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Abstract

Bootstrap tests are tests for which the significance level is calculated
by some sort of bootstrap procedure, which may be parametric or non-
parametric. We show that, in many circumstances, the size distortion of a
bootstrap P value for a test will be one whole order of magnitude smaller
than that of the corresponding asymptotic P value. We also show that, at
least in the parametric case, the magnitude of the distortion will depend
on the shape of what we call the P value function. As regards the power of
bootstrap tests, we show that the size-corrected power of a bootstrap test
differs from that of the corresponding asymptotic test only by an amount
of the same order of magnitude as the size distortion, and of arbitrary sign.
Monte Carlo results are presented for two cases of interest: tests for se-
rial correlation and nonnested hypothesis tests. These results confirm and
illustrate the utility of our theoretical results, and they also suggest that
bootstrap tests will often work extremely well in practice.

JEL Classification Number: C1

Keywords: bootstrapping, hypothesis testing, nonnested hypothesis tests,
P values, tests for serial correlation



1. Introduction

Testing hypotheses is a central concern of classical econometrics. Some-
times the hypotheses to be tested are suggested by economic theory, and
sometimes they are merely auxiliary hypotheses, such as homoskedasticity
or serial independence, that must hold for inferences to be valid. Whichever
the case, we want the tests to have the correct size and to have high power.
Unfortunately, in the vast majority of interesting cases, the distributions
of the test statistics we use are known only asymptotically. As a result,
making inferences on the basis of them can be a risky undertaking.

There are two approaches to solving this problem. From a theoretical
point of view, perhaps the most appealing is either to modify a test statistic
analytically so that it approaches its asymptotic distribution more rapidly,
as in Attfield (1995), or to modify the critical values so that the true size
of the test approaches its nominal value more rapidly, as in Rothenberg
(1984). Unfortunately, this approach often requires algebraic derivations
that are very far from trivial, and in many cases it seems to be infeasible.

An alternative approach that is starting to become popular, largely be-
cause of the dramatic increase in the speeds of computers in recent years, is
to employ some variant of the bootstrap. Although the statistical literature
on bootstrapping is large and growing rapidly, most of it concerns confi-
dence intervals rather than test statistics; see, among many others, Efron
and Tibshirani (1993) and Hall (1992). The basic idea of bootstrapping
a test statistic is to draw a large number of “bootstrap samples,” which
obey the null hypothesis and, as far as possible, resemble the real sample,
and then compare the observed test statistic to the ones calculated from
the bootstrap samples. An important recent paper which advocates this
approach is Horowitz (1994).

In this paper, we prove a number of important results about the prop-
erties of what we shall call “bootstrap tests,” that is, tests for which the
significance level is calculated by some sort of bootstrap procedure. In the
next section, we explain our terminology and notation and introduce several
important concepts. The principal results of the paper are then proved in
Sections 3, 4, and 5. Monte Carlo results which confirm and illustrate the
utility of our theoretical results are presented in Sections 6 and 7. These
deal, respectively, with tests for serial correlation and with the J test for
nonnested hypotheses.



2. Some Basic Concepts

Suppose that we calculate a test statistic 7 from a sample of size n.
The details of how 7 is calculated need not concern us, but it is essential
that 7 be asymptotically pivotal. In other words, the asymptotic distri-
bution of 7 under the null hypothesis must not depend on any unknown
parameters. This is a rather weak assumption. All of the classical test stat-
istics based on least squares, maximum likelihood, GMM, or other forms of
extremum estimation satisfy an even stronger condition, since they actually
have known asymptotic distributions.

It is possible to use bootstrapping either to calculate a critical value
for T or to calculate the significance level, or P value, associated with 7, the
realized value of 7. We prefer the latter approach, partly because knowing
the P value associated with a test statistic is more informative than simply
knowing whether or not the test statistic exceeds some critical value, and
partly because this approach leads naturally to the analysis of the next
three sections. Our objective, then, is to compute

(1) p(7) = Pryy(r > 7),

where po denotes the data generating process (DGP) which, under the null
hypothesis, generated the data from which 7 is calculated. Clearly, this
DGP must itself satisfy the null hypothesis. In general, the probability in
(1) depends on the sample size n and on the DGP po. Only if p(7) depends
on neither of these will asymptotic theory give the right answer.

We may use either a parametric or a nonparametric bootstrap to draw
the bootstrap samples. In the former case, we generate them from the
model itself, using a vector of parameter estimates under the null, say 6.
This approach is appropriate in the case of a fully specified model, which we
must have if we are using the method of maximum likelihood. In the latter
case, in order to avoid imposing overly strong distributional assumptions,
we resample from something like the empirical distribution function of the
data. This approach is appropriate if the model is not fully specified, as in
the case of GMM estimation. Actually, the term “nonparametric” may be
somewhat misleading since, as we shall see in Sections 6 and 7, parameter
estimates are often required to implement nonparametric bootstrap proce-
dures. In either case, the DGP used to generate the bootstrap samples will
depend on the sample used to obtain 7. We shall refer to this DGP as /i,
the bootstrap DGP. In contrast, the actual (but unknown) DGP will be
denoted .

Suppose we generate B bootstrap samples, each of size n, and use
them to compute B test statistics, 7,7 = 1,...,B. The bootstrap P value
is defined as

(2) p*(7) =Pra(r 2 7).



The only difference between (2) and (1) is that the former uses the bootstrap
DGP [ instead of the actual DGP pg to compute the probability. By a law
of large numbers,

(3) p*(7) = plim = Z I(m; > 7),

B—)oo

where I(-) is an indicator function, equal to 1 if its argument is true and
equal to zero otherwise. Thus the bootstrap P value p* is equal to the limit,
as B — oo, of the proportion of bootstrap samples for which 7; exceeds the
observed test statistic 7.

In practice, of course, B will have to be finite, and we may wish to
estimate p* in a more efficient fashion than simply by using the finite-
sample analogue of (3); see Davidson and MacKinnon (1996). Since the
problems associated with finite B are unrelated to the issues discussed in
this paper, and since, in many cases, it is feasible to make B so large that
random errors in the bootstrapping process can safely be ignored, we shall
in this paper be concerned solely with bootstrap P values based on an
infinite number of bootstrap samples. Our objective is to understand the
relationship between p*(7) and p(7), both when the null hypothesis is true
and when it is not.

One fundamental, and well-known, property of p*(7) is that, in the case
of a parametric bootstrap, it is equal to p(7) when 7 is pivotal, prov1ded of
course that the parametric model is correct. In this case, the only difference
between the DGP used to generate the 7; and the DGP that is assumed
to have generated  is that the former uses 6 and the latter uses the true
parameter vector 8g. But if 7 is pivotal, its distribution is the same for all
admissible values of 8, and thus the same for both yg and fi. Therefore, in
this special case, p*(7) = p(7).

Although this case is rather special, it has numerous applications in
econometrics. For example, in univariate linear regression models with re-
gressors that can be treated as fixed, any specification test that depends
only on the residuals and the regressors will be pivotal. This includes
many tests for serial correlation, heteroskedasticity, skewness, and kurtosis,
including the information matrix test. Tests for serial correlation are dis-
cussed in Section 6. For the others, see Davidson and MacKinnon (1993,
Chapter 16). Thus, provided the normality assumption is maintained, all
of these commonly used tests can be made exact by using the parametric
bootstrap.

The special case in which 7 is pivotal makes it clear that it is only
the fact that & differs from pg which could cause bootstrap P values to be
inaccurate. In order to understand the properties of bootstrap P values,
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we need to describe how the distribution of 7 depends on u. We therefore
define the critical value function, or CVF, C(a, i), by the equation

(4 Pru(r > Cla, ) = o

C(c, i) is thus the true level-a critical value for a test based on the statistic
7 if the DGP is u. In other words, it is the 1 — o quantile of the distribution
of 7 under u. The rejection region for the bootstrap test is defined by

(5) 7> C(a, 1),

and the true size of the bootstrap test is simply the probability, under the
DGP po, of the event (5). This probability clearly depends only on the
joint distribution under pg of 7 and the scalar quantity C(a, ). We shall
make much use of this fact in the next three sections.

In the parametric case, u will be a parametric model characterized by
parameter vector 8, and we can, at least in principle, graph the CVF as a
function of 8. As an illustration, Figure 1 shows the CVF for a particular
test (a J test; see Section 7) with DGP characterized by a single parameter
0 for a = .05. The size of the bootstrap test is the probability mass, under
6o, of a rejection region in the space of § and 7. If (9, ) falls into this
region, the bootstrap test rejects. From (5), it is clear that the rejection
region consists of all values of 7 such that 7 > C(e,8). 1t is the region
above the graph of the CVF in (6, 7) space.

The rectangle above the horizontal line marked C(.05,1) in the figure
shows all (7,6) pairs that should lead to rejection at the .05 level when
6o = 1. In contrast, the area above the CVF shows all pairs that actually
will lead to rejection using a bootstrap test. How different these are will
depend on the joint distribution of 7 and 6. For comparison, the rectangles
above the two dotted lines show all pairs that will lead to rejection using
the asymptotic critical value C*°(.05) = 1.96 and using the critical value
C?2(.05) = 2.074 based on the ¢(22) distribution. Clearly, the bootstrap
test will work much better than either of these approximate tests.

From the figure, we see that when 6y = 1, the bootstrap test will over-
reject somewhat when 6 > 1 and when § < —1. For those values of §, the
CVF is below C(.05,1), and the bootstrap critical value will consequently
be too small. By a similar argument, the bootstrap test will underreject
when —1 <8< 1. If is approximately unbiased and not very variable,
these two types of errors should tend to offset each other, since the CVF
is approximately linear near § = 1. Thus, on average, we might expect the
bootstrap test to work very well indeed in this case. This argument will be
made much more precise in Section 5. In fact, as we shall see in Section 7,
the bootstrap J test does work very well.
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Because test statistics may have a wide variety of asymptotic distribu-
tions, and tests may be either one-tailed or two-tailed, it will be convenient
for our analysis to convert any statistic into a corresponding approximate
P value. Thus, instead of dealing with a statistic 7 that has some known
asymptotic distribution F, we shall deal with a statistic 7, that will be
asymptotically uniformly distributed on [0,1]. The asymptotic test would
then reject at nominal size o if 7, < a. In the one-tailed case, we would
have 7, =1 — F(1).

In finite samples, of course, the event (7, < a) will rarely have prob-
ability precisely a. Consequently, we introduce the P value function, or
PVF, defined as follows:

(6) S(a,p) =Pry(nr < @).

For fixed p, of course, S(, i) is just the c.d.f. of 7, evaluated at a. The dif-
ference between S(a, 1) and « will be referred to as the P value discrepancy
function. It is implicitly defined by the equation

(7) S(a,p) = a +n~2s(a, ),

where the integer [ > 1 is defined so that s(a,p) will be O(1). In most
cases, we expect that [ = 1, but there may be exceptions. Note that s(a, u)
will be independent of the DGP u only if the statistics 7, and hence 7, are
pivotal.

It is possible to compute a critical value function for 7, rather than
for 7. Since one usually rejects the null hypothesis when 7, is too small,
the analogue of (4) when dealing with an approximate P value is

(8) Pr, (71',- < Q(a,,u)) = q,

where @ denotes the CVF for m,. The CVF C(a,u) for 7 and the CVF
Q(a, p) for m, are related by

Qa,p) =1- F(C(a7ﬂ))'

Both sides of this equation can be interpreted as the nominal size of a test
that has true size a. They can also be interpreted as the o quantile of the
random variable m, under the DGP .

The CVF Q(a,u) can be thought of as the inverse of the P value
function S(e, p), in the sense that

(9) S(Q(a, p), 1) = o,
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a result that follows immediately from evaluating (6) at @ = Q(a, ) and
then using the definition (8) of @Q(c,x). From (9) we also obtain

Q(S(a,p), 1) = @,

since both S and @ are increasing in their first arguments. Analogously to
(7), we will have

(10) Q(a,p) = a+n""q(a, p),

with the function q of order unity. The integer [ will be the same as the [ in
(7). Figure 2 graphs the PVF S(.05,6) and its inverse (.05, §) for exactly
the same one-parameter case as the CVF in Figure 1. All three functions
evidently convey essentially the same information.

Many of the basic ideas of this paper can be understood from Figures 1
and 2. Whenever a test is not pivotal, the CVF for the test, and hence also
the PVF and its inverse, will not be flat. As a consequence, a bootstrap
test, because it is based on the bootstrap DGP fi, will almost never have
exactly the right size. However, as we demonstrate in the next section,
there are good reasons to believe that bootstrap tests will very often have
almost the right size. It is clear from the figures that the size of a bootstrap
test based on a test statistic 7 must depend on the joint distribution of 7
and f. It is the need to deal analytically with this dependence that makes
the analysis of the next three sections a little bit difficult.

Before we move on to the next section, we present a much simpler anal-
ysis. If we simply condition on f, it is very easy, at least in the parametric
case, to see that bootstrap tests will perform better than asymptotic tests.
Suppose that the DGP u is fully characterized by a parameter vector 8, so
that the P value discrepancy function can be written as n="/%s(c,8). A
first-order Taylor expansion of the latter around the true parameter vector
0o yields

(11) n25(a,0) £ n""s(a,80) + n"?s"(a, 80)(8 — ),

where s(c,89) is the vector of first derivatives of s(c, 8) with respect to
0, evaluated at 6y. From (7), the difference between the probability that
#r < a according to the bootstrap DGP and the true probability is

(12) S(a,8) — S(a,8) =n~"? (s(a,é) — s(a, 89)).

Substituting (11) into (12) yields

(13) S(a,8) — S(a,80) £ n™"25"(,80) (6 — 6o).
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If @ is root-n consistent, the quantity on the right-hand side of (13) is of
order n~(*1)/2, Thus the bootstrap test appears to reduce the order of the
P value discrepancy by a factor of n=1/2,

The above argument is perfectly correct as far as it goes. The problem
with it is that it involves conditioning on 6, that is, fi. It therefore does not
take into account the randomness of [, an essential feature of bootstrap
testing. As we shall see in the next section, when this randomness is taken
into account, the bootstrap test is seen to perform even better than the
simple analysis above suggests.

3. The Size of Bootstrap Tests

In this section, we obtain the order of the P value discrepancy function
for bootstrap tests. For the nonparametric bootstrap, the answer is not
entirely straightforward, since it depends on the properties of the bootstrap
DGP /i as an estimator of the actual DGP ug, and these will depend on
the precise bootstrapping procedure used. For the parametric bootstrap,
the answer is clearer. If it is based on parameter estimates under the null,
the parametric bootstrap will be at least one full order more accurate than
the asymptotic test. This type of result is not entirely without precedent in
the statistical literature. However, our results are both much more detailed
and more general than those of, for example, Hall and Titterington (1989)
and Hall (1992).

The bootstrap critical value for 7., Q(a, 1), is a random variable which
will be asymptotically nonrandom and equal to a. In finite samples, its
value should generally be close to Q(e, 1) for two reasons. The first reason
is that, if 7, is nearly pivotal, then Q(c, ) does not depend much on pu.
The second reason is that 4 will generally be close to ug. It is therefore
convenient to define a new random variable «, of order unity as n — oo, as
follows:

(14) Qa, 1) = Q(e, po) +n 0.y,

where ., is independent of n and is chosen so that v has variance unity
asymptotically, and where k is an integer chosen to make (14) true.

In the case of the parametric bootstrap based on root-n consistent
estimates, k = I + 1. Recall from (13) that the difference between S(a, i)
and S(a, o) in this case is O(n~(H1)/2). Since Q(a, u) is just the inverse
of S(e, p1), Q(e, i) — Q(ex, o) must also be O(n~(+1)/2), Thus, since ! > 1,
we can be confident that £ > 2 for the parametric case. There is also good
reason to believe that £ > 2 in most nonparametric cases of interest. What
is needed is that we should be able to write (10) not only for u satisfying
the null hypothesis, but also for the y that are used as nonparametric
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bootstrap distributions. Then, provided that 4 — ug = O(n~=1/2), as will
normally be the case for any sensible nonparametric bootstrap, it is clear
that Q(a, 1) — Q(e, o) will be O(n~U+1)/2),

The P value function S(a,u), defined in (6), can be interpreted as
the c.d.f. of 7, under g. In order to describe the joint distribution of =,
and ~, we also need the distribution of v conditional on m,. Let us denote
by g(v,m-) the density of v conditional on 7, under the DGP pgo. Since
g(v, ;) is a density,

(15) / g(v,m-)dy=1 forall =, €[0,1].

With this specification, we can compute the true size of the bootstrap test
as the probability under yo that 7 < Q(e, ). The true size is

oo Q+n"°/2cr.,'y
(16) | o as(rr) g, ),
where, for ease of notation, we have set Q@ = Q(a,po) and S(7,;) =
S(ﬂ'-,-,,uo).

The integral over 7, in (16) can be split into two parts, as follows:

/OQdS(m) /_c: dy g(v,mr)

(17) %) n_k/2¢717
+/ dry / dﬂ',— SI(Q+7TT)9(’Y,Q+7‘-T)’
—00 0

where S’ is the derivative of S(m,). Because of (15), the integral over «
in the first term of (17) equals 1, and so the whole first term equals a, by
(9). Since the nominal size of the bootstrap test is a, the size discrepancy
for the test is given by the second term in (17). This second term can be
written as

(18) n 4o, [ dyygly,a) + O EHI),

since, by (10), Q@ = Q(a, o) = a+0(n~/?), and this, along with (7), gives
5'(Q) = 14 O(n~'/?). Thus the true size of the bootstrap test is a plus
the two terms in (18).

The first term in (18) has a simple interpretation. It is the expecta-
tion, conditional on 7, = «, of Q(a, ) — @Q(a, po). Thus it is the bias,
conditional on 7, = a, of the size-a critical value based on the bootstrap
DGP [i. When this bias is nonzero, it is responsible for the size distortion
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of the bootstrap test to leading order. On the other hand, when this bias is
zero, the first term in (18) vanishes, and the size distortion of the bootstrap
test is of lower order than otherwise. In that case, those i which overesti-
mate the size-a critical value will be balanced on average by those i which
underestimate it. Actually, the bias does not have to be zero. Provided
the bias is O(n~(¥+1)/2) or lower, the leading-order term in (18) will be
O(n~(k+1)/2) Unfortunately, the bias of @(«, i) will generally be of order
O(n~k/2) if it is not zero.

We can obtain an even stronger result than (18) if a further condi-
tion is satisfied. This condition is that v and 7, should be asymptotically
independent. For the parametric bootstrap, this condition will always be
satisfied, provided the parameters are estimated under the null and have the
usual asymptotic properties. To see this, observe that, in the parametric
case, Q(a, i), and hence v, is simply a function of the vector of parameter
estimates under the null, which once again we may call 6. Asymptotically,
if 6 is an extremum estimator that satisfies first-order conditions in the in-
terior of the parameter space, the vector n1/2(8 —8;) will be asymptotically
independent of any classical test statistic. Hence v must be asymptotically
independent of 7.

We shall not attempt a detailed proof of the independence result here.
Essentially, we need to express n!/2(§ — 0,) as a linear function of the
gradient vector and the test statistic as a quadratic function of that same
vector; see, for example, expressions (13.19) and (13.23) of Davidson and
MacKinnon (1993). We would then show that these two expressions can
be written as @' and u'Awu, respectively, where a is a nonrandom vector,
A is a nonrandom matrix, u is N(0,I), and a’A = 0. The normality of u
and the fact that aTA = O implies that a'u and u'Au are independent,
which implies that the vector of parameter estimates and the test statistic
are asymptotically independent. This independence can be proved for ML,
NLS, GMM, and other forms of extremum estimation. For the case of the
classical test statistics based on maximum likelihood estimation, a detailed

proof may be found in Davidson and MacKinnon (1987).

If we assume that v and 7, are asymptotically independent, then we
can write

(19) 9(v, ) = h(7) (1 +n 72 f(v,7.)),

where h(v) is the asymptotic marginal distribution of v, j > 1 is a suitable
integer, and f(v,7,) is of order unity as n — oco. In the most usual case,
j = 1, although larger values of j are possible.



Since i must be a consistent estimator of pg, so that Q(«, ) must be
a consistent estimator of Q(«, uo), we have that

/ dy vh(v) =0.
Thus (18) becomes

(2()) n—(k+j)/20._y/ dry ’Yh(’)’) f(7,a) + O(n_(k+j+1)/2).

—00

The interpretation of (20) is the same as that of (18). The first term is
the bias, conditional on 7, = a, of the size-a critical value based on the
bootstrap DGP . In the usual case, with £ = 2 and j = 1, this term will
be O(n~3/2).

Rather than attempting to state a formal theorem, let us summarize
the results of this section. The key is the order of the discrepancy between
the bootstrap critical value and the true critical value. In (14), we specified
that it was O(n™%/2). In the parametric case with root-n consistency,
k =141 with [ > 1, the usual situation being [ = 1 and k£ = 2. In the
nonparametric case, the value of k is less clear, but any sensible procedure
should have k > 2. In (18), we proved that, in the worst case, the bootstrap
P value will be incorrect only at O(n~*%/2). This is also what we obtained
by the simple analysis of the last section, which was only for the parametric
case and was conditional on f.

More interestingly, we showed that the errors in bootstrap P values will
often be of smaller order than this. First of all, when the bootstrap critical
value is unbiased to highest order, the bootstrap P value will be incorrect
only at O(n_(k+1)/ 2). Secondly, when the discrepancy is asymptotically
independent of the test statistic 7, the bootstrap P value will be incorrect
only at O(n~=(¥+7/2) where j/2 is the highest order at which dependence
occurs. This second case always holds for the parametric bootstrap if it is
based on a regular extremum estimator under the null, and it undoubtedly
holds for many nonparametric bootstrap procedures as well. In the usual
case, with [ = 1, k = 2, and j = 1, we thus have two, potentially quite
common, situations in which the error in the bootstrap P value will be
O(n'3/ 2) when the error in the asymptotic P value is O(n=2/2).
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4. The Power of Bootstrap Tests

In this section, we characterize the difference between the power of
bootstrap tests and the power of the asymptotic tests on which they are
based. The analysis is in many respects very similar to that of the previous
section, except that the DGP is assumed to be y1, which is not a member
of the null hypothesis. The test statistic in P value form, 7., will no longer
have a distribution close to U (0, 1), at least not if the test has any reasonable
power. In fact, if y; is a fixed DGP, independent of the sample size, then
7, will be asymptotically concentrated on zero, since any consistent test
will asymptotically reject the null hypothesis with probability one. For
asymptotic theory to give sensible results, it is therefore usual to postulate
a drifting DGP, that is, one which is determined by a DGP belonging to the
null hypothesis plus a perturbation of order O(n—l/ 2); see Davidson and
MacKinnon (1993, Chapter 12) for a detailed discussion of drifting DGPs.

For any given sample size, the c.d.f. of m, under y; can be written as
(21) P(a,p1) = Pry, (mr < a).

This definition of P(c, u;) is very similar to the definition of S(a, 1) in (6).
As before, we may sometimes drop the second argument. The notation has
changed slightly because now we are concerned with power rather than size.
For a different from 0 or 1, P(a, 1) will tend neither to zero nor to infinity
as n — 00, because y; drifts towards the null hypothesis at an appropriate
rate.

Unlike p1, the bootstrap distribution i must belong to the null hy-
pothesis, or at least, in the nonparametric case, it must be close to it in
the appropriate sense. It is a random distribution determined by u; rather
than by some o in the null hypothesis, but it is just the same sort of dis-
tribution as it would have been if it had been determined by such a po. In
particular, for a parametric bootstrap, it is determined by estimates of the
parameters of the null hypothesis, or, for a nonparametric bootstrap, by
residuals or similar quantities obtained by estimating the null hypothesis.
If we consider the o quantile of [i, we can see that its general properties as
a random variable are just as they were in the previous section. It will be
asymptotically nonrandom and equal to a, and it will be expressible, as in
(14), in terms of Q(a, o) and an asymptotically mean zero, variance unity,
random variable that we can still write as ~.

It is not entirely clear just what uo to use in equation (14) when the
actual DGP is u;. Essentially, we want po to be as close as possible to
1 while still satisfying the null hypothesis. From the theoretical point of
view, po must simply be such that Q(e, 1) is given by (14). However, that
equation is not quite enough to determine p uniquely, since changing uo by
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an amount that affects @(e, o) only by a quantity of order O(n~(k+1)/2)
is clearly compatible with all the requirements on k and on 5. For the
Monte Carlo work to be discussed in Section 6, the precise choice of pg
does matter, and this issue will be discussed further there.

Let us suppose then that, under the drifting DGP u, equation (14)
is satisfied for some po and for some v that asymptotically has mean zero
and variance unity. As before, we need the joint density of 7, and v under
p1. By (21), the marginal density of 7, is P'(7,), and we may denote the
density of v conditional on m, by ¢1(v,7r). The power of the bootstrap
test based on 7, at nominal size « is the probability under u; of rejecting
the null hypothesis, that is, the probability that m, < Q(e, ). As in (16),
the power can be expressed as

oo Q(a,po)+n"* 20,
(22) / dy / dP(r,) g1 (7,2,

and, as in (17), this can be split into two parts. The first part is

Q oo
(23) /0 dP(mr) /_oodvgl(%ﬂr)=P(Q(a,uo))-

This is simply the power of the asymptotic test based on 7., where the
critical value is such that the test has true size o under yo. It can therefore
be interpreted as the size-corrected power of the asymptotic test at level a.

The second term in (22) is

oo n=k/ oyY
(24) /_ d’Y \/0 dﬂ'.,- P! (Q(a’ /J'O) + 7Tr) g1 ('77 Q(aa /*LO) + 7!'-,-).

To leading order, this is just
(25) n~*?, P'(a) / dy y91(7, @) + O(n~-F+D/2);

compare (18). This term is the difference in power between the bootstrap
test at nominal level o and the asymptotic test at true level a.

What we are interested in is the difference in power between the boot-
strap and asymptotic tests at true level a. For this, we must replace a in
(23) and (24) by the nominal level which corresponds to true level « for the
bootstrap test. The appropriate correction is given by (18), and so « is to
be replaced by

a2, [ dyyg(ne)+ O,

— 00
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To the order we are considering, this replacement affects only (23), which
becomes to leading order

P(Q(a, po)) —n~*%¢. P'(a) /_Z dy v 9(7, ).

From this and from (25), we conclude that the difference between the power
of the bootstrap and asymptotic tests at true level « is

oo

(26)  n7*0, P'(a) / dy v (g1(7, @) = g(v,@)) + O(n=*+D/2),
—00

The result, mentioned in the last section, that extremum estimators
of parameter estimates under the null hypothesis are asymptotically inde-
pendent of the classical test statistics holds more generally for any drifting
DGP of the sort we consider in this section. This is shown in some general-
ity for maximum likelihood estimators in Davidson and MacKinnon (1987).
Consequently, just as g(v,a) may be expressed as in (19), so may we write

g1(v,0) = (7)1 +n7 2 fi(v, @),
where, as with h,
/ Thi(7)dy =0
because v has asymptotic mean zero. The leading term in (26) will thus be
of order O(n~(*+7/2); compare (20). Specifically, (26) becomes

oo

(27) n_(k+j)/20"y Pl(a) / d’)’ ~ (fl(’)’, a) _ f(")’, a)) + O(Tl_(k+j+1)/2).

—00

From expressions (26) and (27), we obtain two important and very
simple results. First of all, we see that, in general, the bootstrap and
asymptotic tests will have power that differs, on a size-corrected basis, only
at O(n=F/ 2). In the case of the parametric bootstrap, this means that any
discrepancy is at most O(n~(+1)/ 2), a result similar to one obtained by
Horowitz (1994). An even stronger result holds in cases involving classi-
cal test statistics, for which the parametric bootstrap is always available.
In such cases, the discrepancy is the same order as the size discrepancy
obtained in the last section, namely O(n_(k'*'j)/ %) or, for the usual case
with £ = 2 and j = 1, O(n™%/2). Secondly, we see from the first terms
in (26) and (27) that, to highest order, any power difference is due solely
to the possibility that v may have a different distribution under the null
and under the nonnull DGPs. In other words, the power difference arises
from the possibility that Q(e, &) — Q(e, uo) may differ under pg and ;.
For a pivotal test, there can be no power difference, and for a test that is
reasonably close to being pivotal, we would expect the difference to be very
small.
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5. The One-Parameter Case

In this section, we derive, to highest order, the P value discrepancy
function for a parametric bootstrap test when the DGP p depends only on a
single parameter 6. This result turns out to be easily interpretable and very
useful in understanding the behavior of bootstrap tests, even nonparametric
ones.

We assume that § is a root-n consistent, asymptotically normal esti-
mator of the parameter p. In this simple case, the bootstrap distribu-
tion [ is just the DGP characterized by 6. Since we are considering only
one parameter under the null, we suppose that it has been subjected to a
variance-stabilizing transformation such that, under 6o,

e =n'/?(6— 6,) ~ N(0,1).

Tt will be convenient to work with the random variable e instead of §. As
we saw in Section 3, it is reasonable to assume that 7, is asymptotically
pivotal and that 7, and e are asymptotically independent. Then the joint
density of 7, and e can be written as

(28) S'(mr,80)¢(e) (1 +n~2a(e, m,)).

Here, as in Section 3, S’ denotes the derivative of S with respect to its first
argument, and as usual, ¢(-) denotes the density of the N(0,1) distribu-
tion. We require that a(e,7,) = O(1). In principle, we could have n=7/2
instead of n~1/2 in (28), as we did in (19). However, it simplifies the result
considerably to assume that 7 = 1.

What we wish to do now is to obtain explicit expressions for the factors
that appear in the general result (20) for the P value discrepancy function of
the bootstrap test, and then substitute them into that expression. Because
the details of the derivation are somewhat tedious, they are relegated to
the Appendix. The final result is quite simple, however. The P value
discrepancy for the bootstrap test at size o is

(29) —n~(H+2)/2 (Se(a,e)/“ e d(e) a(e, o) de+%309(a,9)> LO(n~(+3)/2),

where sg and sgg denote the first and second derivatives of s(a,f) with
respect to 8. For given ¢, (29) is simply a function of 6.

There are two leading order terms in expression (29), and these are
of order at most n~3/2, as we would expect from (20). Neither of these
terms depends on the level of s, the P value discrepancy function for the
asymptotic test. Instead, they depend on sg, the slope of s, and on sgs,
which is a measure of the curvature of s. There is thus no reason to believe
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that the performance of the bootstrap test will necessarily be worse for
asymptotic tests that perform poorly than for asymptotic tests that perform
well. At one extreme, the asymptotic test may be pivotal, in which case s
will be flat, and (29) will then be zero no matter how poorly the asymptotic
test performs. At the other extreme, there may well be cases in which s
happens to be zero for a particular value of 8, so that the asymptotic test
performs perfectly, and yet the bootstrap test will almost certainly not
perform perfectly.

Let us now consider the two leading-order terms in (29). The first
term is proportional to sg. The integral in it can readily be seen to be
proportional to the bias of the estimator 8, conditional on «; recall (28).
When this bias is nonzero, the bootstrap will, on average, be evaluating
Q(a,0) at the wrong point. That will not matter if S(¢,8) is flat, in which
case sg = 0, and the first term vanishes. However, it will matter if S is not
flat. Suppose, for concreteness, that sy > 0 and E(é) > 6y, so that the first
term in (29) is negative. In this case, the average of the Q(a, §) over the §
will be less than Q(c,0p); remember that @ is the inverse of S, and recall
Figure 2. This means that the bootstrap test will not reject often enough,

and its P value discrepancy must therefore be negative.

Even if 6 is unbiased, when S is nonlinear, so that its graph is curved
and sgg is nonzero, then the curvature will lead to the average of the Q(«, 9)
being different from Q(ca, 6p). For example, if sgg is negative, then ggg will
be positive, and the average of the Q(a,é) will consequently be too large.
This means that, in this case, the bootstrap test will reject too often, and
its P value discrepancy will be positive.

Notice that if 8 is unbiased, at least to highest order, and if S is linear,
then both the leading terms in (29) will vanish, and the bootstrap test
will work perfectly, at least through O(n=3/2). Even though the rejection
region of the bootstrap test will be different from the true theoretical one
whenever sg is not zero, as much probability mass will be gained on one side
as is lost on the other in going from one region to the other; see Figure 1.

What have we learned in this section? We already knew, from the
results of Section 3, and in particular (20), that the size distortion of the
bootstrap test is, under plausible circumstances, a full order of magnitude
smaller than the size distortion of the asymptotic test. What we have
learned from (29) is that the size distortion of the bootstrap test depends
in a particular way on the shape of the P value discrepancy function for the
asymptotic test. If the bootstrap is based on unbiased parameter estimates,
then only the curvature of this function matters. If it is based on biased
parameter estimates, then the slope matters as well. In contrast, the level
of the P value discrepancy function for the asymptotic test never matters.
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Although (29) applies only to the one-parameter case, these results must
evidently be true more generally.

6. Bootstrap Tests for Serial Correlation

In this section and the next one, we provide some Monte Carlo evidence
on the performance of bootstrap tests. There are several interesting results,
of which two stand out. The first is that, in many circumstances, bootstrap
tests work extraordinarily well. The second is that the theory of Section 5
is very useful in understanding when bootstrap tests will and will not work
well.

The problem of testing for serial correlation in regression models has
been of central concern to econometricians for roughly half a century. For
simplicity, we will restrict our attention to univariate, linear models of the
form

(30) y=XB+Yib+us, ur=)» pusi+er, & ~NID(0,0%),

where Xj; is a k x 1 vector of regressors that may be treated as fixed, Y; is
an m X 1 vector of lagged values of the dependent variable y;, and 3 and
are, respectively, a k-vector and an m-vector of parameters. The normality
assumption is essential for some of our results, but not for most of them.

One widely used way to test the null hypothesis that all the p; are zero
is based on the Gauss-Newton regression. First, estimate the model (30)
under the null hypothesis so as to obtain estimates ,3 and 5 and residuals
Ut = Yyt — Xt,B Yté and then run the regression

(31) yr = XeB + Y0 + Z pitis—; + residual,

=1

where the %;_; which cannot be computed are replaced by zero. The test
statistic is the ordinary F statistic for all the p; to be zero. It can be written
as

- 112

r ”MM[X y]V’&’HZ,

(32)

where @ has typical element 44, V has typical element @s_;, M| x y) denotes
the matrix that projects orthogonally off the space spanned by X and Y

jointly, and PM[x "V and M Mix v,V denote, respectively, the matrices

that project on to and off the space spanned by M|x y]f/.
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This approach, which is due principally to Durbin (1970) and Godfrey
(1978), is easy to implement, asymptotically valid, and asymptotically op-
timal against local alternatives. There is evidence that it works quite well
in finite samples, somewhat better than asymptotically equivalent proce-
dures that use x? rather than F tests; see Kiviet (1986). However, the test
statistic (32) is not exact in finite samples, and it is therefore natural to
bootstrap it. The procedure is as follows:

1. Estimate (30) by OLS under the null hypothesis that p; = p2 = ... =
pr = 0 so as to obtain ,3 , 6 and 4. Then construct V from @ and compute
the test statistic (32), Wthh following our earlier notation, we will call 7.

2. Draw B sets of bootstrap error terms, u/, and use them to generate B
bootstrap samples y’/. There are numerous ways in which the error terms
can be drawn, four of which will be described below. The elements of y’
are generated recursively from the equation

(33) yi = XuB + Y76+,

where the elements of Y, are equal to the observed values of Y; if they
correspond to values of y; prior to period 1, and equal to the appropriate
lagged values of y] otherwise.

3. For each bootstrap sample, compute 7;, the test statistic (32) that uses
vy’ and Y7 instead of y and Y. Then compute the estimated bootstrap P
value as

1 B
(34 5 = 5 21> 7).

In the limit, as B — oo, this tends to the bootstrap P value p*(7); compare
(3). In practice, as we discuss in Davidson and MacKinnon (1996), it may
be desirable to use more complicated ways to estimate the bootstrap P
value, but in this paper we use only the simplest possible estimator, which
s (34).

We consider four different ways of generating the ui For the para-
metric bootstrap, which we will call by, they are simply independent draws
from the N (0, s?) distribution, where s is the OLS estimate of o from the
regression run in step 1, that is, the square root of SSR/(n—k—m). For the
simplest nonparametric bootstrap, which we will call b;, they are obtained
by resampling with replacement from the vector of 4;. A slightly more
complicated form of nonparametric bootstrap, which we will call bz, gen-
erates the u] by resampling with replacement from the vector with typical

element
(n/ (n—Fk— m))
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The first factor here is a degrees of freedom correction. For both b; and
by, it is assumed that there is a constant among the regressors. If there
were not, the residuals would have to be recentered and the consequent
loss of one degree of freedom would have to be corrected for. Finally, the
most complicated variety of nonparametric bootstrap, which we will call
bz, generates the uj by resampling from the vector with typical element i,
constructed as follows. First, divide each element of 4; by the square root
of one minus the ¢t** diagonal element of Pix y]. Then recenter the vector
that results and rescale it so that it has variance s2. This type of procedure
has been advocated by Weber (1984) for bootstrapping regression models.
In principle, it should reproduce the distribution of the original error terms
more accurately than either b; or bs.

When é = 0, so that there are no lagged dependent variables, the para-
metric bootstrap test b is exact. In this case, under the null hypothesis,
the test statistic (32) can be written as

n—k—r o ||P]\,IXV1VIX'“'||2
r | M pg, v Mxul|?’

(35)

which depends only on the matrix X and the vector u; recall that each
column of V is just Mxu lagged some number of times. The only parameter
that affects u is o, and (35), like all F' statistics, is invariant to its value.
Thus (35) is pivotal and, by the result discussed in Section 2, the bootstrap
P value is equal to the true P value for the test. Note that, in this case,
step 2 can be simplified, since (33) is no longer needed; we can just generate
the y! as independent N(0, 1) random variables.

We have just shown that, for fixed regressors and normal errors, the
parametric bootstrap test by for serial correlation of any order is exact.
This result is quite obvious, but it is also important. It provides a con-
ceptually easy way to obtain valid, finite-sample P values for tests that
applied econometricians use very frequently. Moreover, contrary to what
some might expect, with modern computing technology this procedure is
not at all computationally demanding. On a Pentium 90 personal com-
puter (a midrange PC at the time this is being written), it takes only 1.1
seconds for a reasonably efficient Fortran program to compute a test for
AR(1) errors and its bootstrap P value for a model with 100 observations
and 10 fixed regressors, using 1000 bootstrap samples. If one of the regres-
sors is a lagged dependent variable, the time rises somewhat, but only to
2.0 seconds.

The nonparametric bootstrap tests, b; through b3, will not be exact in
the normal errors, fixed regressor case, but they will be asymptotically valid
without the normality assumption. None of the tests will be exact when
there are lagged dependent variables, since (32) does implicitly depend
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on all the parameters through the process that generates y; recursively.
However, the theoretical results of Section 3 suggest that all the tests should
work very well. We now provide some evidence, based on Monte Carlo
experiments, that provides strong support for this proposition.

All of our experiments dealt with a test for AR(1) errors in the context
of a model with a constant term, four other exogenous variables, and a single
lagged dependent variable. The four exogenous variables were generated
from independent AR(1) processes with parameters n;, j = 1,...,4. We
focused on the coefficient § of the lagged dependent variable, setting all the
B; and o to unity, because, if there were no lagged dependent variable, none
of the other parameters would matter.

Figure 3 shows PVFs, as a function of 4, for n = 25 and various dif-
ferent choices of the 7n;, based on 100,000 replications for each value of 4.
These PVFs are constructed using the ¢(n — 7) distribution, since that is
what most applied workers would use. It is evident that the characteristics
of the X matrix have a very substantial effect on the finite-sample per-
formance of the test. We observe fairly severe overrejection in some cases,
notably when all the n; are equal to 0.9 and ¢ is large, quite good perfor-
mance in other cases, and substantial underrejection in still others. For the
PVF marked “several n;,” the four values were —0.9, —0.5, 0.5, and 0.9.
Interestingly, this PVF is in no way an average of the others.

We used Figure 3 to decide what cases to investigate in depth. Case 1
was chosen as reasonably typical, since it has a plausible value of 4, 0.5,
and not a great deal of curvature. On the other hand, Cases 2 and 3
were deliberately chosen to be ones where bootstrap tests might encounter
problems, because the PVFs display considerable curvature. The values of
§ are not very plausible, however, —0.9 for Case 2 and 0.95 for Case 3. As
the theory of Section 5 makes clear, the fact that the ¢ distribution works
very well for Case 3 does not imply that the bootstrap test will work well in
this case. We also considered a fourth case, in which the parameters were
the same as in Case 1, but the error terms had the ¢(5) distribution instead
of N(0,1).

We computed the test statistic (32) and four sets of bootstrap P values
(bo through b3) for 15 different sample sizes: 8, 9, 10, 11, 12, 14, 16, 18,
20, 25, 30, 35, 40, 45, and 50. Each experiment used 100,000 replications,
and there were B = 1000 bootstrap samples for each replication. These
numbers may seem rather large, but they were chosen for good reasons. As
we shall see, the bootstrap tests work extremely well. Thus, in order to
detect any pattern in the results, it is necessary to use a very large number
of replications. We chose not to use control variates based on asymptotic
theory. The benefit from doing so would have been very small because
most of the experiments involve very small sample sizes, and because we
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are computing tail-area probabilities; see Davidson and MacKinnon (1992).
It was necessary to use a fairly large value for B because, as we discuss in
Davidson and MacKinnon (1996), bootstrap P values calculated as in (34)
are usually biased. This bias is O(1/B), and using B = 1000 ensures that
it is negligible.

The key results of our experiments are presented in Figure 4. Each
panel shows the proportion of replications with P values less than .05 for
each of the four bootstrap tests, as a function of n. The standard errors
of these proportions, as estimates of test size, are about 0.00069. Results
for the asymptotic tests are not shown, because the vertical scale would
have had to be greatly compressed. It is clear from the figures that all the
bootstrap tests work very well, except perhaps for n = 8, when the tests
have just one degree of freedom. In Case 1, all the tests work essentially
perfectly for n > 9. In Case 2, there seems to be a very slight tendency
to overreject for most sample sizes, which is somewhat more severe for b;
than for the other tests. This tendency is also evident in Case 3, where the
performance of b; is a good deal worse than that of the other tests. In view
of the fact that Cases 2 and 3 were deliberately chosen so that the bootstrap
might encounter difficulties, the performance of all the tests is remarkably
good. For Case 4, where the error terms are not normal, there seems to be
a slight tendency for all the tests to underreject. This is most noticeable
for the parametric bootstrap test, bg, which of course is not appropriate in
this case.

Although all the bootstrap tests perform remarkably well, these results
suggest that b; should be avoided and that by or b3 are the procedures of
choice. They perform equally well, just about the same as the parametric
bootstrap test by in the cases where the latter is appropriate, and slightly
better than the latter in Case 4, where by is not appropriate. Since there
seems to be no cost to using by or b3 when by is appropriate, there seems
to be no real reason to use the latter.

We now turn our attention to power. The results of Section 4 suggest
that, on a size-corrected basis, the power of the bootstrap test should be
very similar to the power of the ¢ test. However, as we hinted in that
section, there is no unique way to measure size-corrected power in a Monte
Carlo experiment. All of our experiments involve a model with one lagged
dependent variable and, possibly, AR(1) errors. Thus suppose that we
generate experimental data using a DGP with parameters 8;, 41, p1, and
1. The results of this experiment will give us the nominal power of the test,
but not the true power. To obtain the latter, we need to run a matching
experiment using a DGP that satisfies the null hypothesis. But what DGP
should that be?
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The obvious DGP to use is one with parameters 3;, d;, 0, and ;. We
shall call this DGP the naive null. There are at least two difficulties with
the naive null. The first is that it may be a long way from the actual DGP,
much further than many other DGPs that also satisfy the null hypothesis.
The second is that the naive null depends on the way the alternative model
is parametrized. For instance, if instead of § and p we were to use §+p and p
as parameters, then the naive null, in the old parametrization, would be the
DGP with parameters 3;, 61 + p1, 0, and 1. It would clearly be preferable
to choose a DGP that satisfies the null in a parametrization-independent
fashion. Thus it is not at all clear that the size of the test under the naive
null is what we want to use to compute size-corrected power.

Asymptotically at least, the closest null to a given fixed DGP is the
null DGP characterized by the pseudo-true values, in the sense of White
(1982), that correspond to the fixed DGP. The vector of pseudo-true values
is defined as the probability limit of the quasi-maximum likelihood esti-
mator of the null hypothesis under the fixed DGP. White shows that the
pseudo-true values are the parameters of the DGP in the null hypothesis
that minimize the Kullback-Leibler Information Criterion (KLIC) with re-
spect to the fixed DGP. In practice, it is convenient simply to define the
closest DGP in the null to be the one that minimizes the KLIC. In most
cases of interest, although the KLIC formally depends on sample size, it
turns out that the parameters of the KLIC-minimizing DGP are indepen-
dent of the sample size. Note that the KLIC is a quantity defined purely
in terms of two DGPs, quite independently of how these DGPs may be
parametrized.

If we start from a given DGP p; for a given sample size n, the drifting
DGP through y; suitable for power analysis has an end point in the null,
Lo, which minimizes the KLIC to it from p;. We will define the end point
o as the pseudo-true null. Since we cannot perform a size correction of a
nonpivotal test without choosing a specific null DGP, it appears that the
pseudo-true null yg is the most reasonable one to choose. While this choice
is inevitably somewhat arbitrary, it has the advantages of being defined in
a parametrization-independent manner and of introducing no unnecessary
dependence on the sample size. Moreover, Horowitz (1995) shows that a
bootstrap test is asymptotically equivalent to an exact test of a simple null
hypothesis consisting of just one DGP, namely the pseudo-true null. At
least for bootstrap tests, this is another indication that the pseudo-true
null is the most appropriate DGP to use for size correction even in finite
samples.

With regard to the model (30), it would be quite easy to obtain the
pseudo-true null if there were no lagged dependent variable, but its pres-
ence complicates matters considerably. However, it can be shown that the
parameters of the pseudo-true null for this case may be obtained as follows.
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First, regress L(1 — ;L)1 X B; on X and define b, as the vector of
parameter estimates and S as 1/n times the sum of squares of the residuals
from that regression. Then the pseudo-true value of § is

p1o3(1 —6})

8 =8 + :
2 ! AS+0‘%(1+p161)

where A is defined by
A=(1-pé)(1-8) (1= p})
The pseudo-true value of o is the square root of

o2 — o? ( ol + A.S')
2_A5'+af(1+p151) 1—p161 l—p% '

Lastly, the pseudo-true value of 3 is given by
Bz = B1 — (62 — 61)bs.

The experiments for power were somewhat less extensive than the ones
for size. We first plotted power functions for Cases 1, 2, and 3 for various
sample sizes, in order to be able to choose parameter values which would
give the tests true power between 0.4 and 0.6. We did this because differ-
ences between the powers of different tests are most apparent when power
is neither very large nor very small. For each case, we then picked various
combinations of p and n to investigate. For each such combination, we ran
three matched experiments with 50,000 replications each, using the same
random numbers. For one of the three experiments, the DGP was the naive
null, for another it was the pseudo-true null, and for the third it was the
alternative with p # 0. Table 1 reports some results for n = 15, n = 25,
and n = 50. Because the power functions were quite asymmetrical, it was
often impossible to find values of p large enough to give power as large as
0.4 for the smaller sample sizes.

In order to calculate true power, we estimated power as a function
of size, using local polynomial regressions in the neighborhood of size .05,
and then calculated the fitted values at the point .05. The only column in
Table 1 that directly reports power is the third column, which is marked
P(tp). This is the power of the t test, calculated relative to size based on
the pseudo-true null. The next column shows the difference between the
power of the t test based on the naive null, ¢,, and the power of the ¢ test
based on the pseudo-true null, ¢,. Columns 5 and 6 show the difference
between the powers of the bootstrap test, based on the pseudo-true and
naive nulls, respectively, and P(tp). Finally, column 7 shows the difference
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Table 1. Power of AR(1) Tests

n [ 7 | Pla) [Pltn) — PEn)[P) — Pep) [Pom) — P [P o) — P(E2)
Case 1

15 |—0.75 | 0.5351 —0.0096 0.0019 0.0038 0.0019
25 | —0.45 | 0.4842 —0.0105 —0.0037 —0.0047 —0.0010
50 |—0.25 | 0.4457 —0.0011 —0.0017 —0.0013 0.0004
50 0.50 | 0.4270 0.0059 0.0041 0.0039 —0.0002
Case 2

15 |—-0.75 | 0.5685 —0.0160 0.0033 0.0009 —0.0023
25 |—0.50 | 0.5788 —0.0053 —0.0018 —0.0029 —0.0011
50 |—0.30 | 0.5435 0.0026 —0.0028 —0.0016 0.0012
50 0.50 | 0.5088 —0.0042 —0.0083 —0.0064 0.0018
Case 3

15 0.90 | 0.6011 —0.0933 —0.0276 —0.0480 —0.0203
25 0.45 | 0.5618 —0.0527 —0.0530 —0.0544 —0.0014
50 0.25 | 0.4204 0.0057 0.0040 0.0077 0.0038
50 [—0.45 | 0.4176 —0.0057 —0.0054 —0.0089 —0.0035

between the two measures of power for the bootstrap tests. The bootstrap
test results here are always for by, the parametric bootstrap. We did obtain
some results for b, but these were always virtually indistinguishable from
the results reported here.

There are at least two interesting results in Table 1. The first is that
the differences between the powers of the ¢t and bootstrap tests are generally
very small. The exceptions are for Case 3, which was deliberately chosen
to be a very difficult one, for n = 15 and n = 25. As the theory of Section 4
predicts, these generally small differences go in both directions; there is no
reason to expect bootstrap tests to be systematically more or less powerful
than asymptotic tests. The relatively large differences for Case 3 with small
sample sizes arise because of the strange shape of the PVF in this case; see
Figure 3. When p > 0, the pseudo-true value of ¢ is larger than its value
in the naive null, and the critical values for the ¢ test are quite different for
these two nulls. Note that the difference between P(t,) and P(tp) is often
greater than the difference between P(b,) and P(tp). In other words, how
we measure true power makes a greater difference than whether or not we
bootstrap.

The second interesting result in the table is that, with only one excep-
tion, the difference between P(b,) and P(b,) is always extremely small (less
than .0040). This is precisely what the theory of Section 4 would lead us to
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expect. Because the bootstrap test does an excellent job of controlling size,
it is close to being pivotal, and thus it does not matter very much whether
we use the naive or the pseudo-true null. The only exception is for Case 3
with n = 15, a deliberately extreme case.

In addition to confirming the theoretical results of Sections 3 through 5,
the Monte Carlo results of this section strongly suggest that bootstrap tests
for serial correlation work very well even when there are lagged dependent
variables. As we noted above, for models with normal errors and without
lagged dependent variables, the parametric bootstrap test by works per-
fectly. The Monte Carlo results suggest that the nonparametric bootstrap
tests by and b3 should work almost equally well.

7. Bootstrap J Tests

There are numerous procedures for testing nonnested regression mod-
els; for an introduction to the literature, see Davidson and MacKinnon
(1993, Chapter 11). One of the simplest and most widely used is the J test
proposed in Davidson and MacKinnon (1981). Like most nonnested hypo-
thesis tests, this test is not exact in finite samples. Indeed, its finite-sample
distribution can be very far from its asymptotic one; see, among others,
Godfrey and Pesaran (1983). It therefore seems natural to bootstrap the J
test.

For simplicity, we consider only the case of nonnested, linear regression
models with i.i.d. normal errors. Suppose the two models are

Hy: y=XB+u;, wu;~N(0,02I), and
Hy: y=Z~+uy;, wuy~N(0,031),

where y, u;, and u, are n X 1, X and Z are n x k; and n x ks, respectively,
Bis k; x 1, and 4 is k2 x 1. The J test statistic is the ordinary ¢ statistic
for a = 0 in the artificial regression

(36) y = Xb + aPzy + residuals,

where Pz = Z(Z"Z)7'Z". Thus Pgzy is the vector of fitted values from
least squares estimation of the H; model.

To bootstrap the J test, we first calculate the test statistic 7 by running
regression (36) after obtaining the fitted values from the H; model. Then
we use the parameter estimates from H; to generate B bootstrap samples.
Using each of these bootstrap samples, we calculate a test statistic 7j,
and we then compute the estimated bootstrap P value via equation (34).
As before, there are several ways in which the bootstrap samples can be
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generated. In our experiments, we used the parametric bootstrap by and the
three nonparametric bootstraps by, b;, and b3, all of which were discussed
in the last section.

If § denotes the estimated standard error from regression (36), the J
test statistic can be written as

y'PzMxy
$(y"Pz Mx Pzy)l/2’

(37)

where Mx =1— X (XTX)"1X". It is straightforward to show that, under
H,, the statistic (37) depends on both 8 and oy, but only through the ratio
B/o1. Thus, if we choose a fixed vector 8* and let 8 = §B*, the statistic
will depend on a single parameter § = §/0;. As we shall see in a moment,
the finite-sample behavior of the test depends strongly on 6.

Our experiments were not intended to provide a comprehensive exami-
nation of the performance of the bootstrap J test. Instead, we deliberately
chose a case for which the ordinary J test works badly, at least for some
values of §. We chose a simple scheme for generating X and Z. Each
of the columns of X, except for the constant term, was made up of i.i.d.
normal random variables, was independent of the other columns, and was
normalized to have length n. Each column of Z was correlated with one of
the columns of X, with squared correlation 0.5 in most of our experiments.
All elements of 3* were equal.

Figure 5 shows P value functions for various values of n when k; = 3
and k, = 6. These are based on the t distribution with n — 4 degrees of
freedom. The J test works relatively badly in this case, because there are
5 variables in Z that are not in X ; compare Figure 2, which is for the case
with k; = 2 and k; = 4, for n = 25. For the smaller sample sizes, the
performance of the J test is rather poor, except for quite large values of 6.
For the larger sample sizes, the test generally performs much better, except
near § = 0, where there is clearly a singularity. The usual asymptotic
theory for the J test does not hold at this point, and we should not expect
the theory of Section 3 to apply either.

On the basis of Figure 5, one might reasonably expect that the boot-
strap J test would work rather badly, because the PVF is very steep in
many places and quite sharply curved in others. The results in Figure 6
may therefore come as a surprise. This figure, which is similar to Figure 4,
shows the proportion of replications with P values less than .05, as a func-
tion of n, for the same sample sizes as before. Once again, the figure is
based on 100,000 replications with B = 1000.

For 6 = 2, all the tests except by work essentially perfectly for n > 10.
The reason b; works less well is that it implicitly uses an estimate of oy
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that is biased downwards or, equivalently, an estimate of § that is biased
away from zero. It is easy to see from Figure 5 that this will cause the b;
test to overreject. For 6 = 1, b; continues to perform poorly, but not quite
as poorly, and the other tests continue to perform well, but not quite as
well. They overreject slightly for very small values of n. For 8 = 0.5, b,
performs a bit better, and the other tests perform less well, although still
better than b;. The improvement of b; probably occurs because, as 8 gets
closer to zero, the PVF gets less steep, so the effect of bias diminishes. At
the same time, the curvature increases, and this makes all the tests perform
less well. Finally, for § = 0.25, which is quite close to the singularity, all the
tests overreject for all values of n. Although this is very clear statistically, it
is important to recognize that the extent of the overrejection is very modest
indeed. For example, when n = 25, the by and b, tests reject 5.27% and
5.25% of the time. In comparison, the t test rejects 37.90% of the time.

These results provide strong support for the theory of Sections 3 and 5.
The bootstrap tests do not always work perfectly, but they do work extraor-
dinarily well, and when they do not work perfectly the reason can usually
be seen by looking at the PVF. Of course, we cannot claim on the basis of
these results that bootstrap J tests will always work well. There undoubt-
edly exist situations in which PVF's are even steeper or more sharply curved
than the ones in Figure 5, and for which bootstrap tests consequently work
less well. It is certainly necessary to stay away from situations in which the
underlying asymptotic theory does not hold.

8. Summary and Conclusion

In this paper, we have advocated the use of the bootstrap in many
hypothesis testing situations where exact tests are not available. In partic-
ular, we have advocated the use of bootstrap P values, because P values are
more informative than the reject/do-not-reject results of tests with some
pre-chosen size, and the actual calculation of bootstrap P values is, if any-
thing, easier than the calculation of bootstrap critical values. In addition,
the theory of bootstrap P values, as presented in this paper, is no more
difficult than the theory of bootstrap critical values.

The bootstrap provides higher-order refinements, relative to asymp-
totic theory, whenever the quantity bootstrapped is, asymptotically at least,
pivotal. This is the case for all commonly used test statistics in economet-
rics. As we discussed in Section 3, a refinement of order n=1/2 is obtained
whenever one computes the size distortion of a test, of given nominal size,
based on a bootstrap P value. A further refinement, which in most cases
will also be of order n~1/2, is obtained whenever the test statistic is asymp-
totically independent of the bootstrap DGP, or, more specifically, of the ap-
propriate quantile of the bootstrap distribution of the test statistic. Since
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most test statistics are indeed asymptotically independent of the estimates
of the parameters of the null hypothesis produced by a wide class of ex-
tremum estimators, such test statistics, when bootstrapped, will benefit
from this further degree of refinement. Thus bootstrap tests will, in many
circumstances, be more accurate than asymptotic tests by a full order of
n~1.

The results of Section 3 can be applied to any bootstrap test of level o
whenever we know the order of magnitude of the bias of the a quantile
of the bootstrap distribution of the statistic considered as an estimator
of the a quantile of the true distribution of the statistic. In Section 5,
we obtained more detailed results, which, strictly speaking, apply only to
the case of the parametric bootstrap applied to a fully specified model.
However, even “nonparametric” bootstrap distributions usually depend on
estimated parameters, and they apparently give results indistinguishable
from those of the parametric bootstrap in some circumstances, as with the
two examples studied in detail in Sections 6 and 7. Thus the analysis of the
determinants of size and power of tests based on the parametric bootstrap
is of general utility for judging when a bootstrap test is likely to behave
badly.

The P value discrepancy function is central to the results of Section 5.
For given nominal size, this function measures, as a function of the actual
DGP, the extent to which the actual size differs from the nominal size. Our
principal results can be summarized, and understood intuitively, in terms
of the properties of this function. The key point is that the probability that
a bootstrap test will reject the null hypothesis for given nominal level o,
whatever the actual DGP, is the probability, under that DGP, of a certain
region in the space of the test statistic 7 and the estimates of the model
parameters 6. This region, which can be characterized purely in terms of
the P value discrepancy function, is that in which the value of 7 is greater
than the level-a critical value of the DGP characterized by 0. It is thus
just the region on one side of a level surface of the function.

For a given DGP satisfying the null hypothesis, the level of the P value
discrepancy function is the size distortion of the asymptotic test. However,
this level has no impact on the size of the corresponding bootstrap test. This
is clear for pivotal statistics, for which the P value discrepancy function is
constant, and the bootstrap test is exact. Even the first derivatives of the
function, or equivalently the slope of its level surface, influence the size
distortion of a bootstrap test, to leading order, only if the estimates of the
parameters of the null hypothesis are biased. If they are not, then values of
the estimates that would cause the bootstrap to overreject are compensated,
to leading order, by values which would cause it to underreject. A bias
in the parameter estimates would, however, cause one effect to dominate
the other, and thus lead to a size distortion. With unbiased parameter
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estimates, the leading-order size distortion is determined by the second
derivatives of the P value discrepancy function, that is, by the curvature
of its level surface. Such curvature will once again cause values of the
parameter estimates leading to overrejection to have a greater or smaller
impact than those leading to underrejection.

Section 4 discussed what determines the size-corrected power of boot-
strap tests compared with that of asymptotic tests. Size correction is much
more of an issue for the latter than for the former, of course. We have
shown that, once both tests are corrected for size, a bootstrap test can
have different power from the corresponding asymptotic test only if the
bootstrap distribution has different properties under the null and under
the alternative. For the parametric bootstrap, the bootstrap distribution
satisfies the null hypothesis in all cases. Thus, power differences can arise
only from differences in the behavior of the parameter estimates when they
are estimating the parameters of a DGP that actually satisfies the null and
when they are estimating the pseudo-true parameters of a DGP that does
not.

It is important to stress the fact that, although the size distortions of
bootstrap tests that we have studied in this paper are real, they are remark-
ably small compared with those of asymptotic tests. In our Monte Carlo
study, we went out of our way to seek situations in which the bootstrap
would be ill-behaved. Even so, it was necessary to perform experiments
of more than the usual accuracy, for very small sample sizes, in order to
discern any evidence of misbehavior, so as to provide confirmation of our
theoretical results.

It is also important to stress the fact that, for many of the tests econo-
metricians routinely use, the bootstrap is not, with modern computing
technology, a very time-consuming procedure. We would urge the develop-
ers of econometric software to make the computation of bootstrap P values
for such tests a standard feature of their programs, so that use of bootstrap
tests might become routine.

Appendix

In this appendix, we derive expression (29) for the P value discrepancy
of the bootstrap test in the one-parameter case. First, the function @ is
redefined to take as second argument a parameter 6 rather than a DGP p.
Thus v, 0, and k are defined by

(A.01) n ¥ 26 v = Q(a,b0 +n"%e) — Q(a, bo)
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and by the requirement that the variance of v should asymptotically be
unity; see (14).
The relation between v and e can be obtained to desired order from

(A.01). We use the analogue of (10) in order to define the integer / and the
function ¢(a, 6), and then obtain by Taylor expansion:

n~k gy =n=+D/2 ¢ gy(, 60) + %"—(m)/zezqw(a, fo)

(A.02)
+ O(n=+272),

where gp and gqgg denote the first and second derivatives of g(a,8) with
respect to 6. Since the variance of e is 1 by assumption, we see directly
from (A.02) that £k = [+ 1, and that

(A.03) oy = lao(a,6o)!.

We can also see from (A.02) that v and e are equal to leading asymptotic
order. Thus the function h(y) of (19) is just ¢(y). Note that it is enough
to define o as in (A.03) in such a way that v has variance unity to leading
order asymptotically, since any discrepancy at lower order can be caught
in the function f in (19).

Let us assume for simplicity that gg(a, o) is positive. Then, after
removing unnecessary powers of n and using (A.03), (A.02) becomes

_ 1 -1/2 2 969(2, 6o) -1
(A.04) y=e+5nCe 2o(a, 80) +O0(n™").

This relationship may be inverted so as to express e in terms of ~:

_ 6o) _
A.05 _ 1 172 296(@ 60 +0(nY).
(A.05) e=7=3" Y (e 6o) (n™7)

In order to implement (20), we also need an expression for f(v, ) valid
at least to leading order. For this, we must use the information in (A.05)
over and above the simple asymptotic equality of e and v. We wish to find
the density of v conditional on m, = a. The density of e conditional on
7, is just the product of the last two factors in (28). Thus, since e and «
are related, without reference to 7., by (A.04) and (A.05), the density of
conditional on 7, = « is just

(A.06) ¢(e)(1 +n%a(e, )) Z—;.
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where e is related to v by (A.05), from which we compute
de _ g0, 6o) _
Z=1=n 1/2, 406\“*, 70/ + O 1
dy 7 g8(a, 0) (7).
Thus (A.06) becomes

By = g AR+ O TY) (L7 a(y,0) + O ™Y)

(A.07)
x (1- n=1/2y 2—”1 +0(n™h)),
G

where gg9 and qg without explicit arguments are evaluated at (a,6p). In
order to simplify this expression, note that

. l —1/2 2966 -1\) _ 1 _-—1/2_ 3968 -1
s 2 1 0n™)) = 6() 1+ 317222 4 0(n 7).
Thus, to leading order, (A.07) simplifies to

(408) 6 (147 LE (L =) 407 ()

If we had not assumed that j = 1, the factor in front of the third term
inside the large parentheses would have been n~9/2, and this term would
not have been of leading order for j > 1. Comparing (A.08) with (19)
shows that, in the latter of these expressions,

flre) =237 =) +aly, )

We may finally return to (20), and substitute in all the results we have
obtained for this special case. The integral will be written with dummy
variable e rather than «, since the two random variables e and v are asymp-
totically equal, and since it is clearer intuitively to reason in terms of e,
which is n1/2 times the estimation error in 6, rather than 4. The size
distortion of the bootstrap test is then

n—UHD/2g, / de e ¢(e) (‘”"(1 3 — ) +ale, oz)) +O(n=(H3)/2),

Since the fourth moment of the standard normal distribution equals 3, the
above expression is

(A.09) n~(H2/2 ( Q90 + qe/ de e ¢(e) a(e, a)) + O(n=(H#3)/2),
Alternatively, (A.09) may be expressed in terms of the derivatives of the

P value discrepancy function s, evaluated at (a,6p). Except for a sign
change, the result is essentially the same:

(A.10) n—(+2)/2 (2399 + 30/ de e p(e) a(e, a)) + O(n~ 912y,

— 00

Expression (29) of the text is simply (A.10) rewritten slightly.
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