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Abstract 

This paper studies the free rider problem in an economy in which individuals care not only about 
utility from goods (private and public) but also the equality of their utility level. A two-player and two-
stage Stackelberg game is introduced and players have different endowments. Envy is endogenous and 
varies as the ratio of players’ utility; and is absent if the ratio is over an exogenous level λ 0, 1 . 
Dissatisfaction incurred by envy directly leads to negative utility to a player. R, the rich individual, is the 
Stackelberg leader who makes contribution first at stage one. P, the poor individual, observes R’s 
contribution and decides how much to contribute at stage two. It is shown that the private contribution to 
public good is not enough to be social optimal. Then the paper studies how the contributions change if P 
has the chance to punish R’s under-provision. P carries out the punishment by destroying public goods 
after R’s contribution rather than committing a crime directly to R. It is shown that the public good level 
does not necessarily increase, and there is always destruction unless envy is absent in equilibrium. R is 
worse off and P is not necessarily better off with the punishment power. The commitment problem is also 
studied and some extensions are discussed at end of the paper. 
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1. Introduction 

When there is a conflict between social and individual interest, all agents maximize their personal 

utility without regard for others. A socially sub-optimal outcome will be produced in these cases unless 

other mandatory contracts exist to force agents to cooperate (Samuelson, 1954; Olson, 1965). The total 

provision of public goods generally falls short of the level required by efficiency because people attempt 

to free ride on each other's contribution. In a public goods provision game, agents have to make a decision 

concerning how much to contribute. The higher an agent's contribution, the higher is the aggregate payoff. 

However, every player also has an incentive to free ride since they maximize their personal utility without 

regard for others. Experimental results indicate that the problem of free riding is indeed pervasive and 

leads to the under-provision of public goods (Ledyard, 1995). 

Experimental economists have studied the solutions to the free ride problem. Ostrom et al. (1992) 

show that the existence of punishment opportunities that are carried out by individuals without the 

intervention of a central authority to free riders in a common-pool resource game increases cooperation 

(i.e. the aggregate contributions to public goods) between appropriators significantly. The same result is 

reported in Fehr and Gächter (2000, 2002) who study public good games. In the setting of their 

experiments, the games are finitely repeated. Punisher cannot get benefit from the punishment and the 

action is costly. Standard game theory implies that a utility maximizing individual will never have 

incentive to punish in equilibrium. In reasonable settings, the results of the experiments, however, report 

frequent punishments even in the last period and the fear of punishment has a strong positive effect on 

cooperation.  Free riding generally causes very strong negative emotions among cooperators and 

there is a widespread willingness to punish the free riders. In Fehr and Gächter (2000, 2002), their 

results indicate that this holds true even if punishment is costly and does not provide any material 

benefits for the punisher. In their game setting, however, they did not count the negative emotion 

directly in the players’ utility. Instead, I introduce envy as a vehicle to represent the negative 

emotion which affects players’ action and take it as a variable in agents’ utility function directly. 
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Foley (1967) and Varian (1974) define the concept of envy for exchange economies without 

uncertainty. Suppose that agent i receives a bundle x while agent j receives a bundle y. Then, agent i 

envies agent j if he/she prefers y over x. Envy-freeness, the absence of envy, is an appealing concept of 

equity of society. Combined with efficiency, it leads to a natural notion of fairness. In Feldman and David 

(1978), they focus on the binary relation of wealth rather than agents’ goods bundle. It is equivalent to 

compare agents’ initial wealth and goods bundle if they have the same preference and face the same 

competitive market prices for goods. In my paper, I assume the agents get the same utility from the same 

goods bundle (i.e. their utility function on commodity bundle are the same) and hence their endowments’ 

differences are the source of envy. So I simply define envy in terms of agents’ utility level: agent i envies 

agent j if his/her utility is less than that of j. The more the difference of utility level, the more does i envy 

j.  

When agents have different endowment (inherited wealth, skill, ability and anything else), it is 

reasonable that the agents who have lower endowment will not expect to be as well off as the agents with 

higher endowment. Given all other things same, one with few dollars will not expect to get the same 

utility as one that inherits one million dollars. Chaudhuri (1986) and Diamantaras and Thomson (1990) 

considered the following measure of envy. An allocation is λ-equitable if no agent envies a proportion λ 

of the bundle of any other agent. In this paper, I extend the concept that the society is λ-equitable if no 

agent envies a proportion λ of the utility of any other agent. One agent will not be jealous of the other one 

if the ratio of their utility from goods bundle is greater or equal to λ. 

In the game setting of Ostrom et al. (1992) and Fehr and Gächter (2000, 2002), the punishment 

processes are designed as follows. If agent i punishes agent j, j loses money value as a function of the 

intensity of punishment. There is a cost for i to practice the punishment. In other theoretical papers, the 

authors used crime as a punishment (or threaten) mechanism to incur agents to contribute more. The 

agents who practice the punishments (crime) get positive payoff but at a risk of penalty. The agents who 

suffer from crime get negative payoff certainly. In my paper, however, I do not use both of the above 
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methods to rule the punishment. Instead, an agent practices the punishment by destroying public goods 

that were contributed in the previous period. The detail is discussed in the next section.  

Another mechanism for overcoming the free-rider problem is shown by Guttman (1978). In his 

model, agents in a first stage announce rates at which they will match the contributions of other agents. 

Then in the second stage, given the announced matching rates, agents choose their own contributions. 

Then the sub-game perfect equilibrium in such a two-stage non-cooperative game is fully efficient. As 

mentioned in Boadway, Song and Tremblay (2007), since the efficiency of the Guttman mechanism 

requires that both agents be able to commit to matching the contributions of the other in the second stage, 

commitment problem must be taken into consideration. In this paper, a revised version of matching 

mechanism is introduced. One agent announced a schedule to destroy based on the other agent’s 

behaviour and fulfill the announcement at the last stage. Then the commitment problem is studied. 

The rest of the paper proceeds as follows. Section two introduces the bench mark model. Section 

3 describes the rule of the contribution game and how agents (players) make their decision. Section 4 

analyzes how the aggregate contribution to public goods changes when punishment is introduced. Section 

5 studies the commitment problem. Section 6 lists some extensions of the model and section 7 ends with 

conclusion. 

2. Bench mark model 

2.1 The Economy 

There are two individuals, P (poor) and R (rich), with initial wealth: w , i=P, R and wP wR. 

Both P and R have the same utility function on the commodity bundle c , G , where c  is individual i’s 

private consumption, i= P, R, and G is the public good. Let the utility function (on the commodity bundle) 

be U c , G  with U , U
G

0  U , U
G

0, U
G

U
G

0 . Utility functions are monotonic 

increasing and strictly quasi-concave, and both private consumption and public good are strictly normal. 
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The cross derivatives being greater than zero implies that the person with more private consumption 

goods prefers a public goods increment more than the person with less private goods. Both P and R 

decide how to allocate available endowments between private consumption and contribution to public 

goods. The aggregate public good is  G gP gR, where g , i=P, R, are P and R’s contribution to public 

good respectively. Their budget constraints are   c g w , i=P, R. The price of the private 

consumption good and the cost of a unit of public good are constant and normalized to unity. There is no 

third-party firm to produce the public good and no government in the bench mark model. The players 

cannot transfer wealth to each other in this economy.  

In our model, the individuals are selfish. R’s utility is only from consumption of the commodity 

bundle and he/she does not care about the equality of the society. However,  P cares not only about 

his/her commodity bundles but also about the inequality between R and him/her, i.e. P is jealous of R if 

R’s utility is higher than that of P and this envy makes P feels bad. The essential problem is how envy 

affects P’s utility. The direct way is that envy is introduced to P’s utility function as a variable. The affect 

of the inequality between P and R is represented by a negative utility to P, named “dissatisfaction”, as a 

function of the envy. The more the dissatisfaction, the more is the negative utility, i.e. P feels more “upset” 

when the inequality is higher. In order to represent envy in quantitative terms, one necessary assumption 

is that R will never be jealous P. R will not make a contribution if his/her utility is lower than that of P. 

Since the public good is non-exclusive, the first assumption is necessary: 

Assumption 1: R is never jealous of P, i.e. R’s utility from the commodity bundle is no less than that of 

P’s: , ,   .This is equivalent to  , i.e. . The 

equality holds only when  , i.e. both players have the same commodity bundle. 

It is realistic to suppose P knows the difference of endowments between him/her and R. P will not 

expect the same but something less than R’s utility level. I consider the λ -equitable envy-free concept. 

The proportional difference is more relevant than the absolute difference between P and R’s utility since 
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the absolute difference cannot represent the degree of inequality well. Given the same utility difference 

between P and R, P with lower utility feels it is more unfair if P has higher utility. P feels it is λ -

equitable if his/her utility from bundle cP, gP gR  is at least as much as a proportion λ  of R’s utility 

from bundle cR, gP gR , λ 0, 1 . If λ  <1, P does not expect to be as well off as R. While λ =1 

means P expects the same utility level as R.  λ  is not necessarily constant. It depends on both the society 

attitudes and the difference of players’ endowments. As mentioned in the introduction section, it is 

realistic that people with low ability expect less than people with high ability. Then it is reasonable to 

consider  λ  as a function of players’ endowments. Since endowments are exogenous, we take λ  as given. 

Let λ U P, P R

U R, P R . If λ λ , P thinks R contributes enough to make the society λ -equitable 

and there is no envy. If λ λ , P thinks R is too stingy to contribute enough and even the λ -equitable 

outcome cannot be reached. Then, envy exists and introduces negative utility to P.  Indeed, the word 

“stingy” is not suitable here. As we now show, λ may become smaller even if R contributed more under 

some conditions. Consider the following case. For simplicity, suppose P’s initial wealth is such that 

he/she is always a non-contributor. From λ U P, R

U R R, R
UP

UR, we get 

 λ
R

UG
P UR UP UR UG

R

UR
λ
R 0 UG

P UR UP UR UG
R 0.  

Players’ utility and marginal utility are all greater than zero. When gR is low, UR UG
R is positive and 

high. Then it is possible that λ
R is negative and λ decreases as gR increases. When gR is big enough, for 

example UR UG
R 0 (or MRS ,G

R 1), λ
R 0 and λ increases as R contributes more.1 

The players’ utility functions are: 

VP cP, gP gR  E λ U P, P R

U R, P R UP E λ UP

UR  subject to  cP gP wP  � 
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1 Even if UR UG
R 0, it is still possible that UG

P UR UP UR UG
R 0 if the first part dominates. 



 VR U cR, gP gR UR subject to  cR gR wR  � 

E λ λ  is the “dissatisfaction” from envy and λ U P, R

U R, R  , where  E
λ λ

0  , E
λ λ

0  if 

λ λ 0. For simplicity, I assume E . 0, E
λ λ

0 if  λ λ 0, P will not get positive utility 

from “satisfaction” even R’s behaviour leads the ratio to be over  λ . The more the difference between 

actual utility ratio and expected utility ratio, the more disappointed is P. The convexity means marginal 

disappointment is increasing as the difference increases.  

Players move as in a Stackelberg sequential model. R is the Stackelberg leader and P is the 

follower.  The players’ decision procedure is represented as the following two stage game. At stage 1, R 

chooses how much to contribute:  cR, gR   constrained by his/her endowment. At stage two, P observes 

how much public good R has contributed and decides his/her contribution in order to maximize utility.  

Now, suppose P has the power to punish R’s action. Assume P can punish R if he/she thinks that 

R acts so strategically that λ λ . A usual way of punishment is for P to commit some crime against R. I 

will not consider, however, using “crime” as P’s way of revenging R because of the following reasons. 

Generally, P can get positive benefit from crime and R will lose something. It is obvious that the extra 

benefit and lost functions must necessarily be introduced. Also, a cost of crime is necessary to keep the 

model tractable (i.e. if there is no punishment for crime, everyone will go to do it). Then the model 

becomes more complex and hard to analyze. And, the more important reason is that generally if the cost 

(i.e. penalty) imposed on crime is quite high, P is deterred by the high cost, and the variability of the 

model becomes less.  

Alternatively, P can punish R by destroying public goods. Even though the destroying of the 

public good makes P gets less from consumption, his/her dissatisfaction decreases at the same time under 

some conditions. If the latter effect dominates, P does have incentive to destroy the public goods R 

contributed at stage 1. And in practice, the penalty for destroying actions on public goods is slight. 
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Examples include the following: i. dumping garbage in a park to destroy the environment; ii. driving 

slowly on roads to slow down the traffic. These kinds of "destroying" actions, named “soft” crime, incur a 

slight cost for P so it is more possible for P to undertake them. This leads to the second assumption: 

Assumption 2: Since the punishment for the “soft” destroying actions to public good is slight, I assume 

there is no cost incurred by the action in the benchmark model. This will be relaxed in the extension 

section.  

In summary, it is a reasonable punishing method that P has the chance to destroy public goods.  

Let D denotes the amount of public good that P destroys. Then the actual public good is the contribution 

of R minus the amount destroyed by P. One thing needs to be mentioned is that R’s contribution to public 

good has done before P’s “punishing” action. While the variable λ is variable after R’s contribution since 

λ U P, R D
U R, R D

 depends on D.  When D is negative, P is a contributor and constrained by his budget. 

Finally, the utility functions that the players actually receive are: 

VP U cP, gR D  E λ U P, R D
U R, R D

UP E λ UP

UR subject to cP max 0, D wP  ⑶ 

 VR U cR, gR D UR  subject to  cR gR wR  ⑷ 

We want to study how much R contributes when P has the chance to punish. The destruction is 

based on the fact that P knows how much R contributed. Then R makes his/her decision based on the fact 

that he/she knows what P will do. So the perfect information assumption is necessary: 

Assumption 3: Both players have perfect information. Each player knows: (i) their own information and 

P has perfect recall, i.e. P can observe how much R contributes; (ii) the rival’s endowment; (iii) the 

rival’s action functions, for example, R knows how much P will destroy and hence both players know 

their rival’s response function. 
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Before discussing the strategies the players used to contribute, it is desirable to consider the 

problem of commitment. The commitment problem is about whether P actually destroys the public good 

(i.e., if destroying action makes him/her better off) at stage two. This is essential for R to make a decision 

at stage one since if R believes that P cannot commit, he/she can ignore the “threaten” of punishment 

from P and make decision as the case without punishment. In our model with the above settings, however, 

the commitment problem does not exist. P does not promise he/she will destroy or not in state one and 

his/her destroying action is a function of R’s action in stage one. Given the observable variable from stage 

one, P makes a decision in order to maximize his/her utility. So whether P destroys or not can be perfectly 

anticipated by R and P will act as R’s anticipation. Thus the requirement for commitment problem to exist, 

i.e. inconsistence between expectation and actuality, is not valid. If we change the game’s rule, the 

commitment problem exists. Suppose P pronounces a destruction level at period 0. R maximizes utility 

based on P’s pronouncement. Then P destroys the level pronounced before at stage 2. If P can commit, we 

need to find the best destruction level pronounced to give P the highest payoff. If R believes that P will 

not commit, he/she will make decision as the basic sequential game. The commitment problem will be 

discussed later. 

3 How do the players make their decisions? 

The following analysis uses the backward induction method with perfect information to find the 

Subgame Perfect Nash Equilibrium of this Stackelberg game. 
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At stage two, only P has chance to “move”. He/she decides how much to destroy (contribute). P’s 

decision is based on the following optimal solution for (3). As mentioned above, P observes how much R 

contributes and takes gR as given; P can only choose D to maximize VP. If D<0, P will contribute public 

good. From the objective function, we can see that the variable D has two effects: (i) when D increases, 

the amount of public good decrease and hence the utility from consuming commodity bundle decreases. 

This is a negative effect on VP; (ii) the ratio λ changes at the same time and hence the dissatisfaction E. 

U cR, gR D  also decreases as D increases. To consider how λ changes when D increases, let’s denote 



the players’ utilities as UP, UR  and the marginal utilities of G given private consumption level as UG
P| P,

UG
R| R  when D is greater than zero. If λ decreases as D increases, there is incentive for P to reduce 

destruction (or increase contribution) since more destruction will introduce both utility loss and more 

dissatisfaction. So it is interesting to study the conditions under which λ changes in the same direction as 

D. A necessary condition required for λ to increase when D increases is  
 UP UG

P| P

UR UG
R| R 

 UP

UR
 UP

UR

UG
P| P

UG
R| R 

 λ U P, R D
U R, R D

 increases andλ λ decreases, hence the dissatisfaction E decreases. Since both 

private goods and public good are normal goods and U cR, gR D U wP, gR D  (from assumption 

1) when D>0, the inequality  UP

UR

UG
P| P

UG
R| R 

  is valid only when the RHS is less than 1. This requires 

that  U
G

U
G

0 , which means the person with more private consumption goods prefers a public 

goods increment more than the person with less private goods. In our case, R holds more private goods 

than that of P. It is obvious that separable utility functions are not valid since their marginal utility of 

public good does not depend on private consumption goods. And Cobb-Douglas utility does also not 

work since λ is constant. It is also simple to see that 
UG

P| P

UG
R| R 

λ  is required, otherwise P is satisfied and 

has no incentive to destroy. Rearrange the above inequality to  
UG

R| R 

UR

UG
P| P

UP . Since λ is the ratio of P’s 

utility to the R’s, it will increases when D increases if the percentage change of P’s utility is less than that 

of R’s (i.e. the percentage loss of R is higher than that of P). An example is shown in Appendix A.1. P 

chooses D to solve the utility maximizing problem. The solution is D   gR ;  wP, wR, λ . The existence 

of a positive solution of D depends on special settings and can be proved for the example A.1.The proof is 

shown in Appendix A.2. In general, there are three possible D : (i) D  0; optimal solution is that P is a 

contributor; (ii) 0  D gR ; P will destroy some of the public good from the first stage; (iii) D gR, 

even P destroys all public good, he/she cannot get the optimal point. This is the end of analysis of stage 

two. Now go back to the first stage.  
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At the stage one, R makes a contribution decision. With perfect information, R takes wP, wR , λ0 

as given and he/she also knows what D  will be at stage two based on his/her contribution. Then R 

chooses  gR and cR wR  gR  to solve the optimal solution of (4). The solution is R’s optimal 

contribution to public good: gR wP, wR, λ0 .  By substituting this into the P’s destroy function, we can 

get  D wP, wR, λ0 .  

4. Does R contribute more when P has the chance to punish R?  

When it is social planner who allocates private consumptions and provides public good, the 

aggregate marginal rate substitution is equal to one and the outcome is envy-free (proved in Appendix 

A.3).  

Let us first consider the Stackelberg model when P cannot punish R, referred to as the “basic 

Stackelberg model”. R takes P’s contribution as a function of gR rather than taking it as given. If P is non-

contributor at the equilibrium, R’s optimal solution must be the contribution which set  MRSG,
R 1, 

denote the solution as gR.  Suppose R’s contribution at equilibrium is not equal to gR and P is a non-

contributor. Then R’s utility at gR must be higher than his utility at equilibrium whether P is a contributor 

or not at gR since gP 0. If P is a contributor at equilibrium, we can get  MRSG,
R 1/ 1

P R

R  

from first-order condition of (2). Appendix A.4 proves that it is possible that P is contributor and does not 

have the same utility as R (i.e. envy may be present) at equilibrium in the basic Stackelberg game.  This is 

different from the case where P and R make their decisions simultaneously, in which case envy is absent 

and players get the same utility following the Warr Theorem (Warr 1983). Whether P is a contributor or 

not, the aggregate MRS is greater than one and not enough public goods are provided. 

Proposition 1: When P is contributor in the basic Stackelberg model, the equilibrium is the same even if 

P can punish. 

Proof: 
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Denote R’s equilibrium contribution as gR  in the basic model. Whether P can punish R or not, P always 

contributes at gR . So R still contributes the same as before since gR  give him/her the highest payoff. 

QED 

So only when P is a non-contributor at equilibrium in the basic model is the outcome different if 

we give punishment power to P. As mentioned above, R’s optimal solution is at gR, which set MRSG,
R

1 in the basic model. For simplicity, let us assume: 

Assumption 4: In the basic (without punishment) model, P is non-contributor no matter how much R 

contributes. 

This means that P’s reaction function given R’s contribution, gP gR 0  for any  gR

0,  wR wP . Given this assumption, P’s marginal utility from private consumption is always higher 

than the marginal utility from contribution. Then  gP 0, G gRand players’ utilities received are: 

VP U wP, gR D  E λ U P, R D
U R, R D

UP E λ UP

UR  ⑸ 

 VR U cR, gR D UR  subject to  cR gR wR  ⑹ 
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The fact that P is a non-contributor has two implications. On the one hand, P is better off by 

consuming all endowment on private consumption at every gR 0, wR wP . In detail, P’s contribution 

has three effects: (i) his/her private consumption decreases; (ii) more public goods are supplied; and (iii) λ 

changes. Effect (i) is negative and (ii) is positive. Effect (iii) depends on the relative change of utility 

from commodity bundle between P and R. As shown in Appendix A.1, more contribution from P leads λ 

to decrease even without considering the loss due to less private consumption by P. Thus P’s 

dissatisfaction increases as he/she contributes more. Hence for any gR 0, wR wP , the aggregate 

effect is negative (or zero) at gP 0 if P is non-contributor and for any gP 0, the aggregate effect is 

negative. The latter statement is true because the more gP, the less does P gain from contribution and the 



more does P loss due to effect (i) and (iii).  In a word, P’s utility decreases as gP increases and hence the 

lowest value of gP 0 is the optimal contribution when P does not have chance to destroy. On the other 

hand, R knows P is non-contributor and contributes gR to set MUc
R MUg

R if gR 0 at SPNE, denoted 

as g0
R in the basic model.  

Given the assumption that P is a non-contributor, suppose the marginal effect of a contribution by 

P when gP 0 is negative for any gR 0, wR wP  in the basic Stackelberg model. P is better off by 

decreasing gP to negative. If P’s budget constraint still holds (i.e. the negative contribution is transferred 

to private consumption), P’s utility curve can reach a maximum value with some negative  gP . The 

negative contribution can be considered as destruction of the public good. But private consumption 

cannot be greater than P’s endowment. So the actual part of P’s utility curve is flatter on the left side of 

 gP 0. P will always have incentive to destroy since the slope of P’s utility curve is negative at gP 0. 

The function E, however, is equal to zero when λ0 λ 0. Let gλ0
R  be R’s contribution that sets  λ0 λ

0 and λ is increasing for any gR gλ0
R . Then for any gR gλ0

R , P’s utility decreases when D increases 

from zero since P cannot gain from less dissatisfaction anymore. So when P can punish and assumption 4 

is true, D>0 for gR 0, gR  and D=0 for gR gR , wR wP  

R knows P is a non-contributor and destroyer for some gR. Based on P’s reaction function, R 

chooses gR to maximize his/her utility. R’s utility is less than the case where P does not have a chance to 

punish if D>0 and equal if D=0 for any  0, . Recall R’s optimal contribution is g0
R in the 

basic model.  Let us consider the optimal solution  gR : 

(i)  gR gR 

Since D=0 for gR gR , wR wP , R still contributes to set  MUR MUR and gR gR and there is no 

destruction. 
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(ii) gR gR and VR wR gR , gR VR wR gR, gR  for any gR 0, gR  

Since D=0 for gR gR , wR wP , R’s utility curve is the same as in the case where there is no 

punishment. And, for any gR gR, UR

R 0, then gR gR gR and there is no destruction. 

(iii) gR gR and VR wR gR , gR VR wR gR , gR  for some gR 0, gR . 

Then gR 0, gR  and there has to be destruction. If gR 0, gR , the final public goods level is 

definitely less than gR. If gR gR, gR , it is ambiguous  whether the final public good is greater than 

gR  since there is destruction. And, the final public good is not zero (i.e. P does not destroy all R’s 

contribution) for any gR 0, gR ; otherwise R is better off by contributing nothing. This is the interior 

solution that satisfies: (i) R’s marginal utility from one more contribution to public good is equal to 

his/her marginal utility from one more private consumption; (ii) P’s marginal utility from destroying 

public good is equal to zero.  

For the case (iii), an interior solution exists. Let us obtain R’s marginal utility from contribution 

by substituting cR wR gR. 

U
gR Uc

R UG
R 1 D

gR  ⑺ 

R’s utility increment from one more unit of contribution has to consider how much P will destroy for this 

unit of public good.  When  D
gR 1, P will destroy the whole unit of incremental contribution and R can 

be better off by consuming this unit of wealth as a private good (given that the private good is strictly 

normal). D
gR cannot be greater than one by similar reasoning. Hence D

gR 1 is required for R to be a 

contributor at equilibrium. R’s utility curve is decided by the value of U
gR. If an interior solution exists, we 

need U
gR 0. Let us rearrange (7) to obtain 
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U
gR UG

R Uc
R

UG
R 1 D

gR UG
R 1 MRSc,G

R D
gR  ⑻ 

Since  UG
R 0 , R’s utility curve is upward sloped when 1 MRSc,G

R D
gR 0 , and vice versa. For 

optimal solution (iii), (8) =0 at gR . We know that 1 MRSc,G
R  is greater than zero for gR g0

R and less 

than zero for gR g0
R .  So, D

gR  is positive and less than 1 for gR 0, g0
R  and negative for gR

g0
R, gλ0

R .  

Now let us consider players’ payoff change. When P does not have chance to destroy, R’s utility 

is U wR g0
R, g0

R  and P’s utility is VP g0
R |D 0 . Let us consider players’ payoffs under the cases 

discussed above when P has the power to punish. If R’s optimal contribution is case (i), there is no change 

of utility for both players. Under case (ii), it is obvious that R is worse off and P is better off. For case (iii), 

R is definitely worse off. But P’s payoff change is not necessary positive. Let us use P’s utility-

maximizing problem to analyze P’s utility change as gR increases (optimal D is function of gR and let WP 

be P’s indirectly utility function given  gR). 

∂WP

∂gR UG
P 1

∂D
∂gR E′

UG
P 1 ∂D

∂gR UR UP Uc
R UG

R
1 ∂D

∂gR

UR 2  

Since P’s marginal utility from destroying the public good is equal to zero for case (iii), 

∂VP

∂D
UG

P E
UG

P UR UP UG
R

UR 0 

∂WP

∂gR 1
∂D
∂gR UG

P E′ UG
P UR UP UG

R

UR 2 E′ UP Uc
R

UR 2 E′ UP Uc
R

UR 2 0 
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Hence P’s utility is strictly increasing for gR 0, gR  when 0<D<gR . And we also know 

that VP gR |D WP gR .  Then in case (iii), P’s utility is definitely higher than his/her utility when P 



does not have the power to destroy if gR gR, gR . But WP gR P gR  when gR 0, gR , 

we cannot say the relationship between WP gR  and VP gR |D .  Hence P is not necessarily better off 

with the possibility of destroying. In conclusion, we can summarize the results as follows: 

Proposition 2: Under assumptions 1-4, when P has the chance to punish, 

(i) R contributes more if . One necessary condition is that ‐equality is not reached at , i.e. 

we need 0 to be big enough.  

(ii) Another necessary condition for R to contribute more is that P has an incentive to decrease 

destruction if R contributes more at , i.e. 0.  

(iii) When -equality is not reached, the destruction of the public good always happens; 

(iv) R is worse off. P’s payoff, however, does not necessarily increase with the power to punish R. 

(v) The final public good level is higher if , lower if  and ambiguous if 

, . 

5. Commitment problem 

In this section, commitment problems are discussed. As mentioned before, for the 

benchmark model, there is no commitment problem, so in order to explore commitment 

possibilities we need to change the game’s rules. Suppose that P first announces a level of 

destruction Da at stage 0 no matter how much R contributes. R then makes a decision based on P’s 

announcement at stage 1. Then P fulfils his/her announcement at stage 2.  

First of all, we need to analyze the equilibrium assuming P can commit. Given P’s announcement 

of destruction level  Da , R solves his/her utility maximization problem maxgR VR U wR gR, gR
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Da UR. Given D , P will destroy all contributions from R if gR Da. Hence R is better off to be a 

non-contributor and receive utility U wR, 0  when gR Da . Once R contributes more than D , it is 

possible to get an interior solution gR  that satisfies VR

R F gR; D UR UG
R 0. And, the second-

order condition is VR

R
F
R UR U G

R UG
R UGG

R 0 . So gR  is a local maximum 

solution.  

Suppose  Arg max R VR gR D . Let us study how R’s utility and contribution change as D  

changes. From R’s first-order condition  F gR; D UR UG
R 0, we get 

∂F
∂D

U G
R UGG

R ∂gR

∂Da
∂F/ ∂Da

∂F/ ∂gR
UcG

R UGG
R

UcG
R UGG

R UcG
R Ucc

R 0, 1 0 

Let HR U wR gR Da , gR Da Da UR be R’s indirect utility function given Da. Then,  

HR

D
UR

R

D
UG

R R

D
1 0 since 

R

D
0, 1  

The more P announced to destroy, the more is R’s contribution and the less is R’s utility if R’s 

optimal contribution is greater than zero and P can commit. When D =0, R contributes gD
R  and gets the 

highest utility level as U wR gD
R , gD

R . As D  increases, R contributes more, and his/her utility 

level U wR gR , gR  decreases. Once U wR gR , gR wR, 0 , R becomes a non-contributor. So 

R’s utility level U wR, 0 , U wR gD
R , gD

R  and gR Max D , gD
R , wR wP  or gR

0. We can summarize these results in the following proposition. 

Proposition 3: When P can commit to a certain level of destruction no matter how much R contributes, 

the optimal solution of R’s contribution given  is:   , 0 , ,  and 

,  or 0. And R’s contribution increases as  increases if an interior solution 

exists. 
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Now go back to P’s decision in stage 0. P chooses the announced destruction level to maximize 

his/her utility.  

max
D

VP U wP, gR Da Da E λ0
U wP, gR Da Da

U wR gR Da , gR Da Da UP E λ0
UP

UR  

If Da is so high that  Arg maxgR VR U wR gR, gR Da 0, P’s utility is U wP, 0 E λ0
U wP,0
U wR,0

. 

P has an incentive to decrease Da to lead R to be contributor. Let Da′ be the destruction level at which R is 

indifferent between a non-contributor and a contributor, i.e.  U wR gR Da′ , gR Da′ U wR, 0 . If 

P decreases Da′  a little bit, R becomes a contributor and P is more likely to be better off (gR   is high 

enough that λ increases as gR increased). So P will not announce Da so high as to deter R from being a 

non-contributor. Of cause, P also will not announce Da too low since R contributes more and P can be 

better off with higher Da. From the point view of P, the first best action is that resolving his/her utility 

maximizing problem at stage 2 (given R’s contribution at stage 1).  

Proposition 4: No matter whether an interior solution exists (i.e. 0,  or not, P is better off if 

he/she does not commit the announcement. 

The proof is in Appendix A.5. 

Let us now discuss the two players’ payoffs. Suppose whether P can commit is decided 

exogenously. For simplicity, let us consider only the case where gR Max Da, gDa 0
R , wR wP  

Case 1: R does not believes P can commit 

Since P always has incentive to deviate from his/her announcement, R is more likely to believe P 

cannot commit. Instead, R believes P will maximize utility given R’s contribution. Then the outcome is 

the same as the Stackelberg model we discussed before. Let us use gS
R  to denote the optimal solution in 

the Stackelberg game. 
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Case 2: R believes that P can commit but P will not 

P will maximize utility given R’s contribution. R is worse off for any gR gS
R . Recall the 

Stackelberg game, P’s utility increases as R’s contribution increased. So for P to be better off, P has to 

announce the destruction level which leads the highest  gR . Since gR

Da 0, P will announce  D Da′ 

(recall that Da′ is the announced destruction level at which R is indifferent between non-contributor and 

contributor. Suppose gR Da′ gS
R , P is better off.  

Case 3: R believes that P can commit and P commits his/her announcement 

P is not necessarily better off than his/her payoff in the Stackelberg game. Even if R contributes 

more, P’s destruction (commit Da ) is not optimal given gR Da . R is definitely worse off compared 

with in the Stackelberg game if gS
R 0. (Proof in Appendix A.6) 

An alternative method is the QCM (Quantity-Contingent Mechanism), where P’s commitment to 

destroy is contingent on R’s choice. P announces that he will not destroy if R contributes over or equal to 

some threshold amount of public good (say gR ), or P will destroy a certain amount (as before D ). P 

commits to his/her announcement for sure. The above is a special case that  gR  is infinite (or more 

specific,  G wR wP  since R will not contribute more than wR wP). P’s optimal strategy is (i) 

choosing the threshold  gR  such that U wR  gR ,  gR U wR, 0 , if gR wR wP. If  gR

wR wP, P choose  gR wR wP since R will not contribute more than wR wP from assumption 1. 

(ii) choosing D  such that U wR, 0 wR gR, gR D  for any gR 0,  gR . R contributes at gR  

if he/she believes that P can commit. Otherwise the outcome is the same as the bench mark model. A 

more general version of QCM would be for P to promise to contributes if R contributes more than gR . 

This will encourage R to contribute more. 

6. Extensions 
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The model can be more realistic and complex by introducing more agents and more rules. The 

following cases are discussed separately. Of cause, some of them can be combined together. 

6.1. Introduce Government 

A third party, the government named G, is the authority whose goal is to maximize players’ 

aggregate utility. G can achieve its goal by the following methods.  

First, G has the power to post regulations for P’s destruction. If P does some destruction, P has to 

suffer from fine prescribed by G’s regulation. Suppose it is costless for G to post the regulation and there 

is no way for P to escape from the fine. It is equivalent to posting a cost for P’s destruction. Hence, 

everything else is the same as before, but P’s utility function changes toVP U wP F D , gR D

 E λ0 λ ;    F D 0 if D 0;   F
D

0 and  
2F
D2 0.  

P has to consider the cost he/she must pay for the action of destruction. For any gR  such 

that D gR 0, gR  in the basic  Stackelberg model, P will destroy less when the regulation is activated. 

It is not clear that R will contribute less or more at equilibrium with the regulation since it depends on the 

specific parameters and utility functions. But if R contributed less, P is worse off and R is better off. The 

former is because P’s utility is increasing in gR. Even at the initial optimal contribution level, R is better 

off (or at least the same as before) since P destroys less (or the same). So R’s lower contribution implies 

R is better off than before. The change of aggregate utility is ambiguous. If aggregate utility increases, G 

should introduce the regulation. Otherwise, G should not. In addition, it is generally not free for G to post 

and practise the regulation since management and supervision are costly. The cost is fixed once G adopts 

the regulation. G has to balance its budget. The cost can be shared between P and R or paid by R only. 

Players’ utility functions adjust correspondingly. Then G can compare the aggregate utility with and 

without the regulation and decide whether introduce the regulation.  
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In the above paragraph, G collects revenue from players to cover its cost for regulation. Now, let 

us consider the case when G can transfer wealth from R to P. The public good, however, is still provided 

by players R and P in the Stackelberg game. Hence G’s problem is Max
wP,w

R VP VR  Subject to: 

 wP wR W. For any pair wP, wR , by solving P and R’s utility maximization problems as before, 

we can get aggregate utility as   VP wP, wR VR wP, wR . An optimal solution exists since   0

wP, wR W wP W. It is not necessary for the optimal solution that G redistributes W such that the 

game is λ0-equitable. It is possible that aggregate utility is higher in the case that envy is present (hence 

there is destruction) than in the case that envy is absent. If the parameter λ0 is a function of wP and wR, it 

must be taken into consideration when we solve G’s problem. 

In addition, if G provides public good rather than players, G acts as the social planner with the 

power of transferring wealth. P and R get the same utility level and envy is absent. The Samuelson 

condition is satisfied.  

6.2. Introduce R’s self-protection mechanism 

Instead of introducing G and regulation, P’s destruction is not free if R can do something to 

protect himself. The simplest case is that R can spend money to increase the cost of P’s destruction. R’s 

utility function becomes VR U wR gR p, gR D , where p is the amount of wealth R spent to 

provide self-protection. P’s utility function is now  VP U wP C p, D , gR D  E λ λ ; 

C p, D 0 if D 0;  C
D

0, C 0   C
D

0, C 0, C
D

0.  The cost of P’s destruction is 

increasing in D and p. The higher p is, the higher is the cost P has to pay for the same amount of D.  

6.3. Some other considerations 

All the above analysis is based on perfect information. The outcome may be different if 

uncertainty is introduced. Suppose there are two types of P. “Normal” P follows the setting above. “Mild” 
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type P will never destroy. The “mild” can be understood in the following two ways: (i) the mild P does 

not care about inequality; or (ii) the mild P’s cost to destroy is infinite high, thus he/she is deterred from 

destroying. The types of P follow some natural probability distribution. Then Bayesian equilibrium is 

expected. 

When there are more than one individual in group P and group R, the analysis becomes more 

complex. One thing that has to be considered is whether group members act cooperatively or not. For 

example, if agents in group P make their decision separately, the aggregate destruction is higher than the 

case they act cooperatively, all other things being the same. 

7 Conclusions 

When envy is introduced to a player’s utility function directly, that player has to consider not 

only consumption bundle but also envy induced by inequality. The ability of punishment to improve 

public goods contributions is dubious. P punishes R by destroying public goods rather than doing crime 

on R directly. In our two-player, λ -equality seeking and Stackelberg sequential game, one necessary 

condition for punishment opportunity to have effect is that P should not be a contributor at equilibrium in 

the basic model (i.e. the model in which P cannot punish R). With the assumption that P is never a 

contributor, the public good level is not necessarily greater when P has the power to destroy. R is worse 

off but P is not necessarily better off. At equilibrium, if λ -equality is not reached, P will always destroy 

some of R’s contribution. Aggregate utility is not necessarily greater when P can punish. When P 

promises a certain amount of destruction, R contributes more for a higher announced destruction level, 

and P will always have incentive to deviate from the announcement. The public good level depends on 

whether (i) P can commit; (ii) R believes P can commit and (iii) specific functions and parameters.  
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Appendix 

A.1 A utility function satisfies the requirement that  increase when D>0 

U c, G c G A, where A 0, P is non-contributor and G gR.  

Proof: 

λ
UP

UR
wPgR A

cRgR A

a A
b A

1
T

 

With destroying D, 

ΔUP wPgR A wP gR D A wP gR gR D  

ΔUR cRgR A cR gR D A cR gR gR D  

ΔUP

ΔUR
wP

cR

wPgR

cRgR
a
b

1
t
 

Since wPgR
Rc gR with assumption that U cR, gR wP, gR   

1
T b A

a A
b
a

t
1

 

T ,  ,  1,∞  

Then 

λ
wP gR D A

cR gR D A

UP ΔUP

UR ΔUR
UP ΔUP

TUP tΔUP
UP ΔUP

TUP TΔUP
1
T

λ  

It is shown that λ is increasing as destroying action is undertaken. Hence the destroying action reduces P’s 

disappointment.  

QED 
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A.2 Positive solution of D exists for example A.1 

Proof: Assume the disappointment function E B λ λ , where B 0 and λ λ 0 

VP wP gR D A B λ P
R D A

R
R D A

and VR cR gR D  

At stage two, P chooses D to maximize VP, given gR: 

Max
D

VP wP gR D A
1
2

B λ
wP gR D A

cR gR D A
 

∂VP

∂D
0

1
2

wP gR D B λ
wP gR D A

cR gR D A
1

1
2 wP gR D cR gR D A 1

2 cR gR D  wP gR D A

cR gR D A
 

D=gR or 

wP B λ
wP gR D A

cR gR D A

wP cR gR D A cR wP gR D A

cR gR D A
0 

wP B λ
wP gR D A

cR DgR A

wP A cR A

cR gR D A
0 

For simplicity, suppose λ 1   

cR gR D A wP AB cR wP gR D  

 Given appropriated value of A and B, there is non-negative solution for gR-D.  

QED 
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A.3 The solution of social planner’s problem 

Social planner has the power to allocate resources to private consumptions and provide public good. 

Max
P, R,G  

V cP, G U cR, G  E λ
U cP, G
U cR, G

UP UR E λ
UP

UR  

Subject to: cP cR G wP wR 

First order conditions with respect to cP, cR, G: 

V
P UP E′ UP

UR μ   

V
R UR E′ UP UR

UR μ   

V
G

UG
P UG

R E′ UG
P UR UP UG

R

UR μ   

We know that the shadow price is greater than zero and UP UR with assumption 1 and U 0. Then 

from the first two equations, we get E′ UP

UR E′ UP UR

UR E′ 0 since all elements except E′ are 

greater than zero and E′ 0. With the definition of function E, we know that E=0 whenE′ 0. The above 

equations can be simplified to 

V
P UP u UR V

R  

∂V
∂G

UG
P UG

R μ 

MRSG,
P MRSG,

R 1 

In conclusion, for the social optimal, the aggregate marginal rate substitution is equal to one and the envy 

is free. 
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A.4 Players do not need to get the same utility when P is also contributor at 

equilibrium in the sequential game 

Let’s suppose P is contributor at the equilibrium. From the first order conditions of (1), we get 

∂VP

∂cP UP E′ UP

UR UG
P E′ UG

P UR UP UG
R

UR
∂VP

∂gP  

MRSG,
P 1 E′ UP UG

R

UP UR E′ UR  ⑶ 

Suppose λ λ 0, then E′ 0. With assumption 1, we need MRSG,
R MRSG,

P  and hence P and R do 

not have the same utility. 

1

1 ∂gP

∂gR

1
E′ UP UG

R

UP UR E′ UR 1 

∂gP

∂gR 1,
1

1 E′ UP UG
R

UP UR E′ UR

1  

So it is possible that P is contributor at equilibrium if  
P

R  locates in the above domain and players have 

different utility level at end of the game.  

A.5 (Proof of Proposition 4) 

Proof: 

Case (i), gR Da gλ0
R , wR wP   

By Proposition 2, P definitely has incentive to not commit since any destruction introduces loss of utility. 

Case (ii), gR Da 0 
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P cannot commit since there is no public good to destroy. 

Case (iii), gR Da Da , gλ0
R  

The λ0-equality is not reach and we have to consider the effect of dissatisfaction.  

Let’s consider P’s marginal utility from Da: 

VP

Da
gR

Da 1 UG
P E′ UG

P UR UP UG
R

UR 2 E′ UP Uc
R gR

Da

UR 2  ⑼ 

(a) If Da 0, Da′ , (9) is equal to zero. The second part of RHS is greater than zero since gR

Da 0, 1 .  

UG
P E′ UG

P UR UP UG
R

UR 2 0 

UG
P E′ UG

P UR UP UG
R

UR 2 0 at Da  

At stage 2,  gR  is taken as given since it is decided at stage 1. Then P chooses destruction D  to maximize 

utility.  

VP

D
UG

P E′ UG
P UR UP UG

R

UR 2 0 Given gR Da   

While from above analysis, we know UG
P E′ UG

P UR UP UG
R

UR 2 0 when P commits at Da . So P will 

not destroy less than Da  and had incentive to not commit.  

(ii) If Da  Da′, (9) is greater than zero (if equal to zero, it is the same as above analysis). Since the 

second part of RHS is greater than zero, we get: 
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UG
P E′ UG

P UR UP UG
R

UR 2 0 



P has incentive to destroy more if “>” holds or destroy less if “<” hold than Da Da′. But P will not 

commit Da . 

(iii) If Da 0, gR g0
R. P has incentive to destroy with the assumption that P is non-contributor. 

In conclusion, no matter what the optimal destruction level P announced at stage 0, P always has 

incentive to deviate from the announcement. 

QED 

A.6 R is definitely worse off compared with in the Stackelberg game if  

when P can commit and R believes P can commit 

Proof: 

R is contributor in Stackelberg game imply U wR, 0  is less than R’s utility at gS
R . As discussed above, 

Da  is only less than P’s optimal destruction given R contributes gR Da  when Da Da′. But at Da′, 

R’s utility is equal to U wR, 0 , which is less than R’s utility in Stackelberg game when gS
R 0. 

If Da Da′, for gR Da   R contributes, R is worse off since Da  is higher than P’s optimal destruction 

in the Stackelberg game and hence R’s utility with Da  is lower than before. 

It is obvious that R’s utility is higher in case 3 than in case 2 if Da Da′ and lower if Da Da′ 

 QED 
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