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Abstract

This paper develops a dynamic evolutionary model in which agents make choices on the basis of relative
performance criteria. We distinguish two classes of learned behavior: imitative dynamics and a new class of
dynamics, “introspective dynamics.” Under imitative dynamics, agents compare payoffs of different agents in the
population and tend to adopt the strategies of those agents who earned greater payoffs — agents imitate more
successful behavior in the population. Under introspective dynamics, agents compare their own current with
past payoffs when they engaged in different actions, and tend to select actions that provide higher payoffs. With
introspective dynamics, under weak regularity conditions (satisfied by a rich class of economic environments),
the stochastically stable set of states is contained in the set of Nash equilibria, providing a novel rationale or
justification for the prediction of Nash equilibrium behavior. With imitative dynamics, under mild regularity
conditions (again satisfied in many economic environments) there is a unique stochastically stable state, but
it is not a Nash equilibrium. Rather, each agent’s action maximizes the difference between his payoffs and
those of other agents. Paradoxically, comparing stochastically stable states across dynamics, agent payoffs are
lower for imitative than introspective dynamics — mimicking best practice turns out to be counterproductive.
We consider both forms of dynamics in the contexts of games satisfying strategic substitutes and strategic
complements.



1 Introduction.

Underlying recent dynamic evolutionary models (e.g. Kandori, Mailath and Rob (1993) and Young
(1993)) are fundamental questions: What is the appropriate way to model agents’ responses to their
experiences, and what behavioral predictions are implied by the resulting dynamic? In this paper
we motivate agents’ behavior in terms of the information they possess and the way they utilize this
information.

We study models in which agents make choices on the basis of relative performance criteria. We call
the associated class of dynamic adjustment rules comparative dynamics, the defining feature of which is
that agents make choices based on a comparison of the performance of actions across the population or
historically (or both). We distinguish two classes of learning behavior: learning from the experience of
others and learning from one’s own experience. The dynamic adjustment that arises from these forms of
behavior we call emitative and introspective dynamics respectively. Underlying each dynamic are different
specifications about what each agent knows and can do.

In an imitative dynamic, agents compare the payoffs from their own actions with those of other
agents. Agents behave as if they believe other agents’ experience is relevant for them, tending to imitate
the actions of more successful agents. For an imitative dynamic to be a reasonable model of economic
behavior, the economic environment must allow agents to see the actions and payoffs of those whom
they imitate, and their payoff functions and feasible action spaces must correspond. This contrasts with
an introspective dynamic, where an agent compares his payoffs from current and past actions, and tends
to select actions that have had greater past payoffs. Agents behave as if they believe their own past
experience is relevant for them, even though the actions of other agents may have changed over time,
altering their payoffs. Hence, introspective dynamics may reasonably describe the economic behavior of
heterogeneous agents, even when agents know neither population distributions nor how successful other
agents have been. Both dynamics specify behavior that reflects comparative evaluations by agents: with
imitative dynamics the comparison of actions and payoffs is across agents at a moment in time; with
introspective dynamics the comparison is within an agent at different points in time.'

This paper characterizes how the choice of dynamic affects long—run equilibrium outcomes for a
rich class of economic environments that encompasses: (1) Oligopoly output games, including both for
homogeneous and differentiated goods, (2) R&D games with spillovers, (3) Team production, (4) Private
provision of a public good or bad (e.g. tragedy of the commons), and (5) Production games with (e.g.
negative pollution) externalities. Each dynamic makes sharp predictions about outcomes, predictions
that accord with outcomes of models featuring greater agent rationality assumptions. However, the
predicted outcomes are very different.

With an imitative dynamic, the unique stochastically stable state is not a Nash equilibrium. Instead,
each agent’s action maximizes the difference between his payoffs and those of other agents. An example
of this outcome is in Vega—Redondo (1997) who shows that imitative dynamics in a homogeneous good

oligopoly economy lead to the Walrasian competitive equilibrium outcome, where price equals marginal

L This comparative flavor distinguishes the dynamics from best response or fictitious play dynamics in which each agent
determines his future action by taking the distribution of actions (or average of history of actions) in the population as
given and myopically optimizing against it.



cost. Since, imitative dynamics capture learned behavior rather than some higher degree of rationality, it
is perhaps not surprising that Nash equilibria do not obtain. This contrasts with best response dynamics
in which agents are rational, optimizing against the current population distribution, so that rest points
are necessarily Nash equilibria.

We show that with introspective dynamics, the stochastically stable set of states is contained in
the set of Nash equilibria. Thus, introspective dynamics provide a novel rationale for the prediction of
Nash equilibrium behavior in the long run, a justification based solely on learning from past experience
without higher order rationality assumptions. A key insight of our paper is that the outcome predicted
by dynamics based on models of “learning from experience” depends crucially on the assumed structure
of information. We then contrast agent payoffs across dynamics in the stochastically stable set of states
and show that agent payoffs are lower for imitative than introspective dynamics for certain classes of
games. This suggests a paradoxical result: in the long—run, mimicking best practice leads to lower agent
payoffs.

The paper is organized as follows. In what follows we briefly review some of the related work. In
section 2 we present the basic framework. Sections 3 and 4 develop formal models for introspective
dynamics and imitative dynamics respectively. Section 5 provides the intuition underlying the different
outcomes for the two dynamics. Section 6 discusses sufficient conditions on two important economic
environments for our analysis to hold. Section 7 considers aggregate welfare associated with stable
states under both dynamics and section 8 provides a collection of economic examples for which the
analysis applies. Section 9 concludes.

Related research with an imitative flavor includes Schlag (1997) and Vega-Redondo (1997). Schlag
considers a bandit problem in which an agent observes observes his own action choice and payoff in the
previous period and that of some sampled individual. In this framework the best imitative rule has an
agent imitate the observed individual with probability proportional to the amount by which the observed
person does better. Under this rule the aggregate dynamic is approximately the replicator dynamic.
Vega-Redondo considers a homogeneous good oligopoly game where agents imitate the most successful
firms and shows that the stochastically stable outcome is that where agents select the competitive or
Walrasian outcome.

A second related approach incorporates the spirit of stimulus—response models: actions that do well
have higher probability of being chosen in subsequent periods. For example, Borgers and Sarin (1997)
consider two agents playing a fixed game over time. A player’s current state is a distribution over his
strategies, and the player’s experience (current action and payoff) determines next period’s state for the
player: next period’s state is a weighted average of the current state and the state that puts all mass
on the current choice, with the weight on current choice proportional to the payoff received from that
choice. As the time between repetitions of the game becomes small, they show that the evolution of
strategies follows the replicator dynamic.

Another approach develops aspirations—based models of behavior (Karandikar et al. (1998)), in
which agents have a status quo action and an endogenous aspiration or prospect level against which
actions are evaluated. In the prisoners’ dilemma game, Karandikar et al. show with sufficiently slow

updating of aspirations, both players cooperate most of the time.



2 Preliminaries.

The environment consists of n agents. The strategy space for agent i is a finite grid, C* = {a;, a; +
Aja; +2A, .. a; + k; A}, (k; integer valued, A > 0), and agent i has payoff function, 7* : C — R
(C = x™_,C%). One may view the grid as the base strategy space or as a discretization of a continuous

action space.

2.1 Static Equilibrium Concepts.

In a Nash equilibrium, agents can find no improving deviation in the set of possible alternatives:

Definition 1 A vector ¢ € C' is a Nash equilibrium if for all agents i,

(¢, g7 > 7§77, Vi ecC.

Denote the set of Nash equilibria by NE.

When studying imitative behavior it 1s natural to consider alternative notions of equilibrium where
agents think in terms of relative payoffs: a choice for a player is good if the choices of other players are
no more successful in payoff terms. Consideration of relative payoffs gives rise naturally to a “getting
ahead of the Jones” behavior that may not obtain in models featuring greater agent rationality. In a
dynamic environment, stable action profiles with imitative behavior must be such that deviations lead
the deviator to consider the choice of an opponent superior.

Say that ¢ € C is envy-free if Vi, j, 7' (¢q) = 7 (q): all agents receive the same payoff. In an envy-free
equilibrium, if every agent can determine that no one is getting a higher payoff than they, then each
agent is contented with the status quo. As a solution concept, this criterion is not demanding — in a
symmetric game, any profile where all agents make the same choice is an envy-free equilibrium. This
notion of choice based on relative payoffs may be extended to incorporate the impact of deviations on

relative payoffs:

Definition 2 A vector q is a relative equilibrium if for j # ¢
m(q) = 7 (q)
and Y§' € O, there exists a j # i such that
© (i) <7 l(e g ).

Relative equilibrium identifies the variational restrictions on payoffs consistent with long run stability of

imitative behavior.? Say that a relative equilibrium is strict if the inequality is strict for all ¢’ # ¢. Let

2 Aumann (1961) provides another equilibrium notion called “twisted equilibrium”, for games where players interests
are partially or fully opposed, so that the payoffs of other players may enter into the strategic calculations of a player. See
also Kats and Thisse (1992).



RFE denote the set of relative equilibria and REg the set of strict relative equilibria. For the cross—agent
comparison of payoffs by an agent i to make economic sense,; agents in i¢’s comparison group must have
the same strategy spaces and the same payoff functions. A relative equilibrium is not only envy-free
(take §; = g;, so for each pair i, j, 7 (¢q) < 7/ (¢) implying 7' (g) = 7/ (g)), but in addition, any deviation
must make the deviator envious of some other agent’s payoff. For example, in the context of symmetric

actions, at a relative equilibrium a deviator prefers to return to the common action.

2.2 Dynamics and Mutations.

Nash equilibrium and relative equilibrium are static concepts; how equilibrium is reached involves a
fuller description of agents — how they assess and react to circumstances. Dynamic models of individual
behavior must specify each agents’ information and how an agent reacts to or processes that information.
Write s to denote a state® of the system and let I'(s) denotes the (partial) information available to i
at this state. For example, with imitative dynamics, I'(s) includes at least the knowledge of the action
and payoff profile in ¢’s comparison group (or at least the highest payoff and associated action); while
with introspective dynamics, I°(s) includes the knowledge of the agent’s recent past history of actions
and payoffs; and with best response dynamics it includes at least the distribution of actions in the
population. A behavioral rule for agent ¢, ;, assigns a choice given ¢’s information: ¢;(s). Under
best response dynamics, ; is the best response to the population distribution, whereas with imitation
dynamics, ¢; is the choice of the most successful player (in the previous period).* At a state, s, the
behavioral rules for each agent, ¢ = (¢1,...,¢n), are aggregated according to some rule, moving the
system to a new state: s’ = A(p,s). Write p?,, to denote the transition probability from s to s’, and
use P¥ to denote the corresponding transition matrix.

In this framework, mutations are modeled as perturbations in the choices of agents. At state s,
the choice of i is ¢;(s) € C*. Under mutation, with high probability this is unchanged and with small
probability some other choice in C is drawn. Formally, with probability Qp.(s) & 1, pi(s) is chosen, and
with small probability ay > 0, choice ¢ is made. The impact of mutations is to perturb the transition
matrix P¥ to some matrix P¥. An invariant distribution of the system P¢ is approximately an invariant
distribution of P¥ and is identified as a (stochastically) stable population distribution. In what follows,
we examine stochastically stable distributions for the comparative dynamic systems described above.

We assume that agents have finite memories. Hence, all the information required to model the
evolution of the system is contained in the vector (q,1) = ([qe—i, me—1], ..., [q:, 7]). There is some
redundancy here since knowledge of 4, allows one to compute m;: Il may be computed from q. Using

this observation, one may define the state space as S = C't1 €' = [x™_,C?].° Formally:

Definition 3 A state of the system at time t 4+ 1 is a vector s = q € S containing the actions in the

past | + 1 periods.

3 For example, a state could be the action chosen by each agent in the previous period distribution.

4 This is not the only possible formulation of imitative behavior. An alternative is that agents imitate those more
successful than themselves, but not necessarily the most successful. Our analysis extends to this case.

5 Alternatively, one may carry payoffs in the state space. This is appropriate if the payoff function is unknown to
players — they just observe payoffs. These issues do not affect the dynamics of the models developed here.



For ¢ € C = x,C", let sq denote the state (¢,¢,...,¢), the history where the choices in the

previous [ periods are all the same and define:
Sa={s€S|s=sq, someqeC}.

Thus, S4 is the set of aggregate states where the choices are constant over time.

3 Introspective Dynamics.

We first develop a model of behavior in which players base future choices on the historically most
successful decisions, comparing their own current and past performance in determining their best choice.
This introspective model of behavior allows for the possibility that agents have quite limited information:
each player need only know their own action history and the payoffs they received. At date 41, agent ¢
remembers his own® actions and payoffs from the previous [+1 > 1 periods: q*(t) = (¢!_,, qi_l_l_l, cogh)
and II*(t) = (m;_;, ™ _; 415 - -, 7). Wesometimes drop the ¢ index and denote i’s information by (q', IT").
Agent ¢ observes (q',IT") before choosing next period’s action.

If at period ¢, the history or state is s; = q(t), then define Bi(q(t)) to be the set of choices for i,
during the period ¢ — [ to ¢t that yielded the highest payoff for ¢:

i — I = iy
Bt(q(t)) - {QT | Tr = t—I}1<a;‘X§t T, t l S T S t}

Agent i is said to optimize introspectively if i selects an action in period ¢ + 1 from the set Bi(q(t))
when changing strategy. We model the decision selection process of agent ¢ at time ¢+ 1 as a distribution

Y ()= (y'_;,...,7}), on the history of actions of the agent, with support B:(q(t)):

Definition 4 Agent i optimizes introspectively at state s = q(t) if the choice of action for period t + 1
is drawn from a distribution v*(s) with support Bi(q(t)).

This simple procedure fully describes the agent’s decision—making process: past experiences are compared
and successful choices are repeated. We require no assumptions of inertia in behavior. The following

remark notes that the results are very robust to alternative specifications of introspective behavior.

Remark 1 This is not the only plausible model of introspective optimization. An issue is the way in
which an agent evaluates different action choices when the same action choice generated different payoffs
at different dates because of experimentation by other agents. For example, suppose action ¢ generated
past payoffs of n{ wf |, while action § generated payoff 71'?_2, where 7f_| > 71'?_2 > mf: How does the
agent evaluate the choices of ¢ and ¢7 The formulation that we consider has the agent select action ¢
over ¢. An alternative formulation would have an agent place a positive probability on playing an action,
if the maximum payoff from playing that action exceeded the minimum payoff from playing any other

action over the past [ periods. This formulation admits more choice candidates. The matn observation to

6 Throughout, we use superscripts to denote specific agents and subscripts to denote time periods or to label distinct

vectors in C': qi is the choice of 7 at time ¢, g4 and g are elements of C. Similarly, ¢ = (¢!,...,¢") and q, = (qf,...,q%).
If the vector of actions taken by agentsis (q!,...,¢"), then agent ¢ receives the payoff mt (¢*,...,q™). At time ¢, the action
choice—payoff profile is (qt,7¢) = (qb,...,¢%; 7}, ..., 7w0).



be made is that the results in the paper are not sensitive to the formulation of introspective optimization
provided the introspective dynamic satisfies two conditions: (a) There is positive probability that the
choice yielding the highest payoff for agent in the previous [ + 1 periods is chosen next period and (b)
There is zero probability that a strictly dominated choice (a choice that always yields a lower payoff in

the previous [ 4 1 periods than some other action) is chosen. |

Remark 2 It is worth noting that each of the possible formulations of introspective behavior demands
little in the way of calculation and rationality from agents — agents must only be able to compare
past experiences and identify which past actions were more successful. This behavior arises naturally in

environments where agents believe past payoffs are good predictors of future payoffs. |

Combining agents’ decisions determines a law governing the evolution of states. Given state sy = q(t) =
(qt—1, - ., qt), agents make decisions that lead to a selection of ¢;41, and the new state s;41 = q(t+1) =
(qe—tg1s---,qt41). Given states s and s, let pssr be the probability of reaching state s’ next period,

given that the current state is s.
Definition 5 Let P = {p,s'}s s'es. Call the matrix P the introspective dynamics transition matrix.

Mutations modify this in the following way. Given a state s = (q1,..., ¢/+1), suppose that next period
the state reached under introspective dynamics is s’ = (qa, ..., qi+1,¢’), so that in particular, there is a
positive probability that agent ¢ will choose ¢/. Under mutation, with probability (1 — €), ¢} is chosen;
and with probability ¢ the next choice for agent i is drawn from a distribution #" with full support on

C'. If §; is agent i’s action choice the next period, then

~ { q/  with probability (1 —¢) + 692,
qi = ‘

g;  with probability 662,’ G 7 4.

Remark 3 In the present context the interpretation of mutations as experimentation in conjunction with
introspective optimization is quite natural: agents usually choose actions that were more successful in the
past, but occasionally try new things. This melds naturally with the observation that the distribution,
4%, may be state dependent, so that, for example, recent history may be assigned more weight. We
may also allow the distribution over experiments 6 to be state dependent, ¢°(s), without affecting the
results. In that case, agents experiment with small probability, €, but given that they do experiment,
they choose in a state-dependent way (so that, for example, they may be more likely to take actions

that are close to their past action). ]

The associated (perturbed) transition process is denoted P.. Note that P, is not strictly positive because
at state s = (q1, ..., @41), if 8 = (G1,...,qi+1), and (G2, ..., @+1) # (q1,..., @) then s = 0, where
P. = {Pss'}s s7e5: Ppast actions are fixed, and an action j periods past at date ¢ becomes j + 1 periods
past at date t + 1. However, the matrix, P. is irreducible and has invariant distribution &.. For n > [,
PZ is a strictly positive matrix. In particular P is aperiodic so that regardless of the initial distribution,
£, on states, &TPE” — & Let Sp C Sa be the set of states {s,} such that ¢ is an equilibrium. Similarly,

Ss represents the set of states associated with strict Nash equilibria.

Definition 6 A set of Nash equilibria Q* is absorbing if ¢ € Q* and 7 (g;,q—;) > 7' (qi, q—i) imply that
(¢i,9-i) € Q™.



In words, Q" is absorbing if it is not possible to move out of the set Q* with a sequence of unilateral
weakly improving deviations: given ¢ € %, any deviation by any agent that is non—-disimproving must
lead to a point in Q*. Call an equilibrium absorbing if it is contained in a set of absorbing equilibria.”
Thus, the set of Nash equilibria may be partitioned into three groups: (a) strict Nash equilibria, Ng,
(b) weak Nash equilibria where all unilateral non—disimproving deviations lead to weak Nash equilibria,
Nwa, and (c) weak Nash equilibria where there are unilateral non-disimproving deviations leading to
non-equilibrium points, Nwna. Thus, NE = Ng U Nya U Nyyya and the maximal set of absorbing Nash
equilibria = NEjr = NgU N 4. Correspondingly, in the state space S, the associates states are denoted:

SE, 55, SWA and SWNA and SM.

Definition 7 The system (m, C) is introspectively stable if for any q there is some equilibrium ¢* in an
absorbing set, and a sequence ¢ = q,,...,q, = ¢, such that foreach k = 0,...r—1, 37, qk_j = 91;4{1 and
mi(ah a5 7)< (el ai)-

In words, from any action vector there is a sequence of unilaterally improving variations that terminate

at some absorbing equilibrium.

Remark 4 This condition is similar but weaker that the condition of weak acyclicity use in Young
(1993), and serves a similar purpose. Without it, there may be cycles of non-Nash choices from which it
is impossible to escape by unilateral improving deviations. From the stability perspective, such a loop

has the same “attracting” properties as a strict Nash equilibrium. |

Theorem 1  Suppose that the system is introspectively stable. Let & be an invariant distribution
of P, and let £ be a limit of &, as ¢ — 0. Then the support of £ is a subset of Sy, the set of states

corresponding to strict or weak absorbing Nash equilibria.

Thus, when agents learn from their own past experience, selecting for the current period their most
successful choices in the past, the system under mutation converges to Nash behavior: with small rates
of mutation the choices made in most periods constitute Nash equilibria if the system is introspectively
stable. Introspective stability i1s thus the key condition that ensures convergence to Nash states. Section

6 characterizes a rich class of introspectively stable economic environments.

4 Imitative Dynamics.

In contrast to introspective dynamics, with imitative dynamics agents compare their payoff with
those of others. In the present context, they may do so over some previous history of experience. We
initially assume that C* = CJ and #(-) = #/(-), for all i and j, and discuss later how our analysis

extends. Let 77 = max; 7, and define

Bla(t)) ={qeC"|3r, t—1<7<t, 3j, ¢l =q, 7 =77}

to be the set of choices in C* that for some agent at some time gave the highest relative payoff. By

analogy with introspective dynamics:

T Q* is absorbing, no strict subset Q C Q% can be absorbing. The collection of absorbing sets is uniquely defined:
Qa4 = {Q(a)}a. If an absorbing set contains just one point, Qo = {7}, then that point, g, is a strict Nash equilibrium.



Definition 8 Agent i optimizes imitatively at state s = q(t), if the choice of action in period t 4+ 1 is

drawn from a distribution 4! (s) with support Bé(q(t))

Thus, agent ¢ identifies the highest payoffs across players in the past, and selects from the actions chosen

by those players whose payoffs were highest.

Remark 5 As with introspective dynamics, multiple models of plausible imitative behavior are possible
when agents observe different payoffs from the same action in different periods.® This issue does not
arise in standard dynamical models of behavior, because agents’ action choices depend only on payoffs
in the most recent period, but is present here if an agent recalls more than the most recent outcomes. As
long as the model of imitative behavior has agents evaluate an action at a past date on the basis of its
relative success at that date, our analysis is robust to the particular specification of imitative behavior.
However, one could also contemplate models of behavior in which an agent compares their payoff in
period 7 from action ¢ with the payoff of another agent taking action ¢ in some different period 7. Such
a model of behavior has both features of imitation and introspection, and since these give rise to very
different dynamics, it should not be surprising to find that when these behavioral models are melded

together, the dynamical system does not settle down in the long run. |

Imitative optimization determines transition probabilities pss» and an associated transition matrix: P.
Modeling mutations as before: §; = ¢; with probability (1 — €) + 6921 and §; = ¢/ with probability 6921,
gi # ¢;. Under mutation, the transition matrix is perturbed to a matrix P.. Denote the associated
invariant distribution by éﬁ.

Next we define a notion of stability for imitative systems, the content of which 1s to assert that from
any point there is a path along which imitative behavior leads to a relative equilibrium (rather than
cycle forever.) For ¢ € C' = (Y, let eq denote the vector (q,q,...,q), where each agents choice is the
same. Given ¢ € C' = xC", define F(q) = {eg | 3j, § = ¢ and n/ > 7', Vi}.

Definition 9  The system (m,(C) is imitatively stable if for any ¢ € C, there is a strict relative
equilibrium ¢ such that 3 a sequence ¢ = ¢o,q1,...,¢» = ¢, and foreach k =0,...,r— 1, 3G € F(qx),
with §, qpy1 differing in one component, and for each k, if § # qz_l_l, there is some j # ¢ such that

T (qrg1) > 7 (qrgr).

That is, at qg, agents imitate the choice of the best performer, §. Then, with every player now making
this choice, a deviation by i to ¢! raises i’s payoff relative to some other agent (and hence all others from
symmetry), leading other agents to imitate ¢. And so on.

Identify those states in S that correspond to strict relative equilibria: Sgpr = {s € Sa | s =

sq,q € C, ¢ a strict relative equilibrium }. With this terminology:

Theorem 2  Suppose that the system is imitatively stable, a relative equilibrium exists, and all relative
equilibria are strict. Let éﬁ — é Then the support Ofé is a subset of SgrE, the set of states associated

with strict relative equilibria.

8 One might also suppose that rather than imitating the most successful actions, agents place positive probability on
imitating more successful actions. Our results are not sensitive to this modification.



Remark 6 One can modify the analysis to allow for the possibility that agents differ in their payoff
functions, feasible action choices or information sets. In such an instance, even though an agent’s
payoffs depend on the actions of all agents, it only makes sense for an agent ¢ to compare the payoff
from his action with those of similarly—situated agents. Then one can define disjoint comparison groups,
¢4, (B, ...(M where each comparison group contains at least two agents, each agent is in a comparison
group, and each agent in a comparison group ¢’ compares his actions and payoffs only with those actions
and payoffs of other agents in his comparison group. This formulation permits the possibility that the
payoff functions of agents in (7 are different from those of agents in other comparison groups. Say that
an action vector ¢ and a vector of comparison groups ( 1s a heterogeneous relatiwe equilibrium if for each

comparison group ¢” and each i,j € ¢,
' (q) = 7/ (q)

and V§ € C?, there exists a j € ¢/ such that
© (i) <7 l(e g ).

In this framework, imitative stability leads to convergence to relative equilibrium within each comparative
group occurs, although behavior in different groups may differ. Our analysis extends straightforwardly

to this environment. [ |

5 Intuition.

The central ideas differentiating these two models of comparative dynamics may easily be explained.
The intuition is most easily given from the continuous perspective with differential payoff functions.
Suppose that a dynamic system is at rest at some point ¢ = (¢', ¢%, ..., ¢") : from period to period each
agent chooses the same action. In this context, consider the impact of a perturbation (mutation) in the
choice of action by agent 7, of size A. Thus, i’s action moves to ¢* + A. The impact on agent #’s payoff
is m(¢g7% ¢ + A) & 7i(q) + %A. The impact on some other j’s payoff is 7/ (¢~ 197} ¢ + A ¢/) ~
™ (q) + %A.

With an introspective dynamic, a player compares his payoff following the mutation with his prior
payoff: 7(¢7%, ¢ + A) — 7'(q) ~ %,QA. So, if at the initial state, %ﬂl > 0, the impact of the
mutation is to move the state to a new state — the system will not return to the initial state. With an
introspective dynamic, the mutation, in effect, allows the agent to calculate the gradient of the profit
function in the direction of the mutation — unless this is non—positive, the agent will move to the action
determined by the mutation. Hence, with introspective dynamics, a rest point of the system must satisfy
%ﬂl = 0 (modulo details concerning the grid size for feasible actions). That is, each rest point must
be a Nash equilibrium: at a rest point, each agent’s action maximizes his payoffs given the actions of
the other agents.

With imitative dynamics, an agent compares his or her payoff with those of others before and
after the mutation, and agents tend to switch to the new action if and only if 1t leads to greater relative
payoffs. Following a mutation, 7°(¢~%, ¢’ +A) =7/ (¢~ 107 ¢+ A ¢7) 0 [77 () — 77 (q)]—i—[a%;(,q—)— %ﬂ—)]A.
Mutations aside, for ¢ to be a rest point of the system, it must be that [7*(¢q) — 77 (¢)] = 0 for each ¢ and

9



§. From such a point, 7 (¢=%, ¢* + A) — 7 (¢~ 107 ¢ + A ¢7) & [%q(,q) - %]A. Thus, at a rest point

of the system, following a mutation in ¢’s action, for ¢ to not switch to the action reached by mutation, it

must be that the action of any agent j is not more attractive (comparing payoffs following the mutation),

(o=@ _ o (q)
dq* dq*

point is that [%,ﬂ — %ﬁ] = 0 (again, modulo details about grid selection). That is, the rest point

is not a Nash equilibrium: instead, at the rest point, each agent maximizes the difference between his

JA < 0 for all A. Thus, with an imitative dynamic, a characterizing feature of a rest

payoffs and those of other agents.

To understand why introspective and imitative models of behavior lead to different outcomes con-
sider the homogeneous good oligopoly environment in which each firm is initially producing the com-
petitive equilibrium level of output. Suppose one firm is hit by a mutation and produces marginally less
output. After the mutation, the profits of this firm rise (since price is now above marginal cost), but the
profits of other firms rise by even more (since they are now producing more than the mutating firm).
With an introspective dynamic, the mutating firm compares its profit with past profits and concludes
that the experiment was a success. With an imitative dynamic, the mutating firm compares its profit
with those of other firms, and since its profit is lower than those of other firms, the mutating firm
concludes that the experiment was a failure.

It is worth noting that in large populations, Nash equilibrium behavior always obtains. At a rest
point, two types of conditions must be satisfied: a level condition, requiring that payoffs are equal across
players and a gradient condition requiring that a variation in one agent’s action has the same impact
on that player’s payoffs as on the payoff of other players. If, for j # ¢, g—g; = 0, the gradient condition
reduces to the first order condition for ¢, so a rest point is a Nash equilibrium. Consequently, in a
model where each agent is negligible in the population, imitative dynamics generate predictions of Nash

behavior.

In comparative dynamics generally, the role played by mutations admits a broader interpretation
than that with best response dynamics. With best response dynamics, agents optimize against the
current population distribution so that rest points must be Nash equilibria. When there are many Nash
equilibria there are many rest points. In particular, every strict Nash equilibrium is a rest point. The
dynamic alone does not guide the selection from within the set of rest points. Rather, the formulation
of the mutation serves this crucial role by implicitly providing a measure of the size of the basins of
attraction of the rest points of the dynamic system: a basin of attraction is larger if it requires more
simultaneous mutations to escape it. This gives the best response dynamics model its cutting power
— for example — to select among strict Nash equilibria, or select the risk dominant equilibrium. In
contrast, with the comparative dynamic, apart from measuring the relative size of basins of attraction,
the impact of mutations 1s, in essence, to provide the agent with the gradient on the payoff function,
comparing payoffs before and after mutation. Here, the number of simultaneous mutations required to
move from most absorbing states 1s one. If the mutation leads to a favorable payoff comparison relative

to historical action choices or the choices of others, the mutation becomes the status quo.

6 Strategic Complements and Substitutes.
In this section we discuss an important class of games — where agent #’s own action, ¢; and the
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aggregate action of other agents, QQ_; = Zj;ﬂ q;, are either strategic complements or substitutes. The
specific structure of these games allows us to identify conditions under which introspective and imitative
stability hold. We assume that payoff functions take the form m;(¢;,q—;) = m (g, @—;), where m; is
strictly concave in ¢;. (Concavity is not necessary for the results — see the discussion following theorem
3 below. Implicitly we assume that the finite grid of action-payoff combinations is derived from or can
be embedded in a continuous game so that notions such as concavity are to be understood in terms of
the continuous game whose discretization is the discrete game.)

In a model with a continuous action space, strategic complements and substitutes are defined by
monotonicity in the reaction functions. Let r;(Q—;) = arg maxm;(¢;, q—;). Say that the payoff functions
satisfy strategic complements if @_; > @', implies r;(Q—;) > r(Q",) and strategic substitutes if
Q_; > Q. implies r;(Q—;) < r;(Q_;). For a discrete action space, the best response, r;(Q_;), need not
be single-valued, as adjacent actions, ¢; and ¢; + A, may provide agent ¢ the same payoff (strict concavity
of m; in ¢; ensures that only adjacent actions can be best responses). However, if actions are strategic
complements then Q_; > Q" ; implies r;(Q—;) > r(Q";); and if actions are strategic substitutes then
Q-; > Q_; implies r;(Q—;) < ri(QL;).

In what follows we give conditions under which introspective and imitative stability are satisfied.

We begin with imitative stability.

Proposition 1 If payoff functions satisfy strategic complements then the system is introspectively
stable.

Thus, if payoff functions satisfy strategic complements, introspective dynamics lead to Nash equilibria.
It is straightforward to show that when there are only two agents (so that Q_; = q_;), that if actions
are strategic substitutes then the system is introspectively stable — with two agents, the actions can
be reformulated so they enter as strategic complements. When there are more than two agents our
proof that if actions are strategic substitutes then the system is introspectively stable requires another

condition:

Definition 10 Payoff functions satisfy damping if

Ti(Q-i, ¢i) < mi(Q-i, ¢ + A)

then
Qi + A qi) > m(Qoi + A i — A).

In terms of reaction functions, the condition requires that if r;(Q_;) > ¢; + A, then 7 (Q-; + A) > ¢;.
The damping condition is innocuous. The continuous analog, which implies this, is that % > —1.
That is, a one unit increase in the aggregate action of other agents lowers agent ¢’s best response by less
than one unit. To understand when it is satisfied, note that in an oligopoly context, if firm i’s inverse
demand function is given by p;(Q_;, ¢;) = a —bQ_; — dg;, where a,d > 0, then for any cost function, the
damping condition is satisfied as long as b < d, i.e. as long as ¢’s demand is more sensitive to his output

than the total output of other firms. More generally, if agent ¢’s payoffs can be written in the form,
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m(Q_i,qi) = 7 (aQ_; + bgi,q;), 0 < a < b (e.g. homogeneous demand), where 7 is strictly concave,
then the damping condition on payoffs is satisfied. In the substitutes case, damping is sufficient for

introspective stability:

Theorem 3  If payoff functions satisfy strategic substitutes and damping, then the system is intro-

spectively stable.

In view of theorem 1, strict Nash equilibria will always be in the introspectively stable set. The dif-
ficulty is in showing that for some initial states the system cannot cycle around forever among non-Nash
equilibria, or cannot cycle in and out of weak Nash equilibria to non—Nash equilibria. The constructive
proof argues that suppose the system did cycle forever. Then somewhere in that cycle there is a minimum
aggregate action state. Starting from any such minimum aggregate action state, we show that we can
construct a sequence of weakly improving deviations that has the property that each agent’s action is
either monotonically increasing or declining. Given the finite action space, this implies that the sequence
must terminate, and we show that i1t terminates at a Nash equilibrium. The key to constructing these
monotone sequences is first to exploit the incremental improving property of the payoff function in own
action so that if 7;(Q_;, ¢;) < m(Q—i, ¢;+jA), j > 1, then m(Q—;, ¢;) < m(Q—i, q:+A).? Consequently,
we can restrict attention to increases in actions of one grid unit. Second, we exploit the fact that at
the initial minimum aggregate action state, any reduction in action by agents must lower their payoffs
(else violating the assumption that we are at a minimum aggregate action). Then continuing we exploit
inductively the damping condition so a one unit increase in the action by one agent, lowers the best
response by another agent by at most one unit; and following a one unit reduction in an action by one

agent, no other agent wants to reduce his action. Next, we consider imitative stability.

The relative profit function (where i’s payoff is compared with that of j) is written 7 (¢!,... ¢") =

m(q',...,¢") — (¢!, ..., ¢"), and the marginal relative benefit to a variation by agent i is given by:
i3 (gt, . g™ arilq, .. q" I _ (g, ,q*) _

r (%q’ q") _ om (q(’)ql q") _ 9om (q(’)ql 9 ) Define Qr — {q* | T_(‘](r)qli) — 0} For any q* c Qr’ the
profile (¢*,¢*,...,¢*) is a relative equilibrium. Assume that every such ¢* is in the grid. If there is a

unique relative equilibrium, denote it by ¢”. Finally, we assume that qbij(q) = 6% %q’;”’q)} < 0. This
concavity condition is satisfied is satisfied in standard economic environments, including all those that

we consider in section 8.

Theorem 4  Suppose that the relative profit function is strictly concave in own action. Then the

system is imitatively stable. When ¢ is negative for all ¢, the symmetric relative equilibrium is unique.

At a symmetric choice level, ¢, if a small change (say increase) in action by some player raises the
player’s relative payoff, then others imitate. For a sufficiently small change, at the higher action level,
no player’s relative payoff can be raised by a reduction in their choice. Thus, for an initial point, there

is a sequence of steps increasing (or decreasing) to a relative equilibrium.

9 The incremental improving condition that our proof employs does not require that payoffs be strictly concave in own
action, but also follows given various forms of quasiconcavity.
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7 Long Run Welfare.

When actions are payoff substitutes (higher action levels for players other that ¢ reduces ¢’s payoft),
actions are greater and welfare lower under imitative dynamics; and when actions are payoff complements,

the converse is true.

To see this, note that at a Nash equilibrium, g—; = 0, whereas in a relative equilibrium, %’;; =
g—; — ggf = 0. When actions are payoff substitutes g—gf— < 0, so that %qu,] > 0. Thus, ¢ will raise his

action and others will follow via imitation. Under imitation dynamics with mutation, action choices
are higher than in Nash equilibrium. With the payoff substitutes assumption, payoffs are lower. The
converse holds when actions are payoff complements.

With introspective dynamics, agents take into account how their actions affect payoffs of all agents
commonly; but with imitative dynamics, agents do not. For example, in a homogeneous good oligopoly
game, Introspecting agents take into account how their output affects price; but with an imitative
dynamic, agents do not consider the effects of their output on price. Hence, if actions are payoff and
strategic substitutes, imitative dynamics lead agents to select more aggressive actions than those chosen
by introspecting agents. If, instead, actions are payoff and strategic complements, imitative dynamics
lead agents to select less aggressive actions than those chosen by introspecting agents.

This is an ironic outcome. Underlying the imitative dynamic is an informational structure in which
each agent observes the actions and payoffs of other agents and mimics the actions of agents with higher
payoffs, presumably banking on the thought that imitating best current practice would increase payoffs.
In the long run, they are confounded; introspective dynamics lead to more profitable outcomes. An
informational environment in which agents cannot observe what everyone does, but do track how their

own experimentation affect profits, leads them to a better outcome.

8 Examples.

In this section we discuss a number of key economic environments for which our analysis is relevant.
In particular, with appropriate slope or shape restrictions, for the models discussed subsequently con-
vergence under imitative or introspective dynamics occurs. This permits us to characterize better the
properties of the different dynamics.

Homogeneous good oligopoly. Let firms face inverse demand P(-), P(0) > 0, P’ < 0, and have
a common cost function, ¢(-), that satisfies ¢(0) = 0,¢/ > 0,¢” > 0. Suppose that in the continuous
formulation of the game there is a unique symmetric Nash equilibrium in which each agent plays ¢* that
is contained in the set of feasible actions, C' = {a,a + A, ..., kA}. If the inverse demand function is
strictly convex, then the introspectively stable set is the singleton set, {(¢*,...¢*)}. So, too, this is the
outcome if the inverse demand function is linear and the cost function ¢(+) is strictly convex.

If inverse demand and cost functions are both linear, then discretization of the action grid introduces
additional weak Nash equilibria, in which j agents play ¢* + A, j agents play ¢* — A and the remaining
n —2j > 0 agents play ¢*. This is because n((n — 1)¢* + A, ¢* = A) = 7((n — 1)¢* + A, ¢*), and
m((n— 1)¢g" — A,¢* + A) = n((n — 1)¢" — A, ¢*). However, these weak Nash equilibria are not in
the introspectively stable set, since there exists a sequence of one-step non-disimproving deviations
from any of these weak Nash in the direction of the strict Nash equilibrium action. For example, have

one of the j agents taking action ¢* — A raise his action to ¢*. Then since at the new action vector,
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m((n—1)¢" + A ¢") < n((n — 1)¢7,¢%), a deviation by one of the j agents taking action ¢* + A to ¢*
will raise his payoff. Hence, again, the introspectively stable set is again the singleton set, {(¢*,...¢*)}.
Finally, if the demand function is strictly concave, and the cost function linear, then discretization of the
action grid introduces additional strict Nash equilibria, in which j agents play ¢* 4+ A, j agents play ¢* — A
and the remaining n—2j > 0 agents play ¢*. Thisis because m((n—1)¢*+A, ¢.—A) > n((n—1)¢"+A, ¢.),
and m((n—1)¢" — A ¢* + A) > w((n —1)¢* — A, ¢*). In this case, the introspectively stable set consists
of all such action vectors. Of course, as A — 0, all elements of the introspectively stable set approach
the unique continuous Nash equilibrium outcome.

Heterogeneous good, n—firm oligopoly. Suppose that each firm i faces demand
—d
P(Q-s,qi) =a—-bQ_; —dg;, a,d> O;H <b<d,
and there are no costs of production. If b > 0, then the goods are payoff and strategic substitutes, and

if b < 0, the goods are complements. Then, as A — 0, introspective dynamics lead to

a

“n—1)b+2d

In the case of perfect substitutes,
a

(n+1)b

More generally, the smaller is b, the more an agent produces; and if d is positive, the output of the other

7

q:

firms causes each firm to raise production to exploit the complementarities. Imitative dynamics lead to

. a
T = 2 +2d
In the case of perfect substitutes,
r_ @
q b’

yielding the Walrasian, competitive, zero profit, outcome, as Vega-Redondo (1996) finds. More gener-
ally, if the goods are substitutes (b > 0), then firms over-produce with imitative dynamics, ¢" > q,
earning correspondingly lower profits; and if the goods are complements (b < 0), then firms under—
produce with imitative dynamics, ¢" < ¢', earning correspondingly lower profits as they fail to exploit
complementarities as fully.

R&D spillovers. Consider a two stage game in which n firms first make capital investments and
then hire labor to produce output in a competitive economy. There are R&D spillovers so that the

capital investments of other firms reduce firm ¢’s costs. Firm ¢’s profits are given by
m(K_;, ki) = maxll[(o‘k?l? —rk; — wl;,

where K = Zj k;, r > 0 is the unit cost of capital, w > 0 is the prevailing wage rate, o + F+ v < 1,
and a, 3,7 > 0. The same formulation permits an analysis of pollution externalities, whereby the total

capital employed pollutes the river, reducing each firm’s output, a < 0, + 3 > 0.
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With introspective dynamics, as A — 0, equilibrium is characterized by
Bnk) kP + a(nk) KT =y y(nk) KO T = w,

while with imitative dynamics agents do not consider how their actions affect the aggregate, so equilib-

rium is characterized by
Bk kP = k]2 kDT = w0,

Tragedy of the commons. Consider the choice by each family in a village of how many sheep
should graze on the common village pasture. Let V() be the value derived by each sheep from grazing
when G sheep graze: V(0) > 0; V' < 0;V" < 0, and G = 37, g;. The cost to a family i of raising g;
sheep is given by ¢(g;). Then the profits of each family as a function of the number of sheep that graze
is given by m(G_i, i) = ¢;V(G-i + i) — (i)

We could alternatively pose the tragedy of the commons as an over—fishing story, where the number
of fish caught by other fisherman, F_;, raise the cost to each fisherman i: ¢(F_;, F;). Fish can be sold
for price p so fisherman i’s profits are given by m(F_;, F;) = pF; — ¢(F;, F_;). These payoff functions are
structurally identical to those of firms in the homogeneous good oligopoly game, so the same predictions
obtain.

Private provision of public good. FEach agent i’s utility is a strictly increasing function of
both the aggregate level of public good, #, and his consumption of a private good y: U(Zj 5, i)
Each individual has 7 dollars that he can devote to purchases of the two goods. Then, as A — 0 with
introspective dynamics, the standard public goods Nash equilibrium obtains in which agents equate
personal marginal rates of substitution between the public and private good to price ratios; while with
imitative dynamics, each agent devotes his entire income toward purchases of the private good.

Team production. Consider a team of n workers, whose total output, Q(3>_, e;), is an increasing
function of total worker effort. Each worker’s wage is an increasing function of the team’s output. As
worker i exerts more effort, the disutility he incurs, v(e; ), rises. Thus, worker ¢’s utility, U (e;, Zj;ﬂ €;) =

u(w(Q(Z] e;))) — v(e;), takes a form similar to that with the private provision of a public good.

9 Concluding Comments

This paper investigates evolutionary dynamics when agents make choices on the basis of relative
performance criteria. We identify two distinct classes of learning behavior: imitative dynamics and intro-
spective dynamics. With imitative dynamics agents behave as if other agents’ experience is relevant for
them, tending to imitate the actions of more successful agents. In contrast, with introspective dynamics,
agents behave as if their own past experience is relevant for them, tending to choose past successful ac-
tions. We find that these different models of learning behavior predict fundamentally different outcomes:
Introspective dynamics lead to Nash equilibria, whereas imitative dynamics lead to an outcome in which
no agent can increase the difference between his payoffs and those of other agents. Paradoxically, com-
paring outcomes across dynamics, agent payoffs are lower for imitative than introspective dynamics —

mimicking best practice turns out to be counterproductive.
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Appendix

A graph (S, F) is a (nonempty) collection of nodes or vertices S and a (un)ordered collection of edges,
E, where an edge, e, is a set containing two elements of .S; thus e = {s, s’} = {s’, s}. When the edges are
ordered, called ares, the graph is called a digraph (directed graph) — in this case write an arc e = (s, s).
Call s the initial node of e, denoted i(e), and s’ the final node, denoted f(e). A path (with no loops)
from s’ to s”, denoted Pysn, is a collection of arcs {(s;, si+1)}5_;, such that s’ = s; and s” = sx;1, and
the initial nodes of all arcs are distinct. Given a state space S, and transition matrix M on S, define

the set of arcs as Ey = {(s,5") | mss» > 0}.

Definition 11 Given s € S, an s-graph is a graph (S, E) such that
1. s’ # s implies 3 a unique §, (s',5) € E.
2. As*, sx £ s and (s,s*) € E.
3. If s # s, there is a path from s’ to s.

Let G; be the set of all s-graphs Given a graph G, let E(G) be the set of arcs in G. FEach arc is

identified as a pair of states, e = (s',s"), with associated transition probability m. = mgsn. Let

Bs =2 Gea, HeEE(G) me and 3 =3 ¢ Bs.

Lemma 1 (Markov chain tree theorem.) If M is irreducible there is a unique invariant distribution
— Bs

{n}ses, where w1, = 5

In the context of mutations, identify the matrix M as P.. Note that because every sq € S is a minimal
absorbing state, there are at least #C' minimal absorbing states. Because every s-graph has all but one
element of S as the initial point of some arc, for G € G;, in the expression HeEE(G) me there are at least
#C — 1 terms of order no larger than ¢. Thus, for any s, B, < 0(e#“~!). Since f, is the sum of terms
of varying orders of magnitude, the order of magnitude of §; is determined by the term of largest order
in the sum. If this order of magnitude is smaller than a dominant term in some [3;:, then as mutations

go to zero, m; will converge to 0.

Theorem 1  Suppose that the system is introspectively stable. Let &, be an invariant distribution of
P.. Let £ be a limit of &, as ¢ — 0. The support of & is a subset of Sy, the set of states corresponding

to strict or weak absorbing Nash equilibria.

Proof: Call a collection of states A C S an absorbing set of states if there is zero probability of leaving
that collection: if s € A and s’ € S\ 4, then pys» = 0. Call such a collection a minimal absorbing set if
there is no strict subset that is absorbing. Thus, each singleton set {s;}, ¢ € A is a minimal absorbing
set. For each s € S, identify those states from which s can be reached with positive probability under
P:

H'Y(s) ={s' €S | pss >0}

and define H(s) inductively for j > 2:
HI(s) = HI7Ys) U{s" | porsn > 0, for some s” € HI~1(s)}

Since {H/(s)} is an increasing collection of sets and S is finite, H7(s) is constant after a finite number

number of steps and equal to a set H*(s). Then 5 € H*(s) if 3s*,...s*, such that § = s!, s* = s and
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Psisitr > 0,7 =1,....k—1. Let Hq = Useg, H™(s), the set of states under introspective dynamics with
positive probability of ending up at some state in Sy.

Partition S according to S = Ha U H, where H, = S\ Ha. By construction, H, is absorbing. In
fact, H, = @, and all minimal absorbing sets are singletons. To see this,consider any q(¢). Starting from
this state, let R(q(?)) be the set of states reachable with positive probability from q(t). There is some
q’ € R(q(t)) such that the payoff to some player j at some vector in the state q is the highest payoff at
any action vector in any state in R(q(¢)). Under the dynamics, when this state is reached (and it has
positive probability of being reached) player j has positive probability of then making that choice { 4 1
times (and more) in succession, and so with positive probability, from q(¢) a state where j’s history is
constant has positive probability . Starting from that state, the argument may be repeated for other
agents: so there is positive probability of reaching a state where each agents history is a constant vector.

It is sufficient to show that for any s & Syr, Is* € Sy and € - O(f5+) > O(5;), where O(z) denotes
the order of magnitude of # and the inequality “O(x) > O(y)” means that z is at least as large in order
of magnitude as y. Furthermore, since the support of any limiting invariant distribution will lie in the
set H,U Sy, since H, = it is sufficient to consider only states in Sy4.

Let G € G, and let E; be the set of edges in G. Suppose that s € S4, but s ¢ Sy. If s € Sa,

k-1
j=1, from s to

then from introspective stability, there is some s* € Sy and a path Ps» = {(s;, 5541}
s* (s = s1, s* = si), whose edges consist of nodes distance 1 apart. Let s = (¢,¢,...,¢) = s4. From
introspective stability there is some i and ¢ such that 7¢(¢~% ¢') < 7i(¢7% ¢"). Let § = (g
d(q,q) =1, where d(q,q) = #{i | ¢' #¢'}.

Thus, one mutation moves the state to s’ = (¢,¢,...,¢,¢) and with positive probability after [
additional periods the state § = (4,4, ..., §) = s5 is reached. If § is not an equilibrium, then again from
introspective stability, there is some j and ¢/ such that 77 (§77, %) < 7(¢7,¢7). Let ¢ = (§77,47), so one
mutation moves the system to s = (¢, ..., q, §) and with positive probability the state § = (¢,...,§) = ¢
is reached after [ additional periods. Using the path provided from the introspective stability condition
gives a path of zero and one mutations that take the system from s = s4, to s* = s4«. ;From G form an
s*-graph, G/, as follows. Consider first the case where ¢* € Ng, a strict Nash equilibrium.

Retain an arc e = (s/,s") in G, if (a) s’ # s* and §5 € S, (5',5) € Pyse, or (b) e = (s, 5") € Py
Break the remaining arcs, R, in GG. Thus, arc e = (', s”) is broken if s’ = s* or if s’ is the initial point
of some edge in Pssx, but e ¢ Pysv. If € € R then there is a unique e’ € Py,e, i(e) = i(e’), but e & Pyyn.
Break each such arc e and replace it with the arc ¢’. Finally, add the arc e = (s, s2) = (s1, s2). Call the
new graph G'.

Under this construction, the new graph GG’ is an s*-graph, where node s the initial node of an edge
in G’ and there is no edge in G’ with initial node s*, whereas in G the converse holds. Edges outside
R are unchanged, and for an initial node s, of an edge ¢ € R, if s’ is the successor in G, and s” the
successor in G'; then O(Pss1) > O(Pssv). Finally, since the edge in G with initial node s requires one
mutation to move to its successor whereas the node s* in (G required at least 2 mutations to move to its

successor, say §, O(pss,) > € - O(Ps+5). Thus,

ecE; e€E,+

Next consider the case where ¢* € Nyya. Define s(q,¢,7) = (¢,...,¢,4,...,§) — ¢ occurs in the first
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[+ 1—1r positions and ¢ occurs in the last the r positions. From the introspective stability condition, let ¢
differ from ¢ in one coordinate, weakly improving for that agent. Adjoin s, to the state § = (g¢,...,¢,q).
From § the successor state in Gis § = (q,...,4,4, §) = s(q, ¢, 2) or some other state. In the latter case, an
additional mutation has occurred. If so, break the arc there, and add the arc ((¢,...,9,4),(¢,...,4,4,9)).
This new arc has positive probability in the unperturbed system. If in GG, the successor to s(q, ¢, 2) is
s(q,q,3) retain that arc. If the successor to s(q,q,2) is not s(q,§,3) (again a mutation has occurred),
break the arc and add a new arc (s(q, q,2), s(¢,q,3)). Proceed, breaking arcs where a successor does not
extend the sequence: if the successor to s(q,¢,r) is 8" # s(q, 4,7+ 1), break that arc and add the arc
(s(q,4,7),s(q,4, 7+ 1)). This process creates a path from s, to sg. Each arc in & is replaced with one
requiring the same or fewer mutations.

Proceed in this manner, constructing a path to sg+. From s7, in G the successor either arises from
just one weakly improving deviation, or just one strictly dis-improving deviation, or there is more than
one choice changed in the successor state. In the second case, break the arc, and reverse it — replacing
a one-mutation deviation with a zero cost arc in the unperturbed system, and form a tree with root s, .
In the third case, break the arc (which has an associated cost of two mutations) and again form a tree
with Toot sg«. In either of these two cases, the new tree has weight at least an ¢ order of magnitude
larger than (. In the first case, there is a weakly improving deviation from s* to some other Nash
equilibrium state s;. Break arcs in G where necessary to form a (zero cost) path from sg« to sz, apart
from the arc (¢*,¢*,...,¢%),(¢*,...,¢% ¢)). Asin the previous discussion, each arc in (7 is replaced with
one requiring the same or fewer mutations. At sg, the possibilities are the same as at sj: one or two
mutations are required to leave s4. In the case where two are required, form the tree with root sg4, or else
connect s4 to its successor determined by introspective stability. This can only happen a finite number
of times — eventually, a Nash state is reached where two mutations are required to leave. Break that
arc and form the tree rooted at that state. In all possible cases, the “weight” of the new graph, G’, is

an € order of magnitude larger that of G.

Theorem 2  Suppose that the system is imitatively stable and all relative equilibria are strict. Let

éﬁ — é Then é € SsrE, the set of states associated with strict relative equilibria.

Proof: In this case, all absorbing sets are in S4. In fact, all absorbing sets are in the subset of
S4 where the choices of all agents are the same. To see this not that for any state s, with imitation
dynamics, there is positive probability that every agent will make the same choice next period (since
they all observe the same “best performers” in previous periods). In this case, each player receives the
same payoff which may be higher or lower than that choice yielded earlier (when not all were choosing
it). In either case, the choice is still top ranked in relative payoff terms, and so will be chosen again with
positive probability by each agent. This continues — so there is positive probability of reaching a state
where each agent has made the same choice in the previous [ + 1 periods.

Consider a action profile ¢ that is not a strict relative equilibrium and let G be a tree rooted at s,.
Let {qo,...,¢r} be the sequence specified by imitative stability, with ¢ = ¢o and ¢, = ¢*. Locate sg+ in
G and break the arc from sg«. Since ¢* is a strict relative equilibrium, two mutations are required to

leave state sq+. And along the sequence specified by imitative stability, one mutation initiates a move
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from ¢" to ¢"t! along a path requiring no mutations. Every arc with an initial point s*, k = 1,...,r
requires at least one mutation. Create a new tree, G', rooted at s, If an arc is broken in G an arc is
added in the construction of G’ to create a path from s, to syr41, and the arc added in G’ involves no
more mutations. At s;«, break the arc in G with s,« as the initial point and let s;« be the root of the
new tree, G'. In (G, at least two mutations are required to leave s,+. So, the arcs in tree G’ involve at
least one fewer mutations than in GG. The produce of terms in the G’ tree are an ¢ order of magnitude
smaller than the product of terms in . Thus, if ¢ is not a relative strict equilibrium, s, has 0 probability

in the limiting distribution.

Proposition 1  If the payoff functions satisfy strategic complements then the system is introspectively
stable.

Proof: Suppose that the system is not introspectively stable so that there is some q such that there
is no sequence of one step weak (or strict) best responses leading from ¢ to an equilibrium. In this
case, given ¢ = ¢, 3¢', differing from ¢ in one component, say i and m;(¢°) < m;(¢q'), where the i-th
component is the best response by i to ¢°. Because ¢! is not an equilibrium, 3 ¢? differing from ¢' in
one component, determined by a best response of some player j. Proceed in this manner to obtain a
sequence {¢*} containing no equilibrium. Because the set of possible g-profiles is finite, the sequence
must eventually form a loop. If () is the lowest sum in the loop, then it must be the case that at the
profile ¢ achieving @, the successor to ¢ is some ¢ differing from ¢ in one component which is larger. In
this case, since ¢ is not an equilibrium, some other agent wishes to change their output level. Because
of the strategic complements assumption, the best response must be to increase output. Proceed in this
way to find a monotone increasing sequence of output choices for agents that make quantity changes.
Monotonicity implies that this sequence converges — to some ¢*. This must be an equilibrium since
no agent wishes to change output, contradicting the assumption that each quantity i1s part of a cycle

completing a loop.

Theorem 3  If payoff functions satisfy strategic substitutes and damping, then the system is intro-

spectively stable.

Proof: Suppose not, so there is some ¢, not an equilibrium and such that every sequence ¢", ¢ = ¢!,

with the property that ¢" and ¢"t! differ in one component, say q; + q;“

for j relative to ¢} does not pass through an equilibrium point. Let ¢ be the vector with the lowest sum,

and q;“ weakly improving

@, reachable by any such sequence. The following algorithm provides a path to an equilibrium via one
step non-disimproving deviations, so that introspective stability is satisfied.
Stage 1.

1. (increase) Starting at Q! = @, there is at least one agent for which a unit increase is a strictly
improving deviation. Pick one such agent and increase their output by 1, thus raising aggregate
output to Q* + 1.

2. (decrease) At Q! + 1, identify the set of agents that wish to reduce output. If there are any with a

strict preference, select one and reduce that agents output by 1. If no agent with a strict preference
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exists but some agent has a weak preference to reduce output select one such agent and reduce that

agents output by 1. If no agent has a weak or strict preference to reduce output, go to stage 2.

At the end of stage 1. beginning of stage 2:

(a) There is no agent that strictly or weakly prefers to reduce output.

(b) Aggregate output at the beginning of stage 2, @7, is either higher (by one unit) or at the initial
level: Q% > Q. If Q% = Q*, some agent lowered output. If Q2 = Q' + 1 then no one had even a weak
preference to reduce output. In either case, no agent wishes to reduce output.

(c) Finally, if one agent has increased output and one has decreased output, these must be different

agents.

Stage 2.

1. (increase) Starting at @2, if there is at least one agent for which a unit increase is a strictly
improving deviation, pick one such agent and increase their output by 1. If no such agent exists,
but there is an agent with a weak preference to increase output, raise the output of one such agent.
In either of these cases, aggregate output is now Q2 + 1. If neither of these cases obtains (no agent
has even a weak preference to increase output), terminate the algorithm. (Output increased in stage
1, unless the initial increase was followed by a reduction. If a reduction occurred, then the aggregate
level is @', and no further reductions can occur. If no reduction occurred, and no increase occurs
at the beginning of stage 2, no agent wishes to increase or decrease output.) Otherwise, proceed to
the next step.

2. (decrease) At Q2 + 1, identify the set of agents that wish to reduce output. If there are any with a
strict preference, select one and reduce that agents output by 1. If no agent with a strict preference
exists, but some agent has a weak preference to reduce output, select one such agent and reduce

that agents output by 1.

At the end of stage 2. beginning of stage 3:

(a) There is no agent that strictly or weakly prefers to reduce output.

(b) Aggregate output at the beginning of stage 3, @3, is either higher (by one unit) or at the initial level
of @?. If a reduction occurred, the output level is the same, Q?, as at the beginning of stage 2 (end of
stage 1), where no agent wanted to reduce output, or else it is one unit higher and no agent wants to
reduce output.

(c) TIf ¢ increased output in stage 1, ¢ will not reduce output in stage 2. If ¢ increased output in
stage 1, ¢ = ¢} + 1, and, depending on whether there was a reduction or not in that stage, Q2;
is either QL, or Q1, — 1. In stage 2, if some agent (other that i) raises output, then the aggregate
(excluding i) becomes QL + 1 or QL ,. Since at stage 1, agent i raised output, from ¢} to ¢? = ¢} + 1,
m(QL,, q}) < m(QL,, ¢} +1). introspective stability implies m;(Q%, + 1,1 + 1) > m(QY, + 1,¢}) (since
m(QL,, ¢}) < m(QL,, ¢} +1)), so in this case i won’t reduce output. From the substitutes property, this
implies that if ¢7 is a better response than ¢} when Q?, = Q! instead of @1, + 1. So, in both cases, i
will not reduce output.

(d) If a reduction by j occurred in period 1, then at that point Fj(Ql_j +1, q]l» -1 > Fj(Ql_j +1, q]l»), At
next stage, j could only weakly prefer to raise output; if no other agent strictly prefers to raise output

then the state is an equilibrium since no agent has even a weak preference to lower output.
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Suppose that a sequence of output vectors, ¢', ..., ¢* are generated by this algorithm and have the
properties:

() QT <™, r=1,...,t—1,and

(%) for each ¢, ¢ is monotone increasing or monotone decreasing.

(#4i) For each 7, for each ¢, m(Q7,,q]) > m(Q7;,q¢] — 1); at the end of period 7, no agent weakly

prefers to decrease output.

Proceed to stage t.

1 If there is no agent that wishes to raise output, either strictly or weakly, then no increase is made,
and the process stops. Otherwise, increase the output of one such agent, giving precedence to agents
with strict preference. Then go to step 2.

2 If there is some agent that strictly or weakly prefers to reduce their action, then reduce the action

of the agent,

If in 1, the selected agent has never reduced output in a previous period and in 2 the selected agent

has never increased output in a previous period, then proceed to the next stage.

Otherwise, there are two possibilities: (c1) an increase by someone who previously reduced output or
(c2) a reduction by someone who previously reduced output.

Consider the first case (c1): ¢ who previously reduced output at date 7 < ¢ (so 7 is the most recent
stage at which ¢ moved), has a strict or weakly improving increase. At the beginning of stage 7, total
output is 7, + ¢7. The output increase in that stage by some player j # ¢, leads to an output of
(@™, + 1) + ¢], followed by a drop to (Q7, + 1) + (¢/ — 1), when ¢ reduces output. Since output is
nondecreasing from stage to stage and there is no further change by 7 until stage ¢, the output of agents
other than ¢, at the beginning of stage t — 1 must be at least )7, + 1. If it is higher, Qt__ll > QT+ 1,
then since ¢ chose down when output excluding ¢ was lower ( at Q7,; 4+ 1), it cannot be that ¢ would

tjl).

choose to increase output when facing higher outputs of others (Q”

Otherwise, Qt__ll =Q7,+1. At Q7, + 1, i weakly prefers q7 — 1 to g7, so the only possibility for 2
to now increase output is if 7 is indifferent between ¢ — 1 and ¢] at Qt__ll = Q7,;+ 1. In this case, there
is no agent with a strict preference to increase or a weak preference to reduce output, and so the state
is an equilibrium. Thus, the first case leads to an equilibrium.

Next, consider the second case (c2): some agent reduces output and has a history only of output
increases prior to ¢, with the most recent occurring at stage 7. So, at date ¢, following an increase by
some agent k, agent ¢ reduces output by one unit 7, and at stage 7 there was an increase by ¢ (matched
by a reduction in that stage by some player j). Modify the history up to period ¢ — 1 by replacing the
increase of ¢ at stage 7 with an increase for &k at that stage. For agents other than ¢ and j, there 1s no
change. For k, the impact of deleting ¢’s increase at 7 and replacing it with an increase by k is that at
all stages between 7 and ¢t — 1, k faces an aggregate output of other agents that is no larger than Qt__kl,
against which & has a best response to increase. At period ¢ aggregate output excluding ¢ is now one
larger than initially (where ¢ wished to reduce output). So, following an increase by some agent r (the
algorithm terminates if no one wishes to increase): (d1) ¢ may again wish to reduce output, or (d2) some
agent, j # ¢, who has increased in the past may wish to reduce output, or (d3) some agent with no past

increases may wish to reduce.
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In case d1 the algorithm proceeds as before. Because aggregate output of agents other than i is
higher at ¢ — 1 under the new sequence than the old, ¢ will never choose to raise output at this level. If
after the modification of ¢’s output, a cycle now occurs for j (d2), the aggregate output facing ¢ at stage
t — 1 is unchanged and one higher than initially. So, after a first reduction of ¢’s output, no subsequent
increase ever occurs for i.

Since there are only a finite number of agents and quantities, from stage ¢ — 1 only a finite number
of cycle reductions can occur. The algorithm will iterate at stage ¢ a finite number of times before either
converging at this stage to a state where no agent wishes to increase or decrease output (strictly), or

else the algorithm will move to stage ¢ + 1, with all quantities being monotone sequences.

Theorem 4  Suppose that the relative profit function is strictly concave in own action. Then the

system is imitatively stable. When ¢ is negative for all ¢, the symmetric relative equilibrium is unique.

Proof: Consider a point ¢ € C' = xC". For some j, 7/ (q) > n'(q), Vi. Thus, under imitation, there is
positive probability that all agents will choose ¢/ subsequently: under imitation (¢7,. .., ¢) is reached
with positive probability. So, assume that in ¢ each agent makes the same choice: ¢/ = ¢*, Vj.

Let the relative profit between i and j be r*(q) = «'(¢q) — 7/ (g), ¢ € C. Since in q each agent makes
the same choice, 7 (q) = 0 or 7(q) = 7/ (¢). Suppose that ¢ is not a relative equilibrium. So, 3¢° € C*,
r(§, 7Y = 7(d, ¢7") — (¢, ¢7) > 0. Let ¢* maximize r¥/(-,¢~%). and suppose (without loss of
generality) that ¢ > ¢*, where ¢~ is the common choice of other agents. Since r/ is strictly concave in ¢*,
(¢ + A, q7") > 0. Subtracting 7' (q) — 7/ (¢) gives 0 < 7' (¢' + A, ¢78) =7 (¢* + A, ¢7) — 7' (¢) — 7/ (q)
or 0 < [7(¢* + A, q7") — 7 (q)] — [7 (¢' + A, ¢7%) — 7/ (g)]. Dividing by A gives, approximately,

d¢t  Ogt

Let ¢+ A be the vector g incremented by A in each coordinate. Since at this choice vector, everyone

makes the same choice, 7/ (¢ + A) = 0. At ¢+ A, consider a downward mutation — from ¢’ + A to ¢'.

P+ A) = (g T+ A) = (g + A)
=[m'(d a7 +A) = m g+ A = [P (¢ a7+ A) — 7 (g + A))
Dividing by A, this is approximately ' '
[3# 8#3]
d¢t  Ogt

Thus, if initially some agent had an incentive to make a higher choice, at the new level when others have

adjusted, no agent wishes to decrease their choice. Repeating this calculation leads to a path from ¢ up
to the point where an agents relative payoff is not increased by either raising or lowering their choice —
a relative equilibrium.

Next, if the relative profit function is strictly concave in own action (r/ strictly concave in ¢°), and
0% (q) = a% M”;)(ZIZJZ} < 0, then there is a unique symmetric relative equilibrium. To see this, note
that since ¢ (q) = a% %ﬂ} < 0, for low symmetric action levels, ¢ < ¢”, each agent’s relative
payoff 1s increasing in own action, but as the symmetric level increases, the marginal relative benefit
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to increasing own action declines to zero at ¢" and then becomes negative. For example, in the case of
oligopoly, r7(g",...,q") = P(L¢")¢' = cl¢) = [P(Cq")¢’ = e(g?)]. Thus, TGt = (52 ¢%) +
P/ 0" = () = [P/ ¢")o) and &t = P(ng) + P (ng)g — ¢ (g) = [P/ (ng)q] = P(ng) ¢ (q).
The derivative of this with respect to ¢ is nP’(q) — ¢’(¢) < 0. (In the linear case, 7% (¢', ..., ¢") =
(l(a—c)=blg' +QT)(¢ — 7)., so that 27t = (a—c) —2bg" —bQ~ +bg? = (a—c) —bQ+b(¢/ —g).

At the symmetric level ¢, this becomes (a — ¢) — bng, and the derivative with respect to ¢ is —nb. )
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