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Abstract

This paper examines the commuting behaviour of Canadians living in the country’s

global city regions of Montreal, Toronto and Vancouver. Individual preferences for

transportation mode choice are estimated using micro data from the Census of Pop-

ulation. The choice probability of commuting by automobile is estimated as a func-

tion of socioeconomic characteristics and distance from work using McFadden’s MNL

model. An urban equilibrium approach is adopted to avoid model misspecification

due to omitted variables. Estimates from the micro model are then used to predict

mode-shares in aggregated census tracts using average characteristics and a spatial

variable constructed using GIS methods. Finally, prediction residuals are examined

spatially to examine the model’s accuracy across urban zones.
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1 Introduction

Canada’s global city regions will be the country’s engines of growth in the 21st cen-

tury economy. Between them, Montreal, Vancouver and Toronto were the destination

of 68.9% of the 1.1 million immigrants who arrived in Canada between 2001 and 2006

(Statistics Canada 2008). The competitiveness of these cities relative to their global

counterparts will determine whether the country can continue to attract talented

individuals who can drive growth (Courchene 2004). The ability of a city’s urban

infrastructure to efficiently transport inhabitants to their place of work is an im-

portant factor of their perceived liveability (Conference Board 2007), and Canadian

infrastructure is increasingly strained by the popularity of the automobile.

With oil prices soaring and a growing imperative to reduce emissions in response

to climate change, policy makers at all levels of government are scrambling to shift

Canadian commuters out of single-occupancy vehicles and into more environmentally-

friendly modes of transport. In BC’s lower mainland, a new tax on gasoline aims

to discourage driving while a multi-billion dollar rapid transit expansion seeks to

improve service to Richmond. In Toronto, an ambitious $6-billion light-rail project

awaits federal and provincial funding to improve transit service outside the urban

core. In Montreal, a recent expansion to the métro has brought rapid transit to the

populous suburb of Laval and a billion-dollar bidding process is underway to upgrade

the metro’s cars.

Economists and civil engineers developed the analytical tools for modeling transit

demand several decades ago, but the analysis of commuting patterns in Canada’s

major cities remains confined to descriptive statistics due to a lack of available data.

If expensive transit expansions and controversial government incentive schemes are

to have the desired impact of reducing our commuters’ dependency on the single-

occupancy vehicle, we must first answer the question: Why do people drive to work?

In this paper I analyze the worker’s choice of transport mode - or, simply, mode
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choice - by focusing on the socio-economic characteristics of commuters in Canada’s

global city regions. The paper is organized as follows: Section 2 provides a brief

overview of the literature surrounding the evolution of urban travel demand models

and their applications. Section 3 presents descriptive statistics of the commuting

situation in each city. Section 4 develops a behavioural discrete choice model suited

to estimation using micro-level data. Section 5 presents the simplifying assumptions

required to make the model operational with available data, and discusses estimation

results. In section 6, GIS methods are used to compute approximate commuting

distances for census tracts, and present an aggregation procedure which allows for

the prediction of mode share values. Mapping the accuracy of these predictions

across the spatial dimensions of the cities allows for inferences about the importance

of infrastructure and the performance of the model’s simplifying assumptions.

2 Literature Review

2.1 Towards a behavioural model for mode choice

The question of how to estimate the demand for urban travel has been addressed in

a rich literature spanning a number of academic disciplines. Through the 1960s, a

procedure for analyzing discrete choice decisions had not yet been formalized. Em-

pirical studies of travel demand were limited to the analysis of continuous variables

using aggregate data. Transportation engineers used a gravity model approach to

estimate traffic volumes between zones as a function of their population (Meyer and

Straszheim 1970). This model was successful in predicting aggregate flows, but was

of little use for analyzing other dimensions of interest to the researcher and policy

maker, including mode selection and trip generation (McFadden 2000). While a model

for aggregate travel demand provided a starting point for the planning of major in-

frastructure projects, a comprehensive model capable of addressing a wider range of

policy questions must begin by explaining the decisions of individual commuters.
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During the early 1970s, Daniel McFadden laid the foundations for a behavioral

theory of travel demand modeling using tools originally developed by mathematical

psychologists such as Thurston (1927) and Luce (1959). His contribution to the field

of travel demand modeling and more generally to discrete choice analysis over the

following thirty years has provided a framework for a wide range of research and

earned him the Nobel Prize in Economics in 2000.

A series of articles lead to the presentation of his seminal model of travel demand

in a book coauthored with Tom Domencich (Domencich and McFadden 1975). Their

behavioural model is derived from microeconomic foundations in consumer theory,

and is developed for application to the discrete - and inherently non-marginal - context

of the mode choice decision. Many aspects of their methodology form the toolbox used

in subsequent research: Decisions are modeled within a random utility framework to

capture heterogeneity in tastes across individuals. The individual’s utility function

is assumed to be separable in order to allow for the analysis of individual consumer

decisions in isolation. They demonstrate that using the multinomial logit (MNL)

specification is valid so long as restrictions on the distribution of random utility

components can be imposed. Such a model could be readily estimated using maximum

likelihood even given the limited computing power of the day. They recommend the

use of individual survey data for parameter estimation due to the bias introduced by

aggregation procedures in non-linear models.

Subsequently, McFadden (1978) generalized his theory by introducing a class of

models whose random utility components follow an extreme value distribution, and

showed that models belonging to this class that meet a small number of restrictions

are consistent with a random utility maximization framework. He then showed that

the standard MNL model is part of this Generalized Extreme Value (GEV) family,

such that it too is consistent with utility maximization and can be used to model

rational individual decision making.

Progress in the development of travel demand models since the 1970s has been
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limited to refinements of the original framework. The original GEV models have

been expanded to incorporate nested decisions, and more recently individual pref-

erence heterogeneity through the use of random coefficients. McFadden and Train

(2000) present the useful result that the estimated choice probabilities from any MNL

specification compatible with random utility maximization can be approximated by

a corresponding MNL model with random coefficients, which they refer to as the

mixed-MNL model. They propose two methods for estimating such a model which

are readily available in modern statistical packages: Maximum Simulated Likelihood,

and Simulated Moments. Preliminary research indicates that these less restrictive

formulations provide improvements in performance over the basic MNL specification.

2.2 Data and Applications

Revealed preferences data on real choice behaviour has been most commonly used

in transport-related applications of the MNL model. This type of data provides re-

searchers with information about the chosen mode, often including wait, travel and

walk times, as well as a few socioeconomic characteristics, but not about the alterna-

tives which were not selected. The conventional method used to redress this selection

bias is to infer the values for the alternatives using network data on routes, speed lim-

its and congestion. The expense associated with collecting revealed preference data

through surveys has limited datasets to relatively small sample sizes and to narrow

geographic regions.

Individual trip surveys administered in the San Francisco Bay area over the past

30 years have provided researchers with a rich source of data for estimating demand

curves for transit demand at the individual level. One early survey was conducted

by McFadden’s team of researchers at U.C. Berkeley to forecast the patronage of the

planned Bay Area Rapid-Transit project. They collected information suited to the

specification of the behavioural MNL model to predict mode shares and estimate the

value of time spent on each mode, as well as work time, walk time and wait time.
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When ridership data for the completed project became available several years later,

the team’s mode share predictions were found to be remarkably accurate (McFadden

1978).

The San Fransisco data has also been used in the urban planning literature.

Cervero and Kockelman (1997) use the MNL model to examine the effectiveness of

urban land use policies on reducing vehicle trip rates and motorized travel distances.

They find that while the built environment does not seem to affect work-related travel,

non-work trips are significantly affected.

Civil engineers originally expressed skepticism about the validity of disaggre-

gated models, but have since adopted the MNL model and made contributions to its

improvement. Using the result shown in McFadden and Train (2000), Bhat (2000)

estimated a mixed-MNL model of mode choice that incorporates heterogeneity in

individual utility functions. He bemoans scholars’ tendency to ignore the possibility

of individual taste variations caused by omitted variables, and allows all parameters

to vary over individuals. Using time-series survey data on a sample of commuters

in the San Francisco Bay region, he employed a Monte Carlo simulation to estimate

a Random-Coefficients Logit model using a simulated log-likelihood technique. He

then compared his results to the standard MNL model and found that there were

significant differences in the estimated sensitivity to level-of-service variables. He was

forced to impose a probability distribution on the random coefficients, and calls for

further research to make the estimation procedure even more non-parametric.

Since the 1980s, another source of data which has become popular is the survey

of stated preferences, commonly used in psychology and market research. Surveys

are given to a sample of individuals in which they must select their preferred mode

of travel given hypothetical situations about alternatives including prices, wait times,

system efficiency, and comfort. The collection of such data is relatively inexpensive,

but leads to the question of whether a stated choice actually translates into real

outcomes. Latent variable models which allow for the integration of revealed and
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stated preference data were developed by McFadden, Ben-Akiva and Morikawa (Ben-

Akiva et al. 1994), and their framework has led to a number of applied studies.

Due to the cost of surveying, empirical applications of McFadden’s framework

has largely been limited to studies from limited surveys. Small and Verhoef (2007)

give examples showing that the method has been used by transit agencies in North

America and Europe to carry out feasibility studies, but these are seldom published

in the public domain.

2.3 Canadian studies

No survey data of the style collected in the San Francisco Bay exists for Canadian

cities, and this has restricted the use of MNL estimation for urban travel demand anal-

ysis. Wilson et al. (1990) examine data from the Canadian Travel Survey, constructed

by Statistics Canada in 1985, to analyze inter-city travel demand in a disaggregate

MNL framework. The authors conclude that the data will not offer a good base for

disaggregated analysis unless higher resolution data is focused on major city-pairs.

Most Canadian research on urban transportation utilizes Census data due to its

accessibility. Danyluk and Ley (2007) used time-series Census data to examine the

link between gentrification and commuting mode choice. Their analysis is limited to

the calculation of correlations. They did find some evidence that gentrifiers - skilled

professionals living in formerly low-income urban neighborhoods - have an increased

tendency to walk or bicycle to work, even when controlling for distance to downtown.

Some heterogeneity was found across cities, probably due to infrastructure differences

or climate. In all cities, gentrifiers are found to use less public transit, and in Toronto,

where gentrifiers are more evenly spread out over the CMA, they actually have a

greater tendency to drive to work.

A Statistics Canada report by Heinsz & LaRochelle-Côté (2005) examined com-

muting behaviour using data from the 2001 Census of Population. They tabulate

various dimensions of the socioeconomic characteristics of commuters, but do not
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make statistical inferences about their relative significance. Many of their observa-

tions, although intuitive, provide motivation for the selection of relevant variables in

section 5.1.2. Since they have access to uncensored micro-level information, Statistics

Canada are in a position to estimate a disaggregated model without making the sim-

plifying assumptions required in this paper. So far, econometric estimation of urban

travel demand has not been attempted by the national agency.

3 Commuting in Canada’s Glocal Cities

This section describes the commuting infrastructure and characteristics of commuters

in Montreal, Vancouver and Toronto. Summary statistics are calculated from the 2001

Census of Population public-use micro-data file for each Census Metropolitan Area

(CMA) (Statistics Canada 2006a). This data provides a representative sample of the

population without aggregation.

Some resolution is suppressed in order to preserve the anonymity of survey re-

spondents. Commuting distance is reported categorically by 5 kilometre intervals,

with the final category labeled “30km and over”. I construct a continuous variable

using the midpoint of each category and 35km for the open category. No information

about residential location is provided beyond the city level, making it impossible to

observe neighbourhood characteristics or access to public infrastructure. This data

is usually part of the mode-specific variables in the estimation of McFadden’s mode

choice model. A lack of access to this information will limit the scope of questions

this paper can address, and requires a particular framework to avoid misspecification

error due to omitted variables.

Income data is censored above at $200,000 and below at -$50,000. The variable

includes all sources of reported income, including investments, farm revenues, etc.

Capital losses create the possibility of a negative value. An immigrant is defined as

a respondent who was not born in Canada and who is either a naturalized citizen,
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permanent resident, or working visitor in the country. The number of children is

censored at a maximum of 2, so the variable is effectively categorical with options

“No Children”, “One child”, and “More than one child”. Some variables of interest

vary between cities, so descriptive statistics are presented by city to provide the reader

with a higher resolution.

3.1 Toronto

Canada’s largest Census Metropolitan Area covers an area of nearly 6,000 square

kilometres and is home to over 5 million people (Statistics Canada 2006). The 2001

Census public-use micro-data file of individuals residing in the Toronto CMA consists

of 125,671 unique observations, of which 50,894 are complete for all variables relevant

to the commuting decision.

The city’s public transit network, operated by the Toronto Transit Commission,

carries nearly 1.5 million passengers on an average work day (TTC 2008). The back-

bone of the system is a subway/RT network whose four lines cover 68 kilometres

and provide a link between suburban commuter trains and the downtown core. The

city’s downtown core receives frequent service by a network of street-cars who run

on tracks in dedicated lanes, and can thus run reliably through peak hour gridlock.

A network of GO-trains carries commuters from surrounding suburbs to connecting

stations, where the remaining trip to the downtown core can be made via subway

or diesel bus. A glance at the crowded park-and-ride lots surrounding GO-train sta-

tions along Highway 401 suggest that multi-mode transportation is a popular means

of commuting in Toronto, but the Census questionnaire does not provide sufficient

information to confirm such an observation. The east-west road corridor is anchored

by the heavily congested Highway 401, and the recently constructed toll Highway

407. While heavy congestion occurs on many of Toronto’s highways, the city’s flat

and homogeneous topography does not create major physical bottlenecks.

The average commuter in Toronto travels farther than those in Montreal and
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Table 1: Descriptive statistics - Commuters in Toronto CMA
Variable Mean Std Dev Range

Min Max

Age 37.42 12.42 15 85
Income ($) 38,026.75 34,731.32 -49,795 200,000
Distance (km) 12.46 9.94 2.5 35
Married 0.613 - 0 1
Immigrant 0.493 - 0 1
Single-Occupancy Driver 0.647 - 0 1
Children 0.611 0.627 0 2

Mutually Defined Observations 50,894

Vancouver, an indication of lower population density and job centralization observed

in Toronto by Heinsz & LaRochelle-Côté (2005). The city also has the highest pro-

portion of first-generation immigrants. Nearly half of all commuters in the Toronto

sample are first-generation immigrants, higher than Vancouver’s 41.8%.

The TTC boasts that the city has one of the most heavily used transit systems

in North America in per capita terms (TTC 2008). In its recent report on the at-

tractiveness of Canadian cities, the Conference Board of Canada found that Toronto

was third in North America in its share of commuters using modes of transporta-

tion other than the automobile to get to work (Conference Board 2007). They place

Toronto, at 29%, slightly behind Montreal’s 30% in their ranking, but do not include

carpooling as an alternative mode of transportation. Toronto has the lowest share of

single-occupancy drivers in the sample at below 65%.

3.2 Montreal

The CMA of Montreal has a population of 3.6 million residing on a land area of over

4,000 square kilometres. The dataset provides 34,977 complete records for individual

commuters in which all relevant variables are mutually defined.

Public transportation is administered by the Société de Transport de Montréal

(STM) and consists of a multi-modal system including suburban rail lines that lead

commuters directly into the downtown core without requiring a transfer. Residents
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Table 2: Descriptive statistics - Commuters in Montreal CMA
Variable Mean Std Dev Range

Min Max

Age 37.77 12.32 15 85
Income ($) 33,732.48 29,116.56 -45,370 200,000
Commuting Distance (km) 10.87 8.81 2.5 35
Married 0.462 - 0 1
Immigrant 0.195 - 0 1
Single-Occupancy Driver 0.654 - 0 1
Children 0.594 0.616 0 1

Mutually Defined Observations 34,977

of the island of Montreal are served by the Métro subway network, whose rubber-

tired cars run on tracks spanning over 65 kilometres. A recent expansion of the its

Orange line brought service to the populous suburb of Laval, giving commuters the

opportunity to park-and-ride into downtown in order to avoid traffic and parking

difficulties. Since a dual-mode commute does not appear as an option on the Census

questionnaire, it is unclear how such users would report their commuting mode.

Montreal’s island geography makes the road network prone to bottlenecks on the

three principal bridges spanning the St Lawrence River. Travelers on large multi-lane

highways such as Highways 20 and 40 face blockages as they join constrained highways

running below grade-level into the downtown core such as Highways 10 and 15.

The share of married individuals in the sample is substantially lower than is

reported in Montreal and Toronto, and the share of first-generation immigrants is

nearly half the share observed in the other two cities. Commuters in the Montreal

CMA tend to travel a shorter distance than those in Toronto, and nearly 35% of them

do so using a mode of transportation other than the single-occupancy automobile,

only slightly lower than the share observed in Toronto.

3.3 Vancouver

The CMA of Vancouver is Canada’s third-largest urban region, with a population of

over 2 million on a land area of nearly 3,000 square kilometres. The dataset provides
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Table 3: Descriptive statistics - Commuters in Vancouver CMA
Variable Mean Std Dev Range

Min Max

Age 38.03 12.67 15 85
Income ($) 35,467.90 31,467.46 -30,000 200,000
Commuting Distance (km) 10.58 8.68 2.5 35
Married 0.619 - 0 1
Immigrant 0.418 - 0 1
Single-Occupancy Driver 0.717 - 0 1
Children 0.558 0.61 0 2

Mutually Defined Observations 19,002

19,002 individual records for which all variables of interest are mutually defined.

Both public transportation and the network of major roads in the Lower Main-

land are administered by the South Coast British Columbia Transportation Author-

ity, better known as Translink, a private contractor regulated by the provincial and

municipal governments.

While an above-ground Skytrain provides reliable service to the suburbs of Burn-

aby, New Westminster and Surrey, a number of important suburbs such as Richmond,

Delta and North Vancouver have no access to rapid-transit and face slow diesel-bus

commutes. A new rapid-transit line, scheduled to commence operations in 2010, is

being constructed to redress the lack of service on the important Richmond-Airport-

Downtown corridor. The West Coast Express commuter trains provide service from

the outlying eastern suburbs to the downtown core.

The city’s coastal geography, which features a number of bays and branches of the

Fraser River delta, mean that transportation between communities often requires the

use of bridges. While this causes serious congestion problems for automobiles, public

transit is not equipped to bypass these bottlenecks and thus does not provide an

advantage for commuters coming downtown from outlying communities. The Pacific

Gateway project, part of which aims to add road capacity to certain key bridges, has

been the subject of heated debate since it was announced in 2006.
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The sample is comprised of 41.8% first-generation immigrants, double that found

in Montreal but slightly lower than Toronto’s share. Vancouver reports the highest

share of commuters using single-occupancy vehicles in our study, but the near 30%

share of commuters using other modes of transport is still relatively high relative to

a larger sample of North American cities (Conference Board 2007). The distribution

of income among Vancouver commuters is similar to the rest of our sample, the mean

income being between that of Montreal and lower than Toronto.

4 A behavioural model of commuting mode choice

The construction of the model follows the original procedure for discrete choice mod-

eling in urban travel demand analysis developed by McFadden & Domencich (1975).

The comprehensive treatments of the subject by Ben-Akiva & Lerman (1985) and

Washington et al. (2003) include a number of clarifications and improvements of the

original methodology. Interested readers are encouraged to consult these texts for a

more detailed exposition.

4.1 Defining the partial equilibrium

The choice of commuting mode is linked to all other consumption decisions, but most

closely linked to the related decisions of where to live, how much to work, whether to

own a car, and at what time to commute. Estimating a general equilibrium model

which treats all these decisions as endogenous approaches intractability, and requires

a scope of data that is not readily available at sufficient resolution. In applied studies,

the choice of equilibrium framework employed is often motivated by the availability

of data. To make the problem manageable, it is assumed that an individual factors

his decision into smaller, more manageable problems, each of which depends only

on characteristics of close substitute goods (Phlips 1974). The choice of commuting

mode can be thought of as part of a multi-step decision making process, represented

in Figure 1.
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Figure 1: The Commuter’s Decision Making Structure

The top branch in the decision tree is assumed to be predetermined in the equi-

librium process of residential choice presented in Kraus (2006) and O’Sullivan (2007).

The monocentric city model makes the simplifying assumption that all jobs are lo-

cated in one - or a small number of - job centers. Households then choose their

residential location to maximize their utility subject to a budget constraint in a

trade-off between lower housing prices and higher commuting costs (O’Sullivan 2007,

155). Commuting distance can thus be equated with distance from the downtown

core and is predetermined with respect to the mode choice decision. This important

assumption allows us to estimate the McFadden model in the absence of data on

mode specific characteristics, as will be discussed in section 5.1.1. Urban research

confirms that the majority of jobs in Canadian cities are concentrated around the

central business district (CBD) and the city’s airport (Moos and Skaburskis 2008).

While some studies have attempted to endogenize the trip frequency and trip

scheduling decisions (Small 1982), such an approach requires data of a very high

resolution - ideally at the individual-trip level - which is usually limited to small

surveys. None dealing with Canadian cities is publicly available. The partial equilib-

rium approach assumes that labour market outcomes have been made and that the

mode-choice decision will not affect an individual’s decision of whether to work, or
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how much. This restriction may be interpreted as an upper bound on the ratio of the

cost of commuting to the wage, such that an individual’s demand for commuter trips

is perfectly inelastic within a reasonable range of prices. Finally, I take the decision

of when to commute to be exogenously determined1.

4.2 The Random Utility Model

Each individual has the same choice set of available transport modes for their daily

commute, which is denoted as J = {bus, drive, walk, bike, carpool}. Each individual

i has an ordinal utility function conditional on the choice of transport mode j ∈ J :

Uij = Ui(γi,φj|qj = 1);

where γi is a vector of relevant socio-economic characteristics of individual i, and

φj is a vector of relevant characteristics of mode j, to be specified in section 5.1.1.

Consumers select their optimal mode choice q∗j by maximizing utility subject to their

budget constraint. Since the mode-choice problem is discrete rather than continuous,

possible choices must be restricted to binary, mutually exhaustive values

∀j ∈ J : qj =

{
1 if mode j is chosen

0 otherwise.

Since only one mode is chosen,

qiqj = 0; ∀i 6= j, i ∈ J.

These constraints on the discrete model are equivalent to imposing a corner solu-

tion on the consumer’s maximization problem subject to a bounded continuous choice

variable, and such a problem cannot be solved by differentiation (Ben-Akiva and Ler-

man 1985, 44). Instead, the solution is characterized as a system of inequalities. The

individual evaluates the utility Uij(γi,φj) for all j ∈ J available within their budget

constraint and chooses mode a when it offers a higher level of utility than all other

1Working hours are usually determined by the employer.
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available modes. The indirect utility function Via corresponding to mode choice a ∈ J

is defined as a function of income Ii:

Via(γi, φj, Ii) = Uia ≥ max
J
{Uij} s.t.

∑
J

pjqj ≤ Ii. (1)

where pj is the financial price of commuting using mode j. The utility function used

thus far is deterministic by construction, since it is assumed that each individual has

access to all information relevant to their decision. Some of these preference variables

are not measurable by the researcher, however, and this unobserved heterogeneity

among individuals is incorporated by treating the utility function as a random vari-

able. The simple random utility specification proposed by Manski (1977) is adopted:

Ṽij = Vij + εij; (2)

where the random component εij has E[εij] = 0, such that the expectation of the

random utility term Ṽij is equal to the systematic term Vij. Parameters of the indirect

utility function are then estimated within a random utility maximization (RUM)

framework. When mode a is observed to have been chosen by an individual i, the

following choice-probability relationship holds:

Pa(i) = Pr(a|γi,φ)

= Pr(Ṽia > Ṽij; ∀j 6= a, j ∈ J)

= Pr(Via + εia > Vij + εij; ∀j 6= a, j ∈ J)

= Pr(εij − εia < Via − Vij;∀j 6= a, j ∈ J)

= F (Via −max{Vij, j 6= a}). (3)

The final line specifies the general utility-difference choice model, where F () is

the joint cumulative distribution function of the difference εij − εia. Since the Via

terms are non-random, all that is required to complete the model specification is an

assumption about the distribution of the difference in the random utility components.
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The choice of F () is restricted to functions which bound the choice probability

between 0 and 1. Three commonly used functional forms that satisfy the unit condi-

tion are the cumulative normal, yielding the probit model, the logistic distribution,

yielding the logit model, and the Cauchy distribution, yielding the arctan model.

Each of these distributions yields very similar predictions except for values very close

to 0 and 1. The Cauchy distribution has thick tails and is ill behaved for values on the

tails of the distribution. Both the logistic and normal distributions yield very simi-

lar results, but the cumulative normal cannot be expressed in closed-form and thus

requires solving an integral numerically in order to make predictions. Consequently,

the logistic distribution is adopted to ease further manipulations.

A specification must be chosen for the distribution of the individual random util-

ity components εij that will yield a logistic joint cumulative distribution. Domencich

and McFadden (1975, 63) present a proof which shows that if random variables εij

are independent and follow an extreme value distribution2, then it follows that an in-

dividual’s choice probability for a given outcome has the desired logistic distribution:

Pa(i) = Pr(Via + εia > Vij + εij,∀j ∈ M)

=
eµVia−αa

∑
eµVij−αj

=
eVia

∑
eVij

. (4)

The Weibull distribution has variance parameter µ and scale parameter αj. Since

these parameters cannot be identified when utility is linear in its parameters, the usual

practice is to consider them as mode-specific characteristics by normalizing to one and

zero, respectively (Domencich and McFadden 1975, 65). This procedure involves no

loss of generality and implicitly considers the parameters embedded in the parameters

defining Vij.

The specification given in equation (4) is known as the multinomial logit (MNL)

2Two types of extreme value distributions are more commonly known as the Gumbel and Weibull
distributions.

16



model, and is general to any number of discrete alternatives in the set J . The con-

sistency of the model depends on the assumption of the independence of irrelevant

alternatives (IIA), which states that the odds ratio between any two modes Pa

Pb
is

independent of all other alternatives. This implies that the choice probabilities for

all modes have uniform cross-elasticity of demand with respect to an attribute of a

new alternative.

The worrisome implications of this assumption was first pointed out by (Debreu

1960). Consider a mode-choice situation where a new alternatives is introduced with

unobserved characteristics similar to those of an existing alternative, but unlike those

of other modes3. For instance, a light-rail line is introduced and competes with an

articulated bus service, both of which are subject to unmeasured cramped conditions

at peak hours. According to the IIA assumption, both car and bus service see a

uniform decrease in their choice probabilities. It is more likely that the bus service

experiences a larger decrease in mode share than the automobile, since the new rail

service is viewed by consumers as being very similar to the bus (Kanafani 1983).

The estimation of a MNL model should be preceded by a simple test to validate

the IIA assumption, as proposed in McFadden (2000). In this paper I am interested

in explaining an individual’s choice of commuting in a single-occupancy vehicle versus

the choice of using any other mode. Rather than considering all modes as separate

possible outcomes, and estimating each of their choice probabilities, the general MNL

model in equation (4) is restricted to the following binomial specification:

Pa(i) = Pr(εia − εij > Via − Vij)

=
eVia

eVia+eVij

=
1

1 + eVia−Vij
; (5)

where mode a is driving in a single-occupancy vehicle, and mode j is the best mode

3Debreu’s example was even more stark than the one I present here: that of a red bus and a blue
bus.
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for individual i in the set of alternatives A = {bus, walk, bike, carpool} ⊂ J . The IIA

assumption is not required in this binomial specification, since the probability of a

mode being chosen depends only on the difference in utility between it and the next

best mode. The introduction of a new mode will not affect the choice probability if

it possesses inferior characteristics to an existing alternative (Washington, Karlaftis

and Mannering 2003, 274).

5 Econometric Specification & Estimation

5.1 Specifying the Utility Function

A generic functional form for the mode-conditional utility function has been used so

far. In order to facilitate estimation, I assume that indirect utility is linear in its

parameters4:

Vij = V (γi, φj, Ii) = β1φj + β2jγi; (6)

where β1 is a vector of parameters with the same dimensions as the vector of mode

characteristics φj, and β2j is a vector of parameters specific to mode j, with same

dimensions as the vector of individual characteristics γi. While parameters for mode

characteristics are restricted to equality between modes, parameters for socioeconomic

characteristics are allowed to vary by mode. While the additively separable form

may seem restrictive, note that the function must be linear in the parameters to be

estimated, but need not be linear in its explanatory variables. Useful transformations

will thus be possible. The following sections will specify the components included in

vectors φj and γi.

5.1.1 Commuting distance as a proxy for mode characteristics

In McFadden’s original model, the vector of mode characteristics φj includes the

individual’s travel time and financial cost incurred by using each of the available

4This is the most common parametric specification used in the literature (Small and Verhoef
2007).
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modes. Since the location of individual households is not reported in public use census

data, values for these characteristics are not available. Estimating the model without

these variables, and without accounting for differences in mode service levels, would

create inconsistent results due to omitted variables. This lack of data has precluded

Canadian applications of the McFadden model.

Recall the monocentric city assumption adopted in section 4.1, which states that

all jobs are located in the CBD. It is thus possible to construct a proxy variable to

capture the difference in infrastructure availability between modes without knowing

geographic location. The 2001 Census asks respondents to provide the distance they

commute in kilometers. The assumption about job concentrations implies that com-

muting distance should be equivalent to distance from the urban core. Distance from

the CBD, in turn, is a proxy for service quality between modes. In order to effectively

use the commuting distance variable, it is necessary to guess the functional form of

the relationship between distance to CBD and difference in service quality across

modes.

The usual assumption made in urban economics models is that individuals face

transport costs that are linear in distance (O’Sullivan 2007). A more careful consider-

ation suggests that the relationship is unlikely to be linear and with a zero intercept.

While the cost of fuel used while driving is roughly linear in travel distance, the finan-

cial cost of travel on public transit is often invariant to distance. Demand estimates

from Small & Verhoef (2007) suggest that time spent waiting for transit is perceived

to be costlier than time spent riding the bus, such that time costs for bus travel are

concave in distance commuted. Conversely, increased wait times for transit in outly-

ing areas imply a convex time cost-distance relationship. For drivers, road congestion

near downtown makes travel near the urban core costlier than the the same distance

traveled in the outer perimeters of town, but the functional form depends on the

structure of the road network and traffic volumes.

While the functional form for the relationship between cost and distance for

19



each mode is difficult to establish, the explanatory variable of interest for the utility

difference model is the divergence between the cost of driving and other modes, whose

functional form is even more difficult to hypothesize. Since we do not have compelling

evidence in defense of a specific functional form for the relationship between the cost

difference and commuting distance, second and third-order transformations of the

distance term are included in an attempt to capture any potential non-linearity.

There is debate about how to incorporate interactions between income and costs

into the utility specification. To capture the idea that high-income earners will be

less influenced by differences in financial cost between modes, authors include a term

equal to the financial cost divided by the wage. The recognition that high-income

earners tend to have higher time costs prompt the inclusion of a term equal to the

product of wage and travel time (Train and McFadden 1978). Unfortunately, data

limitations do not permit the inclusion of such terms into the model.

5.1.2 Socioeconomic characteristics

The vector of personal characteristics γi includes variables which have been identified

in previous research as possible indicators of a propensity towards a particular mode.

An overview of descriptive tabulations of variables in relation to mode choice in

Canadian cities is provided in Heinsz & Larochelle-Côté (2005).

Personal income provides a proxy for an individual’s valuation of time, where

higher income earners are expected to favor a faster mode of transportation than

low income earners. It also provides a measure of access to more expensive modes

through the budget constraint. Marital status and the number of children in the

individual’s family are thought to influence an individual’s neighborhood choice, and

thus their access to transit. Married couples with children tend to reside in prefer

quieter areas, which have inferior access to transit even when distance from the CBD

is controlled for. They are also likely to have a higher valuation for time than singles,

so are expected to favor a faster mode.
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Age and gender may affect an individual’s preference for perceived security and

convenience. Immigrant status is thought to affect an individual’s unobserved social-

ized preferences towards different modes. For instance, immigrants arrive in Canada

from countries in which public transportation is pervasive throughout society, and

thus perceive the use of buses differently than a native Canadian socialized in a car-

centric society.

Car ownership is equivalent to a cost associated with automobile commuting,

where lease payments are equivalent to the cost of a public transit pass, and is thus

considered a mode-specific variable. These costs are not included directly as deter-

minants of mode choice since (i) data of a sufficient resolution is not available to

implement a satisfactory treatment, and (ii) they are very similar across households

and cities within Canada and thus are unlikely to add much explanatory power. Car

ownership has been modeled as an exogenous determining factor in the mode choice

decision, as well as in a structured logit framework on sequential choice (Train 1980).

As discussed in Train’s paper, the inclusion of such a variable in regression analysis

is problematic because it is likely to be endogenous to the mode choice decision -

individuals wanting to commute by car must first purchase a vehicle.

City fixed effects are included to account for infrastructure differences between

the cities, and city-level omitted variables such as climate.

5.2 Econometric Specification

Substituting the additive utility function given in equation (6) into the general bi-

nomial logit model specified in equation (5), the econometric model to be estimated

is

Pa(i) =
1

1 + exp[(β1φa + β2aγi)− (β1φj + β2jγi)]

=
1

1 + exp[β1(φa − φj) + (β2a − β2j)γi]

=
1

1 + exp[β(φa − φj) + δγi]
. (7)
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Rewriting the utility difference makes the interpretation of the parameters being

estimated explicit. Each parameter in the vector β measures the effect of the differ-

ence in a mode characteristic on the probability of choosing mode a over j. Specifi-

cally, the parameter measures the propensity to choose single-occupancy driving over

alternative modes as the commuting distance is increased and service quality affected.

The vector of parameters δ estimates the diverging effects of a socio-economic char-

acteristic on the probability of choosing mode a over j. The parameters are estimated

by maximizing the following log-likelihood function over the sample of size I:

`(δ,β) =
I∑

i=1

[qai log Pa(i) + (1− qai) log(1− Pa(i))]; (8)

where Pa(i) is given by equation (7), and qai is the indicator variable for individual i

making choice a.

5.3 Specification Tests for Parameter Consistency Across Cities

The specification of the model given in equation (7) assumes that explanatory vari-

ables have the same marginal effect across city groups on the choice probability. Since

the model depends on an abstraction regarding urban form and commuting distance,

it is of interest to relax the specification so that parameters can vary between cities.

The hypothesis that all parameter estimates are equal across city groups is tested

against the alternative that they are different. The procedure, outlined in Ben-Akiva

and Lerman (1985, 195), is a simple application of a likelihood-ratio test for market

segmentation. Equation (7) is estimated by maximum likelihood over the whole

dataset as the restricted model5, and a competing unrestricted model is estimated

separately for each city samples using the same specification, but without the inclusion

of city dummy variables. The specification of the unrestricted model is:

Pa(i) =
1

1 + exp{∑c ic(β(φa − φj) + δγi)} ; (9)

5A full table of estimates is provided in Appendix A.4
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Table 4: Likelihood Ratio Test for Parameter Equality Between City Groups
Model Log-Likelihood df

H0: Pooled -60,126.60 11
Montreal -19,763.04 9

H1: Vancouver -10,419.67 9
Toronto -29,761.98 9

where ic is an indicator - or dummy - variable equal to one when an observation

belongs to city c and equal to zero otherwise. The models are estimated by maximizing

the log-likelihood function given in equation (8), and the results presented in Table

4.

The likelihood-ratio test statistic is:

t = −2[`R(δR,βR)−
∑

c

`U c(δU ,βU)] = 363.81;

where `R is the log-likelihood of the model estimated on the full sample of size

I, and `U c the log-likelihood for the model estimated on the sub-sample in city

c = {Mon, V an, Tor}. The test statistic t is asymptotically distributed as χ2(16)

, where the degrees of freedom correspond to the number of restrictions imposed.

The null hypothesis that coefficients are equal across city groups is rejected at the

0.01 confidence level.

Differences in road and transit infrastructure will cause commuting distance to

affect the mode-choice decision differently between cities, but an argument for city

heterogeneity in the effects of socio-economic characteristics is not compelling. A third

model is introduced in which only the distance commuted parameters are allowed to

vary between cities. The distance variables are interacted with each city dummy

variable to obtain the model:

Pa(i) =
1

1 + exp{[(φa − φj) +
∑

c[ic]βδγi]} .

Since it is not possible to identify both of the parameters in the interaction terms,
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the choice probability is written with a new parameter:

Pa(i) =
1

1 + exp{[(φa − φj) +
∑

c βcγi]} ; (10)

where βc is a vector of city-specific parameters equal to the interaction term icδ. A

likelihood-ratio test is then carried out to test the hypothesis that model 1, the re-

stricted model, is actually nested in model 3, the unrestricted model. The maximized

value of the log-likelihood function for the unrestricted model was -60,041.35, and a

test statistic is computed:

t = −2[`R(δR,βR)− `U(δU ,βU)] = 170.50.

The likelihood-ratio test statistic t is asymptotically χ2(4) distributed. The null

hypothesis is rejected at the 0.01 level, such that Model 3 is preferred to Model 1.

Models 2 and 3 were tested against each other using a similar procedure, and

the maximized log-likelihood values and appropriate degrees of freedom reported pre-

viously allow the reader to confirm that Model 2 is in fact preferred to Model 3.

The evidence from Bhat (2000) suggests that unobserved individual heterogeneity is

important, such that relaxing the restrictions on model parameters always improves

the explanatory power of the model. However, there is no reason to suppose that

socioeconomic characteristics vary by city rather than by any other category, such as

income group or ethnic origin. Given the lack of theoretical motivation for the range

of flexibility allowed in Model 2, the specification of Model 3 given in equation (10)

is adopted.

5.4 Model Estimation

As described in section 4.2, a property of the MNL model is that the random distur-

bance terms are drawn from independent extreme value distributions. This ensures

that the choice probability follows the logistic distribution. Estimating the model

when this property is violated leads to inconsistent choice probabilities and incon-

sistent parameter estimates. If the use of commuting distance as a proxy for mode
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service levels is inappropriate or inadequate, then the omitted mode characteristic

variables will cause heteroskedasticity due to model misspecification, and inconsis-

tent estimates (Washington et al. 2003, 276).

It is desirable for standard errors to be robust to weaknesses in the monocentric

city assumption, even if it is valid. White standard errors are used to control for

heteroskedasticity of unknown form. Furthermore, clustered standard errors allow

for the correlation of random disturbances within city groups. Under this procedure,

the variance-covariance matrix is in the form of three boxes of non-zero elements

centered on the principal diagonal, while covariance across city groups is assumed to

be zero.

While the sign of logit estimation coefficients indicate the direction of their effect,

interpretation of their magnitudes relative to the choice probabilities requires a trans-

formation. Marginal effects are computed numerically by varying the independent

variable of interest slightly around its mean value and measuring the perturbation in

the predicted probability of choosing the single-occupancy automobile.

While the third-order transformation of commuting distance was found to be

insignificant, the second and first-order terms were important, suggesting a quadratic

approximation is a better description of the data than a simple linear relationship.

To demonstrate the difference in magnitude between the effect of distance commuted

between cities, the joint marginal effects are computed for the first and second-order

terms. An increase of 5 kilometres in the distance between an individual’s home and

place of work increases the probability of selecting the automobile as the commuting

mode by 6.5% in Toronto, 7.9% in Montreal, and by 9.1% in Vancouver.

All the variables in the vector γ are significant determinants of the choice prob-

ability. As expected, higher income earners are more likely to drive to work alone.

The result supports the intuition that higher income earners (i) are more likely to be

able to afford a personal car, or (ii) have a higher time valuation which makes the

fastest mode more appealing. As discussed in section 5.1.1, the difference between the
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Table 5: Model 3 - MNL Estimates for the Choice of Driving to Work in a Single-
Occupancy Automobile

Parameter Estimate Robust Std. Err. p-value dy
dx

(at mean)

Income ($1,000) 0.00998 0.00147 0.000 0.00214
Distance (km):

Toronto 0.06811 0.00047 0.000 0.01462
Montreal 0.07908 0.00103 0.000 0.01698
Vancouver 0.09676 0.00032 0.000 0.02077

Squared-Distance (km2)
Toronto -0.00142 0.00003 0.000 -0.00031
Montreal -0.00111 0.00001 0.000 -0.00024
Vancouver -0.00242 0.00002 0.000 -0.00052

Age 0.02108 0.00216 0.000 0.00453
Children 0.32958 0.03077 0.000 0.07075
Immigrant Status -0.55096 0.07381 0.000 -0.12065
Marital Status 0.20897 0.09935 0.035 0.04508
Male 0.60597 0.03458 0.000 0.12959
Montreal FE -0.47555 0.02255 0.000 -0.1047
Toronto FE -0.27403 0.00318 0.000 -0.05886
Constant -1.0357 0.0545 0.000 -

N 104,873
Clusters 3

Correctly Predicted 74,277
Success Rate 70.83%

speed of the car relative to the speed of transit will vary according to distance from

downtown. Despite heavy congestion on rush hour roads, it is likely that commuting

by car is a faster alternative to transit for most users.

Each additional child6 increases an individual’s probability of commuting by

single-occupancy automobile by 7.1%, while marriage increases it by 4.5%. It appears

that individuals with children either (i) select quieter or lower density neighborhoods

with poorer transit access, even controlling for commuting distance; or (ii) have a

stronger preference for the faster mode because they have additional commitments

outside their job.

City fixed effects are found to be important and of substantial magnitudes: Mon-

treal commuters are nearly 10.5%, and Toronto commuters nearly 5.9% more likely to

6Recall that data on children is censored at a maximum of 2 per individual.
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use alternative transit than those in Vancouver. These results indicate the city infras-

tructure’s bias towards the automobile relative to public transit. Despite a temperate

climate, the extensive efforts of urban planners to create a mixed land-use policy in

the downtown core, and intentional avoidance of a major highway network, Vancouver

is found to be most favorable to single-occupancy commuting in the sample.

Interestingly, immigrants are found to be twelve percent less likely to commute

using a single-occupancy vehicle than native Canadians, even when income and other

factors are controlled for. This provides evidence for the hypothesis that immigrants

have been socialized with different preferences towards transportation which either

discourage the use of the automobile, or, more likely, normalize the use of public

transportation and the sharing of personal space. Another possible explanation is

that recent immigrants tend to live in ethnic enclaves, often of higher density than

the standard suburb and thus better served by transit.

5.5 Post-estimation tabulations

The effectiveness of the model is examined by calculating its success rate at predicting

mode choice outcomes. If an automobile driver is predicted to have a probability of

driving higher than 0.5, or a user of another mode is predicted to choose the car with

a probability smaller than 0.5, then the individual’s choice is considered to have been

successfully predicted. According to this procedure, the model successfully predicts

over 70% of the 104,873 observations in the sample.

A closer examination of the individuals correctly predicted versus those incor-

rectly predicted reveals a potential deficiency. The model is far more successful at

predicting the choices of car drivers than users of other modes. The “wrong” mode is

predicted more prevalently for individuals with lower income, who are younger, who

are more likely to be single, have fewer children, and commute a shorter distance.

These observations provide preliminary evidence that the model has difficulty pre-

dicting the mode choice of people living downtown, although there is insufficient data
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Table 6: Comparing Samples of Predicted Values
Variable Success Incorrect Difference

Single-Occupancy Commuters 0.833 0.246 0.587
Income ($) 38,990.21 29,184.45 9,805.76
Distance Commuted 12.16 10.19 1.97
Age 38.34 35.97 2.37
Gender Ratio (m

f
) 0.84 1.45 -0.61

Children 0.63 0.52 0.11
Marital Status 0.59 0.49 0.1
Sample Size 74,277 30,596

to verify this claim with precision at this stage of the analysis.

This section has estimated the effect of socioeconomic characteristics and com-

muting distance on the mode-choice decision, despite data limitations on mode specific

characteristics. To avoid model misspecification from omitted variables, a monocen-

tric city framework is assumed, and the distance commuted variable is then included

to capture service differences between modes. While this method does not allow for

the evaluation of a full demand curve from which elasticities for time and quality char-

acteristics can be calculated, it is hoped that this crude approach captures sufficient

variation to avoid inconsistency due to omitted variables. If the distance variable

does not capture enough variation in the difference between mode characteristics, or

it is incorporated with the wrong functional form, then the model is misspecified and

MNL estimates are inconsistent (Washington et al. 2003, 276).

To investigate the effectiveness of the model across spatial dimensions, it is neces-

sary to use data aggregated at the census tract level for which geographic boundaries

are known.
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Table 7: Panel Dimensions
Toronto Montreal Vancouver Total

1996 803 756 297 1,856
2001 924 846 385 2,155
2006 994 860 408 2,262
Total 2,721 2,462 1,090 6,273

6 Predicting Mode Shares Under Aggregation

6.1 Aggregate Data

This section uses aggregate data from the Canadian Census of Population from the

years 1996, 2001 and 2006 - the only years in which information about commuting

mode choice was collected. Data is reported at the census tract level. A census

tract comprises between 2,500 and 8,000 individuals and have highly variable areas.

While data of higher resolution is available at the census dissemination area level,

it is subject to stricter confidentiality constraints which result in a large number of

missing observations, with a bias towards areas with low population density.

Table 7 reports the number of census tracts available for analysis of the commut-

ing mode choice decision. Variables reported in the census tract level are reported

continuously, and descriptive statistics are provided in Table 8. Nominal gross in-

come is reported for the calendar year previous to the census. Nominal income values

are converted to real values using the national consumer price index’s full basket of

goods, with 2001 as the base year for the purpose of consistency with the previous

estimation results. The age and gender share variables correspond to commuters only,

not to the general census tract population.

Average commuting distance corresponding to the variable available in the micro-

data files is not provided. I proceed by assuming that jobs are located in one or

a small number of centres in each city. A variable is constructed from available

data to approximate commuting distance. The Statistics Canada study by Heinsz &

LaRochelle-Côté (2005) found that the two most important zones of job concentration
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Table 8: Summary statistics - Canadian Census of Population - Census Tracts in
Vancouver, Toronto & Montreal 1996-2006

Variable Mean Std Dev Min Max

Share using car 0.6343 0.1808 0 1
Est Avg Distance (km) 11.56 6.928 0.1049 49.668
Children per family 1.1601 0.2655 0.1304 4
Share Married 0.6128 0.169 0.0769 1
Real Income (2001$) 31,494.64 15,177.26 0 281,573.50
Share of Immigrants 0.3263 0.1872 0.0053 0.8165
Average Age 37.69 4.25 26.28 63.74
Share Male 0.5296 0.0343 0.333 1

Mutually Defined observations 6,273

in all of Montreal, Vancouver and Toronto are the area around the downtown core,

and, more surprisingly, the area surrounding the airport7, but that there has been

trend toward dispersed suburban employment locations. This research rests on the

use of a dualcentric city approach as an approximation of urban form in order to

calculate unobserved commuting distances from geographical points.

The latitude and longitude coordinates of the centroid of each census tract are

provided by Statistics Canada, and allow for the calculation of the distance between

each tract and the city’s job centres8. The geographic coordinates used for the CBD

were taken from Danyluk and Ley (2007), and correspond to the point of peak land

value for each city. Airport coordinates are from the International Aviation Trans-

portation Authority (IATA).

The distances between the census tract centroid and each job centre in its city

- the CBD and the airport - are calculated. A line-of-sight distance is computed

using the Haversine formula to account for the Earth’s curvature and the uneven

spacing between meridians, as described in Appendix A.1. The geography of our

7Heinsz & LaRochelle-Côté (2005) report the share of total CMA jobs in the zones surrounding
the CBD and airport, respectively, as follows: Vancouver - 20.3% and 10.4%; Montreal - 15.8% and
11.5%; Toronto - 16.9% and 14.3%

8It should be noted that the centroid of a non-convex shape sometimes lies outside the shape
itself, such that the geographic coordinates provided could be improved by obtaining the coordinate
of maximum population density within the tract

30



Table 9: Constructing an Estimate for Commuting Distance
Toronto Vancouver Montreal Total

Avg Reported Distance 12.46 (9.94) 10.57 (8.68) 10.87 (8.81) 11.59 (9.39)
Approx. Avg. Distance 25.49 (14.15) 21.54 (13.53) 17.83 (11.37) 22.55 (12.59)
Rescaling Factor 0.489 0.491 0.61

cities often impedes direct travel, however, such that a better measure of commuting

distance can be obtained by calculating the distance between residence and workplace

over the physical road network. To do this, Navtek’s comprehensive database of street

networks and the ArcGIS software package were used to compute the shortest driving

distance between each census tract and both the airport and CBD, as described in

Appendix A.2.

The average commuting distance for each census tract was then computed using

a split function in order to avoid overestimating the commuting distance for people

living very close to the airport or the CBD. For census tracts within five kilometres

of either job centre, the distance to the closest centre was used. For census tracts

outside these two zones, a weighted average of the two distances was computed where

the weights correspond to the destinations’ respective job concentration shares, as

reported by Heinsz & LaRochelle-Côté (2005).

To determine whether the average distance computed is indeed representative of

the commuting distances reported by individual households in the 2001 Census micro-

data files, their values were compared. As expected, the distance computed is larger

than the reported value due to the simplifying assumption that job locations which

ignores the existence of numerous employers in suburban areas. The estimates are

rescaled by city using the ratio of means of the average reported commuting distance

to the computed average commuting distance, as shown in Table 9. This ensures that

the computed commuting distances are of a comparable scale to the actual values,

while preserving the heterogeneity between census tracts in their distance from the

job centres. Without this rescaling, the magnitude of the coefficients from the micro
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model would not correspond to the constructed variable, and mode share predictions

would be biased.

An important portion of commuting cost is incurred due to the time consumed

by the activity. As was discussed in Section 5.1.1, the ideal variables for analysis

are the difference between drive, transit, bicycling and walking times across modes

for a given census tract’s likely commuting route. While location data is omitted

from census micro data files to maintain anonymity, computing these variables for

aggregated observations using geographic coordinates is feasible. It is currently pos-

sible to calculate the driving route that will minimize drive time between two points

using rough approximations for peak-period congestion, but data is not yet publicly

available for computing the same problem over the transit network. The arrival of

online mapping tools such as Google Maps and OpenStreetMaps has already made

this data available for certain cities in the United States, and will likely do so for

major Canadian cities in the near future.

6.2 Aggregation procedure

Observations in the data represent averages over the population of the tract Nt.

To predict mode shares in census tracts, the behavioural MNL model specified in

equation (10) is aggregated using an average individual procedure (Ben-Akiva and

Lerman 1985, 135). A forecast of the share of total demand for mode a in census

tract t can be obtained as an average of the individual choice-probabilities:

E[Sa(t)] =
1

Nt

Nt∑
i=1

Pa(i|γi, φ). (11)

When predicting mode-shares for aggregated areas, however, each individual’s full

vector of characteristics γi cannot be observed. The amount of information required

to estimate E[Sa(t)] can be reduced - at the expense of efficiency - by creating T

representative individuals possessing the average characteristics of the Nt commuters

in census tract t. The average individual representing tract t is assumed to have the
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Figure 2: Prediction bias due to averaging

indirect utility specification

V̄ta = Via(γ̄t,φj); where γ̄t =
1

Nt

Nt∑
i=1

γi. (12)

Since the logit choice probability model is non-linear, predictions using the aver-

age of individual probabilities will be biased. For values where the logistic function is

convex, the prediction will be biased down. Conversely, for regions where the logistic

function is concave, the averaging procedure will tend to be biased up. A graphical

representation of this result is reproduced from Ben-Akiva and Lerman (1985, 136)

in Figure 6.2.

To illustrate the intuition behind this bias, consider an example of two census

tracts. In the first, there are a large group of low-income households as well as a small

group of high-income professionals. In the second, there is a homogeneous population

of middle-class commuters. The two tracts have the same average income, such that
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the averaging procedure predicts an identical mode share based on that parameter.

However, the true share of automobile use is likely to be higher in the second tract than

in the first, since individuals with income far below the sample mean will have much

lower choice probability than individuals near the mean. This bias could be reduced

by incorporating information about the distribution of the descriptive variables within

census tracts.

While Statistics Canada defines census tracts geographically, with an aim of

maintaining consistency over time, they do also make some effort to group together

individuals of similar socioeconomic status (Moos and Skaburskis 2008). The appli-

cation of an average individual with census tract level data can thus be thought of as

a loose classification procedure, in which individual groups are formed on the basis

of minimizing within-group variance in a certain important characteristic to reduce

the loss of resolution that results from averaging over the group.

If the parameter estimates calculated in the previous section do an adequate job

of describing the data, aggregate mode shares can be predicted using the averaged

characteristics reported in each tract. The representative utility function given in

equation (12) is substituted into equation (11) to specify the expectation of the share

of individuals in census tract t using mode a as a function of the MNL estimates:

E[Sa(t)] ≈ Pa(t|γ̄t, φ̄, δ̂, β̂) =
1

1 + exp(−δ̂γ̄t − β̂φ̄)
. (13)

Predictions of the expected share of commuters using single-occupancy vehicles

are computed using equation (13). They are then compared to their average values

to measure the accuracy of predictions. The residual error ut for tract t is computed

as the difference between the predicted and observed mode share:

ut = E[Sa(t)]− Sa(t). (14)

Residuals for the entire sample have a mean of 0.05, indicating that the aggregation

procedure has biased estimates in favor of single-occupancy driving. This is consistent
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Figure 3: Histogram of Prediction Residuals for Vancouver

with the observation that most of the observed shares of commuter using automobiles

lie in the concave portion of the cumulative logistic distribution, with values closer

to 1. It may also be an indication that the MNL model has been misspecified:

either important variables have been omitted, or the functional form of some variables

has been incorrectly modeled. This bias is small and very similar across cities, and

residuals for Vancouver have a mean of 0.045. A histogram showing the distribution

of residuals for Vancouver is shown in Figure 3.

6.3 Spatial Analysis

Given the simplifying assumption about urban job concentrations, which assumes a

homogeneous decrease in service quality with distance from CBD, it is of interest to

examine how these residuals vary spatially across the city region. This will provide

a pictorial overview of the relative success of the prediction procedure. The residuals

were divided by city and classified by quantile groups - colour labels were then assigned

to ease their identification when plotted.

• Between the 100 and 90 percentile: Red

• Between the 90 and 75 percentiles: Orange
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• Between the 25 and 75 percentile: Green

• Between the 25 and 10 percentiles: Baby blue

• Between the 10 and 0 percentiles: Navy blue

Each census tract was plotted onto a map with its colour representing the relative

size of its prediction residual. The map of Vancouver is included in Figure 49. Upon

examination of the geographic plot for Vancouver, several interesting observations

can be made:

1 Car use is overpredicted for nearly all tracts in the downtown core.

2 Car use is overpredicted for three groupings of tracts lying diagonally to the

south-east of the downtown core. These surround the major transport hubs of

Metrotown, New Westminster and Surrey, along the city’s rapid transit Skytrain

line.

3 Car use is underpredicted for a large group of tracts located to the south of

downtown in the municipality of Richmond.

4 The large majority of tracts in a band of medium density outside the CBD are

well predicted.

5 Census tracts near major geographic bottlenecks are well predicted.

9Maps for Montreal and Toronto are included in Appendix A.3
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Figure 5: Prediction Residuals vs. Commuting Distance for all cities
with Lowess-smoothed trend

The systematic groupings of outliers identified above signal both the success and

the shortcoming of the model. The assumption of a binodal city implies that distance

from downtown is homogeneously related to service quality. While this may be a

satisfactory simplification, it does not capture the effects of rapid-transit lines, which

offer increased service quality to neighboring residents despite their distance from the

CBD. This unobserved heterogeneity explains the outliers located near Metrotown

and New Westminster, and those in areas under-serviced by transit such as Rich-

mond. However, the systematic groupings of outliers are to be expected given the

information used and these intuitive results indicate that while not all variability can

be explained using available data, the estimations of socioeconomic characteristics do

provide sensible predictions for a wide range of observations.

The plots for Montreal and Toronto also show that car use is overpredicted in

downtown plots and underpredicted in outlying areas, but the model performs well

for a wide belt in the inner suburbs of all the cities. A plot of prediction residuals

for census tracts in all cities against their computed commuting distance, provided
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in Figure 5 suggests that additional non-linearity remains between mode choice and

commuting distance despite the inclusion of second and third-order terms in the para-

metric model. The amounts to misspecification of the functional form of commuting

distance in the model, and signals the need for a non-parametric treatment of the

variable.

7 Conclusion

A shortage of publicly available data on road congestion, transit network times, and

individual residential locations limits the scope of policy questions which can be ad-

dressed through econometric analysis of commuting in Canada’s global cities. This

has precluded the use of McFadden’s powerful MNL model for disaggregated com-

muter travel in Canada. Despite this limitation, this paper has shown that sensible

predictions of mode share are possible if the researcher is willing to make a simplifying

- and heroic - assumption about urban form.

In Section 4, a modification of McFadden’s MNL model is specified by adopting

the urban economic framework of an equilibrium city with one or two job centres. This

assumption allows information about commuting distance to be related to a measure

of service quality for public infrastructure. This allows us to estimate the effects of

socioeconomic characteristics on the mode choice decision while controlling for mode

specific characteristics which are not publicly available. Many common beliefs about

mode preferences are confirmed by the estimates - namely that alternative modes

are preferred by individuals with lower income, who are unmarried, are younger and

have fewer children. Even when controlling for these and other important factors,

immigrants are found to be 12% less likely to commute by single-occupancy vehicle

than their counterparts who are born in Canada. This provides evidence for the

existance of the North American “car culture” often cited in mass media. Toronto

and Montreal are found to have urban infrastructure that favor the use of alterative
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modes substantially more so than Vancouver.

In Section 6, an aggregation procedure is presented which allows for the pre-

diction of mode shares across census tracts. There are three likely sources of bias

in the predictions: (i) the use of an averaging procedure in a non-linear model, (ii)

inconsistent MNL estimates due to specification error from omitted variables, and

(iii) inconsistent MNL estimates due to misspecification of the functional form for

distance commuted. However, the relatively small size of this bias (less than 5%)

suggests that the procedure still provides useful results for analysis of commuters in

Canada’s global cities.

A spatial analysis reveals that while some systematic errors have been made in

the specification, the dualcentric city assumption may have captured enough vari-

ability in service access for the model to make sensible predictions despite potential

inconsistency. It will become possible to resolve the model’s shortcomings within the

next few years as more network data is made publicly available.
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A Appendix

A.1 Haversine Formula

An accurate calculation of the distance between two sets of geographic coordinates
must measure the length of an arc along a spherical surface in order to account
for the convergence of the meridians and curvature of the Earth’s surface. While a
Cartesian approach using Pythagorus’ theorem provides a reasonable approximation
if the points are very close together, this is unsatisfactory as the CMAs considered in
this paper cover spans of over 100kms.

The Haversine Formula was introduced by astronomer Sinnott (1984) as a com-
putationally well-behaved method of completing the task under the approximation
that the Earth is spherical, and was recently recommended by Chamberlain (1996)
as the preferred method for calculating the great-circle-route distance between points
x(latx, longx) and y(laty, longy).

Let

R = radius of the Earth at x

= 6, 378km− 21 sin (latx)

∆lat = laty − latx

∆long = longy − longx

a = sin2 (
1

2
∆lat) + [cos (latx) cos (laty) sin (

1

2
∆long)]

c = 2 sin−1 (min{1,√a}).

Then the distance between x and y in kilometres is given by

d = R× c.
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A.2 GIS Methodology

The ArcGIS 9.2 software suite from ESRI, the industry standard in geographic infor-
mation systems, was used for spatial analysis, and to generate the variables estimating
travel distance in the aggregate data set. The following work-flow was carried out:

1 The Navtek 2006 Canadian road network and administrative boundary data
were used as the basis for the construction of the city maps.

2 The North American Datum (1983) geographic coordinate system was used as
the spatial reference

3 All data points were projected using a Universal Transverse Mercator transfor-
mation specific to the city’s zone: Vancouver, UTM zone 11; Montreal, UTM
zone 19; Toronto, UTM zone 17. The application of this projection adequately
represents the curvature of the Earth in the work area, such that lengths can
be accurately computed.

4 The length of each road segment in the Navteq network were computed. The
calculation carried out on the projected coordinate system gives a similar result
to the Haversine Formula described in Appendix A.1.

5 The set of 6,000 census tract centroids provided by Statistics Canada, and the
coordinates for the CBD and airport locations were overlaid onto each city map.

6 A computationally-intensive Origin-Destination cost matrix was solved using
the Network Analyst extension to compute the shortest drive distance over the
assembled road network for each combination of points. Constraints for one-
way streets were enforced, and U-turns were universally allowed. No weighting
system was implemented to encourage the use of arterial roads.

7 The distances were merged back into Stata and rescaled as described in Section
6.1, Table 9.
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A.3 Figures

The map of prediction residuals for Toronto and Montreal are provided on the
following pages. Recall the legend for the colour scheme used in the graphing
of census tracts, which refer to positions within the distribution of prediction
residuals for the city.

– Between the 100 and 90 percentile: Red

– Between the 90 and 75 percentiles: Orange

– Between the 25 and 75 percentile: Green

– Between the 25 and 10 percentiles: Baby blue

– Between the 10 and 0 percentiles: Navy blue
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A.4 Omitted Estimation Results

Model 1 was presented in section 5.3 but later abandoned in favor of Model 3.
The estimation results for this earlier specification are provided for the purpose
of comparison. Note that the estimates for parameters associated with the
vector γ are very similar to those reported in Model 3, as expected.

Table 10: Model 1 - MNL Estimates for the Choice of Driving to Work in a Single-
Occupancy Automobile

Reference group: Vancouver, non-immigrant, unmarried women
Parameter Estimate Robust Std. Err. p-value dy

dx (at mean)
Income ($1,000) 0.00996 0.00037 0.00 0.00214
Distance (km) 0.07876 0.00258 0.00 0.01692
Squared-Distance (km2) -0.00158 0.00008 0.00 -0.00034
Age 0.02109 0.00073 0.00 0.00453
Children 0.33161 0.01307 0.00 0.07124
Immigrant Status 0.01583 0.00 -0.12195
Marital Status 0.20432 0.0176 0.00 0.04409
Male 0.60574 0.01427 0.00 0.12965
Montreal FE -0.43493 0.02152 0.00 -0.09566
Toronto FE -0.39828 0.02009 0.00 -0.08559
Constant -0.99392 0.03057 0.00 -

n 104,873
Correctly Predicted 74,217

Success Rate 70.77%
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