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Abstract

In this paper, I model several aspects of Student decision making and class-
room competition, within a game-theoretic framework. Specifically, in Part
1, I develop a Two-Period Learning Model (TPLM) to show how uncertainty
over course difficulty prior to registration can lead to problems of overconfi-
dence or underconfidence in equilibrium (the former case, providing a partial
explanation for the problem of dropping-out). In Part 2, I consider the ways
in which a classroom resembles a First-Price-All-Pay Auction and develop a
Winner-Take-All Model (WTAM) to show how competition for the ‘top-mark’
affects effort in equilibrium. Within this competitive framework I show that
increasing the class size has an encouraging-effect on the outcome attainment
of high ability students, and a discouraging-effect on the outcome attainment
of low-medium ability students. It turns out that, on average, the second effect
dominates so that if we are concerned with maximizing the average educational
outcome of the classroom then class-sizes should be kept small to reduce com-
petitive discouragement; whereas, if we are only interested in maximizing the
educational outcomes of the most elite, then we ought to increase class sizes
to induce greater competition. Furthermore, I show that equilibrium effort is,
at first, decreasing in ability (extra productivity is simply traded for leisure)
but ultimately it increases in ability as students become more in contention
for the ‘top-mark’. I call these two effects the leisure-substitution effect and
the competitive effect, respectively. Finally, I introduce several other settings
that possess the essential features of classroom competition and discuss how
my results may be carried over. As usual, I conclude with a brief discussion of
some of the possible areas in which future research could be directed.
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0 Introduction

“Begin at the beginning and go on till you come to the end; then stop.”

Lewis Carroll, Alice in Wonderland

When one dedicates themself to the study of any particular discipline for an extended

period of time, they invariably undergo a period of indoctrination whereby they train

themself to view everything in the world around them as being simple manifestations

of the principles underlying their discipline. It is this sort of repeated exercise that

leads the Physics student to exclaim, “Everything is Physics!”, and the Philosophy

student to ask, “What isn’t Philosophy?”. This is none more true than in the study

of Economics, the social science which finds applications in most every nuance of

human and societal decision making. Just as the Psychology student is eager to di-

agnose their friend with an obscure mental disorder at the most subtle suggestion

of a symptom, the Economics student quickly attempts to assign rationality (or lack

thereof) to any social interaction, no matter how insignificant. Just as the young

Medical student worries that his/her flu-like symptoms are really the early signs of a

rare, incurable infection, the student of Economics worries that his/her behaviour is

not a ‘best response’ given the complex strategies chosen by everyone else! Learning

the language and paradigms of the discipline, and becoming proficient at applying

them to everyday life is almost a rite of passage for the young student of Economics.

Inevitably, this activity leads one to try to reconcile their own behaviour with what

the prevailing theory would predict, and hopefully eventually, reconcile the prevailing

theory with one’s own observed behaviour. It is this very type of critical introspec-

tion, relating the Principles of Economics to my own life, that has lead me to ask

the following question, “Am I a rational student?”, and perhaps more importantly,

“What does it even mean to be a rational student?”

For years, students of Economics carefully grind a lens through which to view the
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world around them; after all, the more powerful the lens, the deeper the student can

penetrate the problems that they encounter in Research and everyday life. While a

good lens is great for peering deep into outer space, it is easily forgotten that some of

the most interesting problems are in the foreground, and can be examined with the

naked eye. Too often we forget that the lens can also be used as a mirror, for which

to examine ourselves. It is in this spirit that I write my Master’s essay on the topic

of the Student, an occupation I have held for the past 17 years, but which I have yet

to encounter as an Economic application outside the realm of job-market signaling.1

Are their other salient features of Student behaviour that can be modeled using the

standard Economic toolset, and if so, why is it that the first Economics-related result

to the Google Scholar search query ‘The Student’s Problem’ is an obscure paper from

1947 entitled “The Generalization of “Student’s” Problem when Several Different

Population Variances are Involved”? These remarks are admittedly facetious, and

there is indeed innumerous volumes (both empirical and theoretical) that have been

used to describe various aspects of individual decision making (which subsumes mere

‘Student’ behaviour). However, the problem still remains, can we usefully apply well

known game-theoretic tools and results to the specific setting of the classroom, and

if so, does this lend us any interesting policy implications for administrators?

In this paper I study two such applications. In Part 1, I consider one of the most

common problems faced by the student, and that is, the decision of whether or not

to register for a particular course, and subsequently, how much effort to allocate to

studying, when the difficulty of the course is not known prior to completion of a

preliminary task (midterm). In other words, the student must make the registration

and effort-allocation decisions with only imperfect information regarding course dif-

ficulty. To address this problem, I develop a Two-Period Learning Model (TPLM)

in Section 1.1. Specifically, I assume that the student enters period 1 with a prior

1Which reduces the classroom to nothing more than a costly exercise that the student must
participate in to convey that they are of high-ability.
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belief on their ability (relative to the course difficulty) and this determines whether

they will register for the given course or not. If they register, they choose an effort

level on a preliminary task (midterm) and achieve an outcome that is a deterministic

function of their effort and their true ability. In period 2, based on the realized out-

come from this preliminary task they can infer (learn) their true ability, and based

on this knowledge, they decide whether they want to continue with the course and

provide effort for the final task, or whether they would prefer to cut their losses and

drop-out. If the student’s final grade, which is a weighted average of the outcomes of

the two tasks, exceeds some predetermined level, then the student ‘passes’ and ob-

tains a fixed reward; otherwise, they ‘fail’ and obtain nothing. In this way, I capture

the essential problem faced by the student that they only truly learn what they have

‘gotten themself into’ after they write a midterm and learn how difficult the course

truly is. In Section 1.2, I formally derive the Subgame Perfect Nash Equilibrium of

this model by backwards induction. This analysis leads to a discussion of scenarios

of overconfidence, underconfidence, and perfect knowledge, in Sections 1.3, 1.4 and

1.5 respectively.2 Next, I discuss the policy implications of this model in Section 1.6,

namely, the practical ways in which Student welfare can be improved by reduction of

uncertainty. In Section 1.7, I analyze the problem faced by the benevolent professor

(social planner) in choosing the difficulty of the course, and lastly, I discuss some of

the important drawbacks/limitations of the model in Section 1.8.

In Part 2, I switch gears and consider the ways in which classroom competition re-

sembles a First-Price All Pay Auction. I argue that the typical classroom incentive

structure is one that rewards both absolute performance (achieving some absolute

outcome level, as in the previous model) and also relative performance (high class

rank). In this way, I use Section 2.1 to model the classroom as a Winner-Take-All

Market (WTAM) where all students are rewarded for passing, but only the student

2The first scenario provides a partial explanation for the phenomena of ‘dropping-out’ which I
consider briefly.
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with the top-mark receives additional rewards. Specifically, I consider the classroom

to be an auction where abilities are private information, and effort levels are chosen to

create outcomes - effectively bids - for the top mark. Regardless of whether the stu-

dent achieves the top mark (i.e. wins the ‘auction’) they still incur the costs of effort

required to produce their bid, and it is in this sense that the ‘auction’ is first-price

all-pay. After a careful derivation of the equilibrium of this model in Section 2.2, the

symmetric equilibrium outcome and effort functions are analyzed in Sections 2.3 and

2.5 respectively. In Section 2.3, I show that increasing class size has an encouraging-

effect on the outcome attainment of high ability students, and a discouraging-effect

on the outcome attainment of low-medium ability students. In Section 2.4, I consider

the average outcome attainment of the class and show that is unambiguously decreas-

ing in class-size. I then use this result to weigh-in on the infamous ‘small class-size

debate’, arguing that if we are concerned with maximizing the average educational

outcome of the classroom then class-sizes should be kept small to reduce competitive

discouragement; whereas, if we are only interested in maximizing the educational

outcomes of the most elite, then we ought to increase class sizes to induce greater

competition. In Section 2.5, I show that equilibrium effort is, at first, decreasing in

ability (the extra productivity is simply traded for leisure) but ultimately it increases

in ability as students become more in contention for the ‘top-mark’. I call these

two effects the leisure-substitution effect and the competitive effect, respectively. In

Section 2.6, I consider the robustness of these results to different types of density

function specifications (i.e. different, more realistic, distributions of classroom abil-

ity). This leads to a discussion of superstar effects which arise when the density

function is bell-shaped, and which leads students of extremely high ability to exert

less effort (“rest on their laurels”) since they face little challenge from their peers.

In Section 2.7, I discuss some of the key limitations of this model and suggest some

areas for improvement. Then, in Section 2.8, I introduce several other settings that

possess the essential features of classroom competition and discuss how my results
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carry over. Finally, in Section 3, I offer some concluding remarks on each of the two

models presented and discuss some areas for future work.

1 Part 1: The Course Registration and Effort-

Allocation Problem

Undoubtably, two of the most important problems that a Student must confront are

deciding which courses to register for, and how much effort to exert in those courses.

The problem is non-trivial since registration and effort are costly, and different courses

offer different educational rewards. For some, these decisions are easy and the result

is a distribution of courses that provide them with the perfect balance of rewards and

costs. For others, these decisions prove to be difficult, and the result is a timetable that

is either unmanageably hard (in the extreme case leading to failure or withdrawal), or

so trivially easy that the educational rewards don’t outweigh the costs of registration.

If the relative costs and benefits of taking a course could be perfectly forecasted, then

such a problem would cease to exist; everyone could (and presumably would) choose

the most optimal line-up of courses, subject to the various graduation requirements

imposed in the Academic Calendar. This leads naturally to the question of why

students can’t form such perfect forecasts? The answer, it seems to me, lies in the fact

that, prior to registration, the student only has imperfect information concerning their

ability, relative to the course difficulty. After all, in most situations, the student’s

information set regarding a particular course is limited to a few, relatively vague

lines of description from a course calendar. There is, of course, casual information

sharing that occurs between students who have already experienced certain courses

and certain professors, and there are often well-defined periods of ‘course shopping’

whereby students can collect additional information by attending preliminary lectures

(for instance, picking up the course syllabus or reading list). Even still, such things

only resolve small bits of uncertainty regarding course difficulty, and the problem
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remains. We characterize this observation with the following assumption,

Assumption 1.1 Before registering for a course, Students only have imperfect in-

formation over their ability relative to the course difficulty.

Thus, any model of the course-registration decision must incorporate this element

of uncertainty. Now then, what can we say about the effort-allocation problem?

Students receive rewards based on their academic achievement (eg. pass/fail rewards,

distinctions for exceeding a predetermined cut-off grade such as the Dean’s List, etc.)

but how exactly does effort translate into achievement? There are obviously many

ways to model this type of interaction between effort and outcome, the most obvious

being the production function approach which views the educational outcome (aka.

the ‘mark’ or ‘grade’) as being a function of a variety of factors or inputs (eg. raw

talent, time spent studying, difficulty of the course, etc.). Here, for parsimony we

make the following assumption,

Assumption 1.2 The outcome achieved on a task (test) is a multiplicative function

of effort and ability, where both factors exhibit diminishing returns. In other words,

Outcome = f(effort)×g(ability) where f and g are both increasing concave functions.3

This assumption, I think, is sufficiently general to encompass many plausible types

of outcome functions but yet it is specific enough to give us something to work with

for purposes of analysis. Notice that ability and effort have remained essentially un-

defined here. By ‘effort’ we mean any costly action taken to increase ones propensity

to do well on the task (memorizing notes, rehearsing old exam questions, attending

lectures, etc.), and by ‘ability’ we will mean any previously acquired, temporarily

immutable quality that tends to increase one’s propensity to perform well (high IQ,

previous experience with the subject, mathematical training, ability to cope with

3When we speak of ‘ability’ we will always mean ability relative to the difficulty of the course.
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stress, test-writing skills, etc.). Thus, for our purposes effort will be a choice vari-

able and ability will be unchangeable. With these assumptions in hand, we are now

prepared to introduce a model of the course-registration and effort-allocation decision.

1.1 The Two-Period Learning Model

Consider the following Two-Period Learning Model (TPLM):

Period 0: A prior on ability, θ, is formed exogenously. Here we will assume that the

prior, which generally takes the form of a cdf F (θ), is simply a point θ̂, or equiva-

lently, that F (·) is simply a one-point distribution that places all of the mass on θ̂.

This assumption is for analytical tractability, however, in the appendix we relax it

and derive a condition analogous to the one we achieve below.

Period 1: Based on their prior, the Student decides whether to Register for the

course or not. Registration costs R, not registering costs 0. If the student registers,

they choose effort level e1 on a preliminary task (midterm) and achieve outcome u1

given by the following deterministic outcome function:

u1 = f(e1) · g(θ) (1)

where f(·) and g(·) are both concave, strictly increasing, passing through the origin

and bounded above.4 Based on the realized outcome from the task the student can

infer their true ability θ,

θ = g−1

(
u1

f(e1)

)
(2)

4For convenience we will assume that f and g are bounded above by 1 so that u ∈ (0, 1) and
100 · u can be thought of as a percentage grade.

7



Finally, effort costs c(e) where c′ > 0, c′′ > 0, and c(0) = 0.5

Period 2: Here the Student decides whether to Continue with the course or Drop-

Out. Dropping-out is costless, but the student still bears the registration/effort costs

borne in the previous period. If the Student continues then they choose effort level e2

which determines outcome u2 on the final task (exam). Based on the two outcomes,

a final mark is calculated according to:

u = α · u1 + (1− α) · u2 α ∈ (0, 1) (3)

Here α represents the weight placed on the preliminary task (which the reader can

assume to be less than or equal to 1
2

in our interpretation). If the student’s final

mark, u, exceeds a predetermined level u, the passing grade, then the student gets a

payoff V . Otherwise, they fail and get payoff 0.

It is assumed that V > R so that at least some students, with sufficiently large ability,

will find it worthwhile to register and put in effort to pass. Finally, we assume no

discounting (δ = 1) for simplicity. For clarity, we illustrate the game in time-line form

and present a payoff summary below.



...............

...............

...............

..........

...............

...............

...............

..........

...............

...............

...............

..........
• • •
0 1 2

Prior on ability
θ is formed

Decide whether to Register
and choose effort level e1

Decide to Continue/Drop-Out
and choose effort level e2

Figure 1: Timeline of TPLM

5There is no doubt that, in some cases, utility can be derived from the pure process of studying
so that pure effort leads to a utility gain. Rather than incorporate this into the payoff function, we
simply reinterpret c(·) to be the net cost of studying, and allow it to include the opportunity cost
of not engaging in other welfare-improving activities.
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Don’t Register =⇒ 0

Register then Drop-Out =⇒ 0−R− c(e1)

Register then Continue =⇒ V - R - c(e1)− c(e2) if u ≥ u
0 - R - c(e1)− c(e2) if u < u

Table 1: Payoff Summary

1.2 Equilibrium of the model

To derive the Subgame Perfect Nash Equilibrium of this model we start in Period 2

and proceed by backwards induction. Given u1 observed at the end of Period 1, the

student can extract their ability θ perfectly according to (2). To “pass” the students

needs to obtain an outcome u2 which satisfies α · u1 + (1−α) · u2 ≥ u. This requires,

=⇒ u2 ≥ u−α·u1

(1−α)

=⇒ f(e2) · g(θ) ≥ u−α·u1

(1−α)

=⇒ e2 ≥ f−1
(

u−α·u1

g(θ)·(1−α)

)
(4)

Since effort is costly and the outcome of the task is deterministic the student will, at

best, set e2 to satisfy (4) with equality. Let e2 be this effort level - it represents the

minimum amount of effort that the student can put in to “pass” in the second stage.

We assume here that e2 exists and is positive so that the student cannot guarantee a

“passing grade” after the preliminary task (this is obviously a reasonable assumption

in most cases).6 If V ≥ c(e2) then the student will indeed choose to Continue-On

with the course and supply effort level e2. On the other hand, if V < c(e2) then the

student will find it optimal to Drop-Out. Notice that from the perspective of Period

2, both R and c(e1) are regarded as sunk. We now consider Period 1.

6Note that if g(θ) < u−α·u1
1−α then e2 will not exist because there is no chance of passing even with

e2 = ∞. In this case we can just define e2 = ∞ so that c(e2) = ∞ and the rest of the arguments
proceed as usual.
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Here, the student decides whether or not to Register. In contemplating the costs

and benefits of Registration the student would optimally choose effort to solve the

following planning problem (taking θ̂ to be their perceived ability).

max
e1,e2

V − c(e1)− c(e2) subject to: α · u1 + (1− α) · u2 ≥ u

e1, e2 ≥ 0

It is easy to verify that the FOC of this problem is given by,

α

1− α
·
∂u1

∂e1
∂u2

∂e2

=
c′(e1)

c′(e2)
(5)

This, of course, just says that e1 and e2 will be chosen so that MRSe1,e2 = MRTe1,e2

For simplicity, we will now assume that α = 1
2

so that α
1−α = 1, although we will relax

this later when analyzing the equilibrium. Subbing in the deterministic outcome

function and rearranging we find that (5) reduces to,

(
1

f ′(e1)

)
· c′(e1)︸ ︷︷ ︸

h(e1)

=

(
1

f ′(e2)

)
· c′(e2)︸ ︷︷ ︸

h(e2)

(6)

Evidently, h(·) is one-to-one since it is the product of two continuous, monotone

increasing, functions.7 Hence (6) is satisfied iff e1 = e2,

=⇒ e∗1 = e∗2 = e∗

=⇒ u∗1 = u∗2 = u

=⇒ e∗ = f−1

(
u

g(θ̂)

)
(7)

To ensure that e∗ exists (and is positive) we require u < g(θ̂) which simply says that it

it possible for someone with ability θ̂ > 0 to pass by providing sufficiently large effort

7Note that f ′′ < 0 implies 1
f ′(·) is increasing
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(i.e. by making f(e) sufficiently close to 1). This seems like a reasonable assumption

to make, most people of even modest ability can pass a course provided they work

hard enough. So, if the student decides that they want to Register and “pass” they

will want to set e∗1 = e∗2 = e∗ according to (7) above. Therefore, they will only register

if,

c(e∗1) + c(e∗1) +R︸ ︷︷ ︸
Expected Cost of Passing

≤ V︸︷︷︸
Expected Benefit of Passing

(8)

=⇒ 2 · c(e∗) ≤ V −R

=⇒ e∗ ≤ c−1

(
V −R

2

)
=⇒ f−1

(
u

g(θ̂)

)
≤ c−1

(
V −R

2

)
=⇒ θ̂ ≥ g−1

(
u

f
(
c−1
(
V−R

2

))) ≡ θc (9)

Thus, provided the student is sufficiently confident so that θ̂ ≥ θc, the student will

decide to register for the course; otherwise, they will not Register. Note, however,

that if the ‘true’ θ were known then the student would only register if θ ≥ θc. Thus,

we may now state our first Theorem and consider several different scenarios:

Theorem 1.1 The unique subgame perfect Nash Equilibrium of (TPLM) is the fol-

lowing strategy: In Period 1, the student Registers iff θ̂ ≥ θc and supplies effort

e1 = e∗ as in (7). In Period 2, the student Continues-On with the course and supplies

effort e2 = e2 as in (4) iff V ≥ c(e2); otherwise, they Drop-Out.
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1.3 Overconfidence: θ̂ ≥ θc > θ

“Well, I think we tried very hard not to be overconfident, because

when you get overconfident, that’s when something snaps up and bites

you.”

-Neil Armstrong

Here, the student overestimates their raw ability (or alternatively underestimates the

course difficulty) and registers when they shouldn’t. They supply e∗1 in Period 1 and

achieve an outcome u1 which is less than what they expected (i.e. less than u). Thus,

after the preliminary task, the student learns their true ability θ and discovers that

they are currently ‘failing’. To pass, additional effort must be supplied in Period

2. If V ≥ c(e2) then they will Continue (it is worthwhile for them to increase effort

to pass given that R and c(e1) are now sunk); otherwise, they will decide to Drop-Out.

Application: Dropping-Out

The result above offers a partial explanation for the attrition phenomena observed

in high school and University and accords with results found in empirical studies

and surveys of drop-outs. Lloyd (1978) discovered that as early as the third grade,

dropouts differed significantly from graduates in IQ level, marks received in course

work, parent’s occupational and educational level, and tested reading, arithmetic,

and language skill achievement - suggesting that students who eventually drop-out

significantly differ from their peers in terms of ‘ability’ (i.e. they have significantly

lower θ’s). Eckstein and Wolpin (1999) developed and structurally estimated a se-

quential model of high school attendance and work decisions. The model’s estimates

implied that youths who dropped-out of high school had different traits than those

who graduated - they had lower school ability and/or motivation, they had lower ex-

pectations about the rewards from graduation, they placed a higher value on leisure

and had a lower consumption value of school attendance.
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In a comprehensive report released by FEDA (Further Education Development Agency)

entitled “9,000 voices: student persistence and drop-out in further education” the au-

thors surveyed 9,000 students from 31 colleges across the UK and identified a variety

of drop-out predictors. In particular, they found that withdrawn students were much

more likely than current students to believe that they have not been placed on the

most appropriate course (In fact, this was the best predictor of student drop-out).

Moreover, they found that student evaluations, which related ultimately to their study

skills or to their confidence in their study skills, were predictors of dropouts. The

authors did, however, acknowledge that these ‘factors’ were not operating in isolation,

“Previous research shows that the reasons for drop-out (and persis-

tence) are complex, multiple and inter-related. Students continually weigh

the costs and benefits of completion and this process starts even before

they enroll. If the scales tip too far toward the costs, they will withdraw.”8

Finally, in an article entitled “Dropouts Give Reasons”, 500 high-school dropouts,

ages 16-25, were interviewed, and they gave the following reasons for leaving school:

• 47% said classes were boring

• 45% said they entered high school poorly prepared by their earlier schooling

• 69% said they were not motivated to work hard

• 32% said they left to get a job

• 35% said they were failing

By allowing ability θ to incorporate IQ, previous academic preparation, intrinsic mo-

tivation, interest in school, ability to handle stress, etc., this simple two-period model

appears to offer a theoretical explanation of the mechanism behind these empirical

findings. Indeed, failure in preliminary tasks (midterm) is a precursor to dropping-out

8In fact, this is the entire underpinning of my model, that students are ‘rational’.
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in this model, and the idea of ‘dropping-out of school to get a job’ indicates that con-

tinuing with school is no longer “worth it” from the student’s perspective (V < c(e2),

where we allow the marginal cost of supplying effort to include the opportunity cost

of not working a job).

Of course, I must emphasize that this is still only a very partial analysis of the school

attrition problem; students drop out for a variety of complex reasons that can’t be

subsumed into a single parameter. These include financial constraints, problems with

social/academic integration, problems at home, more attractive educational oppor-

tunities, etc. Such problems can lead students of even high ‘ability’ to drop out,

regardless of whether they are failing or excelling, and regardless of whether they are

overconfident or under-confident. Even still, the very fact that dropping-out can be

explained as the equilibrium consequence of overconfidence is somewhat interesting.

1.4 Under-Confidence: θ̂ ≤ θc < θ

“Self pity is our worst enemy and if we yield to it, we can never do

anything wise in the world.”

-Helen Keller

Here, the student underestimates their ability relative to the difficulty of the course

and fails to register, even though it would be optimal for them to do so. Since they

do not Register, they do not attempt the preliminary task, and thus, they do not ever

learn their true ability relative to the course difficulty. In this way, Under-Confidence

would appear to be a persistent trait in the sense that beliefs are never updated

appropriately. This result is in accord with well-known results in the Psychology

Literature on self-esteem. Josephs, Bosson, Jacobs (2003) write,

Once established, self-esteem tends to remain stable across time. Re-
search has shed light on many of the mechanisms that promote main-
tenance of high self-esteem but much remains to be learned about the
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mechanisms that promote stability of low self-esteem. Our conclusion in
this article is that low self-esteem may maintain itself, in part, by making
the individual immune to the beneficial effects of certain forms of esteem-
enhancing feedback.

Thus, by failing to engage in activities that would provide esteem-enhancing feedback

(i.e. not registering for the course), or by simply ignoring the feedback from such an

activity, the low confidence individual does not ‘learn’ their true ability, and does not

give themself the chance to update their beliefs accordingly.9

1.5 Perfect Knowledge of Ability: θ̂ = θ

“The most difficult thing in life is to know yourself.”

-Thales

“A man who knows he is a fool is not a great fool.”

-Chuang-tzu

In this case, the student registers iff it is actually in their best interest to do so.

Furthermore, when they register, they put in the welfare maximizing allocation of

effort across time-periods. This is clearly the ideal situation and any action or policy

instrument that can be used to increase the extent to which students understand

their capabilities will be welfare improving. Even when it is optimal for a student to

register, overconfidence will cause them to underwork on the preliminary task, and

they will need to work even harder on the final task in order to pass; conversely,

underconfidence causes a student to overwork on their preliminary task and they will

have wished they’d allocated more time to other welfare-improving activities (leisure,

extracurriculars, etc.). Each of the various scenarios is depicted in Figure 2 below:

9It is worth noting, however, that if effort were allowed to positively influence future ability
(which it almost surely does) then low self-confidence may actually be a self-fulfilling prophecy. Low
self-confidence would lead to little experimentation with new challenges which would then lead to
an actual lack of development relative to peers, and the start of a downward spiral of confirmed
expectations. In this case, underconfidence would not be persistent in the sense that you would
consistently underestimate your true ability, but rather, it would be a self-confirming belief. In any
case, the problem of underconfidence is surely a deleterious one.
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Fail to register

when you should

Figure 2: Scenario Diagram for TPLM

Given these scenarios, we can now analyze some ways of remedying the overconfi-

dence/underconfidence problem.

1.6 Resolving Uncertainty over Ability: Reducing |θ̂ − θ|

As mentioned above, any way that a student can reduce |θ̂−θ| will be welfare improv-

ing since it will decrease the extent to which they end up in any of the undesirable

scenarios previously described. Of course, in this model we made the formation of

the prior θ̂ an exogenous activity, sweeping the whole belief formation process under

the rug. In reality, the formation of the prior will be determined by a variety of

complex factors (including previous experiences, information gathered on the course,

etc.). Here, we intend to examine some of the current practices and services offered

to help the student form the most accurate prior that they can.

The problem of uncertainty over ability is no doubt most prevalent in students who are

16



new to a program or institution and thus unfamiliar with the expectations and course

work demands. This is particularly true in introductory Mathematics or language

courses at the University level, where students from a wide-range of backgrounds

and varying degrees of academic preparedness are asked to register for courses for

which they have only very little information (again, sometimes only a few relatively

ambiguous lines of description from a course calendar). Thus, what is often observed

in most universities is a “Placement Test” or “Entrance Exam”, which can be thought

of as a relatively costless exercise (or preliminary task) taken in Period 0 to better

inform the student of their ability relative to the difficulty of the class. Often the

results of these Placement Tests will segment the population into appropriate levels

of course difficulties (eg. placing ‘unprepared’ students in Pre-calculus or more basic

Introductory Language classes, as oppose to their advanced counterparts which are

reserved for the high-achievers). Indeed, many schools have perfected the design of

such placement test, and their success suggests that they ought to be used more

frequently. In the 1998 FEDA report discussed earlier, they identified the following

list of solutions to the problems of “Incorrect or inappropriate expectations on the

part of the student” and “Incorrect course placement”:

• Improved college and course publicity

• Pre-course briefings and Taster sessions

• Presentation of course overviews and expectations during induction process

• Early formative evaluations

• Clear entry criteria coupled with early screening and diagnostic assessments

Other, admittedly tenuous, ways of reducing uncertainty include such online services

as RateMyProfessor.com or Pick-A-Prof.com which are websites that allow college

and university students to anonymously (and freely) assign ratings to professors and

courses of American, Canadian, British, New Zealand, and Australian Institutions.

Assessing the credibility of posts found on these websites is obviously a subjective
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exercise (and there are certainly some adverse selection problems regarding the qual-

ity of reviews and reviewers attracted to these sites), but their extreme popularity

suggests that there is at least some redeeming quality to be found from logging in.

Indeed, if they are successful (at least on average) at resolving bits of uncertainty

regarding the difficulty of a course/Professor then this will better inform the decision

of whether to register, and will lead to a welfare improvement in general. In schools

where students have many course options and are free to choose many electives or

even design their entire educational program, this sort of information is extremely

valuable in making educated decisions about which courses to take. In fact, from

this perspective, it would seem worthwhile - at least in theory - for Universities to

consider investing in more formal types of course evaluations, that would allow stu-

dents to rate courses/Professors on a variety of dimensions and would allow future

students to access these ratings prior to registering. Such a system, if implemented

carefully, could be very informative.10 In any case, the advent of Placement Tests

and information sharing websites, suggests that the problem of over-confidence and

underconfidence is a real one, that is acknowledged (if only tacitly) by students and

administrators alike. Their continued use, I think, suggests that they remedy the

uncertainty problem and, in doing so, constitute a welfare improvement.

1.7 The Social Planner’s instruments: What can a teacher
or institution do to improve student welfare?

We now consider the extent to which a Social Planner can influence θc by vary-

ing the parameters of the model V , R, α, and u. Recall that the critical level

of ability that determines whether a student will register for a course is given by

θc = g−1

(
u

f(c−1(V−R
2 ))

)
. Since g−1(·), f(·) and c−1(·) are all monotone increasing, we

can readily see that,

10This, of course, ignores the ethical dilemma of publishing information that may harm the repu-
tation of a Professor, and hinder there ability to advance successfully within the profession.

18



• V ↑=⇒ θc ↓

• R ↑=⇒ θc ↑

• u ↑=⇒ θc ↑

The first two observations merely say that students require greater confidence over

their ability to register for a course when either the benefits of taking that course are

low or the costs of taking the course are high. Intuitively, this result makes sense

because a greater confidence over one’s ability reduces the perceived cost of effort

required to pass. The last observation expresses the obvious fact that when the pass-

ing grade is higher, one needs to have a higher perception of their ability to induce

registration into that course.

Recall that in the derivation of the equilibrium of the model we assumed α = 1
2

for simplicity. At this point it is not difficult to interpret the effect of α on θc by

simply considering how behaviour would change if α ≈ 0. In this case, since the

preliminary task does not make up a large component of the overall mark, the stu-

dent will set e1 ≈ 0 and e2 ≈ e∗ as before. Thus, the optimal total amount of effort

expended throughout the course will be e1 + e2 ≈ e∗. Now, compare this scenario to

the case where α = 1
2
. Here, we found that the optimal total effort expenditure was

e1 + e2 = 2 · e∗ and, hence, we can see that approximately twice as much effort is ex-

pended to pass when the preliminary task carries 50% of the weight in the final mark!

This seemingly odd result relies on several tacit assumptions: firstly, that effort in

the preliminary task does not carry over in the final task (i.e. studying hard for the

midterm does not impact your ability to perform on the final); two, that learning is

perfect for any level of effort on the preliminary task (i.e. the student perfectly learns

θ by exercising any positive amount of effort); and finally, that the outcome function

does not depend on the weights assigned to the tasks (e.g. the midterm is just as

difficult as the final exam even if the coverage/weights are completely disproportion-
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ate). Obviously, these assumptions are not realistically achieved in practice, but one

can imagine that this result will still partially go through as long as the assumptions

are approximately valid. In any case, it is not difficult to show that in this model

total effort expenditure will be maximized for α = 1
2

and any deviation from this

will strictly decrease the total effort required to pass for any given level of ability.11

Thus, by increasing |α − 1
2
| the professor will decrease the expected cost of passing

and therefore will decrease θc.

We are now prepared to discuss several conclusions from the comparative statics

analyzed above. First of all, we consider the inherent trade-off that the benevolent

professor faces when designing a course.

The Inherent Trade-Off faced by the Benevolent Professor

We begin by making three assumptions:

1. Professors can control the difficulty of their course by increasing the effort re-

quired to pass (by varying α and u).

2. Professors want to maximize the knowledge gained by their students, and they

can control this by varying the difficulty of the course.

3. Professors want to minimize the extent to which students end up in either the

Over-confident or Underconfident regions (i.e. they want don’t want students

to have to drop the course, and they don’t want to exclude competent people

from registering on the grounds that the course appears too difficult).

Now, for such a benevolent professor, in order to attain the first objective listed above

they would want to set α close to 50% and they would want to make u relatively large.

11The model presented here simply considered two periods with a midterm and final. But this
could be easily generalized to k tests, with total effort being maximized by setting equal weights
on each test. In fact, for a professor concerned with maximizing effort they would want to have
many tests all worth a small and equal percentage of the final grade. As will be discussed below this
creates an inherent tradeoff for a benevolent professor.

20



However, in doing this they will simultaneously be maximizing θc which as we can

see in Figure 2 will maximize the area of both the overconfident and underconfident

regions and will undermine the extent to which the professor wants to adhere to their

second objective. Conversely, by making θc small in an effort to attain their second

objective, they will necessarily be making their course ‘easier’ to pass (in the sense

that progressively weaker students will be capable of achieving a passing grade) which

will work to minimize effort expenditure, and will decrease the knowledge attained

by their pupils. Thus, their is an inherent trade-off faced by the benevolent professor

when designing the course curriculum and syllabus. The optimal difficulty level cho-

sen will necessarily depend on the relative weights placed on the two objectives. If the

professor’s ideology is like that of the shepherd who strives to keep their entire flock

intact, not valuing any individual sheep more than the other, then they will most

likely adhere to the second objective - at the unfortunate expense of not challenging

the strongest students in the group. If on the other hand, the Professor identifies

more with the winemaker who cares only about the quality of the finest berries on

the vine and hand-picks them to prevent inferior quality fruit from contaminating

the lot - then they will most likely adhere to the first objective and maximize the

educational outcome attainment of the most talented students by making their course

extremely difficult. This, of course, is the age-old problem of whether to cater to the

‘average’ or to the ‘elite’.12

Scholarships, and Tutoring

Another way of improving welfare, that avoids the inherent trade-off described above,

is to reduce the Expected Cost of Passing through tutoring, help sessions, and Schol-

arships. Tutoring and help sessions lower the time cost of studying for struggling

12The interested reader will appreciate that this debate goes back at least as far as Plato’s “Laws”
where he writes “No better would be the result with pilots or generals, or householders or statesmen,
or any other such class, if they neglected the small and regarded only the great; as the builders say,
the larger stones do not lie well without the lesser.”
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students, which acts to lower θc without actually making the course any ‘easier’.13

This will help to prevent the deleterious affects of dropping-out without watering

down the course material to cater to low ability students. On the other hand, Schol-

arships help to defray the cost of registration R which will remedy the problem of

underconfidence by making the net benefit of registration more attractive.

1.8 Limitations of the Model

There are, of course, several limitations to this simple model. For one, the model pre-

dicts that everyone, regardless of ability, will attain a bare minimum passing mark,

u. While this implication does seem to resonate well with the observation made by

author Max Forman that “Education seems to be, in America the only commodity of

which the customer tries to get as little as he can for his money.”, we feel that is still

not nearly compatible with the behaviour that we observe in the real world. This re-

sult is primarily due to the assumption of a deterministic outcome function. In reality,

the outcome function has a degree of unpredictable ‘noise’ and the risk-averse student

will no doubt put in more than the bare minimum of effort to achieve a passing grade.

This type of ‘noisy’ outcome function could also account for the phenomena whereby

students continue-on with a course, and yet still achieve a failing grade because of

an uncharacteristically poor exam day. Moreover, it would account for the fact that

learning is not perfect; instead of learning their ability exactly, students would only

be able to update their prior beliefs in the Bayesian sense, incorporating the (pre-

sumably) known distribution of the noise.

Another way of making this model more realistic would simply be to assume a strati-

fied set of rewards V1 > V2 > . . . > Vn corresponding to outcomes u1 > u2 > . . . > un.

In this way, people of varying ability levels will sort themselves into different levels

on the outcome ladder (high level students will shoot for the high rewards, and low

13In the 1998 FEDA report, the authors identified Tutoring, peer support/coaching/mentoring as
ways of remedying “feelings of isolation and not belonging” which are large predictors of drop-outs
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ability students will stick to the low rewards).14 This story makes sense in schools

that use letter grades (or some similar stratified reward system) but we are still left

with the implication that students with abilities on a continuum will cluster them-

selves into discrete outcome levels.

The second limitation has already been suggested in the discussion above, and that is,

the model does not allow for complimentarities between effort in Period 1 and ability

in Period 2. In module-based courses dealing with several relatively disjoint subjects

(such as those found in Medical School or Pharmacy programs) this may not be a

huge issue, since exams tend to cover disjoint areas (i.e. they are non-cumulative).

In these courses, time spent studying for early tests does not necessarily help you

perform better in later tests. However, for the great majority of courses, especially

in Math and Economics, the trend is to ‘build up’ a set of tools/models with each

new concept depending on (or relating to) the previous one. In these courses, cumu-

lative finals are the norm, and there is no doubt that hard-work expended early in

the course, will lessen the load in the latter parts of the course. In any event, such an

interplay between effort and ability is an added complexity that would be interesting

to study as an extension of this model. However, in the interest of time and space, I

will not be considering this here.

The third limitation is that this model ignores the competitive effects observed in

most classrooms, whereby students not only care about passing, but also about their

rank-order because ‘top marks’ lend themselves to even greater rewards. With com-

petitive effects we would expect to see higher ability students encouraged to work for

more than just a passing grade (which would serve to address the first limitation). In

the following section, we will consider this problem in great detail.

14From a signaling perspective, this would induce the kind of separating equilibrium that employers
desire.
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2 Part 2: The Classroom as a First-Price All Pay

Auction

To begin with, it is useful to introduce the notion of an All-Pay auction in general,

then motivate its usefulness in describing competitive behaviour. In a First-Price

all-pay auction, each bidder (i = 1, 2 . . . n) submits a (non-negative) sealed bid, xi,

for an item valued by player i at vi. All players forfeit their bids, but only the highest

bidder wins the item. In this way, the all-pay auction is similar to a standard (winner

pay) first-price auction, except that losers must also pay the auctioneer their bids.15

Thus, in the general set-up we can write the payoff function to player i as follows,

ui(x1, . . . , xn) =

{
−xi if ∃ j such that xi < xj,

vi − xi if xi > xj ∀j 6= i.
(10)

In some circumstance, one must specify a tie breaking rule (usually ties are broken

randomly), but we will not worry about this additional complexity here. What is

important to note, however, is that in an all-pay auction one can interpret differences

in the valuations vi’s as arising from differences in abilities. To see this, consider Baye

(1996),

...suppose the utility to player i of winning a prize of W by putting
forth effort xi is u∗i = Ui(W ) − βixi, where xi is effort, and βi is the
marginal cost to player i of effort. Since behavior is invariant to affine
transformations, we may just as well write the utility function as ui =
u∗i
βi

= vi − xi , where vi ≡ Ui(W )
βi

. Thus, differences in the vi’s may be
due to differences in valuations or differences in the abilities of players to
convert an entry into a prize: players with higher vi’s can be thought of
as ‘stronger’ players.

It is this key observation that has contributed to the now widespread use of the all pay

auction in economics because it captures the essential elements of “contests” [Dixit

(1987)]. It has been used to model technological competition and R&D races [Das-

gupta (1986)]; tournaments and job promotions [Lazear and Rosen (1981), Narasimha

15This difference is crucial. Just imagine if eBay was organized on the basis of a sealed bid all-pay
auction and ask yourself how that would impact your bid for an item you really valued?
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(1988)] as well as a host of other situations including political campaigns, wars of at-

trition, etc. Essentially, these economic problems boil down to a contest that is an

all-pay auction in effort; the player putting forth the greatest effort wins the prize,

while the efforts of other contestants go essentially unrewarded. It is in this spirit

that we view the “classroom” as a manifestation of a first-price all pay auction, al-

though our development will be a slight departure from the ‘greatest effort wins the

prize’ view, since we will incorporate the dual impact of effort and ability on outcome

achievement. Students with varying abilities (that are private information), compete

for the top-mark by their choice of effort, which together with their ability determines

their outcome, or bid. Students get rewards for passing the course (attaining some

critical outcome level) and the student with the ‘top-mark’ (i.e. highest bid) gets an

additional reward W for out-doing each of his/her peers. In this way, we capture two

elements: one, students value passing the course (exceeding some absolute outcome

level) and two, students value their rank-order in the class. Of course, in reality there

is probably a stratified set of rewards V1 > V2 > . . . > Vk each corresponding to a

different absolute outcome on the ladder (think letter grades A+, A, A−, B, C, etc.)

as mentioned in the previous section. Also, in reality their is some, albeit smaller,

reward to be had for placing second or third in the class. In principle, these addi-

tional complexities could be included in our model; there are, after all, such things

as multi-prize all-pay auctions with heterogeneous prizes [Barut (1998)]. However,

in spirit of Occam’s Razor we will focus our attention on the most basic model that

captures the effects we are interested in - the Winner-Take-All Model. We begin with

two assumptions,

Assumption 2.1 Students derive additional rewards from achieving high grades rel-

ative to their peers. This leads to rank-order competition amongst students for the

top mark.

Although this assumption seems rather intuitive, it is deserving of at least some
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words of motivation. First of all there is - I think undeniably - a fundamental human

quality that makes us want to outperform our peers in competitive tasks. After all,

it is undoubtable that Tiger Woods would rather be 10 over par and win the British

Open, then be 10 under par and place second! Perhaps this motivation is routed

in a sense of pride, an intrinsic feeling of accomplishment for outachieving others;

perhaps it is just an evolutionary trait passed down from a bygone era where an

inner ambition to ‘outdo’ was selected for; or perhaps, as in many cases, the reward

is simply extrinsic (after all, the difference between first and second place in this

year’s British Open is approximately $600,000!). Whatever the case may be, relative

performance matters greatly, especially for individuals at the top of the pack (case

in point: the difference between placing 55 and 56 is roughly $200 at this year’s

British Open). Markets such as these, in which small differences in performance

translate into extremely large differences in reward, are characteristic of what are

called Winner-Take-All Markets, a term coined by Robert Frank and Philip Cook in

their book “The Winner-Take-All Society”. In these special markets, sellers whose

goods are viewed as the best (or are thought of as the top performers) reap far greater

rewards and capture a disproportionately large share of the market compared to other

sellers whose goods are also of high quality. Sellers immediately below the top may

perform almost as well as those at the top, but gain far fewer rewards. In Frank and

Cook’s example, a handful of top opera tenors command high fees for performing

and recording, while artists who are technically close to them remain obscure, are

paid far less, and are rarely asked to record. Similar behavior is found among top

athletes, as well as among law firms, top consulting companies, and authors. Sports

and Entertainment represent the prototypical Winner-Take-All Markets because here

performance is easily observed and demand for the most-elite is heavily sought after.

Recently, however, higher education has been likened to this type of market as well.

Frank (1999) writes,

The market for higher education is fundamentally different from the
typical markets portrayed in economics textbooks. When excess demand
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arises in the market for an ordinary good or service, it is almost always
fleeting: producers rush to fill the void, or prices rise so much that the
market quickly clears. Not so in the upper reaches of the academic market.
Despite the persistence of excess demand, elite colleges and universities
continue to turn away thousands of well qualified applicants, while charg-
ing those they admit only about one-third of what it costs to serve them.
Why dont elite universities simply raise their prices? Because a universitys
status depends heavily on the average intellectual ability of its students,
elite universities need top students every bit as much as top students feel
the need to attend elite institutions. This co-dependence creates multi-
ple positive-feedback loops that amplify the rewards for a university that
succeeds in its efforts to recruit top students and faculty. The result is a
quintessential winner-take-all market, in which success breeds success and
failure breeds failure.

Thus, there appears to be a significant premium to attending a top-ranking pro-

gram, and in turn, there appears to be a significant advantage given to top-ranking

students entering and exiting these programs. Bowen and Bok (1998) found that

graduation from the most selective colleges was a great advantage in terms of entry

to elite professional schools and long-run posteducational incomes, net of a student’s

initial academic performance or skills (SAT and GPA). Thus, they conclude that the

economic payoff to a given academic ability is greatly enhanced by entry to a highly

selective college. So, then the next natural question would be “What does it take to

get into a top-tiered program?”

Hernandez (1997), the assistant director of admissions at Dartmouth College, detailed

the “Blue Book” algorithm used there and in other Ivy League colleges to calculate

an academic index (AI) for comparing students’ applications. She reported that there

is a high degree of agreement between admissions decisions using this method and de-

cisions made by other highly selective colleges that use the same basic inputs but in a

slightly different way. The formula calculates an AI by combining three components:

SAT I scores, SAT II scores, and the student’s class rank in his or her particular high

school. The last is called a “converted rank score” or CRS and it drops off steeply

as one moves down from the head of the class. In simulations using the admission’s
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algorithm, it was shown that using class rank in combination with SAT scores creates

a dramatic valedictorian effect. Specifically, being at the top of one’s class was worth

about 70 points on the SAT I plus 60 points on the SAT II in terms of the final index

score. However, this class-rank benefit was only extended to the top handful in a

high school class. Therefore, rank-order performance was shown to be an extremely

important factor in gaining entry into top programs.

Thus, if entry into a top program delivers extremely high rewards, and if high-rank

order performance is extremely important to gain entry into these schools (and not to

mention, to gain scholarships to attend such schools) then it would seem like students

(at least at the top of the ability spectrum) would have a great extrinsic incentive to

work hard for the top-mark.16 On the flip side of this, we would expect that Students

below the top of their class, in terms of ability, would have less incentive to attain

higher-grades, since they are at a substantial disadvantage from attaining the top-

mark required (it is too costly in terms of the effort expenditure). Later I will refer to

these two effects as the encouragement-effect and discouragement-effect respectively.

In light of this observation we are now ready for our second assumption,

Assumption 2.2 In general, higher ability students (higher θ’s) achieve higher grades.

That is, the outcome function u(θ) is strictly increasing.

This assumption will be needed when deriving the symmetric equilibrium outcome

function (i.e. the bidding function) of our model. Notice that in this framework

higher grades do not necessarily translate into higher effort levels since, for us, the

stronger students do not need to work as hard to achieve a given outcome. Thus,

Assumption 2.2 will not necessarily imply that the equilibrium effort function e(θ)

is strictly increasing. In fact, in light of the discouragement and encouragement

effect hypothesized above, we should expect that, at first, effort will be decreasing

16Add in the intrinsic rewards discussed earlier, and this effect is only magnified further.
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in ability as students are still discouraged from attaining the top mark and simply

trade their additional productivity for leisure, but then, at the high end of the ability

spectrum students begin to work harder as ability increases, buying an additional

competitive edge with their increased productivities. We will later refer to this as the

leisure-substitution effect and competitive-effect respectively and will take great care

in analyzing each of them. We are now ready to introduce our model.

2.1 The Winner-Take-All model

Consider the following two-period Winner-Take-All model (WTAM) with m students:

Period 0: Each student learns their true θ (exogenously). θ is private informa-

tion, but the distribution of ability is known to be uniform on the interval (0, 1). In

this way, Student’s can form expectations of where they stand relative to their peers.17

Period 1: Based on their level of ability, the Student decides whether to Register

for the course or not. Registration costs R, not registering costs 0.

Period 2: If the student registers, they choose effort level e and achieve outcome

(mark) u given by the following deterministic outcome function:18

u = e · θ (11)

If the student’s mark, u, exceeds a predetermined level u, the passing grade, then

the student gets a payoff V . Otherwise, they fail and get payoff 0. If, in addition

17Note that we are now relaxing the assumption of imperfect information over ability. In the
original conception of this model ability was only known imperfectly, as in the previous model,
however this quickly became intractable. In any case, we have already considered the deleterious
effects of imperfect information, and now we wish to focus attention on a new problem: to study
the effects of competition in the classroom when abilities are certain and private.

18Here we choose to specify a particular functional form for analytical tractability. The reader
will quickly notice that we’ve abandoned our boundedness assumption on f(·) and g(·). In lieu of
this u can no longer be interpreted as a percentage grade, and we no longer need to worry about it
being impossible for Students to pass.
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to passing, the student achieves the ‘top’ grade (i.e. u ≥ ui ∀ i = 1, 2 . . . n) then

they obtain an additional reward W .19 As usual effort is costly, and the cost of ef-

fort is given by c(e), as before. Given the form of the outcome function the reader

may interpret e as the sum total of all effort expended over the duration of the course.

As usual, it is assumed that V > R so that at least some students, with sufficiently

large ability, may find it worthwhile to register and put in effort to pass (even if they

do not put themselves in much contention for the top mark). Again, we assume no

discounting (δ = 1) for simplicity.

2.2 Equilibrium of the model

To begin with, we will assume that there exists a cut-off type, θL ∈ (0, 1), who finds

it optimal to register and exert the bare minimum amount effort to ‘pass’ (i.e. they

set u(θL) = u). Anticipating a strictly increasing symmetric equilibrium outcome

function, for type θL, the cost of passing will simply equal the benefit of passing: 20

c(eL) = V −R where eL =
u

θL
(12)

and this implies that θL = u
c−1(V−R)

. All θ < θL won’t register, and conversely, all

θ ≥ θL will register and will set u ≥ u. Thus, everyone who registers will ‘pass’ in

Period 2. Since the costs and benefits of registering are known to all students (even

the cost of effort function c(·) is assumed to be known), all students can compute

θL. From this knowledge, students who are registered in the class will no longer

consider the abilities of their classmates to be independent random draws from the

unit interval, but rather, from the interval (θL, 1). Therefore, in Period 2 the payoff

19Note that we do not include an additional option of ‘dropping-out’ after seeing the results of a
‘preliminary’ test since this will be redundant in the case of perfect knowledge over ability and a
deterministic outcome function. Since students can perfectly forecast the costs and benefits of their
decisions,they will register iff it is optimal for them to do so. Also, we do not specify a tie-breaking
rule because, as it will turn out, the probability of two-students sharing the top mark will be zero.
Lastly, note that we use n ≤ m as the number of ‘registered’ students.

20Since, in equilibrium, they give themself a zero probability of having the “top mark” we do not
need to incorporate the probability of obtaining W. This will be justified in the analysis that follows.
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function to a representative student i of type θi (who has registered) can be written

as follows:

Π(e, θi) = V −R +W · Pr(e · θi is the top mark)− c(e) (13)

As in standard auction theory, we will assume a symmetric equilibrium bidding func-

tion, which in this case will be an equilibrium outcome function u(θ) mapping abilities

to final grades. We assume that u(θ) is monotone increasing (as in Assumption 2.2)

and, as noted before, that u(θL) = u. This equilibrium outcome function will implic-

itly define a symmetric equilibrium effort function given by e(θ) = u(θ)
θ

. We will take

great care in analyzing this later. With this assumption we may now rewrite (13)

above as:

Π(e, θi) = V −R +W · Pr(e · θi ≥ u(θj) ∀ j 6= i)− c(e)

= V −R +W · Pr(θj ≤ u−1(e · θi) ∀ j 6= i)− c(e)

= V −R +W ·
(
u−1(e · θi)− θL

1− θL

)n−1

− c(e) (14)

The first step makes use of the fact that u(·) is monotone (invertible) and the second

step makes use of the fact that θ’s are independent random draws from the interval

(θL, 1). We want students to choose the optimal amount of effort given the outcome

function chosen by others, so we now differentiate (14) with respect e and set it equal

to 0.

dΠ

de
= W · (n− 1) ·

(
u−1(e · θ)− θL

1− θL

)n−2

· 1

1− θL
· 1

u′(u−1(e · θ))
· θ − c′(e) = 0 (15)

Of course, since we want u(θ) to be a symmetric equilibrium function, we need (15)

to be satisfied by e(θ) = u(θ)
θ

.21 Imposing this equilibrium condition, (15) reduces to:

21That is, given that everyone else is using the bidding function u(θ), it must also be optimal for
you to use it.
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W · (n− 1) ·
(
θ − θL
1− θL

)n−2

· 1

1− θL
· 1

u′(θ)
· θ − c′(e(θ)) = 0 (16)

At this point it is useful to assume a particular functional form for our cost function.

For simplicity we take the cost of effort to be linear c(e) = a ·e where a > 0 represents

the marginal cost of effort. We could equally well assume cost to be quadratic in effort,

but at the unfortunate expense of making the solution to the resulting differential

equation analytically complex. Since very few additional insights are gained from a

more realistic cost function, we choose to stick with linearity. Subbing in our cost

function and rearranging, (16) becomes,

u′(θ) =
W

a
· (n− 1) ·

(
θ − θL
1− θL

)n−2

· θ

1− θL
(17)

=
W

a
· (n− 1) ·

[(
θ − θL
1− θL

)n−1

+

(
θ − θL
1− θL

)n−2

· θL
1− θL

]
(18)

We are now prepared to solve for the equilibrium outcome function u(θ) by integrat-

ing,

u(θ) =

∫ θ

θL

u′(t)dt+ u(θL)

=
W

a
(n− 1)

[
1− θL
n

(
θ − θL
1− θL

)n
+

θL
n− 1

(
θ − θL
1− θL

)n−1
]

+ u(θL)

=
W

a

(
n− 1

n

)(
θ − θL
1− θL

)n−1(
θ +

1

n− 1
θL

)
+ u (19)

Observing that u(θ) is increasing in θ (justifying our initial assumption) our derivation

of the equilibrium is now complete and we are ready to state our second Theorem.

Theorem 2.1 With linear cost of effort there exists a subgame perfect Nash Equi-

librium of WTOM in which: in Period 1 each student registers iff θ ≥ θL = u
c−1(V−R)

,

and in Period 2 students choose effort according to the symmetric effort function

e(θ) = u(θ)
θ

where u(θ) is given by (19).
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Now that we have derived an expression for the equilibrium outcome function (and

hence, also the equilibrium effort function), we are ready to study its properties in

detail.

2.3 The Equilibrium Outcome Function, u(θ)

Outcome Function

q
0.5 0.6 0.7 0.8 0.9 1.0

u q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3: u(θ) for W = 2, a = 1, u = 1, θL = 0.5, n = 10

Pictured in Figure 3 is our equilibrium outcome function (suitably parametrized).

The first thing to notice about it is that it is only defined for θ ≥ θL and it is rela-

tively flat for all θ close to θL. The basic intuition behind this trait is that registered

students at the lowest ends of the ability spectrum have little to shoot for beyond a

passing grade since supplying sufficient effort to attain the ‘top mark’ would be far

too costly for them. On the other hand, as θ moves closer and closer to the upper

end of the ability spectrum the student finds themself more and more capable of at-

taining the ‘top mark’ and, as a result, they strive for higher outcomes. This, in part,

justifies our initial hypothesis of a discouragement and encouragement region on the

ability spectrum. Note that in the extreme case when θ = 1 the student’s outcome is

numerically equivalent to their amount of effort. In this case we see that the student
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Figure 4: Outcome Function for varying class sizes

with θ = 1 would be willing to work just under 2 units more the passing level of effort

since this would almost guarantee them the top-mark and a reward of W = 2. Now,

let’s consider the impact of class size on the outcome function, by allowing n to vary.

As can be seen from Figure 4, the impact of an increase in class size serves to “discour-

age” the low-medium ability types, and tends to “encourage” the very high ability

types (as mentioned earlier we call these two phenomena the discouragement effect

and encouragement effect respectively). The intuition behind this result is that high-

ability types are ‘threatened’ by the increase in class-size and are capable of rising to

the occasion since they see larger returns to effort than low-medium ability types. In

fact, by fixing θ and allowing n to vary we can pinpoint the regions where these stu-

dents are encouraged by additional competition, and where they ultimately become

discouraged. Evidently, we can see from Figure 5, for low ability types the discour-

agement effect kicks in almost immediately, whereas, for the high ability students

the encouragement effect dominates up until a critical threshold, beyond which the

discouragement effect takes over. The higher the ability of the student, the larger the
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class size needs to be before they eventually become discouraged.
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Figure 5: Regions of Encouragement and Discouragement for Various θ’s

2.4 The Average Outcome and the Class-Size Debate

Recall that in Period 2, θ’s are uniformly distributed on the interval (θL, 1). Thus, we

can easily compute the average outcome, for a given set of parameters, by working

out the expected value of u(θ),

E[u(θ)] =

∫ 1

θL

u(θ) ·
(

1

1− θL

)
dθ

=
W

a

[
n− 1

n

∫ 1

θL

(
θ − θL
1− θL

)n
dθ +

θL
1− θL

∫ 1

θL

(
θ − θL
1− θL

)n−1

dθ

]
+ u

=
W

a

[
n− 1

n
· 1

n+ 1
(1− θL) +

θL
n

]
+ u

=
W

a · n(n+ 1)
[(n− 1) + 2 · θL] + u

=
W

a · n(n+ 1)

[
(n− 1) +

2 u(
V−R
a

)]+ u (20)
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Now, we can analyze the effects that our parameters have on the class average,

• V ↑ orR ↓=⇒ θL ↓=⇒ E[u(θ)] ↓ (class more diluted with low ability students)

• n ↑=⇒ E[u(θ)] ↓ (since probability of achieving top mark ↓ for most students)

• u ↑=⇒ E[u(θ)] ↑ (since more effort is required to pass)

The results above are both intuitive and obvious in this framework. What is not

immediately obvious, however, is how an increase in a will affect the class average.

On the one hand the greater the marginal cost of effort, the less likely it is for a

student to want to strive hard for the top mark (holding the reward W fixed); but

on the other hand, the greater the marginal cost of effort, the more prohibitive the

class is to register for, and thus the larger is θL (the ability of the weakest student

in the class). These two effects work in opposite directions, and ultimately, the effect

of increasing a would seem to be ambiguous. However, taking a partial derivative of

E[u(θ)] with respect to a and simplifying we find that,

∂E[u(θ)]

∂a
= − (n− 1)W

(n+ 1)na2
< 0 (21)

and so, it is unambiguously clear that the first effect dominates.

Application: The Class-Size Debate

One thing that is worth pointing out, is that within this competitive framework, in-

creasing class-size tends to decrease the overall classroom achievement (as measured

by the class average). The issue of class size and the idea of class size reduction is

probably the most popular and most funded school improvement policy in Canada

and the United States.22 By way of example, for the 2007-08 school year, the On-

tario Ministry of Education committed a total investment of $406 million in ongoing

22For an excellent summary of this debate, featuring a collection of papers from several eminent
economists, see Mishel & Rothstein’s The Class Size Debate
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funding to support over 5,100 additional primary teachers in the province in hopes of

reducing class sizes. As well, they are providing $700 million in funding to support

capital projects that will create more than 1,900 classrooms to accommodate the ad-

ditional space required for these smaller class sizes, with the ultimate goal of reducing

all primary classes to 23 students or fewer.23 Hoxby (1997) writes,

Class size reductions are enacted often because they are popular with
nearly every constituency interested in schools. Parents like smaller classes
because their personal experience suggests that they themselves give more
to each child when they have fewer children to handle. Even if parents in
a school disagree bitterly about educational methods, they can agree that
class size reduction is good: smaller classes give teachers the opportunity
to practice more of each parents favored educational method. Teachers,
teachers unions, and administrators like smaller classes for the same rea-
sons parents do, but they may also like smaller classes for reasons that
spring from self-interest. Teachers may like smaller classes because they
reduce the effort that they must expend in order to deliver instruction.
Teachers unions may like class size reductions because they increase the
demand for teachers. Administrators may like class size reductions be-
cause they increase the size of their domain. As a result of the policys
popularity, the twentieth century has been a period of continuous decline
in class size.

Proponents of smaller class sizes, the Ontario Ministry of Education included, argue

that with a smaller pupil-teacher ratio, students can get more one-on-one attention,

have less distractions, feel more engaged, are more willing to ask questions, and are

more likely to succeed in high school and beyond. All of these effects, they say, serve

to increase a child’s educational outcome and, hence, their cognitive development.

While, our model has nothing to say about these effects, it does add one more argu-

ment to the small class-size camp. In our model, with smaller class sizes, the class is

encouraged to work harder on average. However, this conclusion must be taken with

a grain of salt, as one must do whenever talking about an effect that is only true

‘on average’. In our model, the smaller class size encourages the low-medium ability

students to work harder (they are less discouraged by competition), but on the other

23Figures taken from Ontario Ministry of Education webpage, www.edu.gov.on.ca

37



hand, it encourages the high-ability students to work less (they are less threatened

by competition). If, as society, we wish to maximize the average outcome attainment

of our students, then this model predicts that we should have smaller class sizes - but

this will have the unfortunate consequence of holding back the most gifted students

from reaching their greatest potential.24 Conversely, if we wish to maximize the out-

come attainment of our most gifted students, then we ought to keep class sizes large to

encourage competition - but at the unfortunate expense of discouraging the majority.

This expresses the essential ideological dichotomy of whether to view the classroom

as a herd or as a jungle (and whether to view the teacher as a shepherd or winemaker).

2.5 The Equilibrium Effort Function, e(θ)

Having considered various aspects of the Outcome function u(θ) we are now ready

to examine the properties of the equilibrium effort function e(θ) = u(θ)
θ

, pictured in

Figure 6. The first thing to notice is that while the outcome function is strictly in-

creasing, the effort function first decreases for low values of θ and then increases as

θ becomes closer to 1. The intuition here is that for low values of θ there is only a

small probability of achieving the ‘top mark’, and so, for small increases in ability the

student substitutes their labour for leisure (effectively, they buy themselves leisure

time with their extra-productivity). However, as θ gets large, the student is more and

more capable of attaining the ‘top mark’ so they begin to use their extra productivity

as a competitive advantage, by working even harder. As foreshadowed earlier, we will

call these two phenomena, the leisure-substitution effect and the competitive effect

respectively. We can highlight each of these phenomena by allowing W and n to vary

as in Figure 7.

As we can see from Figure 7, by allowing the class-size to increase we make it in-

24It is, I think, this type of philosophy that lead Col. Robert Ingersoll to say that “Colleges are
places where pebbles are polished and diamonds are dimmed.”
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Figure 6: Effort Function vs. Outcome Function
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Figure 7: Effort Function for Various Class Sizes and Top-Mark Rewards
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creasingly difficult for student’s to achieve the top mark, and so they will tend to use

their additional productivity (i.e. higher θ’s) to buy additional leisure even when they

are already of relatively high ability. In other words, the leisure-substitution effect is

more pronounced when class sizes are large. This, of course, is just another name for

the “discouragement” effect analyzed earlier. On the other hand, by increasing W

we increase the attractiveness of attaining the top-mark, and so the competitive effect

tends to take over earlier.

It is interesting to note that the hardest workers in this model, are those on the tails

of the distribution. The low ability students work hard so that they can just scrape

by with a passing grade, and the high ability workers work hard so that they can

potentially achieve the top mark. In between, students have very little to motivate

them; realistically, they can’t vie for the rewards of top marks, and so there is little

more to strive for beyond a passing grade, which they can achieve with relatively little

effort. This story, as simplistic as it is, seems to accord with evidence from casual

empiricism. Students work hard because they struggle, or they work hard because

they are competitive, and in the middle, they are simply apathetic.

2.6 A generalization to other types of probability distribu-
tions over θ

Before we begin to discuss some of the limitations of this model, it is useful to explore

the robustness of these results to different functional form specifications. In particular,

we may consider alternative distributions of θ on the unit interval. The shrewd reader

would surely have cringed at the assumption of a uniform distribution over abilities.

There is indeed much evidence that suggests that distributions over intelligence (and

other talents) tend to resemble the Gaussian or Normal Distribution. Whether or not

this is precisely true25, few would be willing to argue that talent is uniform. There

25See “Is intelligence distributed normally” by C. Burt - British Journal of Mathematical & Sta-
tistical Psychology, 1963
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are relatively few people who possess exceptional high or low intelligence, whereas

there are very many individuals clustered somewhere around the middle. In lieu

of this, we now consider a family of distributions that more closely resemble the

normal distribution in shape and form. Of course, we could simply use the normal

distribution itself, so long as we were willing to accept negative abilities, or if we

were willing to retool the outcome function, but this would come at the unfortunate

expense at not being able to compare the new results to the old results in a meaningful

way. Consequently, we suggest the following distribution, σ(θ), indexed by parameter

k:26

σ(θ) =

(
Γ (3/2 + k) 2k+1

√
π · Γ (k + 1)

)
(2 θ (1− θ))k (22)

where Γ(z) =
∫∞

0
tz−1e−t dt is an extension of the familiar factorial function to real

and complex numbers (i.e. Γ(n) = (n−1)! when n is a positive integer). We illustrate

this distribution for various values of k in Figure 8.
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Figure 8: Distribution for different values of k

The first thing to notice is that the distribution is symmetric around θ = 0.5, and

when k = 0 we reduce to the familiar uniform distribution studied earlier. Increasing

k has the effect of squeezing the distribution toward the center, so that less and less

26As far as I know, there is no name for this distribution. I invented it for the sole purpose of having
a bell-shaped distribution over the unit interval, that would reduce to the uniform distribution as a
special case. The complex first term in the expression is required to make the pdf integrate to 1.
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students are located at the extremes. In the limit as k tends to infinity the distri-

bution tends to the degenerate distribution that places all the probability mass at

θ = 0.5. Thus we will interpret k as an index of the clusteredness of ability. We are

now prepared to see how this specification will effect our equilibrium outcome and

effort functions for various levels of k.

We begin by noting that for a general pdf σ(θ) over ability, and with corresponding

cdf Σ(θ), we can rewrite (14) as,

Π(e, θi) = V −R +W ·
[
Σ
(
u−1(e · θi)

)]n−1 − c(e) (23)

and we can rewrite the corresponding FOC (18) as

u′(θ) =
W

a
(n− 1) · [Σ(θ)]n−1 · σ(θ) · θ (24)

Due to the analytical complexity of σ(·) we cannot derive a closed form expression

for the equilibrium solution u(θ). We can, however, use MAPLE to perform the in-

tegration for various values of k and plot the resulting functions on a graph.27

As can be seen from Figure 9, when k = 0 our distribution reduces to the uniform

distribution and we get the familiar pictures for the outcome and effort functions

derived earlier. However, when k is increased, we obtain a new feature on both the

outcome and effort functions, and that is, an increasingly prominent s-shape. The

intuition here is that for large values of k, there is less and less probability of hav-

ing exceptionally high-ability students in the classroom (abilities are more clustered).

Thus, the rare high-ability student will find themself in a ‘league of their own’ and

will not likely face competition from students of similar ability. These students use

their extremely high ability to their advantage by working relatively less, and that

27Unless otherwise stated we will use the same parametrization as before, W = 2, a = 1, θL = 0.5,
and n = 5
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Figure 9: Outcome and Effort Functions for various k’s

explains why the effort function dips down near the highest end of the ability spec-

trum (in turn, this accounts for the change in concavity of the outcome function).

We still see the same leisure-substitution effect and competitive effect discussed earlier

but now we must add in a third effect, the superstar effect. The superstar effect kicks

in at the point where a student is so extremely talented that they are unlikely to face

competition from anyone of comparable ability, and this encourages them to work

less (i.e. exploit there uncharacteristically high productivity and simply rest on their

laurels). As we increase k, the superstar effect starts earlier because students are more

clustered around average ability, so that even small deviations from the average are

‘extreme’). Looking at Figure 10, which fixes k = 2 and allows n to vary, we see that

same crossing properties are retained. Thus, the encouragement and discouragement

effects are robust. We also see that the superstar effect is mitigated to the extent

that class size is increased. This makes sense because for larger class sizes there is

more chance of having many extremely talented students competing for the top mark

(i.e. it’s too risky to rest on your laurels in a large class).

Another interesting conclusion is that as we increase k, the outcome and effort func-
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Figure 10: Outcome and Effort Functions for various class sizes

tions are seen to shift upwards for the majority of ability types. In other words, by

trying to cluster students of similar abilities in the same classroom we increase the

achievement and effort levels of the majority of students (only the highest ability stu-

dents are encouraged to work less). The intuition here is that with greater clustering,

students are less discouraged by the prospects of having much more talented students

in the classroom with them, and this increases their estimation of the probability of

attaining the top mark. Therefore, if we are concerned with maximizing the edu-

cational attainment of the classroom, we would like to increase the extent to which

students of similar ability levels are grouped together. Interestingly, this is often done

by the population segmenting Placement Tests discussed earlier! This also offers a

justification for grouping high ability students together in ‘advanced courses’ in grade

school.

2.7 Limitations of the model

We are now prepared to discuss some of the important drawbacks and limitations of

this model. For one, the model assumes a particular functional form for the outcome
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function and cost function. Although these assumptions are not thought to be driv-

ing the main results (i.e. we believe that these results are robust to many different

functional form specifications) there is no way of testing this hypothesis since the

model becomes very complicated to analyze when different forms are imposed, even

for the computer. Apart from this, we still have the unrealistic implication that no

student will ever ‘fail’ a course, and this is primarily due to the deterministic outcome

function as well as the assumption of certainty over ability. In reality, the classroom

more closely resembles a hybrid of our first model and the current model, and in-

deed, this was originally the model I explored. However, for purposes of analytical

tractability, it was not possible to study these two models together and that is why

they were eventually broken up. Another problem with this model is that it predicts

a very strange non-symmetric grade distribution, one that places the vast majority

of students at low grade levels and only a small handful at the top. Such a left-

skewed grade distribution does not accord with the familiar bell-curved distribution

that most teachers seek to attain. A more realistic model, that would partially get

around this problem would be one that included a stratified reward set V1 > . . . > Vk

corresponding to different absolute outcome levels. Such an additional complexity

would not change the character of our main results, but it would tend to replicate

the behaviour we observe more closely by spreading out the grade distribution.

2.8 Other Applications

While I have dealt exclusively with the setting of the classroom in the formation

and presentation of this model, there are actually many other settings that resemble

the essential features of ‘classroom’ competitiveness. Take, for instance, the non-

commissioned salesman or telemarketer who must sell a certain amount of products

to avoid being fired (sales quota) but who gets a bonus or promotion for outselling all

of the other salesman in the branch. Replace ‘classroom’ with ‘firm’, ‘student’ with

‘salesman’, and ‘final grade’ with ‘total dollar sales’ and essentially the same story
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carries over. On the other hand, here the Manager of the firm (‘teacher’) almost

certainly cares most about maximizing average performance since this will maximize

total revenue. Thus, in this setting, the shepherd vs. winemaker debate is moot. For

the teacher, the objective function isn’t as clearly defined, and so there is an inherent

trade-off.

Another setting analogous to the classroom, in many ways, is the world of academia.

Professors would like to work hard enough to attain tenure (a difficult task in itself),

but beyond that, the next plateau of significant rewards would seem to go to the

select few who attain star status for being at the top of their field. Replace ‘student’

with ‘professor’, ‘final grade’ with ‘research output’ and ‘passing mark’ with ‘tenure’

and the same basic story carries over. This parallel is probably only partially true,

since professors would seem to get some type of ‘commission’ off of every publication,

either in the form of pure intrinsic utility, or in the form of extrinsic rewards such as

research grants, offers from other schools, etc. At least at a general level, however, it

would seem that incentives are lined up in the same way as the classroom: rewards

for attaining a specific bar of achievement, beyond which rewards are given out on the

basis of relative performance. Ironically, this is the very way in which the incentives

are aligned for the QED Master’s Essays. There is some reward for submitting a

paper that is basically acceptable (namely, a passing grade and diploma) but the

next substantial extrinsic reward is reserved exclusively for the top paper (namely,

the prestigious Scarthingmoor Prize). How strange and convenient it is when the very

paper you write is an application of itself!

3 Concluding Remarks

Admittedly, the results obtained and methodology used herein are easily grasped by

the Honours Undergraduate student. If there is anything novel to be found in this

paper, it is in the application of well-known tools to a new and interesting area. In-
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deed, this paper is the first to consider the ways in which Auction Theory can be

applied to the classroom setting! In fact, if one is willing to be creative, ‘student’ and

‘classroom’ can be placeholders for many other occupations and competitive settings,

as we saw in the previous section. Even still, the classroom - it seems to me - is a

very fruitful and important setting in and of itself, even if it is somewhat narrow. As

Plato said, “The direction in which education starts a man will determine his future

in life.” Thus, understanding and predicting behaviour in the classroom, particularly

in grade school, could prove quite instrumental in predicting behaviour later on in

life, and in other settings of economic interest. Perhaps, as I have suggested in this

paper, if we can understand the mechanisms behind Student decision making, we can

choose policy instruments to ensure that our educational system sets youth in the

right ‘direction’. For example, if the student registration and effort allocation prob-

lem resembles the TPLM developed in Part 1, then that gives us some ideas of how

to correct the problem of dropping-out (namely to reduce |θ̂− θ| through the various

measures suggested in Section 1.6). Similarly, if classroom competition resembles the

WTAM developed in Part 2, then that tells us how effort and outcome attainment

will be affected by changing class sizes and by clustering students of similar ability. In

the end, we are still left with important value judgements when choosing the optimal

policy, as in the inherent trade-off faced by the benevolent professor, but at least

we’ve reduced the problem to something that is manageable and somewhat quantifi-

able.

I believe that it is this type of theoretical modeling, coupled with empirical estimation

and verification, that will help direct administrators in developing sound educational

policies. Too often, educational studies are based on analysis of pure statistical corre-

lation.28. While these are valuable and informative, they lack the explanatory power

of a well crafted theoretical model which endogenizes the decision making of the

28Such as surveys of drop-outs, regressions of class size on student achievement, etc.
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individual. Tinto (1975) writes,

Despite the very extensive literature on dropout from higher educa-
tion, much remains unknown about the nature of the dropout process. In
large measure, the failure of past research to delineate more clearly the
multiple characteristics of dropout can be traced to two major shortcom-
ings; namely, inadequate attention given to questions of definition and to
the development of theoretical models that seek to explain, not simply
to describe, the processes that bring individuals to leave institutions of
higher education...knowing, for instance, to what degree an individual’s
measured ability and social status relate to the probability of his leaving
college does not mean knowing how these attributes affect the process of
dropping out from college. Whereas the former requires little more than a
simple comparison of the rates of dropout among individuals of differing
ability and social status characteristics, the latter requires the develop-
ment of a theoretical longitudinal model that links various individual and
institutional characteristics to the process of dropping out from college.

As mentioned before, their are many limitations and drawbacks to the models pre-

sented herein. In principle, future work could be directed towards correcting these

limitations so that the models are more accurate representations of reality. In par-

ticular, more thought should be given to the idea of a ‘noisy’ outcome function, a

stratefied set of rewards, and an interplay between effort and ability. Also it seems to

me that the phenomena of ‘procrastination’ ought to be accounted for in any multi-

period model where effort must be exerted well before rewards are reaped.29 Perhaps

the inclusion of hyperbolic discounting into each model could fix this problem and

lend us some interesting conclusions. In any case, I have just begun to scratch the

surface of the Problems of the Student, and with these simple models I’ve uncovered

many interesting implications. Along the way, I’ve tried to relate these implications

to what we actually observe in the real world, but more work should be done to

this end. In particular, the so called leisure-substitution, competitive, encouragement,

discouragement and superstar effects seem to accord with what I’ve called ‘casual

empiricism’; which is to say, they agree with what I’ve observed throughout my 17

years as a student. However, future work should be directed towards measuring these

29As any student will certainly agree!
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effects empirically to determine whether they actually exist to a significant degree.

In conclusion, I believe I have succeeded in answering my essential question, “Are their

other salient features of Student behaviour that can be modeled using the standard

Economic toolset?”. While my models are, admittedly, somewhat limited in range

and scope, I hope that they have at least illuminated in some small way the vast and

rich area of behavioural research that can be found in the setting of the classroom.
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A TPLM with prior given by Γ(θ)

Here we relax the assumption that the students prior on their ability is simply a point
θ̂, and allow it to be a general distribution given by cdf Γ(θ).30 As in our derivation
of the equilibrium in Section 1.2 we begin in Period 2 and proceed by backwards
induction:

Period 2: Given θ and e1 the optimal behaviour is given by,

• Continue and set e2 = e2(e1, θ) if V ≥ c(e2(e1, θ))

• Drop-Out if V < c(e2(e1, θ))

Where e2(e1, θ) = f−1
(
u−α·g(θ)f(e1)
g(θ)·(1−α)

)
is the minimum amount of effort required to

pass, as before.

Let θc be the type that finds themself indifferent between Continuing and Dropping-
Out after providing e1 in Period 1 (i.e. θc(e1) satisfies V = c(e2(e1, θc(e1))). We are
now ready to examine the optimal behaviour in Period 1.

Period 1: Given the optimal behaviour described in Period 2, if the student decides
to Register and puts in effort e1 then they will receive,

• −R− c(e1) if θ < θc(e1) (they will Drop-Out)

• V −R− c(e1)− c(e2(e1, θ)) if θ ≥ θc(e1) (they will Continue)

Thus we can take an expectation of their payoff with respect to their prior over θ and
we obtain,

EU(e1) =

∫ θc(e1)

0

(−R− c(e1)) dΓ(θ) +

∫ ∞
θc(e1)

(
V −R− c(e1)− c(e2(e1, θ))

)
dΓ(θ)

= −R− c(e1)︸ ︷︷ ︸
Sunk cost of Registering

+

∫ ∞
θc(e1)

(
V − c(e2(e1, θ))

)
dΓ(θ)︸ ︷︷ ︸

Expected premium for Passing

(25)

If (25) is positive for some e1 > 0 then the student will Register, otherwise they won’t.
Examining the two terms in (25) we see that the first term is decreasing in e1 whereas
the second term is increasing in e1 (both the argument of the integral increases and
the limits of integration are expanded). This expresses the basic trade-off faced by
the student - by registering and working hard in Period 1, they incur a large sunk

30To avoid confusion, we use the greek letters Γ and γ to refer to the cdf and pdf over θ respectively.
We could use F and f but this might confuse the reader with the f from the students outcome
function u(θ) = f(e) · g(θ).
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cost but simultaneously increase their chances of passing in Period 2 and obtaining
benefit V . Another thing to notice is that the second term in (25) is larger when the
student places much of the probability mass on large values of θ (e.g. when the pdf
γ(θ) is heavily right-skewed). Thus, the greater the students confidence over their
ability, the more likely that (25) will be positive for some level of effort, and the
more likely that the student will Register. Conversely, the less confident that the
student is over their ability, the less likely that they will find it optimal to Register.
Although it is not easy to derive an exact condition on Γ that will characterize the
registration decision, as we had done in Section 1.2, the basic idea still holds - and
the unfavorable scenarios of overconfidence and underconfidence will still be present.
Even though we can’t derive a characterizing rule on Γ it is, however, still interest-
ing to see how the optimal level of effort would be derived in this more general setting.

Let’s suppose that (25) is positive for some e1 > 0, to derive the optimal amount of
effort we will first want to calculate dEU

de1
,

dEU

de1
= −c′(e1) +

∂

∂e1

∫ ∞
θc(e1)

(
V − c(e2(e1, θ))

)
γ(θ)dθ

= −c′(e1) +
[
V − c(e2(e1, θc(e1))

]
γ(θc) ·

dθc
de1
−
∫ ∞
θc(e1)

c′(e2(e1, θ))

(
∂e2

∂e1

)
γ(θ)dθ

= −c′(e1) +

∫ ∞
θc(e1)

c′(e2(e1, θ))

(
−
∂e2

∂e1

)
γ(θ)dθ (26)

The second step uses Leibniz’s rule for differentiation under the integral sign,

d

dα

∫ b

a

f(x, α)dx =

∫ b

a

∂

∂α
f(x, α) dx+ f(b, α)

db

dα
− f(a, α)

da

dα
(27)

and the third step makes use of the fact that V = c(e2(e1, θc(e1)). Thus, if we set
(26) equal to 0 we obtain an expression characterizing the critical points of EU(·),∫ ∞

θc(e1)

c′(e2(e1, θ))

(
−
de2

de1

)
γ(θ)dθ = c′(e1) (28)

Now, we can further simplify this expression by assuming that cost is linear and by

noting that −de2
de1

= f ′(e1)
f ′(e2)

when α = 1
2
. Thus (28) becomes,∫ ∞

θc(e1)

(
f ′(e1)

f ′(e2(e1, θ))

)
γ(θ)dθ = 1 (29)

Without specifying particular functional forms it is impossible to derive an explicit
expression for e∗1. However, whatever the solution happens to be, it is clear that the
density function γ(θ) must have sufficient mass on the interval (θc(e

∗
1),∞), else (29)

will not hold. Thus, whatever the optimal level of effort e1 works out to be, the
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Student must be sufficiently confident that they would be able to pass in the second
Period with that amount of effort.31 In fact, if we set e1 = 0 we obtain the equation,∫ ∞

θc(0)

(
f ′(0)

f ′(e2(0, θ))

)
γ(θ)dθ = 1 (30)

Thus provided that the f(·) is sufficiently concave so that f ′(0)
f ′(e2(0,θ))

is large (i.e. large

diminishing returns to effort), and provided that the student is confident enough so
that there exists significant probability mass on the interval (θc(e

∗
1),∞) the left hand

side of (30) will almost surely be larger than the right hand side (i.e. dEU
de1
|e1=0 > 0).

This means that the optimal amount of effort in period 1 is almost always positive
(as we would hope it would be). If, on the other hand, f is approximately linear so
that effort is almost perfectly substitutable across time periods, and the student is
not very confident in their ability, then it pays to not exert much effort in the first
stage, learn your type, and then put in the lion’s share of effort in the second stage,
but only if that turns out to be optimal given what you’ve learned. This result is
mainly due to the assumption that learning is perfect regardless of the amount of
effort put in, so that the student can test the waters with only a minimum of effort,
and bail out at little expense if they learn something unfavourable.

31More accurately, they would need to be sufficiently confident in the fact that they would be
willing to pass in the second period given e1. The distinction between ‘willing’ and ‘able’ is important
because students are always able to pass, but they might not be willing to put in the effort unless
it is optimal.
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