a' Dja)’ )T <CY > E(2)EN(25)) = Op(N " sup Ny),
g=11i,j=1 geN

which is op(1) by (10) and where we used again the Lyapunov condition from the proof of (B.15).
For m = 3, we apply the Cauchy-Schwarz inequality as in (B.13) and find

1/2

. . " 1/2 .
‘(aTVa)* a < (1 +(a'Va)ta'Dja + (aTVa)*laTDSa) ((aTVa)*laTDZa) ,

such that the result for m = 3 follows by proving the results for m = 1,2, 4.
Finally, for m = 4 we apply Markov’s inequality as in (B.14) and find

* * - *|| A% a - 1 & —
P’ (|Na"Dial > €) < INETB" — BIPIQT I 5 321X X[ I = O (N7 sup Ny )
g=1 g

because E*||3* — B||2 = Op(1) under the WB probability measure and using Assumption 2 and
Lemma A.2. The result for m = 4 follows because N ™! sup ey Ny — 0 by (10).

Proof of (B.17). Follows immediately by (B.15), (B.16), and Slutsky’s Theorem.
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B.4 Proof of Theorem 5.1

We apply the smooth function model of Bhattacharya and Ghosh (1978) and particularly Thm.
3.2 of Skovgaard (1981); see also Ch. 2 of Hall (1992) for a textbook treatment. We use (28) and
Uy =uy — X4(B — Bo) to write the sample t-statistic as

—1/2
a:d_1/2< S 0 Wil (X ] g>v‘v3—1a> VGa Wi WA
g=1

_ _ _ _ o —1/2 _ _
—2(a' Wyl ed Wy YW Wyt Wa) T VGa Wy, (B.21)

which, by Assumptions 4 and 5, is a smooth function of the sample average of the random vector
W for N (or equivalently G) sufficiently large. The existence of a valid Edgeworth expansion for
the CDF of W follows from Bhattacharya and Rao (1976, Thm. 20.6) because we have imposed
Cramér’s cond1t10n in Assumption 6 on the characteristic function x4(t) of W and because the
moment condition sup ey E||[W,||>*™ A < oo for A > 0 implies the Lindeberg-type condition (20.54)
in Bhattacharya and Rao (1976, Thm. 20.6).

Following the delta method as detailed in Remark 1.4 of Bhattacharya and Ghosh (1978) and
p. 209 of Skovgaard (1981), we first derive an approximation

ta = d V21, + Op(G™/?) (B.22)
and define the approximate cumulants
11 (¢ )—d V2E(t,), (B.23)
s(ta) = d~ ' (E(7) — (E(f2)?), (B.24)
M3 (ta) = d*2(E(f}) - 3E()E () + 2(E(f)?), (B.25)
y(ta) = d~2(E(f;) — 4E(E)E(f.) — 3(E(f}))” + 12B(%) (E(f.))* — 6(E(f))"), (B.26)

where E(tk) denotes the approximate moments of Z,. The latter are obtained by taking powers of
t,, dropping terms that are at most Op(G —(m+1)/ 2) and then taking expectations of the remaining
terms.

As we will see, the approximate cumulants in (B.23)—(B.26) all have the structure

m
I(t) = d 923" G Pk + OG0 j=1,... 4, (B.27)
=0
for given constants xj; that satisfy k19 = k21 = K30 = k40 = K41 = 0 and ko9 = 1. Inversion of the
characteristic function yields the Edgeworth expansions (23) and (25) with the polynomials

1 1 9
ql(l‘) = _d1/2 K11 — 6d3/2 I{gl(l‘ — 1), (B28)
1
q(z) = 2d(/<;22 + i) — 24d2 (Kag + 4r11k31) (2% — 32) — W’%l(”/j —102% + 15x).  (B.29)
We analogously define the corresponding bootstrap cumulants II;(¢}) for j = 1,...,4, replacing the

population mean E(-) by the bootstrap analog E*(-), and deduce RKji, and hence q'1 and ¢, in the
same way as Kj;.

The remainder of the proof is divided into three parts. First, we derive the approximation
(B.22) to the sample t-statistic. Then we find the approximate moments and cumulants as needed
to determine the coefficients xj;, for j = 1,...,4. In the final part, we derive the corresponding
results for (both versions of) the bootstrap ¢-statistic.
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B.4.1 Derivation of the approximation (B.22)

We first note that
E~O0(1) and v, ~O(1), (B.30)

where “~” means exact rate in the sense that the right-hand side is not “small 0”. The first
statement in (B.30) follows from Assumptions 4 and 5 and the second uses also (26).

There are two non-linearities in (B.21) that we will need to linearize, namely the inverse in
W3_1 and the square-root in the denominator. First, we apply the expansion

—E B (Wy B E T+ ETN(W - E)ETY(W, - E)W;

—E 1l -E(W -E)E 4 EN (W - E)ET Wy - E)E 4+ 0p(G7%?),  (B.31)

where the order of the remainder follows from Lemma A.1 and (B.30). Using (B.31), the numerator
of (B.21) is linearized as

VGa"ETIW—VGa 2N (W3—E)27 ' W +VGa BT (Ws—E)E~ (W5—E)E~ ' W +0p(G™3/?),

where the order of the remainder follows from (B.31) together with Lemma A.1 and Assumption 5.
Using again (B.31), the denominator of (B.21) is (the square-root of)

Vo +a'E7H(Wy —E(Wy))E  a — 2a"27Y(
1

( ( 3
+ a2 W - B ETIE(WL)E (W5 — E)E a
L

+2a"E7Y(W;3 - E)EL(W; — )2 IE(WL)E la — 2¢E (W3 — E)E" (W, — E(W,))E la
+ (@B '@a 2 YWivec ET'WIW, B2 —2(aE @ a ETHYWEET'W, + 0p(G3/2).

Second, we apply a second-order Taylor-series expansion around x = 0,

(Va + x)—l/? _ Va_1/2 - %Va—?)/Zx + gya—S/ZxQ + 0(1‘3),

which, together with the linearization of the numerator, yields the expansion (B.22) with

F =G5 ~VG(Zs — is) 2+ VG — ) s — VG 7o — o) 7 (B.32)
+ %\/5(22 — 12)(Z3 — 3) " Zy + VG (Z3 — f13) " (Zy — fn9) Z, (B.33)
—VG(Z1 — i) (Zs — jas) " 21 — %\/5(210 — 10) ' (Zs — ja3) Z (B.34)
—VG(Zs — ji3) " (Z12 — a2) Zs + VG (25 — i)' (Zs — fas) Zs (B.35)
GZT 27 — %@Z;mzlzﬁ + gm(zn _ )2 Ze (B.36)
+ g\/é(zz — fi2)* Zs — g\/é(z — i2)(Z11 — fin) Z, (B.37)
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where Z1, Zay, Z34 are defined in (30), pjy = E(Zj,), p; = G~* 25:1 Mg, and

v Ty =1, Te—1xT
Zyy =X, XeBE aa BT X, Xy,
_ T 12w Ty m—1l, Te—lyT
Zsg = Zzga Zig =V, Xg XyE "aa E Xg Ug,
_ T o —1/2, Te—1lyT
Zeg=a Zig=v, '"a B X ug,

(B.38)
(B.39)
(B.40)
Zng = Z1yZ|, = v; "B X ugu) X, 871, (B.41)
Zyy = Zrga = l/a_lE_ngTugu;—XgE_la, (B.42)
Zyg = EingTXm ( )
Ziog = firZ3 = fir X, X,E a, (B.44)
Zig = aT[ngg = aT[ngTXgE*la, ( )
Z13g = Zogiira = B X ] X ra. (B.46)

It follows easily from Lemma A.1 and Assumptions 4 and 5 that

G
Z;— =G> (Zjy — pjg) =O0p(G™H?) forj=1,...,12. (B.47)
g=1

It is also easy to see that p; = G} > g Hjg = O(1) (non-random) for j = 1,...,12. In t, it
then follows straightforwardly from (B.47) that the first term on the right-hand side of (B.32) is
Op(1), while the remaining terms on the right-hand side of (B.32) are Op(G~1/2). All the terms
in (B.33)—(B.37) are Op(G™1).

B.4.2 Derivation of the cumulant expansion (B.27)

We first find the approximate moments of %,.

Approximate first moment of #,. By Lemma A.3 with & = 3, the expectation of each of the
terms in (B.33)-(B.37) is O(G~3/2). By the law of iterated expectations, the expectation of the
first three terms in (B.32) is zero. This leaves only one term, and we find

- 1 _ = 1
E(ta) = _§G1/2E((Z2 — f2)Z6) = —§G 1/2’76,6 (B.48)
from Lemma A .4.

Approximate second moment of {,. The square of # is, using (B.47),
2 =GZ+G((Zs— ts)' Z1)" +4G(Zn1 — in)* 23 + G(Zs — 1) 23
—2G(Z3 — 13) " Z1 Z + 2G(Z11 — [in1) Z2 — G(Zy — [i2) Z2
+2GZ6(Zo — i) (Z3 — j3) " Z1 + 2GZ6(Z3 — ju3) ' (Zg — f19) Z)
— 4G Z6(Z11 — i) (Zs — 3) " Zy — G(Zho — o) ' (25 — fis) Z¢
—2G(Z3 — ji3) " (Z12 — 2) Z§ + 2G(Z3 — 13) ' (Zs — as) %5
+2GZ| Z522 — GZ| 142, 22 — AG(Zs — [in)(Z11 — fin1) 22 + Op(G3/?).
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Applying Lemma A.4, the approximate second moment is
Ef)=1-G ' Tr{€s€1,1} +4G (G — Qi) +2G 15
+2G (6,11 — Vo,11) + 2G €61 (Co3 — C2,3) + 2G ' €6.1(Cos — Cos3)
— 4G €61 (11,3 — Ci1.3) — G (Gs10 — (3,10) — 2G (G312 — (3,12) + 2G 7 ((38 — (3.8)
+2G N (Tr{y1,3} + 286,1€32) — 2G ' &61€3,3616 — 4G (Cr12 — Cu12) + O(G2),
where we also used that {6 = aT&,la = 1. Using Lemma A.5 and {23 = &3 2, this simplifies to

E(f2) =1-G ' Tr{&sé11} +2G "G5 +2G  Tr{y13} — 2G '€61€3,3816 + 4G '€61€32 + O(G2).

Approximate third moment of {,. Using (B.47) we find
B =G%273 —3G3%22(2Z3 — ju3) " Z1 + 3G32 Z3(Zy1 — i)
ST 2~ i) + 3GY Z(Zs — i) (Zo — i) 2
— 9G*?Z3(Z11 — in)(Zs — jas) " Z1 + gGB/QZg(% — 2)(Z3 — i3) ' Zy
- %GS/QZQ(Z:J, — 3) " (Z10 — o) — 3G2Z3(Z3 — ju3) T (Z12 — jn2)
+3G32Z3(Zs — ju3) " (Zs — fus) + 3G2Z3 Z] Zs
- 2G3/QZ§’Z1TI_L421 + ?G3/2Z§’(ZH — jin)? + %5(;3/223(22 — jig)?
- ?GS/QZ(?(Z — fi2)(Z11 — fin1) + 3G32Z((Zs — fis) " Z1)* + Op(G3/2),
but Lemma A.3 shows that the expectation of any term that contains a product of five or more

Z;— p; is at most O(G—3/2). That leaves only the first four terms on the right-hand side. Of these,
the law of iterated expectations shows that the second and third terms are O(G~3/2), and thus

() = G755 - gG*/ 6.6+ O(G?) = _gm e )

Approximate fourth moment of ,. Using (B.47) we find
t=G?Z8 —AG*Z3(Z5 — 13) " Z1 + AG*ZE(Zy1 — i) — 2G* Z§(Za — [in)
+8G?Z3(Zy — [i2)(Z3 — n3) " Z1 + 4GP Z3(Z3 — jus) ' (Zo — o) Zy
—16G*Z3(Z11 — [in)(Zs — )" Z1 — 2G* Z§(Zs — fas) ' (Zro — fi1o)
—4G*Z5(Z3 — 13) " (Z12 — fn2) +AG*Z§(Zs — jas) " (Zs — fns)
+4G?Z3Z] Zs — 2G*Z{Z] p4Z1 + 12G2 Z3 (211 — i) + 3G%Z(Zy — fin)?
—12G?Z4(Za — fi2)(Z11 — fin1) + 6G2Z2 (23 — a3) | Z1)° + Op(G3/2).
Applying Lemma A.4, the approximate fourth moment is
E(f;) =3 —2G "6 — 12G €61 (€32 — €32) + 12G 7 (96,11 — Y6,11) + 12G (€112 — &11,2)
+ 28G5 6+ 24G €61 (Cas — Co3) + 12G €61 (Co.3 — Co,3) — 48G €61 (Ci1,3 — C11,3)
—6G (G310 — €3,10) — 12G7 1 (C3.12 — G312) + 12G((3.8 — (3.8)
+12G 7 Tr{F13} + 48€61832 — 6G P Tr {€3 3811} — 12G "¢6,1€33816
+36G " (Cr111 — Ci1a1) — 36G 7 (G2 — Ci12) — 12G 7 €6.1€3 3816 + O(G™2).
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Using Lemma A.5 and {23 = &3 2, this simplifies to

E(f') =3 —2G "¢ +28G g5 — 24G "¢61€3,3616 — 6G 7 Tr {€33€11}
+12G7 Tr{vy1,3} + 48G "€6.1€32 + O(G2).

Approximate cumulants. Inserting the approximate moments into (B.23)—(B.26) and using
(B.38)—(B.46), we obtain the approximate cumulants

1 1
AV (te) = — iG_1/276,6 = —iG_l/QaT‘Yl,la,
dly(te) =1— G ' Tr{€s3&11} +2G 56+ 2G7 Tr{v13} — 2G "¢6.1€3,3€16
1
+4G €6 1630 — Zaflygﬁ +0(G™?)

7
=14+ G (E(GT’YLla)Q —Tr{&3€11} +2Tr{v13} — 2a & 1&33611a + 4aT€1,1€3,2)
+0(G™?),
dPPT5(t,) = — 267266+ O(G™3/?) = —2G72a T y11a + O(G™%/?),

and

d*T4(ta) =3 — 2G &2 + 28G5 5 — 24G ™ "¢61€3,3€16 — 6G 7' Tr {€33€11}

_ _ 7 _
+12G7 Tr{v1 3} +48G '¢6.1€32 — 4G 1173,6 -3 6( — G ' Tr{€33611)}

_ _ _ _ 1 _
+2G G 6+ 2G 7 Tr{vy1 3} — 2G '€61€3,3€16 + 4G 156,153,2) + 121G "es +O0(G™?)

= —2G &+ 28G5 6 — 24G €6 1€33816 — 6G T Tr {€33€1,1} + 12G 7 Tr{v1 3}
+48G " €61€32 — TG g6 + 6G T Tr {€35€11} — 12G7 "G 6 — 12G7 " Tr{v1 3}
+ 112G €61€3,3€1,6 — 24G €6 1€32 + 3G g + O(G2)

_ ol (12(aT'y1,1a)2 — 265 —12a" €1 1€53€1 10 + 24&T€1,1€3,2) +0(G™?).

We finally conclude that

1
K11 = — iaT'yLla,
7
Koy = Z(aT'Yl,la)Q —Tr{€33&11} +2Tr{vi3} —2a €1 163361 10 +4a € 1€39,
K31 = —2a' Y114,

kag = 12(a"y11a)? — 2600 — 120" €113 361 1a + 24a " €1 1€3.

In view of the moment conditions in Lemma A.4, we note that k11, k22, k31 exist under the conditions
of the one-term expansion (m = 1) of Theorem 5.1, while k49 exists under the conditions of the
two-term expansion (m = 2). Thus, we obtain the results of Theorem 5.1 from (B.28) and (B.29).

B.4.3 Expansions for bootstrap t-statistic

This proof is identical to that for the sample t-statistic, replacing the population mean E(-) by the
bootstrap analog E*(-) and replacing Z;, by Z;, given in (32).
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B.5 Proof of Theorem 5.2

First, we find that

G G
. 1 o 1 * _— *\3
a'411a = el E E*(aTng)?’ =, 3/25 g E*(a'2 1XgTug) ) (B.49)
g:1 g:l

fo—

However, ug

gy, where vy is a scalar and E*(v;?’) = E*(v*3) is constant, so that

a

G
.. %/ %3\ oo — 1 —_— . \3 %/ %
aT‘Y1,1a =E (’U 3)7/ 3/25 Z (aT: lX;—ug) =E (U 3)(0,—'—")/1’10, + B1+ By + Bs+ By + B5),
g=1

where
By — 321 Z Te1xTu P —BElaT= X Tu P
1= 5 (a7 X uy) ~ Bla 87X w,)’),
g=1
G
By =LY (072X ) - (@72 X)),
g=1
G
B3 = VJ3/2é > ((aTéingT"lg)?) - (aT‘EingTﬁg)‘?)a
g=1
G
By = (5732 y;?’/z)é (a'E 1XgTug)3, and
g=1
1 & . 5 . 3
Bs = (i, — V;3/2)5 > ((aTE'ilngﬁg) — (a7 X uy) )’
g=1
and we analyze each term B;, for i =1,...,4, in turn.

First note that, by (28), (30), and (B.40), we have aTE_ngTug =a'E"'Wy, =a' Zy, = Zs,,
such that By = G~! Zle( 8, — E(Z8,)). Because Z§, — E(Z3,) is an independent, mean-zero
sequence with finite second moments by Assumption 5, it follows from Lemma A.1 that B} =
OP(G71/2).

To analyze By, we use the decomposition X;ilg = XgTug — X;—Xg(B — Bo) and find

By = 3B91 — 3B22 — Bags,

where, see (30) and (B.40),

a1l & _ " 1 & .
By =, 3/25 Y a'B X uy(a'ETX,) X,(8 - Bo)? =, 15 > Zog(Z5,(B — B0))°,
g=1

g=1
G G
Boy — 73/212( Te-1xT )2 Te-1xTx (5—5)_ 71/21222 ZT(B—ﬁ)
2=Va "G a = g Ug) a B g Xg o) =v. "5 69434 0),
g=1 g=1
G G
Bos — —3/21 T=-lxTX (B_ 3_ —gpl AN 3
23 = Vg G Z (a‘ = g Q(B ﬂo)) — Ya G Z ( 3g(ﬂ ﬂO)) :
g9=1 g=1

It follows directly from (26), (B.30), and Assumption 5 that By; = Op(G~/2) for j = 1,2, 3.
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Next, we find that By = Bsg; + B3y + B3z, where

321 —- =1\ v T, Tea—1y T \2
Bs1 = v, /22 Za =1_= )Xg tig(a' 2 X, g)”,
1 B} B}
. —3/2 Tia-1l e\ wTs Te-lyTs  Te—1lyTas
B3 = v, E a (E7 -E7)X, i4a B X, G40 E7 X g,

By = ua—?’/?G Z aT (B -2 )X, iy (aTEIX ] i)’

It follows from Lemma A.1 and Assumption 5 that 21 —Z2~1 = Op(G~/2). Tt is then straightfor-
ward to show, using the same arguments as applied to Bs combined with (B.30) and Assumption 5,
that Bsj = Op(G~1/?) for j = 1,2,3.

For the analysis of By, we first note that 3, = E(ngWFg) and write

1< : ) _
Vg — Vg = e Z ((aTE*ngTug)2 — E(aT:. 1XgTug)2> = By1 + Byo + Bys,
g=1
where
1 & 2 2
Bu=23" ((@"=7'Wy,)* —EB(a"27'Wy,)?),
g=1

1 G
Bu=2> (@27 X] )" ~ (a"27'W3,)?),
G .
> (@21 X, )"~ (@"27 X, ).

We can write By = v,G™* 25:1 (Zgg - E(Zgg)) so that By = Op(G~1/?) by the same argument
as applied to B;. Next, for By we use the decomposition XTug = XTug — X;—Xg(ﬂ — Bo) and
the same arguments as applied to Bs, which show that By = O p(G_l/ 2). Finally, we write

Byz = Z a' B -2 X, dga’ (B2 +ET X dy,

so that Bys = Op(G~1/2) by the same argument as applied to Bs. It follows that

Vg — vy = Op(G™Y/?). (B.50)
Next, by Taylor-series expansion and using (B.50),
32 32 = —guf’/?( —v,)(1+ 0p(G™12)), (B.51)
which implies
By = —gugl(pa —va) (14 0p(G~Y2)) Z Z3,

The right-hand side is Op(G~2) by (B.30), (B.50), and Assumptlon . Finally, the result for Bs
follows by combining (B.51) with the same arguments as applied for Bg.
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To prove the result for 5272, we proceed as in (B.49) and find

]. hd . * *
522_E* x4 _2 Z T'=‘_1)(9T11,g)4:E (v 4)(52,2+01+CQ+C3+C4+05)7

where C;, for i = 1,...,5, are given by the same expressions as B;, for i = 1,...,5, replacing the
powers —3/2 and 3 in B; by —2 and 4, respectively. Consequently, the proofs that C; = op(1), for
i =1,...,5, are nearly identical to those for the corresponding B; given above, and are therefore
omitted.

Appendix C: Additional Simulation Experiments

The linear regression model with clustered errors is very general. Thus, in principle, we could
perform an infinite number of simulation experiments for it. Since that is infeasible, we have to
make choices about which results to report. In Appendix C.1, we consider three key features of the
DGP used in most of the simulation experiments in Section 4 of the paper and justify the choices
that were made there. In Appendix C.2, we consider an extended version of the model that includes
additional regressors.

C.1 Choice of Key Parameters

In this subsection, we present the results of three simulation experiments which focus on certain
features of the data-generating processes used in the main experiments. Specifically, we look at the
parameter p, the intra-cluster correlation for the error terms, the parameter v, which determines
how much cluster sizes vary, and alternative ways of generating the regressor, which primarily affect
how much right skew it has.

Figure C.1 shows rejection frequencies for the t-test, four variants of the wild cluster bootstrap,
and the ordinary restricted wild bootstrap (WR) as a function of p, the within-cluster correlation
coefficient. The other parameters are identical to the ones in Panel (b) of Figure 1, with p, = 0.7.
It might seem that p would be an important parameter. The value of p is indeed important in
determining how efficiently the parameters of a regression model with clustered errors are estimated.
As p increases, the amount of information contained in any given cluster diminishes. However, as
Figure C.1 shows, rejection frequencies are not very sensitive to p for p > 0.05.

The t-test and the ordinary wild bootstrap are most sensitive to the value of p, but, even for
them, rejection frequencies increase much more between 0 and 0.05 than between 0.05 and 0.50.
The two WCB procedures that use the Rademacher distribution are almost totally insensitive to
the value of p. The ones that use the Mammen distribution are a bit more sensitive to it, but not
much so for p > 0.05. Based on the results in Figure C.1, p is set to 0.10 in all the simulation
results reported in the paper. None of those results would have changed appreciably if we had used
any value between 0.05 and 0.50.

As both the theory of Sections 2, 3 and 5 and the simulations of Section 4 show, variation in
cluster sizes is very important. In most of our experiments, the cluster sizes are determined by
(21), which depends on the parameter . In the paper, we report results for v = 0 (equal-sized
clusters) and v = 2. Figure C.2 shows how rejection frequencies for the same six tests vary as a
function of v. Not surprisingly, they increase or decrease monotonically (allowing for simulation
errors, which are small but noticeable even with 400,000 replications) as 7y increases.

If we had used a value of ~ larger than 2, we would evidently have obtained somewhat worse
results for all methods. WCR-M would have underrejected slightly more severely, and all other
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Figure C.1: Rejection frequencies at 0.05 level, G = 25, N = 2500, p, = 0.7, v = 2
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methods would have overrejected more severely (although the effect is very modest for WCR-R).
However, our view is that values greater than 2 are not very realistic. For G = 25, the ratio of
the largest to the smallest cluster is 7.3 when v = 2. It increases to 19.4 when v = 3 and to 48.1
when v = 4. Moreover, since Assumption 3 of Theorem 2.1 limits the extent of heterogeneity of
cluster sizes, albeit not in a way that can be stated explicitly for any finite sample size, using large
values of 7y in the simulations would risk relying on simulation results for cases that are not actually
covered by the theory.

In all the experiments reported in the paper, the regressor is generated as a weighted sum of
x2(8) random variates, recentered and rescaled to have mean 0 and variance 1, with the weights
chosen so that the intra-cluster correlation is p,. In generating the regressor in this way, our
objective is to make it leptokurtic and right-skewed, but not excessively so.

In Figure C.3, we report rejection frequencies for the same six tests for eight ways of generating
the regressor. These rejection frequencies are not very sensitive to the choice of distribution, except
when skewness is relatively extreme: It is 1 for x3(8), 1.41 for x?(4), 2 for x%(2), 2.83 for x?(1), and
6.18 for the standard lognormal distribution. None of our results would have changed very much
if we had used x2(4) or x%(16) instead of x%(8). Some of them would have changed noticeably if
we had used the lognormal distribution, which is, in our view, much too extreme. If we had used
a moderately extreme distribution, like x2(2), the WCR-R, WCR-M, and WR tests would have
performed about the same as in the paper, but the t-test and the two unrestricted WCB tests would
have overrejected more severely.

C.2 Additional Regressors

The model (20) used in all the simulation experiments in the paper has just one regressor and
a constant term. This means that the restricted residuals are simply deviations from a sample
mean. It is therefore natural to speculate that the excellent performance of WCR-R observed in
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Figure C.2: Rejection frequencies at 0.05 level, G = 25, N = 2500, p = 0.10, p, = 0.7
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Section 4 of the paper, and in Figures C.1-C.3, may be a consequence of that feature of the model.!
In this subsection, we therefore consider a model with additional regressors. As we shall see, the
performance of all methods deteriorates, but WCR-R continues to perform relatively well.

The model we study here is

J
Yg = P1+ Poxy + Z(széj) + ug, E(ugu;) =Q4 9g=1,...,G, (C.1)

j=1
where both the u, and the regressor of interest x, are distributed as described in Section 4,
with intra-cluster correlations 0.1 and p,, respectively. FEach of the J additional regressors zgj ) is
normally distributed, uncorrelated with all the other regressors, and uncorrelated across clusters,
with intra-cluster correlation ¢. We performed experiments for three values of J (2, 4, and 8) and

five values of ¢ (0.00, 0.25, 0.50, 0.75, and 1.00).

Figure C.4 shows rejection frequencies for cluster-robust t-tests at the 0.05 level for G = 25,
N = 2500, p = 0.10, v = 2, and 21 values of p, between 0 and 1. This is the same case as Panel
(b) of Figure 1 in the paper. In Panel (a) of Figure C.4, J = 4, and in Panel (b), J = 8. In both
panels, the lowest curve (for ¢ = 0) is almost identical to the corresponding curve in Panel (b)
of Figure 1 in the paper. For example, the rejection frequency for p, = 1 increases from 0.1045
with no extra regressors to 0.1065 with either 4 or 8 extra regressors. Thus, for this model, adding
additional regressors that vary only at the individual level appears to have almost no effect.

In contrast, except when p, = 0, adding additional regressors that vary partly or entirely
at the cluster level increases rejection frequencies substantially. There is evidently an important
interaction between the regressor of interest and the additional regressors when they both exhibit
intra-cluster correlation. In the worst case, for J = 8 and p, = 1, the rejection frequency rises from
0.1045 to 0.1879.

"However, if this were the case, one might expect WCR-M to work equally well, and it does not.
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Figure C.3: Rejection frequencies at 0.05 level, G = 25, N = 2500, v = 2, p = 0.10, p, = 0.7
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It would be impractical to present results for the bootstrap methods for all 10 cases shown in
Figure C.4. We therefore focus on two cases, one moderate and one quite extreme. In the first of
them, J = 4 and ¢ = 0.5. This corresponds to the middle curve in Panel (a). In the second case,
J =8 and ¢ = 1.0. This corresponds to the top curve in Panel (b). In the second case, we are
using just 25 clusters to estimate nine coefficients on regressors that vary only at the cluster level.

Figure C.5, which is directly comparable to Panel (b) of Figure 1 in the paper, shows results
for the t¢-test, all four WCB tests, and the ordinary wild bootstrap (WR) test for these two cases.
In both panels, the ordering of the WCB tests is the same as in Figure 1 in the paper. They all
reject more often than they did previously. This actually improves the performance of WCR-M,
but not of the other tests.

Figure C.4: Rejection frequencies for t-tests at 0.05 level, G = 25, N = 2500, v =2, p = 0.10
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Figure C.5: Rejection frequencies at 0.05 level, G = 25, N = 2500, v = 2, p = 0.10
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In Panel (a) of Figure C.5, where J = 4 and ¢ = 0.5, all tests reject more often than they
did previously, but the differences are not large. WCR-R remains the best method, but it now
overrejects (albeit very slightly) for all values of p,. In the worst case, for p, = 0.60, it rejects
5.67% of the time. WCR-M continues to underreject for all values of p,, a bit more than before
when p, is small, but not quite as much when p, is large. The two unrestricted WCB tests perform
somewhat worse than they did before, especially when p, is large. For example, WCU-M rejects
10.27% of the time when p, = 1, versus 9.25% in Panel (b) of Figure 1 in the paper.

In Panel (b) of Figure C.5, where J = 8 and ¢ = 1.0, all tests reject more often than in Panel
(a). This is most noticeable for the ¢-test, the WR bootstrap test, and the two restricted WCB
tests. Perhaps surprisingly, WCR-~-M is now the best test for most values of p,. There seem to be
two factors at work here. One is whatever causes WCR-M to underreject in all other cases, and
the other is whatever is causing all the tests to reject more often in this case. The net effect is that
WCR-M can either underreject or overreject, but it generally does so only modestly. Nevertheless,
even though WCR-R is no longer the best test throughout Panel (b), it performs reasonably well.
In the worst case, when p, = 0.60, it rejects 6.52% of the time. For WCU-R and WCU-M, the
rejection frequency curves, which are essentially straight lines in Panel (a), are clearly concave in
Panel (b). For intermediate values of p,, they overreject quite a bit more severely than before, but
for extreme values their rejection frequencies do not change much.

One interesting result in both panels is that the ordinary wild bootstrap test (WR) overrejects
noticeably more often than it did before. It is the worst bootstrap test for a range of intermediate
values of p;, albeit only slightly worse than WCU-M. The rejection frequency curve still has an
inverted U shape, but the peak in the middle is much higher than it was in Figure 1 of the paper.
These results suggest that it may become more important for the bootstrap DGP to match the
actual structure of the clusters as the number of regressors that display substantial intra-cluster
correlation increases.

C.3 Concluding Remarks

The results in Figures C.1-C.3 suggest that the choices of certain key parameters in the simulation
experiments reported in the paper either have little effect on the results or have moderate but
predictable effects that do not change the ordering of rejection frequencies for any of the tests.
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The results in Figures C.4 and C.5 suggest that using a model with more than one regressor
and a constant term would have had more substantial effects. In particular, all methods would
have rejected more frequently, especially the t-test, the WR test, and the two unrestricted WCB
tests. The effects on WCR-R and WCR-M would have been much smaller, with the latter no longer
underrejecting in all cases.
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