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Abstract

In the presence of statistically dependent but uncorrelated time series, it
has been proved that the proposed Lobato (2001) test has a much more ac-
curate control over size than the Box-Pierce test. However, this comes at the
expense of power loss compared with the Box-Pierce test. Su (2005) recently
proposed two classes of modified Lobato tests based on recent development in
heteroskedasticity-autocorrelation (HAC) robust inferences in regression mod-
els, seeking to find out a test that not only retains the good size properties of
the Lobato test but also dominates the Lobato test in terms of power perfor-
mance. His Lobato-PSJ test outperforms the Jansson (2004) modification and
was recommended by Su (2005). However, the choice of sharp power parame-
ters in Su (2005) seems to be arbitrary. The purpose of this essay is to modify
the Lobato-PSJ test in Su (2005) by replacing the power parameter ρ in sharp
origin kernels with an optimal data-driven power parameter ρ̂∗T in Phillips, Sun
and Jin (2003). The modified Lobato-PSJ test is optimal on a MSE criterion
and has the advantage of not requiring any user-chosen numbers. Monte-Carlo
simulation results show that the proposed test exhibits very similar control
over size as the Lobato (2001) test meanwhile it is almost as powerful as the
Box-Pierce test in finite samples.
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1 Introduction

Box and Pierce (1970; hereafter, BP) proposed using the QK test statistics to test

the null hypothesis that the first K autocorrelations of a covariance stationary time

series are zero. The QK test is the sample size times the sum of the squares of the

first K sample autocorrelations. Its value is compared with the critical values of a

chi-square distribution with K degrees of freedom to decide if the null hypothesis of

no autocorrelation will be rejected or not. The procedure of QKthe test is correct if

the time series is assumed to be independent and identically distributed, because the

asymptotic covariance matrix of the sample autocorrelations is an identity matrix on

this assumption. In the presence of uncorrelated and dependent time series such as

GARCH, the asymptotic covariance matrix of the sample autocorrelations depends

on the data-generating process and the QK test can produce misleading inferences

(Romano and Thombs, 1996).

To address this problem, Lobato, Nankervis and Savin (2002; hereafter, LNS)

proposed a modified QK test robust to statistical dependence. Motivated by devel-

opment in HAC consistent covariance estimates in regression testing, the modified

QK test employs a kernel-based consistent estimator of the asymptotic covariance

matrix instead of the identity matrix. The modified QK test has the advantage of

asymptotically following the chi-square distribution under the null. To guarantee

the consistency of the asymptotic covariance matrix, users must properly select the

bandwidth parameter and statistical inference can be sensitive to that.

Due to the fact that arbitrary choices of the bandwidth parameter are likely to

happen in practice, Lobato1 (2001) suggested another version of the modified QK

test. Following Lobato (2001), the asymptotic null distribution of the test is pivotal,

not standard and can be tabulated by means of simulations. Simulation results show

that the Lobato test has excellent controls over size. However, it is not as powerful

1The Lobato test does not hinge on the consistent estimates of covariance matrix and has the
advantage of not requiring choosing any arbitrary number to implement the proposed test.
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as other tests requiring the user-chosen number in terms of asymptotic local power

and finite sample power.

Recent development on HAC robust inferences in regression models has shed light

on improving the Lobato (2001) test in terms of its power performance. Similar to the

Lobato test, Kiefer, Volgelsang and Bunzel (2000; hereafter, KVB) suggested an al-

ternative class of regression testing, which does not utilize HAC consistent covariance

estimates and is free from the bandwidth selection2.

Monte-Carlo simulation results reveal that the KVB test is better at controlling

the size compared to the conventional HAC robust test, which is at the cost of power

loss (KVB, 2000). In order to improve the power performance of the KVB test, two

modified KVB tests were generated by Jansson and Phillips. Jansson (2002, 2004)

proposed a weighting scheme, close to that used in Anderson and Darling (1952) in

the construction of the test statistics that delivers power improvement while retaining

their better size properties in finite samples. Phillips, Sun and Jin(2003; hereafter,

PSJ) suggested a new class of sharp origin kernels constructed by taking an arbitrary

power of the usual Bartlett kernel. PSJ (2003) intended to modify the KVB test

using the sharp origin kernels without truncation3. On the criterion of minimizing

the asymptotic mean squared error (MSE) of the HAC estimate, an optimal choice

of the power parameter is obtained (PSJ, 2003). Based on the plug-in approach of

Andrews (1991), a data-driven power parameter is developed by PSJ (2003). PSJ

(2003) test was proved to have the same good size properties as the KVB test along

with significant power improvement over the KVB test.

Motivated by how Jansson (2002, 2004) and PSJ (2003), Su (2005) proposed

two versions of modified Lobato test: the Lobato-Jansson test and the Lobato-PSJ

test. They are constructed by replacing the HAC estimate of the Lobato test with

modified HAC estimates in Jansson (2002) and PSJ (2003) respectively. Same as

2Kiefer and Vogelsang l(2002a; hereafter, KV) later proved that the KVB test is equivalent to
the conventional HAC robust test using the full bandwidth Bartlett kernel. Likewise, the Lobato
test can also be related to the LNS test using the above argument.

3the fullbandwidth
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the KVB test, limiting distributions under the null of two modified Lobato tests are

non-standard and depend on the weight function and power parameter of sharp origin

kernels individually. Simulation results in Su (2005) reveal that the PSJ modification

appears to enjoy more power improvement than the Jansson one and perform similarly

in size as the Lobato test, while the Jansson modification is more vulnerable to size

distortion.

In this essay, following Su (2005) and PSJ (2003), we extend the recommended

Lobato-PSJ test in terms of the selection of power parameter. It can be seen that

Su (2005) randomly consider five power parameters.4. These choices may be arbi-

trary. The use of PSJ (2003)’s data-determined power parameter on improving HAC

estimates give us the motivation that it can be applied to the modified Lobato-PSJ

test to gain more power improvement. The suggested test in this paper applies the

optimal data-determined power parameter to sharp origin kernels in HAC estimates

of the Lobato-PSJ test so that there is no need for users to choose any arbitrary

numbers to implement the test. Intensive Monte-Carlo experiments show that the

Auto-Sharp [2] test5 and the Lobato test exhibit very similar accurate control over

size. Even in the case of bilinear examples, while other tests, except the Lobato test,

suffer serious overrejection, the Auto-Sharp [2] test seems to the least problematic.

Moreover, except the Box-Pierce test, the Auto-Sharp [2] test exhibits strong evidence

of outperforming other considered modified QK tests in terms of finite sample power

on all the five processes I considered.

The paper is organized as follows. Section 2 reviews the literature on modified

QK tests and several relevant papers about developing HAC robust inferences in

regression testing. Section 3 introduces the modified Lobato-PSJ test and discusses

the limitation of using the data-determined power parameter suggested by PSJ (2003).

The finite sample performance of the modified Lobato-PSJ test is investigated in

Section 4. Section 5 further examines empirical applications of the proposed test to

4They are 4, 8, 16, 24, 32.
5That is the modified Lobato-PSJ test compared with simulated critical values.
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the same two data sets of asset returns as in Su (2005). Section 6 gives the conclusion.
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2 Literature Review

Section 2 reviews the relevant literature on several versions of modified QK tests

robust to statistical dependence and briefly explains the relevant development on

heteroscedasticity-autocorrelation robust inferences (HAC) in regression tests, which

is important for improving the QK test.

2.1 Box and Pierce (1970) test

First some notations and the assumption of weak dependence will be introduced. No-

tations in this paper follow those in Su (2005). Let yt denotes a strictly real-valued

and covariance stationary time series with mean µ . Define the lag-j population au-

tocovariance by γj = E(yt − µ)(yt−j − µ) and the lag-j population autocorrelation

by ρj = γj/γ0. Let γ = (γ1, . . . , γK) be the vector of population autocovariances

and ρ = (ρ1, ..., ρK) be the vector of population autocorrelations. Suppose a sample

of yt(t = 1, . . . ,T) is observed. Define the sample mean and j th-lag sample autoco-

variance by ȳ = T−1
∑T

t=1 yt and γ̂j = T−1
∑T

t=j+1(yt − ȳ)(yt−j − ȳ). The estimator

of ρj is rj = γ̂j/γ̂0. Let ĈK = (γ̂1, . . . , γ̂K) be the vector of sample autocovari-

ances and r = (r1, . . . , rK) be the vector of sample autocorrelations. The vector

Zt = (z1,t, . . . , zK,t)
′ has as its j th component zj,t = (yt− ȳ)(yt−j − ȳ) for t = 1, . . . , T

and Z̃t = (z̃1,t, . . . , z̃k,t)
′ has as its j th component z̃j,t = (yt − µ)(yt−j − µ). Assume

that the weak dependence is defined through using the concept of near epoch depen-

dence. Lobato (2001, p.1070) has given the definition of near epoch dependence on

a mixing process. Using the same assumption of weak dependence in Lobato (2001),

Su (2005) and LNS (2002), we assume that yt is covariance stationary and the con-

cept of near epoch dependence (NED) on a mixing process is used to characterize

weak dependence of yt. One of typical examples of weakly dependent processes is the

GARCH model. (LNS, 2002)

Assumption 1. (1) Let yt be a covariance stationary process that satisfies

E|yt|s < ∞ for some s > 4 and is L2-NED of size -1/2 on a process Vt where Vtis an
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α-mixing sequence of size −s/(s− 4). (2) The null hypothesis that yt is uncorrelated

up to order K is satisfied.

The reason why the concept of NED on a mixing process is used to characterize

weak dependence of a stochastic process is because it includes many types of stochastic

processes 6 so that all the weakly dependent processes mentioned later in this paper

are assumed to satisfy the concept of NED.

We are interested in testing the null hypothesis that yt is uncorrelated up to order

K,

H0 : γ1 = · · · = γK = 0 (2.1)

against the alternative hypothesis that some of the first K autocorrelations in yt are

correlated,

H1 : γj 6= 0 for some j j = 1,. . . , K (2.2)

With assumption of the underlying process being independently and identically dis-

tributed, Box and Pierce (1970; hereafter, BP) proposed the QK test. So the QK test

is computed as

QK = T

K∑
j=1

(rj)
2 (2.3)

QK test asymptotically follows a chi-square with K degrees of freedom when H0 is

true. Also mentioned by Lobato (2001) and LNS (2002), under assumption (2.1), the

following central limit theorem (CLT) can be derived:

√
T (ĈK − γ) ⇒ N(0, 2πf∼z (0)) (2.4)

where f∼z (0) is the spectral density matrix at zero frequency of the vector Z̃t . LNS

(2002) proves that the application of the delta method to equation (2.4) will lead to

a CLT for the sample autocorrelations:

√
T (r − ρ) ⇒ N(0, V ) (2.5)

6Lobato(2001) has pointed out that these stochastic processes include mixing process, moving
averages processes of infinite order, and various types of nonlinear processes.
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where V is the asymptotic covariance matrix of the sample autocorrelations. Assum-

ing V is known, the null (2.1) can be tested using a test statistic of the form Tr′V −1r,

which asymptotically follows a χ2(K) under the null. Because BP (1970) actually

assume that (yt) is identically and independent distributed, they can replace V with

the identity matrix. However, if yt is only uncorrelated, the QK test is not valid and

can produce misleading inferences since the asymptotic covariance matrix of sample

autocorrelations (V ) is possibly not an identity matrix and depends on the data gen-

eration process7 . LNS (2002), Su (2005) and LNS (2001) show that the test possibly

suffers from substantial overrejections 8 if the underlying processes are uncorrelated

but weakly dependent.

2.2 Lobato, Nankervis and Savin (2002) test

Several alternative testing procedures have been proposed 9 in order to create a test ro-

bust to statistical dependence. The first stream of alternative test procedures hinges

on finding a consistent estimator of the asymptotic covariance matrix of the sam-

ple autocorrelations. Major contributions have been made by LNS (2001) and LNS

(2002).As shown in Den Haan and Levin (1997; hereafter, HL), consistent covari-

ance matrix estimation can be classified into two broad categories: non-parametric

kernel-based procedures and parametric procedures.

First non-parametric kernel-based procedures and relevant works (e.g. Andrews

1991; Andrews and Monahan 1992; Newey and West 1994) will be discussed. The key

step in constructing a consistent HAC covariance matrix is to estimate the spectral

density matrix at zero frequency of a vector of Z̃t . Each kernel-based procedure

uses a weighted sum of the autocovariances to estimate the spectral density at zero

frequency, where weights are determined by the kernel and the bandwidth parameter.

7See Romano and Thombs(1996) for more examples about V when the process is possibly depen-
dent but uncorrelated

8Overrejections mean that the probability of the Qk test wrongly rejecting the null hypothesis is
higher than the nominal level originally set up. For example, it is higher than 5% significance level.

9See Lobato(2001), LNS(2002),LNS(2001)and Su(2005) for details
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Assuming Φ̂K,l satisfying Assumptions 2-3 in appendix A.1, a modified test

was suggested by LNS(2002),

Q̂LNS
K,l = TĈK

′
Φ̂−1

K,lĈK (2.6)

In the two lemmas following Assumptions 2-3, LNS (2002) prove that the modified

Q̂LNS
K,l converges in distribution to a χ2(K) under Assumptions 1-3.

Q̂LNS
K,l ⇒ χ2(K) (2.7)

Q̂LNS
K,l has the advantage of asymptotically following a standard chi-square distribu-

tion under the null hypothesis (2.1) and robust to a wide range of dependence. How-

ever, as pointed out by Lobato (2001), it also has the disadvantage of requiring the

selection of a user-chosen bandwidth parameter and the statistical inference can be

sensitive to that choice. In Monte Carlo experiments of LNS (2002), he suggested two

automatic-data based covariance matrix estimation procedures, one of which uses the

formula (2.2) in Newey and West (1994) to get an optimal automatic data-dependent

bandwidth parameter. Following HL (1997), this can be accomplished in five steps.

Their five steps are concisely summarized in A.1 for reader’s guidance.

Newey and West (1994) is just one way to construct the data-dependent bandwidth

parameter. Under a similar set of technical conditions, Andrews (1991) introduced

his data-dependent automatic bandwidth parameters and proved the optimality of

the QS kernel through using an asymptotic truncated mean squared error criterion

(MSE)10 . Andrews and Monahan (1992) further extended the technique by applying

a prewhitening AR filter of order b and then followed almost the same procedure

as Andrews (1991) to obtain the optimal bandwidth parameter 11. The prewhiten-

ing procedure is believed to improve the accuracy of tests. Their regression model

applicable to our QKtest is still listed in equation (2.8).

Zt =
b∑

k=1

ÂKZt−k + êt for t = b + 1, . . . , T (2.8)

10For details about the asymptotic truncated MSE criterion, see Andrews(1991) pages 825-828.
11Please refer to Andrews and Monahan(1992) for information.
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Andrews and Monahan (1992) considered b equal to one or zero in their Monte-Carlo

simulations. If b is set equal to zero, then êt = Zt and the estimator is the same as

Andrews (1991)’s estimator.

The LNS test in subsequent tables of sizes and powers in Section 4 does not

consider the prewhitening procedure. It follows the usually used Andrews (1991)’s

approach and adopts the Bartlett kernel with its relevant optimal bandwidth param-

eter. As pointed out by HL (1997), the major difference between Newey and West

(1994) and Andrews (1991) lies in how they estimate S(q) and S. Andrews (1991) sug-

gest that a parametric model be used to provide initial estimates of S(q) and S, which

are then plugged into equation of α(q). Andrews (1991)’s procedure is summarized

in A.2 with three steps.

LNS (2002) also employ the VARHAC to estimate the asymptotic covariance ma-

trix of the sample autocorrelations, which is a parametric estimator of the covariance

matrix. VARHAC estimator was first proposed by Den Haan and Levin (1994). The

main spirit of VARHAC, as indicated by Lobato (2001), is to estimate the spectral

density at zero frequency of (yt − µ)(yt−j − µ) by fitting an autoregression to the

process(yt − ȳ)(yt−j − ȳ). HL(1997) also gave a good summary of main steps. It is

presented in A.3. Because they estimate the long-run variance parametrically and

hence are different in nature from the other tests, VAR tests are better not included

in simulation tables of section 4 for comparison purpose.

2.3 Lobato (2001)’s test

The second stream of alternative tests for zero autocorrelations does not emphasis

on the consistent estimator of the asymptotic covariance matrix of the sample au-

tocorrelations and is asymptotically pivotal under the null (2.1), which means that

its asymptotic null distribution does not contain any unknown parameter. Typical

papers adopting the second stream methodology are Lobato (2001), Su (2004) and

Su (2005).
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Lobato (2001) test was actually motivated by how KVB (2000) constructed their

new test statistics for testing hypotheses in regression models with serial correla-

tion/heteroskedasticity of unknown form. In the presence of heteroskedastic or auto-

correlated error, KVB (2000) did not take the conventional approach of estimating the

long-run variance (a spectral density at zero frequency) consistently based on kernel-

based robust estimators and constructing standard tests with the asymptotic nor-

mality of the OLS estimates. Instead,he used a moment matrix constructed from the

data to transform the OLS estimates, which results in the asymptotic distribution of

the transformed estimates that does not depend on any unknown parameters. Hence

asymptotical null distributions of t∗ and F ∗, which are new regression test statistics

proposed by KVB (2000), do not depend on any unknown parameters so that users

do not have to choose a bandwidth parameter to implement regression tests. Lim-

iting distributions of t∗ and F ∗are nonstandard but easily tabulated by simulations

12. KVB (2000) also have given reasons why they developed new tests. According to

KVB (2000), it is because consistent nonparametric estimates of variance-covariance

matrices in models have two weaknesses. First, consistent kernel-based estimates of

sample autocovariances require the introduction of a bandwidth parameter (l) that

satisfies certain conditions 13, which has been mentioned above. Although Andrews

(1991) suggest that the bandwidth can be chosen using the automatic data-dependent

procedure proposed in his paper using the AR (1) plug-in method, arbitrary choices

are possibly be made in practice and statistical inferences are sensitive to that. Sec-

ond, KVB (2000)’s Monte-Carlo simulation results have shown that the sampling

variability of HAC estimators (Φ̂HAC ) can result in size distortions of tests in finite

samples, whereas KVB (2000)’s new test statistics have controlled the finite sam-

ple size better than HAC estimator tests. This is sharpened by results that new

tests have controlled the finite sample size more accurately than HAC based tests

in occasions of testing for joint hypotheses and the autoregressive root approaching

12See Table I for critical values for t∗ and Table II for criticl values for F ∗ in KVB(2000)
13Su(2005) think that consistency of Φ̂K,l requires l →∞ and (l/T ) → 0 as T →∞.
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one. However, KVB (2000) new test statistics are not without flaws. According to

Figure 2 in KVB (2000), the local asymptotic power and the finite sample power of

new tests are close to those consistent HAC estimator tests yet still below consistent

HAC estimator tests. Jansson (2002) explained that any size improvements (relative

to consistent HAC estimator tests) gained by using inconsistent variance estimators

necessarily caused a loss of local asymptotic power.

In spirit of KVB (2000), Lobato (2001) proposed the following modified QK test.

Q̂L
K = TĈ ′

KΩ̂−1
K ĈK (2.9)

where St =
∑t

j=1(Zj − ĈK) and Ω̂K = T−2
∑T

t=1 StS
′
t . Under Assumption 1, it

follows that

Ω̂K ⇒ ΛKΞKΛ′K (2.10)

where ΞK =
∫ 1

0
BK(r)BK(r)′dr,BK(r) = BK(r)− rBK(1) is a K-vector of standard

Brownian bridge. Under Assumption 1 and equation (2.10), Su (2005) show that

Q̂L
K ⇒ BK(1)Ξ−1

K BK(1)′ ≡ UL
K (2.11)

Although Ω̂K is not a consistent estimator of ΦK in equation (2.7), the asymptotic

distribution of the Lobato test statistics does not contain any unknown parameter

and has the advantage of free from the selection of a bandwidth parameter. The

asymptotic null distribution of Q̂L
K is not standard 14 but can be tabulated precisely

by simulations in Table I of Lobato (2001)’s paper.

Lobato (2001) also proposed the bootstrap QK test following Romano and Thombs

(1996). The basic idea of the bootstrap QK test, as explained by Lobato (2001) is to

compare the value of QK test statistic against critical values based on the bootstrap

method. Lobato (2001) adopted the single moving block (SMB) bootstrap procedure.

For details of how to implement the procedure, see Lobato (2001, pp.1070). As a

comparison with Q̂L
K , Lobato also reported empirical probabilities of LNS (2002)’s

14See Lobato(2001,pp.1069) for a description of the distribution.
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Q̂LNS
K using different values of the bandwidth parameter and the vector autoregressive

heteroskedasticity and autocorrelation consistent (VARHAC) version of Q̂AR
K using

the Schwartz criterion from LNS (2002). In the case of K=1, Monte-Carlo simulation

results show that Lobato test Q̂L
K accurately control the type I error of all six different

uncorrelated processes in finite sample sizes of T = 100 and T = 500, whereas

empirical probabilities of Q̂LNS
K and bootstrap Q̂L

K test are sensitive to chosen values

of the bandwidth parameter and the block length respectively. Q̂AR
K precisely controls

the type I error in most cases. However, it suffers from over-rejection in cases of the

GARCH model at T = 100 and the bilinear model. Hence the Lobato(2001) test (Q̂L
K

) is very successful at controlling the type I error just as its KVB (2000) counterpart.

On the other hand, in terms of asymptotic local power against Pitman’s alternative

shown in Figure 2 of Lobato (2001), Q̂L
K is less satisfactory than Q̂LNS

K and the

boostrap Q̂L
Ktest. Simulation results in Figure 3 and Figure 4 (Lobato, 2001) also

suggest that Q̂AR
K is more powerful than Q̂L

K .

Su (2004) stated that Q̂L
K and Q̂LNS

K can be related in a special way. This idea also

originated from recent works of Kiefer and Voglesang. KV (2002a) suggested that

HAC robust tests proposed by KVB (2000) are equivalent to using Bartlett kernel 15

HAC standard errors with the bandwidth parameter (l) equal to sample size (T ) 16

. Following the above conclusion, Su (2004) show that Ω̂K = Φ̂K,l/2 and therefore

Q̂L
K = 2Q̂LNS

K .

KV (2002b) further extended this result to the analysis of the asymptotic covari-

ance matrix estimated by seven different kernels with truncation lag equal to sample

size. KV (2002b) pointed out that inconsistent estimates of Φ̂K,l=T are resulted by

such estimators since l = T violates the rule that l →∞ and (l/T ) → 0 as T →∞.

Nevertheless, KV (2002b) put forward a new idea that consistent testing is possible

without consistent estimates of the variance parameters. The asymptotically pivotal

test does not hinge on consistent variance estimator and a weaker condition for valid

15The Bartlett kernel is defined as κ(x) = 1− |x|−1 for |x| < 1 and 0, otherwise.
16For the proof, see KV(2002a, pp.2093-94).
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testing is that the variance estimator be asymptotically proportional to the unknown

variance. Hence their new tests are asymptotically pivotal just like KVB (2000)’s

new tests. Simulation results show that their new tests better control the type I error

regardless of the choice of kernel than tests with conventional HAC estimators. How-

ever the improvement in size comes at the expense of power loss, following the pattern

of KVB (2000). Noticeably, local asymptotic analysis in KV (2002b) revealed that

the Bartlett kernel-based new tests dominate tests based on other kernels in terms of

the local asymptotic power.

2.4 Su (2005)’s modified Lobato test

Subsequent papers after KV (2002b) have tried different ways to improve the power

performance of the KVB test without losing its good size properties. KV (2003)

further suggested a more accurate asymptotic approximation obtained by setting the

bandwidth parameter as a fixed proportion of the sample size (i.e. b = l/T ), where

b ∈ [0, 1] ) Motivated by KV (2002b, 2003), Su (2004) proposed a version of modified

Lobato test (Q̂L
K(b) ):

Q̂L
K(b) = TĈ ′

KΦ̂−1
K,l=bT ĈK (2.12)

where the kernel function κ(•) in Φ̂−1
K,l=bT is the Bartlett kernel defined above. When

b = 1, Q̂L
K(b) is equivalent to the Lobato (2001) test. Furthermore, Su (2004) also

proved the asymptotic distribution of Q̂L
K(b) under Assumption 1 to be

Q̂K(b) ⇒ BK(1)Ξ−1
K (b)BK(1)′ ≡ UK(b) (2.13)

where

ΞK(b) =
2

b

∫ 1

0

BK(r)BK(r)′dr − 1

b

∫ 1−b

0

[
BK(r + b)BK(r)′ + BK(r)BK(r + b)′

]
dr

(2.14)

BK(r) is a K-vector of Brownian bridges. From Equation (2.13), we can see that the

limiting null distribution of Q̂L
K(b) only depends on b, otherwise it is pivotal and non-

standard. Actually critical values of UK(b) have been tabulated using the asymptotic
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critical value function in Table I of KVB (2003). Simulation results in Su (2004) show

that Q̂L
K(b) generally has a good control over size in finite samples regardless of the

b chosen 17. In terms of the finite sample power, Su (2004) pointed out that when

b = 0.3 or smaller, the modified Lobato test enjoys substantial increase in power

compared with the Lobato test in all cases but one case (non-MDS, T = 100). In the

case of non-MDS, the power of both the modified Lobato test and the Lobato test is

lower relative to other cases.

Recently, two modified versions of KVB (2000) tests (Jansson 2003 and 2004,

Phillips et al. 2003) were proposed in order to improve power properties of KVB’s

test without losing its good controls on size. Based on their works, Su (2005) pro-

posed two modified versions of Lobato (2001) tests and compared size and power

properties of these two tests. Their contributions will be introduced and discussed in

this subsection.

Jansson (2002, 2004) proposed a class of autocorrelation robust tests generalizing

the KVB tests by accommodating a weight function ωε(•) in the definition of the

covariance matrix estimator used in the construction of the test statistics. Jansson’s

modified KVB test matches the KVB procedure in terms of good size properties and

it also dominates the KVB test in terms of local asymptotic power. It is possible

to control the weight function ωε(•) in order to improve the power performance of

Jansson (2002) new tests. In simulation experiments, Jansson (2002) further showed

that if parameter ε of the weight function is sufficiently close to zero, his modified

KVB test has better power properties than the KVB (2000) test in finite sample.

Su (2005) introduced the Jansson (2002,2004)’s weight function into the construc-

tion of the Lobato (2001)’s test. First Ω̂K is adjusted to Ω̂K,ε:

Ω̂K,ε =
1

T 2

T∑
t=1

ωε

(
t

T

)
StS

′
t (2.15)

where ωε(•) is a weight function satisfying Assumption 2 in Jansson (2002).

17The modified test is under-sizes in the case of non-MDS and slightly over-sized at T = 100 for
GARCH model and bilinear model.
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A2.κ : (0, 1) → [0,∞) is Lipschitz continuous; that is, there exists a finite constant

Mκ such that |κ(r)− κ(s)| ≤ Mκ|r − s| for all 0 ≤ r ≤ s ≤ 1.

For any ε ∈ (0, 1/2] , Jansson (2002) considered the following weight function:

ωε

(
t

T

)
= φ−1

ε ·min

[(
t

T

)−2 (
1− t

T

)−2

, ε−2(1− ε)−2

]
(2.16)

where φε is the scale factor defined as

φε =

[
3− 2ε

3(1− ε)2
+ 2 ln

(
1− ε

ε

)]
(2.17)

Su (2005) find out that the weight function has the following form in different part

of the domain:

ωε(t/T ) =





1/6 ε = 1/2
φε(t/T ) ε ∈ (0, 1/2)and(t/T ) ∈ (ε, 1− ε)
φεε otherwise

(2.18)

Su (2005) proposed a modified Lobato (2001) test, the Lobato-Jansson (L-J) test:

Q̂LJ
K,ε = TĈ ′

KΩ̂−1
K,εĈK (2.19)

Under Assumption 1, Su(2005) proved the limiting distribution of to be:

Ω̂K,ε ⇒ ΛKΞK,εΛ
′
K (2.20)

and therefore,

Q̂LJ
K,ε ⇒ Bk(1)Ξ−1

K,εBk(1)′ ≡ UK,ε (2.21)

where ΞK,ε =
∫ 1

0
ωεBK(r)BK(r)′dr . By equation (2.21), Q̂LJ

K,ε has a limiting non-

standard distribution that only depends on the weight function ωε(•) and the lag

order K. Jansson (2002) suggest that using ε = 0.01 will be an attractive choice. Su

(2005) also consider cases where ε = 0.1 and ε = 0.5 .

Motivated by works of KVB (2000) and KV (2002a, 2002b), Phillips et.al (2003;

hereafter, PSJ) proposed a new family of kernels, called sharp origin kernels, in his

construction of regression testing. Sharp origin kernels are constructed by taking
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positive powers of the Bartlett kernel and their bandwidth parameters are set equal

to the sample size (T). The sharp origin kernels are defined as:

κρ(x) =

{
(1− |x|)ρ |x| ≤ 1
0 otherwise

forρ ≥ 1 (2.22)

When ρ = 1 , κρ(x) is the usual Bartlett kernel. PSJ (2003) show that as ρincreases,

κρ(x) becomes successively more concentrated at the origin and its peak more pro-

nounced and sharp, which increasingly downweights very high order autocorrelations

and serves a role similar to a bandwidth parameter. Figure 1 is from PSJ (2003) and

depicts this effect for several values of ρ . It is included in Appendix B for reader’s

reference.

Stimulated by PSJ (2003) arguments on special size and power properties of sharp

origin kernels, Su (2005) proposed another modified Lobato test, the Lobato-PSJ test

(L-PSJ test). Define

Ω̂K,ρ =
T−1∑

j=−T+1

κρ

(
j

T

)
Γ̂(j) (2.23)

where Γ̂(j) is defined in equation (A.4). The modified Lobato test therefore has the

form:

Q̂LPSJ
K,ρ = TC ′

KΩ̂−1
K,ρCK (2.24)

Su (2005) also deduced the limiting distribution of Q̂LPSJ
K,ρ . Following PSJ (2003), it

is true that under Assumption 1

Ω̂K,ρ ⇒ ΛKΞK,ρΛ
′
K (2.25)

So it can be inferred that the limiting distribution of Q̂LPSJ
K,ρ under the null (2.1) is

Q̂LPSJ
K,ρ ⇒ BK(1)Ξ−1

K,ρBK(1)′ ≡ UK,ρ (2.26)

where ΞK,ρ =
∫ 1

0

∫ 1

0
κρ(r)dBK(r)dBK(s)′ . From equation (2.26), it is clear that the

limiting distribution of the L-PSJ test is non-standard and depends on the sharp

origin kernels κρ(•)and lag order K. In Su (2005)’s paper, only ρ = 4, 8, 16, 24 and

32 are considered. Critical values of the L-PSJ test and the L-J test are simulated
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in Table 1 of Su (2005) by 50000 replications at 10%, 5%, 2.5% and 1% significance

levels up to K = 10. Simulation results in Su (2005) showed that the L-PSJ test

enjoys the same good size properties as the Lobato test, while the size performance

of the L-J test is a bit sensitive to the choice of ε. Both the L-PSJ test and the L-J

test lead to power improvement. When a large ρ is chosen, power improvement of

the L-PSJ is more substantial. The smaller the ε is chosen, the larger power the L-J

test has. Noticeably, the PSJ modified Lobato test seems to dominate the L-J test

on power improvement.

2.5 Conclusion

Section two addresses the problem that the ordinary QK test meets when the time

series are uncorrelated but weakly dependent. Along with the discussion of relevant

development on HAC estimation in regression testing, this section has also reviewed

the development of several modified versions of QK test and has analyzed their relative

merits and weaknesses regarding the size and power properties. The next section will

extend the PSJ modified Lobato test in Su (2005) by applying the PSJ (2003) data-

determined power parameter ρ̂∗T .
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3 AN EXTENSION FOR THE L-PSJ TEST

When the long run variance Ω̂ is estimated based on sharp origin kernels without

truncation, simulations in PSJ (2003) indicate that this leads to tests with more

accurate size properties relative to conventional tests and better power properties than

other tests based on simple kernels without truncation (where ρ = 1 ). The analysis

of PSJ (2003) actually considered two situations: when ρ > 1 is fixed as T →∞ and

when ρ → ∞ with T . His explanation clearly indicates why Ω̂ based on the sharp

origin kernels without truncation delivers accurate size properties along with better

power properties in relation to those based on the Bartlett kernel and other kernels

without truncation. PSJ (2003) analyzed that when ρ > 1 is fixed as T →∞ , HAC

estimation based on sharp origin kernels without truncation is still inconsistent just as

it is when ρ = 1. Nevertheless, compared with the Bartlett kernel, sharp origin kernels

put less weight on autocovariances of larger lags and therefore lead to HAC estimates

with smaller asymptotic variance. The reduction in asymptotic variance assists in

enhancing power. In contrast, tests based on conventional kernel estimates without

truncation result in inconsistent HAC estimates and therefore introduce additional

variability, which helps better approximating finite sample behavior under the null

while compromising power. According to PSJ (2003), sharp origin kernels can even

deliver power close to or better than tests based on consistent HAC estimates, while

retaining more accurate size than those tests.

When ρ → ∞ with T, sharp origin kernels can provide consistent covariance

estimates for Ω under certain rate conditions of ρ . As ρ increases, the variance of

Ω̂K,ρ estimates declines and bias increases. PSJ (2003) showed that it is likely to find

an optimal ρ . Using the criteria of minimizing the asymptotic mean squared error of

the HAC estimate, an optimal choice of ρ (ρ∗T ) can be obtained. In practice, because

ρ∗T contains unknown parameter, the AR (1) plug-in approach from Andrews (1991)

was employed by PSJ (2003) here, resulting an automated version of the new sharp

kernel HAC estimator.
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The above argument convince us to revise the Lobato-PSJ test through applying

the automatic data-determined value of power parameter ρ̂∗T to sharp origin kernels

in Q̂LPSJ
K,ρ .

3.1 Methodology

The reason why it is necessary to amend the L-PSJ test is based on two considera-

tions. First, Su (2005) did not suggest how to choose the value of power parameter

in sharp origin kernels and instead he arbitrarily chose five values of power parame-

ter ( ρ = 4, 8, 16, 24, 32) in Monte-Carol experiments. In simulations of the location

model, although PSJ (2003) suggested that using the power parameter ρ = 16 provide

relatively ideal size and power in regression testing with sample sizes typical in econo-

metric applications, it was found out that Q̂LPSJ
K,ρ with ρ = 16 does not necessarily

provide the most accurate size or the largest power in all examples from Su (2005).

For example, in Table 4 for a class of bilinear models, the L-PSJ test has correct size

for ρ = 4, 8, but slightly over-rejects for ρ = 16, 24, 36 . This motivates the study

of using an data-driven selection on ρ so that users do not have to make arbitrary

choices in practice just like the data-dependent automatic bandwidth parameter in

Andrews (1991). Second, the choice of power parameter ρ in sharp origin kernels has

important implication for size and power properties of Q̂LPSJ
K,ρ . As suggested by PSJ

(2003), a power parameter in untruncated sharp origin kernels can serve to control

the degree of downweighting, similar to the role of a bandwidth parameter playing

in consistent HAC estimates. In the situation of ρ →∞ with T →∞ , sharp origin

kernels can provide consistent estimates for Ω under certain rate conditions on ρ .

This consistent HAC estimation brings about the reduction in asymptotic variance

and therefore enhances the power performance of Q̂LPSJ
K,ρ , meanwhile possibly com-

promises the size performance of Q̂LPSJ
K,ρ . It is believed that there is an opportunity of

finding an optimal choice of ρ that not only helps to deliver the largest power but also

retains the accurate size. The section 4 of PSJ (2003) gives the formula of the optimal

19



choice of ρ based on minimizing the asymptotic mean squared error of estimation.

Through using the AR (1) plug-in procedure, the formula of data-determined choice

of the power parameter ρ̂∗T is also given.

Next PSJ (2003) procedure about data-determined power parameters is adapted

to Q̂LPSJ
K,ρ . According to PSJ (2003), the criterion MSEh can be used to determine

an optimal value of ρ that minimizes the asymptotic truncated MSE for some given

sequence of weight matrices WT that converge in probability to a positive semi-definite

limit matrix W . WT is a (possibly random) K2 ×K2 weight matrix that is positive

semi-definite. The MSEh has the form:

MSEh = E min

{
ρvec

(
Ω̂kρ − Ω

)′
WT vec

(
Ω̂kρ − Ω

)
, h

}
(3.1)

The asymptotic form of MSEh when T → ∞ and h → ∞ was given in part (b) of

Theorem 3:

lim
h→∞

lim
T→∞

MSEh(ρ, Ω̂kρ ,W )

= lim
h→∞

lim
T→∞

MSEh(ρ, Ω̃kρ ,W )

= lim
T→∞

MSE(tildeΩkρ ,W )

=ϑvec(Ω(1))′Wvec(Ω(1)) + tr{W (I + KKK)Ω⊗ Ω} (3.2)

Let

δ = δ(Ω, Ω(1)) :=
tr[W (I + KKK)Ω⊗ Ω]

2vec(Ω(1))′Wvec(Ω(1))
(3.3)

PSJ (2003) deduced that the optimal ρ is obtained using equation (3.2):

ρ∗T = argmin

{
ρ2

T 2
vec(Ω(1))′Wvec(Ω(1)) +

1

ρ
tr[W (I + KKK)Ω⊗ Ω]

}

=δ1/3T 2/3 (3.4)

When ρ = ρ∗T , the truncated MSE of Ω̂kρ is given by equation (3.5)

E min

{
vec

(
Ω̂kρ − Ω

)′
WT vec

(
Ω̂kρ − Ω

)
, h

}
(3.5)

PSJ (2003) mentioned that MSE with ρ∗T produces the rate of expansion T 2/3, which is

the same as that of MSE of the Bartlett kernel estimate of Ω with optimal bandwidth
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chosen to minimize MSE. Therefore, PSJ (2003) conjectured that Ω̂kρ∗
T

has asymptotic

performance similar to those of conventional consistent HAC estimates with optimal

bandwidth choices.

However, equation (3.4) cannot be implemented in practice, since δ contains un-

known parameters such as Ω and Ω(1) . To solve this problem, PSJ (2003) further

suggested using the plug-in method from Andrews (1991). Thus the unknown pa-

rameters in equation (3.3) will be estimated using a parametric model for Ω . PSJ

(2003) advised that model selection criteria such as BIC and AIC can be used to

find a proper model for Ω. Estimates obtained from the parametric model are used

to compute Ω̂and Ω̂(1), which are then plugged into equation (3.4). The resulting

ρ̂∗T = δ̂1/3T 2/3 is the data-determined power parameter, where δ̂ = δ(Ω̂, Ω̂(1)).

PSJ (2003) recommended the AR (1) plug-in method in applications. They argued

that even when the approximating model may not be AR (1), ρ̂∗T estimated from the

AR (1) model still produce the optimal rate of expansion T 2/3 of the power parameter.

Moreover, PSJ (2003) revealed that the flat behavior of the MSE function in the

neighborhood of ρ∗T makes the power parameter ρ near ρ∗T still able to provide good

performance in HAC estimation.

In the context of Q̂LPSJ
K,ρ , the assumed models are K univariate AR (1) processes

and WT gives weight wi only to the diagonal elements of Ω̂kρ . δ is estimated by

equation (3.6). Note this is actually the inverse of equation (A.21).

δ̂ =

∑K
i=1 wi

σ̂4
i

(1−α̂)4∑K
i=1 wi

4α̂2
i σ̂4

i

(1−α̂)6(1+α̂i)2

(3.6)

where

α̂i =

∑T
t=2 zi,tzi,t−1∑T

t=2 z2
i,t−1

, and σ̂2
i =

∑T
t=2(zi,t − α̂izi,t−1)

2

T − 1
(3.7)

Substituting ρ̂∗T = δ̂1/3T 2/3 back into equation (2.55) gives the automatic data-based

Ω̂kρ∗
T

, which is continuously substituted into equation (2.56). This produces the mod-

ified L-PSJ test Q̂LPSJ
K,ρ̂∗T

based on untruncated sharp origin kernels with an automatic

data-determined power parameter ρ̂∗T . It can be expected that the limit distribution
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of this new modified L-PSJ test still follows that in equation (2.58)

Q̂LPSJ
K,ρ̂∗T

⇒ BK(1)Ξ−1
K,ρ̂∗T

BK(1)′ ≡ UK,ρ̂∗T (3.8)

where ΞK,ρ̂∗T =
∫ 1

0

∫ 1

0
κρ̂∗T (r)dBK(r)dBK(s)′. The modified L-PSJ test is denoted

as Auto-sharp test in Monte-Carol experiments of section 4. There are two testing

procedures of Q̂LPSJ
K,ρ̂∗T

considered in section 4. Since sharp origin kernels can provide

consistent Ω̂kρ for Ω when ρ approaches infinity, we also consider comparing the value

of Q̂LPSJ
K,ρ̂∗T

with critical values of chi-square distribution with K degrees of freedom.

The first test, denoted as the Auto-sharp [1] test, compares the value of with critical

values of chi-square distribution with K degrees of freedom. The second test is

denoted as the Auto-sharp [2] test in section 4. It compares the value of Q̂LPSJ
K,ρ̂∗T

with

simulated critical values computed from equation (3.8).

Analysis of PSJ (2003) advised caution in using the data-determined power pa-

rameter ρ̂∗T in some case. PSJ (2003) mentioned that the power parameter ρ can be

expressed as ρ = aT b for some a > 0 and 0 < b < 1. It is assumed that the true

underlying model for the vector Zt is an ARMA (1,1) model

Zt = aZt−1 + εt + bεt−1, εt ∼ iid(0, σ2) (3.9)

, Suggested by PSJ (2003), a function for the mean of δ can be obtained.

δ̄ =
(1− ᾱ2)2

4ᾱ2
(3.10)

where

ᾱ =
(a + b)(1 + ab)

1 + b2 + 2ab
(3.11)

Through assuming the ARMA (1,1) model, the true function for δ can be written as:

δ =

(
Ω

Ω(1)

)2

=

(
(1− a2)(1 + b)2

2(1 + ab)(a + b)

)2

(3.12)

PSJ (2003) further suggested that the difference between the optimal choice of ρ ,

ρ∗T and the data-determined value ρ̂∗T depends essentially on the difference between δ

22



and δ̄. Taking a ratio of δ to δ̄, we get

δ

δ̄
=

(
(1− a2)(1 + b)2ᾱ

(1 + ab)(a + b)(1− ᾱ2)

)2

=

(
(1− a2)(1 + b)2(1 + b2 + 2ab)

(1 + b2 + 2ab)2 − (a + b)2(1 + ab)2

)2

(3.13)

PSJ (2003) presented the surface plot of the ratio ( δ
δ̄
)1/3 against a and b in Figure 5

of their paper. From Figure 5, PSJ (2003) pointed out that when b = 0 , δ
δ̄

= 1 for

all a. That is to say, if there are no moving average effects and only autoregressive

effects in the data generating process of Zt , the data-determined ρ̂∗T is exactly equal

to the true optimal power parameter ρ∗T . When b < 0 and there are negative moving

average effects in equation (3.9), δ
δ̄

< 1 and is increasing in b but does not change its

value much for various a ≥ 0 . In this case, the data-determined ρ̂∗T overestimates

the true optimal power parameter ρ∗T . When b > 0 and there are positive moving

average effects in equation (3.9), δ
δ̄

> 1 and is increasing with b but increasing at

a decreasing rate with large values of a. In this situation, the data-determined ρ̂∗T

underestimates the true optimal power parameter ρ∗T . However, we needs to be

cautious when b → −1 the long run variance Ω → 0 and, correspondingly, δ
δ̄
→ 0.

In this case, the optimal rate for ρ∗T is no longer O(T 2/3) when Ω = 0 . Hence it

becomes less and less ideal to use ρ̂∗T as b → −1. The final column of Table 2 in PSJ

(2003), which gives the ratio of
MSEρ̂∗

T

MSEρ=1
, also illustrates this point. The ratio is small

over a wide range of values of b, indicating that the use of a sharp origin kernel with

data-determined power parameter does minimize the MSE and therefore improve the

HAC estimation over the use of the Bartlett kernel. When b is large and negative

(b ≤ −0.5 ), the ratio of
MSEρ̂∗

T

MSEρ=1
is greater than one, indicating that use of a sharp

origin kernel with data-determined power parameter increases MSE and thus does not

improve the HAC estimation. In some of the cases in section 4, we actually encounter

the problem of b → −1 . The data-driven method tends to select a large ρ̂∗T that is

not O(T 2/3) . In the case of large and negative moving average effects, PSJ (2003)

advised using model selection procedures in finding a proper ARMA model for use in

the plug-in rule rather than the use of an AR (1) model may lead to improvements.

However, we restrict our attention to the mechanical use of an AR (1) model in this
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paper.

3.2 Conclusion

Section 3 first discussed the motivation behind our proposed test statistics- the mod-

ified L-PSJ test and then presented the amended test along with relevant equations.

Finally, it reasoned the disadvantage of the data-determined power parameter ρ̂∗T .

When moving average effect on the underlying ARMA process is large and negative

(b ≤ 0.5 ), data-driven ρ̂∗T tends to select a larger value that does not minimize MSE

and hence does not improve estimation of the long-run variance. Monte-Carlo exper-

iments in next section will implemented to study finite sample sizes and powers of

QK test and seven modified QK tests for different DGP processes.
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4 Size and Power in Finite Samples

This section is designed to investigate size and power of the modified L-PSJ test

in finite samples. For the purpose of comparison, we also report the finite sample

size and power of the Box-Pierce test, the LNS (2002) test, the Lobato (2001) test,

L-PSJ(8)and L-PSJ(32) tests. Two versions of automatic modified L-PSJ tests (Auto-

sharp [1] and Auto-sharp [2]) are considered here, the difference of which has been

discussed in section 3. The LNS test utilizes the Bartlett kernel with the optimal

data-determined bandwidth in equation (A.14) from Andrews (1991). In Su (2005),

the power improvement on L-PSJ test is substantial with a large ρ. The smaller ρ

exhibits more stability at size control, especially in bilinear processes. Hence , ρ = 32

and ρ = 8 stand out as an ideal contrast with Auto-Sharp tests, so as to see how much

progress Auto-sharp tests have made. Monte-Carlo simulations are performed with

programs written by Dr Jen-Je Su in GAUSS. The only considered null hypothesis

here is H0 : γ1 = 0 , which is tested at the nominal level of α = 0.05 . Simulation

results are computed using 10 000 iterations for sample size 100 and 500.

Following Lobato (2001) and Su (2005), we consider two sets of examples in the

simulation study: the usually used textbook examples and examples frequently met

in financial literature. The first set of examples consists of five different uncorrelated

processes. The first two of them are i.i.d. sequences with innovations drawn from

N(0, 1) and student t distribution with six degrees of freedom. So both of them are

independent and uncorrelated over time. The next three processes are uncorrelated

yet not independent over time. The first case of three processes is a 1-dependent

process from example 2.1 in Romano and Thomb (1996) and is therefore denoted as

’RT’. The RT equation is defined as yt = ztzt−1 , where zt represent an i.i.d. sequence

of standard normal variates. The second example of three processes is an All-Pass

ARMA (1,1) model suggested by LNS (2002). Following LNS (2002), the equation

of All-Pass ARMA (1,1) is (yt − µ) − φ(yt−1 − µ) = (zt − φ−1zt−1), where zt are

drawn from i.i.d. T (10) and where µ = 0 and φ = 0.8 . As mentioned by LNS
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(2002), a special feature of the All-Pass ARMA (1,1) model is that the asymptotic

covariance matrix of the sample autocorrelations is an identity matrix. For more

details on the all-pass model, see Breidt et al. (1999). The third example of three

processes is a none-martingale difference sequence (Non-MDs), which is defined as

yt = zt−2zt−1(zt−2 + zt + 1). Here ztis a sequence of i.i.d. N(0, 1) random variables.

Following Su (2005), we then consider two empirical relevant models -GARCH

(1,1) and bilinear models. The GARCH (1,1) model is yt = ztσt where zt is an i.i.d.

N(0, 1) sequence and σ2
t = 0.001 + αy2

t−1 + βσ2
t−1. According to LNS (2002), the

GARCH (1,1) model is uncorrelated but not independent over time and is covariance

stationary provided α+β < 1. We considered five different sets of (β, α) suggested by

Su (2005): GARCH (A): (0.8,0.02), GARCH (B): (0.8,0.05), GARCH (C): (0.8,0.15),

GARCH (D): (0.9,0.02), and GARCH (E): (0.9,0.05). Obviously, they all satisfy the

condition of covariance stationary such that α + β < 1 . The bilinear model is given

by yt = zt + bzt−1yt−2 , where zt is a sequence of i.i.d. N(0, σ2) random variables.

Granger and Terisvirta (1993) point out that the yt process is uncorrelated but not

independent and is covariance stationary if b2σ2 < 1. We also follow LNS (2002) and

Lobato (2001) to set σ2 = 1and b = 0.35 for Bilinear (A), b = 0.5 for Bilinear (B)

and b = 0.65 for Bilinear (C).

4.1 Experiments Under the Null

Empirical rejection probabilities for the N(0, 1), T (6), RT, All-Pass ARMA (1,1) and

Non-MDs models at α = 0.05 nominal level are reported in Table 1 for sample size

100 and 500. The main conclusions from Table 1 are given as follows. The BP test

has a good control over size for N(0, 1), T (6) and All-Pass. The excellent performance

of the BP test on the All-Pass model can be explained by the fact that covariance

matrix of the sample autocorrelations is an identity matrix. However, it over-rejects

by a large margin for RT and Non-MDs. Coherent with conclusion from LNS (2002),

the LNS test slightly over-rejects for N(0, 1), T (6) and All-Pass at T = 100 but
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accurately controls the type I error for T = 500 for all cases. The Lobato test works

satisfactorily for N(0, 1), T (6) and All-Pass, while it is a bit conservative in the cases

of RT and Non-MDs. The Auto-Sharp [1] test performs similarly to the Lobato test

in all cases except in the cases of N(0, 1), T (6) and All-Pass at T = 100. In these

cases, the Auto-sharp [1] test tends to over-reject somewhat. Compared with the

Auto-Sharp [1] test, the Auto-Sharp [2] test has the most analogous size control as

that of the Lobato test in all cases, except more conservative in cases of RT, All-Pass

and Non-MDs at T = 100. Table 2 presents the estimates of the RP’s for five different

GARCH (1,1) models. The BP test mostly over-rejects at T = 500. Noticeably, the

BP test suffers from substantial over-rejection for GARCH (C) model, especially for

T = 500.

Similar to Su (2005), we also find out that the LNS test tends to over-reject at

T = 100. The Lobato test works satisfactorily at T = 500, but tends to under-reject

for GARCH (C) model. At T = 100, the Auto-sharp [1] test tends to marginally

over-reject. It works excellently at T = 500. The Auto-sharp [2] test outperforms

the Auto-Sharp [1] test with regards to the control over size, since it only slightly

under-rejects for GARCH (C) model similar to the Lobato test. Comparing with

Auto-Sharp tests, LPSJ tests are a bit conservative in all cases, especially for the

LPSJ(8)test. In GARCH (C) model, LPSJ(8) under-rejects. This is based on the

evidence that its RP is only 0.031 at t = 100 and 0.033 at T = 500. Meanwhile, size

control of LPSJ(32) is close to the Lobato test and Auto-Sharp[2]test.

The size of all tests for three bilinear models is given in Table 3. Only the Lobato

test accurately controls the type I error in all cases. Except the Lobato test and the

LPSJ(8)test, all the other tests over-reject in all cases. The degree of over-rejection

is lower for the LNS test, two versions of Auto-Sharp tests and LPSJ (32)at T = 500.

Among all the tests that have the problem of over-rejection, the Auto-Sharp [2] test

and LPSJ(32)test suffer the least serious size distortion. My conclusion confirms with

that of Su(2005).
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4.2 Experiments Under the Alternative

This section reports the empirical powers of the tests in a Monte-Carlo study. Follow-

ing Su (2005), the data are generated following an AR (1) process yt = ut + φut− 1 ,

whose AR coefficients (φ ) takes values of 0.05, 0.10, 0.15 and 0.20. The AR (1) inno-

vations (ut ) follow the N(0, 1), GARCH (A, C) and Bilinear (B) models respectively.

The power and the size-adjusted power (in the parentheses) for each AR (1) model are

reported in Table 4-7. It can be seen that in the previous experiments under the null,

some of the candidate tests suffer from size distortion to some extent in some cases,

which causes increases/decreases in the type II error and thus decreases/increases in

the power of them. Therefore, it is not appropriate to compare the power of these

tests with the power of other tests with correct sizes. So the size-adjusted powers are

calculated from critical values obtained from the previous experiments under the null

and are purposely set up to keep the type I error of all tests to be 0.05.

The RP’s under the alternative for AR (1) model with N(0, 1) innovations are

reported in Table 4. The main facts emerging from the table are the following: (i)

The adjusted powers are the same as the unadjusted powers of the Box-Pierce test,

since it correctly controls the type I error. As a comparison, the adjusted powers are

generally lower than the unadjusted powers of the LNS test, the Auto-Sharp [1] test,

the Auto-Sharp [2] test, the Lobato test, the LPSJ(8)test and the LPSJ (32)test,

which reflects the fact that these tests tends to be over-sized to some extent. (ii)

As the sample size and the AR coefficient increase, the power of each test becomes

higher. (iii) Based on size-adjusted power, the Box-Pierce test generally has the

highest power in all cases. On the contrary, the Lobato test has the disadvantage of

the lowest power among all the tests in the Table 4, no matter the comparison is based

on unadjusted powers or based on size-adjusted powers. For instance, the power of

the Lobato test is only 0.284 with φ = 0.20 and T = 100 , whereas the power of most

other tests are all more than 0.4. (iv) Similar to what Su (2005) found out in the

L-PSJ test, the power improvement of two Auto-Sharp tests is substantial compared
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with the Lobato test. The power of the Auto-Sharp tests is slightly lower than that

of the Box-Pierce test, particularly in the situation of and a large AR coefficient. The

power of the two Auto-Sharp tests is only slightly 0.001 below that of the Box-Pierce

test, when T = 500 and φ = 0.20 is considered. (v) The Auto-Sharp [1] test and the

Auto-Sharp [2] test have the same size-adjusted power, while the unadjusted power

of the Auto-Sharp [1] test is generally a bit higher than that of the Auto-Sharp [2]

test. (vi) Size-adjusted powers of the Auto-Sharp [1] test, the Auto-Sharp [2] test and

the LNS test are quite similar, whereas the adjusted powers of the LPSJ (8) test and

the LPSJ(32) test tend to be slightly lower compared with that of the above three

tests in small sample size T = 100. Based on size-adjusted powers, the LPSJ (32)

test seems to be more powerful than the LPSJ(8) test. Hence the L-PSJ test with a

large ρ exhibits competitive power.

Table 5 and 6 report empirical powers of all the tests in GARCH (A, C) models

respectively. Similar conclusions to those obtained from Table 4 can be reached by

examining Table 5. The Box-Pierce test is the test having the highest power, whereas

the Lobato test is the one having the lowest power. The size-adjusted power of two

Auto-Sharp tests is slightly lower than those of the Box-Pierce test and fairly close to

that of the LNS test. The LPSJ(32) test tends to have slightly higher power than the

LPSJ(8) test. Interestingly, LPSJ (32) is generally more powerful than Auto-Sharp

tests at T = 100 and less powerful than them at larger sample size T = 500. In Table

6, the story is a bit different from those of Table 4 and 5. Because the Lobato test,

the Auto-Sharp [2] test, two LPSJ tests, the LNS test at T = 500 and the Auto-

Sharp [1] test at T = 500 are conservative in the previous experiments, their adjusted

power is higher than the unadjusted power. Since the Box-Pierce test is seriously

over-sized, the size- adjusted power of it is much lower than the unadjusted power.

The conclusion from Table 4 and 5 that the Box-Pierce has the highest size-adjusted

power is not completely right for Table 6, because two Auto-Sharp tests dominate

the Box-Pierce test in terms of the adjusted power in some cases. Taking φ = 0.05

29



and T = 500 for an example, the size-adjusted power of two Auto-Sharp tests is

0.141, 14.6% higher than the adjusted power of the Box-Pierce test. The evidence of

which version of LPSJ test is more powerful exhibit mixed patterns. In some cases,

Auto-Sharp [2] test has higher power than LPSJ (32)test. Taking φ and T = 100 for

example, Auto-Sharp [2] test beats LPSJ (32) test. Converse results happen in other

settings.

In the end, Table 8 exhibits empirical powers for the Bilinear (B) model. It can

be expected that the size-adjusted power of all the tests is lower than the unadjusted

power, since all the tests suffer from size distortion. Since the RP’s of the Lobato

test is closest to the nominal level 0.05, its adjusted power is almost the same as the

unadjusted power. In the case of Bilinear (B) model, all the conclusions from Table

4 and 5 still hold. Based on the size-adjusted power, the Box-Pierce test is still the

most powerful in all cases. RP’s under the alternative of two Auto-Sharp tests are

close to that of the Box-Pierce test, especially in the situation of large AR coefficient

and T = 500. Noticeably, LPSJ(32) test is a bit more powerful than Auto-Sharp tests

at T = 100, while it is less powerful at T = 500.

4.3 Conclusion

Simulation results in Chapter four show that compared with the Lobato test, the

Auto-Sharp [2] test and the LPSJ(32) test also perform satisfactorily at controlling

the type I error, meanwhile, they have the advantage of retaining considerable power.

The Auto-Sharp [2] test seems to have better control in size in small sample size

(T = 100) than the LPSJ(32) test. As for improvement on power, Auto-Sharp[2]

test wins at T = 500 in most processes considered, whereas the LPSJ (32) test gains

more power in small sample size. In section 5, except for two LPSJ test which have

been used to real data in Su(2005), autocorrelation tests considered in section 4 are

applied to two data sets of asset returns used in Su (2005).
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5 Empirical Applications

The same two data sets of asset returns as in Su (2005) are applied to all the con-

sidered tests for no autocorrelation. We restrict our attention to the case of testing

K = 1 at 5% significance level. Two monthly stock returns are first employed-the

value-weighted index returns (VW) and the equal-weighted index (EW) ranging from

January 1926 to December 1997. There are 864 observations, taking from Center

for Research in Security Prices (CRSP) of the University of Chicago. Then monthly

bond returns at five different maturities are considered-one-year (B1), five-year (B5),

ten-year (B10), twenty-year (B20) and thirty-year (B30)-from January 1942 to De-

cember 1999 for 696 observations. The second data set are taken from the website

for the textbook Analysis of Financial Time Series by Tsay (2002)18 .

5.1 Results

Table 8 reports empirical results for the two CRSP returns. Our result is consistent

with those in Su (2005). The Box-Pierce test rejects the null of no autocorrelation

for these two returns at 5%. The LNS test only rejects the null for the EW returns

and the VW returns is significant at K = 1. All the other tests cannot reject the null

of no autocorrelation at 5% for these two returns.

Empirical results for five bond returns are present in Table 9. It appears that the

Box-Pierce test still over rejects the null of no autocorrelation in all five-bond returns,

reflecting the fact that the Box-Pierce test can produce misleading inference in the

case of statistical dependent but uncorrelated series. The Lobato test only rejects

the null hypothesis for the B1 bond return. The LNS test only rejects the null of

no autocorrelation for the B1 return and the B5 return. It can’t reject the null for

other bond returns. Su(2005) found out that the LNS test can reject B10 and B30

at 5 percent level. The Auto-Sharp [2] test rejects the null hypothesis in the case of

the B1, B5 and B10 returns. The result of two LPSJ tests is ambiguous: B1 return

18Website: http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts/
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is autocorrelated by LPSJ(8) test. LPSJ rejects the null at 5 percent level for B10.

5.2 Conclusion

In this section, we applied almost the same data sets as those in Su (2005) to all the

tests for no autocorrelation considered. Our results are mostly consistent with what

Su (2005) found out in his paper. Two monthly stock returns are not autocorrelated

using tests other than the Box-Pierce test, while the B1, B5 and B10 returns are

found out to be autocorrelated using the Auto-Sharp [2] test. Contrary to what Su

(2005) found out utilizing the L-PSJ test with ρ = 24 or 32, we do not find the

evidence that the B30 returns are autocorrelated using the Auto-Sharp [2] test.
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6 Conclusion

In this paper, optimal data-dependent power parameter is introduced to sharp origin

kernels in the recommended Lobato-PSJ test from Su (2005). So the data-driven

modified Lobato-PSJ test has the advantage of being implemented without any arbi-

trary user-chosen parameters. However, we must be cautious when Zt have large and

negative moving average effects, where it is possibly not optimal for the Lobato-PSJ

test to use the formula of PSJ (2003) data-dependent power parameter. Monte-Carlo

simulation results in section 4 reveal that the Auto-Sharp [2] test is second to the

Lobato test at controlling the type I error accurately, meanwhile it can deliver power

fairly close to or sometimes better than the Box-Pierce test that has the highest

empirical power at larger sample size. The LPSJ(32) test performs better on the em-

pirical power in small sample size like T = 100. In practice, we may want to report

them all as a reference to each other.

The Auto-Sharp [2] test does not perform perfectly in all cases. From Table 3, we

notice that the Auto-Sharp [2] still has the problem of over-rejection in the bilinear

examples. This poses a question if the modified Lobato-PSJ test can be further

improved. Lobato (2001) suggested that if the test statistics is asymptotically pivotal

under the null, application of the bootstrap should provide an asymptotic refinement.

Hence we expect that the bootstrap method applied to the null distribution of our

proposed test in equation (3.8) will provide more precise simulated critical values for

the Auto-Sharp [2] test, and therefore better the performance of Auto-Sharp [2] test.

Applying the bootstrap method requires the choice of some bootstrap process and

the correspondingly block length. All these questions need careful considerations by

researchers.
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A Non-parametric kernel based procedures

A.1 Assumptions from Lobato(2001)

Under Assumption 1, as shown by Lobato (2001),

T−1/2

drT e∑
t=1

Zt ⇒ ΛKBK(r) (A.1)

for any r ∈ (0, 1] . ⇒ denotes weak convergence and [x] is the integer part of x. ΛK

is the lower triangular K ×K satisfying ΛKΛ′K = ΦK . ΦK is a long-run variance of

Z̃t and BK(r) is a K-dimensional vector of independent Brownian motions. Based on
Equation (A.1) and under Assumption 1, Su (2005) inferred that

T 1/2ĈK ⇒ N(0, ΦK) (A.2)

Since ΦK is unknown, LNS (2002) propose that ΦK can be estimated by a kernel-based

estimator of ΦK(Φ̂K,l).

Φ̂K,l =
T−1∑

j=−T+1

κ

(
j

l

)
Γ̂(j) (A.3)

where

Γ̂(j) =

{
T−1

∑T−j
t=1 Zt+jZ

′
t for j ≥ 0

T−1
∑T

t=−j+1 Zt+jZ
′
t for j < 0

(A.4)

are the sample autocovariances of Zt at ±j lags. In Equation (A.3), κ(·) is a kernel
function and l is a bandwidth parameter. As long as the kernel κ(·) and the bandwidth
satisfy two assumptions stated in LNS (2002, pp.734), the consistency and positive

definiteness of Φ̂K,l can be guaranteed.
Assumption 2. The kernel κ(·) belongs to K where K is the class of functions

K = {κ(·) : <;→ [−1, 1]} that is symmetric around zero, continuous at zero at all
but a finite number of points, and satisfies κ(0) = 1,

∫∞
−∞ |κ(x)|dx < ∞,

∫∞
−∞ |ψ(ξ)|dξ,

where ψ(ξ) = (2π)−1
∫∞
−∞ κ(x)eiξxdx

Assumption 3. The bandwidth sequence satisfies

lim
n→∞

(
1

l
+

1

n

)
= 0

.

A.2 Procedure from Newey and West(1994)

Step 1: Obtain estimates for the ” prewhitened” residuals by employing AR (1) 19 on
each series of Zt . The following AR (1) model is estimated with least squares:

Zt = Â1Zt−1 + êt for t = 2, . . . , T (A.5)

19Actually it can be a AR(b) prefilering. However, we stick to the usual case of AR(1) prefilering.
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where Â1 is the (K×K) matrix of AR(1) regression coefficients from equation (A.5).
Step 2: Choose a weighting matrix. Let the weight vector be

w = (0 1 1 . . . 1)′ (A.6)

Step 3: Calculate the data-dependent bandwidth parameter.

α(q) =

[
w′S(q)w

w′Sw

]2

(A.7)

Newey and West (1994) propose that α(q) be estimated non-parametrically as

α̂(q) =

[
w′Ŝ(q)w

w′Ŝ(0)w

]
q = 0, 1, 2 where (A.8)

Ŝ(q) =
n∑

j=−n

|j|qΓ̂e,j (A.9)

n = β1

(
T

100

)2/9

for the Bartlett kernel (A.10)

n = β2

(
T

100

)2/25

for the QS kernel (A.11)

Γ̂e,j = T−1

T−j∑
t=1

êtê
′
t+j for j ≥ 0 and, (A.12)

Γ̂e,j = Γ̂′e,−j for j < 0 (A.13)

where the QS kernel indicates the quadratic Spectral kernel. LNS (2002) actually
adopts the formula (2.2) from Newey and West (1994) which specifies the kernel to
be the Bartlett kernel and therefore q = 1. β1 is set equal to 2 in equation (A.10) for

the lag truncation and n = β1

(
T

100

)2/9
. Using the estimate of α(q) given in equation

(A.8), the data-dependent bandwidth parameter is determined by

l = 1.1447 [α̂(1)T ]1/3 for the Bartlett kernel (A.14)

Step 4: Calculate the spectral density of the ”prewhitened” residuals.

Σ̂NW−PW
T =

T−1∑
j=−T+1

κ

(
j

l

)
Γ̂e,j (A.15)

where Γ̂e,j is defined in equation (A.12).
Step 5: Calculate the HAC estimate of the spectral density. Using the results of

Step 4:

Φ̂NW−PW
K,l =

[
IK − Â1

]−1

Σ̂NW−PW
T

[
IK − Â1

]−1

(A.16)
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A.3 Andrews (1991) approach

Step 1: Choose a weighting matrix.
HL(1997) argue that the growth rate of the bandwidth parameter can be controlled
to minimize the asymptotic MSE of the spectral estimator and therefore helps to find
the asymptotically optimal bandwidth parameter. HL (1997) then conclude that the
optimal bandwidth parameter depends on a K2 × K2 weighting matrix W and on
the q, which characterize the smoothness properties of the kernel. Andrews (1991)
indicates that q is 1 for the Bartlett kernel and q is 2 for the QS kernel. For a give
kernel with q, the asymptotically optimal bandwidth parameter sequence is given by:

l = c(q) [α(q)T ]1/(2q+1) (A.17)

Here

α(q) =
2vec(S(q))′Wvec(S(q))

tr(W (I + K)(S ⊗ S))
(A.18)

c(q) =

{
1.1447 for the Bartlett kernel
1.3221 for the QS kernel

(A.19)

where K is the K2 ×K2 commutation matrix that transforms vec(B) into vec(B)′.
S(q) is the qth generalized derivative of the spectral density at frequency zero, which
is given as follows:

S(q) =
∞∑

j=−∞
|j|qCj (A.20)

Andrews (1991) actually assigns one to all the elements corresponding to the slope
coefficients and zero corresponding to an intercept in weighting matrix W . Denote
the kth weight by ωk.

Step 2: Calculate the data-dependent bandwidth parameter.
Andrews (1991) and Andrews and Monahan (1992) propose that a parametric model
be used to provide initial estimates of S and S(q) , which are then plugged into
equation (2.25) to provide estimates of α(q). Following simulation experiments from
Andrews (1991), AR (1) representations for each series of Zt are estimated to provide
estimates of (ρ̂k, σ̂k

2), k = 1, . . . , K , where ρ̂k denotes estimates of autoregressive
parameters and σ̂k

2 denotes estimates of innovation variance parameters. Therefore,
estimates of α(q)are given below:

α̂(1) =

∑K
k=1 ωk

4ρ̂2
kσ̂4

k

(1−ρ̂k)6(1+ρ̂k)2∑K
k=1 ωk

σ̂4
k

(1−ρ̂k)4

(A.21)

α̂(2) =

∑K
k=1 ωk

4ρ̂2
kσ̂4

k

(1−ρ̂k)8∑K
k=1 ωk

σ̂4
k

(1−ρ̂k)4

(A.22)
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Then we obtain the following data-dependent bandwidth parameter for the Bartlett
kernel same as that in equation (A.14).For the QS kernel, the data-dependent band-
width parameter is given by:

l = 1.3221 [α̂(2)T ]1/5 (A.23)

In this paper, we restrict our attention to the case of Bartlett kernel, so we will use
equation (A.21) and equation (A.14) to obtain the optimal bandwidth parameter.

Step 3: Calculate the spectral density of Zt . The result of equation (A.14) is sub-
stituted into equation (A.1). From equation (A.1) and (A.2), we obtain the spectral
density of Zt .

A.4 HL(1997) summary on VAR-AIC VAR-BIC

Step 1: Lag order selection for each VAR equation. For the nth element zn,t of the
vector Zt(n = 1, . . . , K) and for each lag order κ = 1, . . . , K , the following model is
estimated by least squares:

znt =
K∑

j=1

κ∑

k=1

α̂njk(κ)zj,t−k + ênt(κ) for t = K + 1, . . . , T (A.24)

Equation (A.24) is intended to regress zn,t on its own lags and lags of other components
from Zt . The reason why HL (1997) put this restriction on equation (A.24) is to
avoid the computational cost, when the dimension of Zt is large. Hence the only
specifications considered here are the ones in which all elements of Zt enter with the
same number of lags in the regression for znt. Next, we will select the lag order κ
according to model selection criterion. The model selection criterion is calculated for
each possible lag order κ = 0, . . . , K The Akaike’s (1973) information criterion (AIC)
is given by:

AIC(κ, n) = log

(∑T
t=K+1 ê2

nt(κ)

T

)
+

2κN

T
(A.25)

Schwartz’ (1978) Bayesian information criterion is given by:

BIC(κ, n) = log

(∑T
t=K+1 ê2

nt(κ)

T

)
+ log(T )

κN

T
(A.26)

For each element of Zt , the optimal lag order κn is chosen as the value of κ that
minimizes AIC(κ, n) or BIC(κ, n) . LNS (2002) set three different maximum lag
lengths (3, 10, and15) for three sample sizes (200, 1000, and5000).

Step 2: Calculate the spectral density of the prewhitened residuals. Let K̂T be the
largest lag-order chosen by the model selection criterion for the K elements of Zt .
From step 1, the restricted VAR can be expressed as:

Zt =

K̂T∑

k=1

ÂV AR
k Zt−k + êt (A.27)
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where êt is an K × 1 vector with typical element ênt(κn) . The covariance matrix of
êt is estimated by equation (A.28):

Σ̂V ARHAC
T =

∑T
t=K+1 êtê

′
t

T
(A.28)

Step 3: Calculate the HAC estimate of the spectral density. The spectral density
matrix at frequency zero is estimated by:

Φ̂V AHAC =


IK −

K̂T∑

k=1

ÂV AR
k



−1

Σ̂V ARHAC
T


IK −

K̂T∑

k=1

ÂV AR
k



−1

(A.29)

Φ̂V AHAC =


IK −

K̂T∑

k=1

ÂV AR
k



−1

Σ̂V ARHAC
T


IK −

K̂T∑

k=1

ÂV AR
k



−1

(A.30)

Then Φ̂V ARHAC is substituted into equation (2.10) to compute Q̂LNS
K,l . The ob-

tained test statistics Q̂LNS
K,l based on AIC and BIC model selection criteria are called

VAR-AIC test and VAR-BIC test individually. As a kind of Q̂LNS
K,l test, their values

are also compared to critical values of chi-square distribution with K degrees of free-
dom. There are other estimators of ΦK proposed by authors such as Lee and Phillips
(1994), where Zt is assumed to be a scalar process and they use the Hannan-Rissanen
recursion to determine the order and estimate coefficients of an ARMA representation
of the data. For more details, see Lee and Phillips (1994). Robison (1995) proposed a
non-parametric estimator and it does not require the use of kernel. For discussions re-
garding asymptotic properties and relative merits of using these estimators discussed
before, see HL (1997) section 3, 4 and 5 for more details.
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B Figures and Tables

Figure 1: Sharp origin(SO) Kernels kρ(x) for ρ ∈ [1, 16]
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Table 1: Size(I)
Normal T(6) RT All-Pass Non-MDs

Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.050 0.050 0.049 0.045 0.215 0.240 0.052 0.056 0.277 0.391
LNS 0.060 0.054 0.058 0.048 0.039 0.046 0.060 0.055 0.038 0.045
Lobato 0.052 0.053 0.048 0.046 0.036 0.046 0.049 0.049 0.030 0.038
Auto-Sharp[1] 0.062 0.054 0.059 0.049 0.041 0.046 0.062 0.055 0.041 0.046
Auto-Sharp[2] 0.053 0.052 0.050 0.047 0.030 0.045 0.053 0.054 0.030 0.043
LPSJ(8) 0.050 0.050 0.045 0.046 0.030 0.046 0.045 0.046 0.027 0.038
LPSJ(32) 0.051 0.049 0.047 0.049 0.029 0.043 0.043 0.044 0.027 0.041

Notes: Empirical RP’s at 5% level. T=sample size. Number of replications is 10 000.

Table 2: Size(II)
GARCH(A) GARCH(B) GARCH(C) GARCH(D) GARCH(D)

Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.054 0.053 0.065 0.061 0.088 0.128 0.051 0.056 0.060 0.069
LNS 0.059 0.049 0.059 0.050 0.051 0.045 0.056 0.052 0.058 0.052
Lobato 0.048 0.049 0.047 0.047 0.031 0.036 0.045 0.051 0.044 0.045
Auto-Sharp[1] 0.060 0.049 0.060 0.050 0.051 0.043 0.058 0.053 0.059 0.053
Auto-Sharp[2] 0.051 0.048 0.052 0.049 0.042 0.042 0.049 0.050 0.050 0.051
LPSJ(8) 0.045 0.051 0.044 0.049 0.031 0.033 0.049 0.048 0.046 0.048
LPSJ(32) 0.044 0.050 0.045 0.048 0.041 0.037 0.048 0.050 0.049 0.048

Notes: Empirical RP’s at 5% level. T=sample size. Number of replications is 10 000.

Table 3: Size(III)
Bilinear(A) Bilinear(B) Bilinear(C)

Test T=100 T=500 T=100 T=500 T=100 T=500
BP 0.093 0.100 0.125 0.138 0.146 0.184
LNS 0.078 0.069 0.084 0.070 0.083 0.070
Lobato 0.050 0.053 0.051 0.052 0.046 0.044
Auto-Sharp[1] 0.077 0.067 0.082 0.069 0.080 0.065
Auto-Sharp[2] 0.065 0.065 0.070 0.064 0.064 0.062
LPSJ(8) 0.052 0.047 0.051 0.052 0.049 0.047
LPSJ(32) 0.060 0.051 0.060 0.057 0.061 0.050

Notes: Empirical RP’s at 5% level. T=sample size. Number of replications is 10 000.
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Table 4: Power (I) normal
AR φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.20
Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.066 0.188 0.139 0.586 0.271 0.909 0.456 0.993

(0.060) (0.188) (0.139) (0.585) (0.272) (0.909) (0.456) (0.993)
LNS 0.076 0.189 0.148 0.583 0.278 0.906 0.444 0.992

(0.065) (0.181) (0.130) (0.572) (0.252) (0.901) (0.417) (0.992)
Lobato 0.058 0.149 0.105 0.418 0.185 0.695 0.284 0.869

(0.057) (0.143) (0.103) (0.409) (0.181) (0.684) (0.279) (0.862)
Auto-Sharp[1] 0.079 0.191 0.151 0.586 0.282 0.907 0.452 0.992

(0.065) (0.180) (0.132) (0.572) (0.254) (0.901) (0.419) (0.992)
Auto-Sharp[2] 0.067 0.188 0.135 0.580 0.255 0.905 0.421 0.992

(0.065) (0.180) (0.132) (0.572) (0.254) (0.901) (0.419) (0.992)
LPSJ(8) 0.061 0.164 0.118 0.507 0.232 0.836 0.366 0.976

(0.061) (0.164) (0.119) (0.507) (0.232) (0.836) (0.367) (0.976)
LPSJ(32) 0.064 0.181 0.127 0.561 0.259 0.892 0.425 0.988

(0.062) (0.183) (0.122) (0.564) (0.252) (0.894) (0.416) (0.990)
Notes: Empirical RP’s under the alternative. The size-adjusted RP are in the

parentheses. The nominal level is 5%. Number of replications is 10 000.

Table 5: Power (II) GARCH(A)
AR φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.20
Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.070 0.192 0.145 0.587 0.276 0.904 0.460 0.993

(0.064) (0.185) (0.135) (0.580) (0.263) (0.900) (0.446) (0.993)
LNS 0.075 0.185 0.145 0.571 0.273 0.893 0.442 0.992

(0.064) (0.187) (0.127) (0.575) (0.250) (0.898) (0.411) (0.992)
Lobato 0.059 0.141 0.103 0.402 0.179 0.675 0.288 0.863

(0.063) (0.142) (0.108) (0.405) (0.188) (0.678) (0.298) (0.865)
Auto-Sharp[1] 0.076 0.185 0.147 0.572 0.278 0.894 0.450 0.992

(0.065) (0.187) (0.128) (0.574) (0.249) (0.895) (0.415) (0.992)
Auto-Sharp[2] 0.066 0.181 0.131 0.566 0.254 0.891 0.417 0.992

(0.065) (0.187) (0.128) (0.574) (0.249) (0.895) (0.415) (0.992)
LPSJ(8) 0.061 0.169 0.113 0.489 0.202 0.827 0.352 0.970

(0.069) (0.167) (0.125) (0.486) (0.217) (0.826) (0.376) (0.974)
LPSJ(32) 0.065 0.180 0.125 0.536 0.233 0.879 0.403 0.989

(0.074) (0.179) (0.142) (0.535) (0.254) (0.877) (0.430) (0.989)
Notes: Empirical RP’s under the alternative. The size-adjusted RP are in the

parentheses. The nominal level is 5%. Number of replications is 10 000.

Table 6: Power (III) GARCH(C)
AR φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.20
Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.111 0.249 0.182 0.565 0.297 0.848 0.457 0.969

(0.066) (0.123) (0.122) (0.381) (0.213) (0.711) (0.356) (0.924)
LNS 0.069 0.129 0.121 0.396 0.213 0.721 0.344 0.914

(0.068) (0.055) (0.118) (0.236) (0.209) (0.552) (0.340) (0.821)
Lobato 0.039 0.096 0.073 0.256 0.112 0.462 0.186 0.638

(0.065) (0.117) (0.109) (0.301) (0.166) (0.521) (0.254) (0.694)
Auto-Sharp[1] 0.069 0.128 0.122 0.397 0.214 0.723 0.348 0.916

(0.069) (0.141) (0.120) (0.417) (0.212) (0.738) (0.345) (0.924)
Auto-Sharp[2] 0.057 0.123 0.105 0.389 0.187 0.713 0.313 0.911

(0.069) (0.141) (0.120) (0.417) (0.212) (0.738) (0.345) (0.924)
LPSJ(8) 0.040 0.098 0.079 0.324 0.149 0.602 0.253 0.816

(0.061) (0.131) (0.111) (0.388) (0.201) (0.678) (0.324) (0.863)
LPSJ(32) 0.048 0.114 0.103 0.372 0.180 0.688 0.322 0.887

(0.056) (0.146) (0.114) (0.429) (0.203) (0.734) (0.352) (0.911)
Notes: Empirical RP’s under the alternative. The size-adjusted RP are in the

parentheses. The nominal level is 5%. Number of replications is 10 000.
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Table 7: Power (IV) Bilinear(B)
AR φ = 0.05 φ = 0.10 φ = 0.15 φ = 0.20
Test T=100 T=500 T=100 T=500 T=100 T=500 T=100 T=500
BP 0.148 0.262 0.204 0.557 0.315 0.835 0.446 0.962

(0.066) (0.134) (0.107) (0.373) (0.186) (0.686) (0.289) (0.904)
LNS 0.090 0.150 0.131 0.420 0.219 0.735 0.336 0.923

(0.054) (0.116) (0.082) (0.359) (0.154) (0.682) (0.246) (0.899)
Lobato 0.054 0.091 0.075 0.247 0.126 0.464 0.191 0.680

(0.053) (0.089) (0.074) (0.242) (0.125) (0.458) (0.189) (0.673)
Auto-Sharp[1] 0.090 0.147 0.132 0.415 0.221 0.732 0.341 0.923

(0.056) (0.117) (0.085) (0.360) (0.159) (0.684) (0.256) (0.900)
Auto-Sharp[2] 0.076 0.142 0.111 0.407 0.193 0.723 0.304 0.919

(0.056) (0.117) (0.085) (0.360) (0.159) (0.684) (0.256) (0.900)
LPSJ(8) 0.058 0.098 0.092 0.300 0.147 0.591 0.242 0.834

(0.058) (0.094) (0.091) (0.288) (0.145) (0.576) (0.239) (0.825)
LPSJ(32) 0.070 0.112 0.114 0.347 0.183 0.666 0.290 0.894

(0.058) (0.100) (0.097) (0.323) (0.160) (0.644) (0.264) (0.882)
Notes: Empirical RP’s under the alternative. The size-adjusted RP are in the

parentheses. The nominal level is 5%. Number of replications is 10 000.

Table 8: Test for no autocorrelations (I) monthly stock returns
c.v. at 5% of EW EW c.v. at 5% of VW VW

Test K=1 K=1 K=1 K=1
BP 3.8416 37.1563∗∗ 3.8416 9.6675∗∗
LNS 3.8416 3.9031∗∗ 3.8416 2.3860

Lobato 45.4000 12.7861 45.4000 6.3698
Auto-Sharp[2] 3.9215 3.5196 3.8745 2.2446

Notes: ∗∗ denotes rejection of null at 5% level.

Table 9: Test for no autocorrelations (II) monthly bond returns
c.v. at 5% of B1 B1 c.v. at 5% of B5 B5

Test K=1 K=1 K=1 K=1
BP 3.8416 110.2065∗∗ 3.8416 14.3393∗∗
LNS 3.8416 14.9894∗∗ 3.8416 5.9383∗∗

Lobato 45.4000 70.5567∗∗ 45.4000 17.8452
Auto-Sharp[2] 3.9527 14.8541∗∗ 3.8995 6.0709∗∗

Notes: ∗∗ denotes rejection of null at 5% level.

Table 10: Test for no autocorrelations (III) monthly bond returns
c.v. at 5% of B10 B10 c.v. at 5% of B20 B20 c.v. at 5% of B30 B30

Test K=1 K=1 K=1 K=1 K=1 K=1
BP 3.8416 6.1945∗∗ 3.8416 4.2944∗∗ 3.8416 6.8408∗∗
LNS 3.8416 3.6482 3.8416 2.1322 3.8416 3.4843

Lobato 45.4000 15.5213 45.4000 8.4064 45.4000 9.3932
Auto-Sharp[2] 3.9041 3.9527∗∗ 3.9026 2.2264 3.8696 3.4636

Notes: ∗∗ denotes rejection of null at 5% level.
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