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1 Introduction

A very prominent puzzle in macroeconomics is the substantial preference interna-

tional investors have for their respective home market. To most researchers, the tendency

for investors to hold most of their assets in the domestic market is inefficient given the well-

known gains from diversification. Does this tendency imply that investors are not acting

rationally, or are there other explanations? For instance, could it be that studies which have

found that home bias is inefficient are simply wrong? Specifically, is there a realistic model

in which stock prices may be strongly related in the long-run and thus mitigate possible

gains from diversification? If so, do empirical results indicate that stocks are highly related

in the long-run and thus substantiate the model? Of course, if there is a model of highly

related long-run stock prices and supporting evidence, the implication is that the cost of

home bias is less than currently thought, and thus, that the home bias puzzle is not quite

so puzzling.

To examine the possibility of the scenario above, I develop a bivariate random walk

model of stock prices with a parameter which determines the weight on the shared stochastic

trend (i.e., at one extreme the two prices are cointegrated, while at the other they have

no shared stochastic trends). With the implications of the model in mind, I then analyze

how theoretical investors with varying investment horizons change their portfolio weights

between domestic and international markets. I then use total return indices for the national

markets of the G7 nations to test if there are any pairwise cointegrating vectors and if there

are any cointegrating vectors in a systems framework.

My theoretical results indicate that as the weight on the shared stochastic trend

increases, investors show a tendency to weight their portfolios toward the asset with the

greater risk-reward tradeoff (i.e., investors do not diversify their asset holdings as much

when prices are cointegrated), which magnifies the effect of the differing perceptions hy-

pothesis of French and Poterba (1991). While the theory indicates that in the presence of

cointegrated markets, home bias is not as puzzling, my empirical results indicate that only

a handful of the G7 nations share stochastic trends. In other words, there should still be

substantial gains from diversification — even in the long-run — but less than perhaps was
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originally thought.

2 Research Context

In finance, the gains from portfolio diversification have long been known. Indeed,

over forty years ago Grubel (1968) provided sound theoretical foundations for the examina-

tion of the gains (or lack thereof) from international diversification. He did so by expanding

the widely accepted portfolio models of Markovitz (1959) and Tobin (1958) to incorporate

both domestic and foreign asset holdings (i.e., he extended the analysis from different as-

sets to different countries). Empirically, using realized correlations between national stock

indices, Grubel (1968) showed that holding foreign assets as opposed to a wholly domestic

portfolio is beneficial in two unique ways: (i) income (and consumption) is decoupled from

national business cycles, and (ii) productivity is increased due to improved resource flows.

Levy and Sarnat (1970), Grubel and Fadner (1971), Ripley (1973), and Panton et al. (1976)

all expanded on the work of Grubel (1968), and provided further evidence that gains from

diversification existed internationally because markets were not perfectly correlated over

time. Indeed, they found that this held both in the short-run and the long-run for the

periods they examined.

While these early studies were innovative and important, they were carried out

during a period marked by relatively high barriers to international capital flows. However,

much has changed in the four decades since these original studies were completed. Indeed,

in the forty years since then, trade barriers have consistently and substantially decreased,

financial markets have become increasingly integrated, and information flows have become

faster and cheaper. Thus, one would expect that over this long period of time, investors

would have, at the very least, began to take advantage of the easier access to foreign markets

and diversified their portfolios internationally. Strangely, many observers have discovered

that this is not the case. Indeed, researchers have repeatedly found that investors do not

engage in much international diversification at all.

In an important paper, French and Poterba (1991) examined both the extent to

which investors exhibit a predilection to invest in their home markets and the cost to in-

vestors of doing so. Drawing on their 1990 paper (see French and Poterba, 1990) they noted
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that if the pairwise correlations between the returns from two different equity markets are

less than one, then there exist gains from international diversification. Thus, they examined

such pairwise correlations between the United States, Japan, the United Kingdom, France,

Germany, and Canada and found that the correlation coefficients for each possible pair were

far from one — the average correlation was 0.502 over the period of 1975-1989 — implying

diversification would reduce risk. In other words, if investors own assets in foreign mar-

kets they can reduce their risk exposure without necessarily reducing their expected returns.

Next, French and Poterba (1991) considered the optimal portfolio weights for investors with

logarithmic constant absolute-risk-aversion (CARA) utility functions defined over wealth.

Problematically, to solve for the optimal weights, one needs to estimate mean returns which

cannot be estimated consistently. Thus, rather than estimate a parameter inconsistently,

they utilized data on the portfolio weights investors had assigned and then “backed out”

the implied average return investors must have been expecting over the period. The results

of French and Poterba (1991) indicate a very strong preference for home markets, with the

authors noting “that current portfolio patterns imply that investors in each nation expect

returns in their domestic equity market to be several hundred basis points higher than

returns in other markets.” The looming question left unanswered by French and Poterba

(1991) is “Why are investors not taking advantage of the international diversification op-

portunities presented by increasing financial market integration and information flows?”

Alternatively, why does Lewis (1999) seem to believe that investors do not to a good job of

“hedging risks across countries?”

These questions stem from a deeper and not very well understood issue known as

home bias. Indeed, Obstfeld and Rogoff (2000) list home bias as the first of their six major

puzzles in international macroeconomics. While it is true that Obstfeld and Rogoff (2000)

were considering home bias with respect to international trade, the issues they raised are

very similar to those of French and Poterba (1991): borders play rather shockingly large

roles in the way individuals allocate resources. Moreover, the role of borders is even more

puzzling in financial markets because they do not require the movement of physical goods

or services like trade often does.

Thus, in order to appropriately examine and possibly unravel the puzzle of port-
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folio home bias, it seems pertinent to consider whether it and a lack of consumption risk

sharing (the topic Obstfeld and Rogoff (2000) puzzled over) can be thought of individu-

ally, or are actually two symptoms of deeper issues. Recently, some studies analyzed the

relationship between the two and found that perhaps they are strongly related. For exam-

ple, Sørensen et al. (2007) provided evidence that consumption risk sharing and investor

home bias are actually “closely related empirical phenomena” when examined within the

Organization for Economic Development and Cooperation (OECD hereafter). Also, the au-

thors noted that while portfolio home bias still exists, it appeared to have declined between

1993 and 2003, the period of their study. Coeurdacier (2009) expanded on the findings of

Sørensen et al. (2007) and developed a stochastic equilibrium model in which trade costs

lead to a home bias in portfolios. Indeed, Coeurdacier (2009) provided a very elegant but

reasonable interpretation of his results: as the cost of trading goods increases, domestic

income volatility falls due to “softened competition.” The result is that there is less risk

in the domestic equity market and thus investors have fewer incentives to diversify inter-

nationally. In short, portfolio home bias and a lack of international risk sharing are closely

related. Indeed, a lack of international risk sharing may actually lead to a rational home

bias in portfolios. While some studies contest the rationality of home bias (e.g., Karlsson

and Nordén (2007) find that the opposite may be the case, that the “likelihood of home

bias is caused by both rational and irrational factors”) it is clear that there is a large body

of evidence indicating that portfolio home bias and a lack of consumption risk sharing are

strongly related.

Adding to the research on the relationship between the two phenomena, Lewis (1996)

found that the lack of international consumption risk sharing was likely partially explained

by capital market controls (much like the findings by Sørensen et al. (2007) and Coeurdacier

(2009) who found that consumption risk sharing and investor home bias are closely related).

Could capital controls also explain the lack of international risk sharing present in worldwide

equity markets? Kho et al. (2006) found that perhaps this is the case. In particular, while

they found that if countries are equally weighted, home bias did not fall between 1994 and

2004 — a period in which many barriers to international trade declined — if countries

are weighted instead based on their market capitalization, home bias did actually decrease
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between 1994 and 2004. To explain this finding, Kho et al. (2006) concluded that it may

not actually be a preference for home markets that leads to home bias, but rather excessive

“insider” ownership of firms. Specifically, since foreigners cannot typically own shares which

are open only to insiders, a market which has a high fraction of domestic insiders is likely

to have low levels of foreign investment. In summary, many studies indicate that portfolio

home bias and a lack of consumption risk sharing are closely related phenomena which

researchers examining either should bear in mind.

Interestingly, as noted above, many studies have found that home bias is declining.

For example, Baele et al. (2007) found that under alternative frameworks (i.e., distinct

from the I-CAPM) home bias has decreased for many countries since the early 1990s, but

by no means disappeared. Moreover, Baele et al. (2007) also found persuasive evidence

“that globalization and regional integration, and especially its most intense form in the

Euro Area, relate significantly to the decrease of home bias.”

While home bias in terms of both consumption risk sharing and investors’ portfolio

holdings is declining, it is nonetheless still a major puzzle in macroeconomics, with many

studies still examining different aspects of the dominance of domestic markets in investor

portfolios. Home bias also is the primary impetus for this study; however, the main thrust

of my research is toward determining whether or not a home bias in portfolios is patholog-

ical or actually an optimal response to less than otherwise expected long-term gains from

diversification.

As noted above, many of the early studies found that, at least in the 1960s, there did

exist both short and long term gains from international diversification. However, there are

many pitfalls associated with the methods used by the authors. Indeed, Allen and MacDon-

ald (1995) provide a succinct summary of the problems associated with the earlier studies by

Grubel et al.: “[they] used ex post analysis in which it is assumed that the required inputs

(expected returns, variances and covariances) estimated to form internationally diversified

portfolios are known with certainty.” The problems of estimating covariance structures

were exacerbated further by the often very short time horizon of their studies due to data

limitations (sometimes less than five years). Furthermore, as previously mentioned, since

most early studies focused on ex post correlations (or covariance structures in the case of
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Ripley (1973)) the econometric method may have actually been wrong. Indeed, since the

theoretical development of cointegration by Granger (1981), it has become clear that us-

ing econometric techniques intended for stationary variables with non-stationary variables

involves a mispecification. As Kasa (1992) notes, most early studies of international di-

versification opportunities used return data rather than levels (of prices or indices), which,

according to Engle and Granger (1987), is at best inefficient, and at worst, biased. Thus,

almost all recent studies which focus on either the possible gains from international diversi-

fication or national capital market integration utilize cointegration techniques with respect

to the logged levels of indices (for examples, see Chang (2001), Taylor and Tonks (1989),

Narayan and Smyth (2004), Kanas (1998), and Kanas (1999)).

The use of cointegration techniques allows for much greater flexibility in examining

whether or not there exist gains from international diversification. In particular, while using

correlations or covariances allows the researcher to (at best) examine the possibility that

there are any gains from diversification, cointegration allows the researcher to not only test

if gains from diversification exist, but also determine if they differ between the short- and

long-run and provide insights into what may be considered “long-term.” For example, while

stock prices may appear unrelated over a short time horizon, there is a distinct possibility

that they are highly related in the long-run due to a shared stochastic trend. Indeed,

this allows cointegration analysis to indicate whether diversification opportunities exist for

time horizons that are longer than the study period, whereas correlations and covariances,

because such calculations do not consider the existence of stochastic trends, are only valid

for the time period considered.

Now, consider the case where two markets share a stochastic trend. Under this

condition, it may be understandable for long term investors to maintain much of their port-

folio in domestic markets, rather than split their holdings between their home markets and

foreign ones because all markets may be highly related and there may be added risk and/or

taxes when investing abroad. In other words the home bias of investors, in this environment

of shared stochastic trends, is an optimal response, and thus the macroeconomic puzzle of

“home bias” is less of a conundrum. To explore this possibility, I extend the theoretical

analysis and also update the empirical evidence to examine the potential for G7 investors
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to gain from international diversification within the G7 itself.

In the theoretical sections I explain and justify my selection of a random walk process

for asset prices. Then, under this specification, I develop a unique bivariate model to

investigate four issues: (i) exactly how cointegration in random walk asset prices may affect

unconditional covariance structures, (ii) how investors would change their portfolios in the

presence or absence of cointegrated asset prices (I also examine the intermediate case where

there is a common stochastic trend but the asset prices are not cointegrated), (iii) how

cointegrated prices would affect home biases in an environment with varying perceptions

of mean returns and risk, and (iv) how the investor’s time horizon affects his portfolio

allocation problem.

Importantly, my research indicates that cointegration does indeed matter to in-

vestors, and in the presence of a shared stochastic trend, the gains from diversification are

significantly lower than when the asset prices have no common stochastic trends. Moreover,

under my specification, the more closely related the two prices in terms of their permanent

shocks, the more polarized the asset holdings will be (the balance of holdings leans primarily

toward on the asset with the higher return). Moreover, by utilizing numerical examples and

the differing perceptions hypothesis of French and Poterba (1991), I illustrate how coin-

tegrated markets would magnify the impact of different expectations on home bias (i.e.,

investor expectations of domestic returns may not be as high as French and Poterba (1991)

found). While the polarization of portfolios is an increasing function of the time horizon,

the result nonetheless holds for even single period time horizons. Furthermore, the results

hold under both the traditional portfolio problem and a CARA utility function as used

by French and Poterba (1991). Not surprisingly, I also find that the degree to which the

asset prices share permanent shocks becomes increasingly important as the investor’s time

horizon increases, similar to the findings of other researchers.

In the empirical portion (Sections 6 to 9) of this essay, I examine the possibility of

shared stochastic trends using the total return indices constructed and maintained by MSCI

Barra for Canada, France, Germany, Italy, Japan, the United Kingdom and the United

States (i.e., the G7) over the period from January 1999 to July of 2009. These indices have

been converted to US dollars to provide a common base for comparison. The frequency of
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observation is weekly. Since MSCI Barra produces both net and gross total return indices

for all G7 nations, both are utilized for robustness (see Section 6 for definitions). After

selecting the data, I first test the random walk hypothesis using both augmented Dickey

and Fuller (1979) and Phillips and Perron (1988) tests and find that I cannot reject the

null hypothesis of a unit root for any of the series. Moreover, I also find that after first

differencing the data, each series is stationary implying that all are integrated of order

one and thus that cointegration analysis is appropriate. I then test for cointegration using

both a bivariate and a systems approach. While a bivariate approach my seem simplistic

at first because investors are, of course, able to invest in multiple countries at a time, a

pairwise specification is useful because there are still important economic implications, it

allows for multiple robustness checks, and avoids some of the problem associated with a

systems analysis.

To test for pairwise cointegration I use three different testing techniques: the Engle

and Granger (1987) two-step, the Zivot and Andrews (1992) test allowing for a structural

break, and the Johansen (1988) procedure. With the Zivot and Andrews (1992) tests I find

five out of 21 possible cointegrating relationships. The other two procedures indicate even

fewer cointegrating relationships. In other words, it does not appear to be the case that

over the decade beginning in 1999 that the equity markets of the G7 have become highly

related. Instead, it appears that long-run gains from diversification are still present. Strik-

ingly, the United States is involved in almost all of the pairwise cointegrating relationships

which suggests that it would be best for long-term investors to focus on non-US markets

to maximize their gains from diversification. In terms of the system as a whole, the results

are similar for both indices. Specifically, I find no cointegrating vectors in terms of the

gross indices or net indices after the Reimers (1992) finite sample correction is applied. In

other words, when analyzing the system as a whole, there appear to be large gains from

diversification within the G7.
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3 Random Walk Prices and Cointegration

3.1 Why a random walk?

The most crucial assumption of this paper is that stock prices are appropriately

modeled by random walks. Such a specification of course indicates that stock prices are

simply accumulations of random shocks, and thus that previous changes do not help predict

future changes. In that sense, one can think of each change in the stock price (aside

from a trend term) as being uncorrelated with previous changes. Indeed, in an extremely

influential (and cited) study, Fama (1965) found that for the thirty stocks in the Dow

Jones Industrial Average over the period of 1957 to 1962 there was “strong and voluminous

evidence in favour of the random walk hypothesis.” The random walk specification is

somewhat contested, however. For example, studies like those of Lo and MacKinlay (1988)

and Poterba and Summers (1989) concluded that stock prices are not best modeled as

random walks. Moreover, there have been challenges to the application of unit roots to

economic problem in general. Sims (1988), a particularly vociferous opponent of unit roots

in economics, asserted that the distinction between stationary and unit root data is not

fundamentally important. Cochrane (1991) and other researchers have similarly criticized

studies focused on unit roots due to the well known size and power issues surrounding

many of the related testing procedures. Lastly, as evidenced by the contradictory findings

by Perron (1989) and Zivot and Andrews (1992) unit root tests are extremely sensitive

to the decisions by the researcher as to whether or not structural breaks are endogenous,

exogenous, or even present.

Given the above problems associated with unit roots and the unit root hypothesis

of stock prices, I adopt the stance of Kasa (1992) et al.: while I do not contribute to the

debate in this essay with respect to either unit root tests or the unit root hypothesis, I

utilize the standard random walk tests developed by Dickey and Fuller (1979) and Phillips

and Perron (1988) and, given that the results do indeed indicate the series are unit roots,

utilize a random walk model of stock prices.
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3.2 Random walk representation of prices

Consider two assets with prices At and Bt, and which are from two different countries

(say, countries A and B). The natural logarithm of their prices (hereafter log prices) are

given by at and bt. Suppose now that at and bt can be modeled as suggested in Section 3.1

as random walks given by:

at =
t∑

i=0

εai + ηat + µat (1)

bt =
t∑

i=0

ε′bi + ηbt + µbt. (2)

I assume that ε′bt can be decomposed into two components: εat and εbt where εbt is orthog-

onal to εat. Specifically, ε′bt is given by:

ε′bt = βεat + (1− β)εbt. (3)

Thus, combining the log price (2) and the permanent shock decomposition (4), bt can be

rewritten as:

bt = β
t∑

i=0

εai + (1− β)
t∑

i=0

εbi + ηb + µbt. (4)

In order to maintain as much generality and realism as possible, the covariance

structure of at and bt is somewhat complicated. In particular, while I assume that all shocks

are uncorrelated between periods, I allow for correlation between the contemporaneous

idiosyncratic shocks, ηat and ηbt. Formally, I assume that εxt ∼ iiN(0, σxε) ∀ x = a, b;

ηxt ∼ iiN(0, σ2
x) ∀ x = a, b; E(ηatηbt) = σab; E(εatεbt) = 0; E(εxtηzt) = 0 x = a, b and z =

a, b; but that E(εatε
′
bt) 6= 0. The allowance for a covariance structure between idiosyncratic

shocks (i.e., non-permanent shocks) is made because there are often relationships between

contemporaneous movements in stock prices. Also, I assume β ∈ [0, 1]. While there is not

a technical reason that β must be positive, a negative value of β would imply negative

correlation between at and bt which is economically uninteresting. Thus, assuming that β is

always positive is a simplifying and realistic condition. Lastly, in order to make the problem

tractable from an investor’s perspective, I have to assume a specific relationship between

the variances of εat and εbt. I outline the argument and derivation below in Section 3.4.
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Equation (4) provides an intuitive illustration of the relationship between at and bt:

the greater the value of β the more closely related the two prices. Indeed, if β = 1, at and

bt are cointegrated. This result is explained below in Section 3.3.

Importantly, both prices are non-stationary (i.e., the variances of at and bt are

time-dependent). However, consider the first differences of both:

∆at = εat + ∆ηat + µa (5)

∆bt = βεat + (1− β)εbt + ∆ηbt + µb (6)

where E(∆at) = µa and E(∆bt) = µb. Clearly, the first differences are stationary. This

indicates that the log prices are integrated of order one, hereafter I(1) (the order of inte-

gration implies the number of times the data must be differenced in order to be left with a

stationary variable).

3.3 Cointegration and prices

While variables that are non-stationary are problematic in a traditional regression

framework (i.e., such variables lead to spurious regressions in general), they are somewhat

easily dealt with in a cointegration environment. Moreover, the parameters estimated using

cointegration techniques have very useful interpretations. For example, using the Engle and

Granger (1987) two-step procedure, the estimated slope parameter indicates the sensitivity

of the relationship.

In the environment above, defined by equations (1) and (4), suppose β = 1 and

consider the linear combination:

[1 − 1][bt at]′ = ηbt − ηat. (7)

Such a linear combination gives a stationary I(0) variable. This relationship is what defines

cointegration: there exists a linear combination of non-stationary variables that is itself

stationary. In the example above, at and bt are cointegrated if and only if β = 1 (for any

linear combination when β 6= 0 the result will not be stationary). While the restriction of
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β = 1 is extreme, it will lead to relatively specific correlation structures between at and bt

which are investigated and described below.

3.4 Unconditional correlation

Before I consider the consequences of the cointegration of asset prices on portfolios,

I examine the unconditional correlation between prices at and bt. Intuitively, if the limit, as

time tends to infinity, of the unconditional correlation between at and bt is one, it indicates

that (i) over the long-run, the stochastic trends drive the relationship, and (ii) there is

likely to be little to gain from international diversification if the investor’s time horizon is

long. Thus, the unconditional correlation offers a convenient starting point for this essay.

In order to evaluate it though, I need to calculate the unconditional variances of both prices

and the unconditional covariance between them. Consider first the unconditional variance

of at, given by:

V (at) = E

[(
t∑

i=0

εai + ηat + µat

)
− µat

]2

(8)

= E

(
t∑

i=0

ε2
ai

)
+ E

(
η2

at

)
= tσ2

aε + σ2
a. (9)

Similarly, the unconditional variance of bt is given by:

V (bt) = E

[(
β

t∑

i=0

εai + (1− β)
t∑

i=0

εbi + ηbt + µbt

)
− µbt

]2

(10)

= β2E

(
t∑

i=0

ε2
ai

)
+ (1− β)2E

(
t∑

i=0

ε2
bi

)
+ E

(
η2

bt

)
(11)

= t

[
β2σ2

aε + (1− β)2σ2
bε

]
+ σ2

b . (12)

As noted above, all shocks are uncorrelated between periods, and there is covariance between

the idiosyncratic shocks only. Importantly, the variances depend on time. Intuitively, since

at and bt are both the sums of shocks, the variance in either depends on how many shocks

occur over the period of observation.

From an intuitive standpoint, one aspect of equation (12) is particularly troubling,
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however. Specifically, β has two important roles in the definition of bt: (i) it indicates the

strength of the relationship between at and bt, and (ii) it strongly affects the variance of

ε′bt. It is the second aspect that is problematic — indeed, the first aspect is exactly what β

is intended for — and must be addressed in order to make the problem tractable.

To ameliorate the affect β has on the variance (12), I begin from the standpoint that

β should not affect the variance of ε′bt. To do so, I set the variance of the first stochastic trend

equal to that of the second. Using this assumption, along with V (ε′bt) = β2σ2
aε +(1−β)2σ2

bε,

gives:

σ2
aε = β2σ2

aε + (1− β)2σ2
bε (13)

(1− β2)σ2
aε = (1 = β)2σ2

bε (14)

σ2
bε =

(1− β2)σ2
aε

(1− β)2
. (15)

To summarize, the variance of the second stochastic trend varies so that a change in

β does not affect the variance of bt. Interestingly, equation (15) implies that σbε approaches

infinity as β approaches one. This is a necessary result, however, in order for V (ε′bt) = V (εat)

to hold.

Now, combing equation (15) with the variance of bt (12) gives:

V (bt) = t

[
β2σ2

aε + (1− β)2
(

(1− β2)σaε

(1− β)2

)]
+ σ2

b (16)

= tσ2
aε + σ2

b . (17)

Comparing V (at) to V (bt), it is clear that the stochastic trends now have the same

variance, and, more importantly, that varying β has no effect on the variance of bt. More-

over, I can now simplify the notation since V (εbt) = V (εat), i.e., I now define σ2
ε ≡ σ2

aε = σ2
bε

and use this notation for the rest of the paper. Accordingly, I can now rewrite variances

(9) and (12) using the new notation, as:

V (at) = tσ2
ε + σ2

a (18)

V (bt) = tσ2
ε + σ2

b . (19)
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The last formula required for the unconditional correlation between at and bt is the

unconditional covariance, which is defined as:

Cov(at, bt) = E(at − E(at))(bt − E(bt)). (20)

Thus, the unconditional covariance is given by:

Cov(at, bt) = E

(
t∑

i=0

εai + ηbi

)(
β

t∑

i=0

εai + (1− β)
t∑

i=0

εbi + ηbt

)
(21)

= tβσ2
ε + σab. (22)

Note that the correlation (22) depends on time. Again, the existence of a time element

reflects of the definition of at and bt as the sums of random shocks. Lastly, note that

while it was problematic that β affected the variance of bt, it is appropriate that it affect

the covariance between at and bt, since β is intended to be a measure of the relationship

between the two processes. Indeed, as time increases, so long as β > 0, the stochastic trend,

εat, drives the relationship.

Now, having calculated the variances of both prices and their covariance terms I can

derive the unconditional correlation between at and bt:

Corr(at, bt) =
cov(at, bt)√
V (at)

√
V (bt)

=
tβσ2

ε + σab√
tσ2

ε + σ2
a

√
tσ2

ε + σ2
b

. (23)

To examine the asymptotic properties of equation (23) I first divide and multiple both the

numerator and denominator by a factor of t, giving:

Corr(at, bt) =
t(βσ2

ε + σab
t )

t

(√
σ2

ε + σ2
a
t

√
σ2

ε + σ2
b
t

) . (24)

Clearly, the t factors outside the parenthesis cancel, leaving only three terms containing t.

Since the limit of a product is equal to the product of the limits I evaluate the limits of
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each term individually. Consider first the limit of the numerator, which is given by:

lim
t→∞βσ2

ε +
σab

t
= βσ2

ε (25)

which is independent of time. Similarly, consider the limits of the two terms in the denom-

inator, which are given by:

lim
t→∞σ2

ε +
σ2

a

t
= σ2

ε (26)

lim
t→∞σ2

ε +
σ2

b

t
= σ2

ε . (27)

Again, the limits in equations (26) and (27) are independent of time. Now, using equations

(25) to (27), the limit of equation (24) reduces to:

Corr(at, bt) =
βσ2

ε√
σ2

ε

√
σ2

ε

. (28)

Importantly, if β = 1 then at and bt are cointegrated and equation (28) simplifies to:

Corr(at, bt) =
σ2

ε√
σ2

ε

√
σ2

ε

= 1. (29)

That is, if at and bt are cointegrated, as t →∞, Corr(at, bt) → 1. In other words, the shared

stochastic trend dominates the relationship. Conversely, if β = 0 then the unconditional

correlation coefficient is zero even without using asymptotics. If β ∈ (0, 1) the correlation

coefficient is similarly between 0 and 1. Note also that the lower bound of the unconditional

correlation (29) is 0 since β is assumed to be positive (a negative correlation is unrealistic).

The result in equation (29) is very important in this essay because it indicates that if

the prices of two assets are cointegrated there are quite possibly few long-run gains from

diversification. DeFusco et al. (1996) similarly note that in the case of cointegrated variables

(recall that this is equivalent to β = 1), the idiosyncratic shocks “die out” and thus allow

the shared stochastic trend to drive the relationship.
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4 Returns

4.1 Unconditional one-period returns

The main focus of investors is, of course, not the price level of an asset, but the return

earned. Recall that at and bt are defined as the logs of the prices At and Bt respectively.

Thus, the returns for each asset can be approximated well by the first difference of both log

prices, i.e., rat ' ∆at and rbt ' ∆bt.

Notice, however, that both first differences, ∆at (5) and ∆bt (6), contain first-order

moving averages with respect to the temporary shocks, implying that the returns are partly

predictable. The predictability in turn indicates that the conditional returns will be slightly

different than the unconditional ones. For example, let Ωt be the information set at time

t. The expected return of asset At conditional on the information set at time t− 1 is given

by:

E(rat|Ωt−1) = E(εat + ηat − ηa,t−1 + µa|Ωt−1) 6= E(rat) = µa. (30)

The conditional return (30) is clearly negatively correlated with the previous period’s tem-

porary shock, ηa,t−1.

While in theory describing behaviour based on the conditional returns may be more

realistic, I focus on the more tractable unconditional returns for two reasons. First, the

predictability in the returns would be hard to detect in the noise of stock prices (recall

that random walks have unpredictable changes aside from the drift term). Second, in

the application t counts weeks, so any predictability will vanish after one week. It seems

unreasonable to assume that investors (particularly long-term investors) will rebalance their

portfolios weekly. Moreover, since I use the unconditional returns which are constant over

time, so too are the optimal portfolio weights.

Accordingly, I now examine the unconditional variance-covariance structure of one-

period returns for at and bt and use the results to investigate the effects of increasingly

related log prices on a portfolio containing both assets. Thus, a portfolio, Ct, with a

fraction g invested in asset At and a fraction (1 − g) invested in asset Bt (i.e., g ∈ [0, 1])
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will have an unconditional expected return given by:

E(rct) = gE(rat) + (1− g)E(rbt) = gE(∆at) + (1− g)E(∆bt) (31)

= gµa + (1− g)µb. (32)

The variance of the portfolio is simply the variance of a linear combination of random

returns. Thus, the variance of the portfolio is given by:

V (rct) = g2V (rat) + (1− g)2V (rbt) + 2g(1− g)Cov(rat, rbt). (33)

Accordingly, to determine the variance of the portfolio, I need to calculate the

variances of ra,t and rb,t, and the covariance between them. First, consider the variance of

the returns, given by:

V (ra,t) = E(εat + ∆ηat + µa − µa)2 = σ2
ε + 2σ2

a (34)

V (rb,t) = E(βεat + (1− β)εbt + ∆ηbt + µb − µb)2 = σ2
ε + 2σ2

b . (35)

Now consider the theoretical covariance between the two returns, which is given by:

Cov(ra,t, rb,t) = E(εat+∆ηat+µa−µa)(βεat+(1−β)εbt+∆ηbt+µb−µb) = βσ2
ε +2σab. (36)

Lastly, consider the variance of the portfolio given in equation (33) using equations (34) to

(36):

V (rct) = g2(σ2
ε + 2σ2

b ) + (1− g)2(σ2
ε + 2σ2

b ) + 2g(1− g)(βσ2
ε + 2σab). (37)

The crucial aspect of the return covariance (36) is that while the return is a simple

weighted average of the two individual returns, the variance is, in general, less than just

a weighted average of the two individual variances. Indeed, it is well known in financial

economics that gains from diversification exist whenever two or more assets are not perfectly

positively correlated. The variance of the portfolio (37) provides a very concise illustration

of such gains from diversification, since it is clear that as β increases, the relationship

between at and bt becomes stronger and the variance of the portfolio also increases.
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Herein lies the issue at the heart of this paper: are returns actually more correlated

over time than otherwise thought? Similarly, might it be the case that as financial markets

have become increasingly integrated the opportunities for long-term international investors

to gain from diversifying their asset holdings are less than they may appear. The variance of

the portfolio (37) indicates that this may be the case and, therefore, provides the foundation

for this paper. Next, I consider the variance of the portfolio as the investor’s time horizon

increases.

4.2 Unconditional returns over longer periods

The analysis done in Section 4.1 applies only when the return is defined as the first

difference of the asset’s log price (i.e., at or bt); however, as determined in Section 3.4, the

correlation of cointegrated variables tends to one only as time tends to infinity. That is

to say that while in the short run the idiosyncratic shocks ηat and ηbt allow for gains from

diversification (i.e., it should not be surprising that investors will hold both assets even

if they are cointegrated if they have a short time horizon), in the long-run the stochastic

trends drive the system and eliminate most, if not all, gains from diversification. Thus,

I now consider returns between periods t and t + n. To do so, I first define the n-period

returns on at and bt as ra,t+n ≡ (1−Ln)at+n and rb,t+n ≡ (1−Ln)bt+n, respectively. Using

the definitions of the log prices (1) and (4), the n-period returns are given by:

E(ra,t+n) = E(at+n − at) = E

(
t+n∑

t+1

εai + (t + n)µa + ηa,t+n − ηat

)
= nµa

(38)

E(rb,t+n) = E(bt+n − bt) = E

(
β

t+n∑

t+1

εai + (1− β)
t+n∑

t+1

εbi + (t + n)µb + ηb,t+n − ηb,t

)
= nµb

(39)

While the n-period returns (38) and (39) are informative, the use of an n period lag operator,

(1 − Ln), rather than the first difference operator, does lead to a decrease in the accuracy

of the log approximation of the return. However, it simultaneously and more importantly

introduces a time variable which can provide intuition as to how returns are correlated
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between cointegrated variables over increasingly long investment horizons. Also, note that

if n = 1, the n-period returns (38) and (39) are the same as those found in the one period

returns (5) and (6). As in Section 4.1, I first find the variance-covariance structure of the

returns and then examine the correlation coefficient for ra,t+n and rb,t+n.

The variances of ra,t+n and rb,t+n are given by:

V (ra,t+n) = E

(
t+n∑

t+1

εai + ηb,t+n − ηbt

)2

= nσ2
ε + 2σ2

a (40)

V (rb,t+n) = E

(
β

t+n∑

t+1

εai + (1− β)
t+n∑

t+1

εbi + ηb,t+n − ηbt

)2

= nσ2
ε + 2σ2

b . (41)

In this case, since the return is defined over n periods, the variances increase as n increases.

Importantly though, the additional variance added each extra period the return is defined

over accrues only due to the permanent shocks (i.e., the stochastic trends).

The covariance of the one period returns (36) is easily extended to the n-period

return case, giving:

Cov(ra,t+n, rb,t+n) = E

(
β

t+n∑

t+1

ε2
ai + ηa,t+nηb,t+n + ηatηbt

)
= nβσ2

ε + 2σab. (42)

Now, using the correlation definition (23) with equations (40) to (42), the correlation coef-

ficient of the multiple period returns is given by:

Corr(ra,t+n, rb,t+n) =
n(βσ2

ε + 2σab
n )

n

(√
σ2

ε + 2σ2
a

n

)(√
σ2

ε + 2σ2
b

n

) (43)

Again, if n = 1, the correlation for the n-period returns (43) is the same as the correlation

for the one period returns, and is nearly identical to the correlation of at and bt — although

in the case of the asset prices the correlation was from t = 0 to t = T , whereas in the

case of the returns, the period is from t = T to t = T + n. Importantly, the correlation

of the returns now explicitly incorporates the investment horizon. The fundamental point

is that if the two prices are cointegrated, the correlation coefficient tends to unity as the

investment horizon tends towards infinity.
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In summary, without addressing portfolio theory directly (I do this in Section 5), I

have now shown that if the log prices of two assets are cointegrated then: (i) the uncon-

ditional correlation coefficient tends to one, (ii) the covariance of the one-period returns is

positively related to β, and (iii) as the investment horizon increases (i.e., as n increases),

so too does the correlation of the n-period returns.

5 Investor Objective Functions and Optimal Allocations

5.1 The traditional portfolio problem

The traditional portfolio problem for risk averse investors nonetheless provides an

excellent starting point to examine how investors may behave when prices are or are not

cointegrated. Recall that I use the unconditional returns derived in Sections 4.1 and 4.2.

Now, consider the general problem of an investor wishing to maximize his expected return

subject to his risk tolerance and the variance of the portfolio. The problem can be described

as follows:

max
g

E(rct)− λV (rct). (44)

The objective function (44) essentially indicates that an investor is willing to bear

additional variance (i.e., risk), so long as he is commensurately compensated with larger

expected returns. The additional return required is indicated by λ which is a measure of

risk tolerance. I also do not include a time subscript on g (portfolio weights) since at the

optimum it will not be time dependent (it is, however, dependent on the investor’s time

horizon). The objective function (44) can be re-written as:

max
g

gE(ra,t)+(1−g)E(rb,t)−λ

[
g2V (ra,t)+(1−g)2V (rb,t)+2g(1−g)Cov(ra,t, rb,t)

]
. (45)

Finally, substituting in the expected return (32) and variance of the portfolio (37), the

objective function (45) becomes:

max
g

gµa + (1− g)µb − λ

[
g2(σ2

ε + 2σ2
a) + (1− g)2[σ2

ε + σ2
b ] + 2g(1− g)(βσ2

ε + 2σab)
]
. (46)

To maximize the objective function (46) I find the optimal portfolio weights, g∗.
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To do so, I differentiate the objective function (46) with respect to g and then set the

partial derivative equal to zero to determine the optimal portfolio holdings. The first order

condition is:

0 = µa − µb − λ

[
2g(σ2

ε + 2σ2
a)− 2(1− g)[σ2

ε + 2σ2
b ] + (2− 4g)(βσ2

ε + 2σab)
]
. (47)

After rearranging, the optimal value, g∗, is given by:

g∗ =
µa − µb + 2λ[σ2

ε(1− β) + 2σ2
b − 2σab]

4λ[σ2
ε(1− β) + σ2

a + σ2
b − 2σab]

. (48)

As one would expect, g∗ is a function of β. The equation for g∗ (48) importantly

indicates that, under the traditional portfolio problem, the extent to which assets share

stochastic trends does indeed matter to investors in terms of portfolio decisions. Unfortu-

nately, g∗ (48) does not indicate exactly how the value of β relates to the mixture of assets

in a portfolio. In order to attempt to determine how investors shift their asset holdings

when presented with increasingly related returns (i.e., the case where β increases) I derive

the partial derivative of g∗ (48) with respect to β, which is given by:

∂g∗

∂β
= −1

4
σ2

ε [2λ(σ2
a − σ2

b )− µa + µb]
λ[σ2

ε(1− β) + σ2
a + σ2

b − 2σab]2
. (49)

Perhaps somewhat surprisingly, the partial derivative (49) is impossible to sign

in general; however, its ambiguity is actually extremely elucidating. First, consider the

denominator. Since the only part that can make the denominator negative is within the

squared term, the denominator is always positive.

Next consider the numerator, which can be rearranged into two different, but very

insightful formulations:

− σ2
ε [(µb − 2λσ2

b )− (µa − 2λσ2
a)] (50)

− σ2
ε [(µb − µa)− 2λ(σ2

b − σ2
a)]. (51)

The first formulation illustrates the risk-return tradeoff investors demand: if asset Bt offers
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the investor greater compensation for risk than asset At, g∗ is a monotonically decreasing

function of β and the investor increases the weight of asset Bt in his portfolio (recall also

that λ is an indicator of the amount an investor needs to be compensated for increasing

risk). Conversely, if At offers greater compensation for risk than Bt, then g∗ is monotonically

increasing in β.

The second formulation provides a slightly more obvious example. If the variances

of both ηat and ηbt are equal (i.e., σ2
a = σ2

b ) then the investor optimizes his holdings by

shifting wealth towards the asset with a greater return. Again, the greater the value of β,

the greater impact of a drift in the log prices (1) and (4).

Lastly, there are two very important aspects of the partial derivative of g∗ with

respect to β (49). The first is that σ2
ε does not affect the sign of the derivative (49). Indeed,

since this is common to both, the only important variances are those of the idiosyncratic

shocks which indicate which asset is riskier. The second is that it is only the variance of the

idiosyncratic (temporary) shocks and the expected returns that affect the optimal portfolio

holdings as β changes. This is because over one period, regardless of the level of β, there still

exist opportunities for short-term diversification since ηat is not perfectly (and positively)

correlated with ηbt in general. Thus, it is still optimal for the investor to own both assets.

5.2 Numerical examples for the portfolio weight

Table 1 displays a simple set of numerical examples to illustrate the findings of

Section 5.1. To calculate the numerical examples, I assign values to µa, µb, σ2
ε , σ2

a, σ2
b , σab,

and investor risk tolerance, λ. French and Poterba (1990) find λ = 3 to be appropriate and

so I use this value throughout the section. The parameters are then held constant while I

vary β and calculate the optimal portfolio weight on asset At (i.e., I calculate g∗).

In the first three rows of Table 1, µa is greater than µb and the variance of the

stochastic trends is greater than those of the idiosyncratic shocks. I then calculate g∗ for

the three cases of β = 0, 1
2 and 1. I find that as β increases the weight on the home asset,

g∗ increases also (i.e., as the weight on the shared stochastic trend (β) increases, the weight

on asset At also increases). In the last three rows of Table 1, the parameters again stay

constant; however, now the idiosyncratic shocks have a greater variance than the stochastic
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trends. Again, as β increases, so too does the weight on the home asset, although to a lesser

extent.

Table 1: Numerical Examples for the Portfolio Weight

µa µb σ2
ε σ2

a σ2
b σab β g∗

10 5 5 2 2 1 0 0.560
10 5 5 2 2 1 1

2 0.593
10 5 5 2 2 1 1 0.708
10 5 5 10 10 1 0 0.518
10 5 5 10 10 1 1

2 0.520
10 5 5 10 10 1 1 0.523

The results of the numerical example illustrate three issues very clearly. First,

the more related the permanent shocks are (i.e., the greater β) the more investors shift

their portfolio holdings toward the asset with the greater compensation for risk. Second,

over a short time horizon investors are strongly influenced by short term diversification

opportunities as evidenced by the low sensitivity of g∗ to changes in β when the idiosyncratic

shocks have greater variances. Third, the natural reaction from the investor’s perspective

is therefore to move his portfolio weights toward the most attractive asset, not necessarily

the domestic asset. The example in Table 1 illustrates this well because g∗ is actually the

same for both foreign and domestic investors.

Thus, to develop a model in which home bias can be explained, I must not only

determine why a particular country’s, say country A’s, investors own mostly domestic assets,

I must simultaneously determine why citizens of another country, say country B, do not

similarly own the assets of the country A in large quantities. Fortunately, the theory

developed above is able to incorporate situations where I can explain both why people

from country A hold mostly asset At, and why people from country B would hold mostly

asset Bt. For example, consider a case where either (i) people are overly optimistic about

domestic returns, or (ii) transaction costs (including taxes) make the foreign assets more

costly to hold than the domestic assets (i.e., lower the mean return). Using either scenario,

it is possible that people from country A would have the beliefs indicated in Table 1, but

that people from country B would instead believe that µb = 10 and µa = 5 (i.e., everyone

agrees on the variance terms, but they disagree on the mean returns). Table 2 indicates the
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implications for portfolio weights of such beliefs for those in country B. The results of this

example certainly typify a home bias for both nations.

Table 2: Numerical Examples for the Portfolio Weight for Country B

µa µb σ2
ε σ2

a σ2
b σab β g∗

5 10 5 2 2 1 0 0.440
5 10 5 2 2 1 1

2 0.407
5 10 5 2 2 1 1 0.292
5 10 5 10 10 1 0 0.482
5 10 5 10 10 1 1

2 0.480
5 10 5 10 10 1 1 0.477

Notice that in Table 2 as β increases, the optimal weight on At, g∗, falls. In other

words, as β increases, the weight investors from country B place on asset Bt increases as

well, indicating that the more related At and Bt are, the more pronounced home bias will

be in investor portfolios from both A and B.

Lastly, it is also conceivable that the perceived risk of foreign markets is greater

than that of the domestic market. Table 3 illustrates such a case. Specifically, in the first

three rows of Table 3 I set the mean returns equal, but make the variance of country B’s

idiosyncratic shock greater than that of country A’s. In the last three rows of Table 3, I

reverse this and make the variance of country A’s idiosyncratic shocks greater than those

of country B’s (i.e., each country views the foreign asset as riskier than the domestic one).

Table 3: Numerical Examples for the Portfolio Weight when Domestic Asset is
Less Risky

Country A’s beliefs and portfolio weights
µa µb σ2

ε σ2
a σ2

b σab β g∗

5 5 5 2 4 1 0 0.611
5 5 5 2 4 1 1

2 0.654
5 5 5 2 4 1 1 0.750

Country B’s beliefs and portfolio weights
µa µb σ2

ε σ2
a σ2

b σab β g∗

5 5 5 4 2 1 0 0.389
5 5 5 4 2 1 1

2 0.346
5 5 5 4 2 1 1 0.250
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Similar to the case in Table 1 where the domestic asset in country A has a higher

mean perceived return from its citizens’ point of view, when the variance of the foreign

return is perceived to be greater than that of the home return (e.g., from country A’s

perspective σa < σb), there is increasing home bias as β increases (i.e., as the correlation

between at and bt increases). If the perceptions assumed in Table 3 are reversed in terms

of the variances of the idiosyncratic shocks, the portfolio weights chosen by residents of

country B are exactly 1 − g∗. Again recall that a fall in g∗ for investors in country B

implies lower holdings of country A’s asset, so home bias is again more apparent.

In summary, the theory developed in Sections 3 to Section 5 is very easily extended

to scenarios where home bias is explained by varying perceptions of risk and mean returns.

Moreover, the results in this section indicate that, in the presence of cointegrated markets,

investors need not be nearly as overly optimistic about home market returns as French

and Poterba (1991) concluded (i.e., home bias is not necessary as puzzling as previously

thought).

5.3 Exponential utility and optimal portfolio allocations

While the results from Section 5.1 are clear and indicate that g∗ is indeed a function

of β, I also use an alternative objective function. For their important study of portfolio

home bias, French and Poterba (1991) employed an exponential Constant Absolute Risk

Aversion (CARA) utility function. Specifically, they used an exponential utility function

defined over current wealth, w, and initial wealth, w0, and given by: U(w) = − exp(−λw
w0

).

In the context of a portfolio of two risky assets (like the one considered in Section 5.1), with

a vector of weights g, a vector of means µ, and a variance-covariance matrix of the returns

Σ, the expected utility function is given by:

E[U(W )] = − exp
[
−λ

(
gµ− λg′Σg

2

)]
. (52)

Expected utility (52) can be rewritten in scalar form, however, by using the expectation

and variance of the portfolio (46), for the mean vector µ, the variance-covariance matrix Σ,
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and the weighting vectors respectively. This rearrangement gives:

E[U(W )] =− exp
[
−λ

(
gµa + (1− g)µb (53)

− λ[g2(σ2
ε + 2σ2

a) + (1− g)2[σ2
ε + σ2

b ] + 2g(1− g)(βσ2
ε + σab)]

2

)]
.

As with the traditional portfolio problem, the objective is to maximize E[U(W )] by

selecting the optimal portfolio weights, g∗. To do so, I similarly differentiate equation (53)

with respect to g which simplifies to:

∂E[U(W )]
∂g

= µa − µb −
λ[2g(σ2

ε + 2σ2
a)− 2(1− g)[σ2

ε + 2σ2
b ] + (2− 4g)(βσ2

ε + σab)]
2

. (54)

The first order condition (54) is remarkably similar to the first order condition for the

traditional portfolio problem (47). Accordingly, equating the first order condition to zero

and rearranging to solve for g∗ gives nearly the same result as before (48):

g∗ =
µa − µb + 2λ[σ2

ε(1− β) + σ2
b − 2σab]

λ[2σ2
ε(1− β) + σ2

a + σ2
b − 2σab]

. (55)

As one would expect, the partial derivative of equation (55) is extremely similar to

that of equation (48) and given by:

∂g

∂β
= −1

2
σ2

ε [λ(σ2
a − σ2

b )− µa + µb]
λ[σ2

ε(1− β) + σ2
a + σ2

b − 2σab]2
. (56)

The interpretations for the partial derivatives of g∗ with respect to β for both utility func-

tions (equations (56) and (49)) are the same and so I do not provide them again (see Section

5.1 for discussion).

5.4 Multi-period returns and the traditional portfolio problem

In Section 4.2 I found that as the investment horizon increases, the correlation

between the returns also increases, so long as β 6= 0. It seems reasonable, therefore, to

expect that as the investment horizon increases so too does the optimal weight, g∗. To

examine this hypothesis, I use the same steps as in Section 5.1, but use the returns defined
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in equations (38) and (39), instead. Maximizing the objective function and rearranging for

g∗ now gives:

g∗ =
n(µa − µb) + 2λ[nσ2

ε(1− β) + 2σ2
b − 2σab]

4λ[nσ2
ε(1− β) + σ2

a + σ2
b − 2σab]

. (57)

where n is again the time horizon of the investor. Dividing both the numerator and denom-

inator of equation (4.2) by a factor of n gives:

g∗ =
µa − µb + 2λ

[
σ2

ε(1− β) + 2σ2
b−2σab

n

]

4λ
[
σ2

ε(1− β) + σ2
a+σ2

b−2σab

n

] . (58)

Finally, taking the limit of g∗ (58) as n tends to infinity gives:

lim
n→∞ g∗ =

µa − µb

4λσ2
ε(1− β)

+
1
2
. (59)

If β = 1 in equation (59), g∗ is driven to either positive or negative infinity; however, because

the investor is limited to g ∈ [0, 1], the limit of g∗ (59) really indicates that the investor will

choose either g∗ = 1 or g∗ = 0 depending which asset offers the greatest possible return.

Importantly, the limit of g∗ (59) also indicates that the original hypothesis was correct: as

the time horizon tends to infinity the investor will be driven to a corner solution. In other

words, over a long time horizon, when short term gains from diversification will not be

realized (precisely because they are short term) the investor will invest in which ever asset

has the greatest expected return.

5.5 Optimal portfolios with weights chosen jointly with consumption

The theoretical analysis in Sections 5.1 to 5.4 was all carried out without regard for

the lifetime utility maximization problem facing every investor. Instead, it was implicitly

assumed that each investor tried to maximize terminal wealth. As a final robustness check,

I also explore the long-term portfolio choices a theoretical investor would make while jointly

maximizing his lifetime utility.

To do so, I draw on the work by Samuelson (1969). As Danthine and Donaldson

(2005) describe the problem, the investor chooses consumption, ct, and portfolio weights, gt,

to maximize his lifetime utility over consumption, using a discount factor δ. The constraint
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is that his current wealth, wt, is equal to his labour earnings, yt, minus his consumption

plus his earnings from his portfolio. Specifically, the problem can be represented as:

max
c

Et

[ ∞∑

i=0

(
1

1 + δ

)i

U(ct+i)

]
(60)

s.t. wt =
[
1 + gtra,t−1 + (1− gt)rb,t−1

]
wt−1 + yt − ct (61)

w0 given. (62)

While more realistic, the above formulation can only be solved explicitly if the utility

function is of the constant relative risk aversion family, and labour income is constant.

Otherwise, numerical approximations must be used.

The crucial point, however, is that, with the above objective function and con-

straints, the optimal portfolio weights — much like the optimal weights found in Sections

5.1 and 5.3 — depend on the expected returns and the correlation between them. While

most formulations include a risk free asset, there is no reason to think that the results

would not be similar for a problem without one. Moreover, a formal derivation of the op-

timal weights given the above problem is beyond the scope of this essay. My purpose here

instead is to acknowledge this important area of the literature and indicate that including

a consumption objective should not change the fundamental result. Indeed, the crucial

point is still that cointegration of national markets reduces the gains from diversification,

thus reducing the cost of a home bias to investors. Now, having developed a theoretical

framework in which cointegrated markets could, at least partially, explain portfolio home

bias I conduct an empirical examination of the G7 markets to test for cointegration.

6 Countries and Data Sources

6.1 Data source

A scarcity of data is, of course, the largest obstacle in terms of countries to include

and time period to study. In this respect, I do my best to follow the sources used by Chang

(2001), Allen and MacDonald (1995), Kasa (1992), and others, and utilize the total return

indices developed and maintained by Morgan Stanley Capital International Barra (MSCI
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hereafter). Like other authors, I include dividends since they are extremely important to

long-term investors and they are also treated very differently across countries (and are in

part affected by the tax code of the country where the stock is listed). While there are many

alternatives to the MSCI indices (e.g., the total return variants of the Dow Jones Industrial

Average on the NYSE and the S&P/TSX Composite on the Toronto Stock Exchange) the

MSCI indices have the benefit of being constructed by the same firm with the focus on

reflecting the same asset mixes. Moreover, Kanas (1998) notes that MSCI also use a very

large base of firms to construct its indices, further reducing the likelihood of individual

sectors dominating the relationships. Research by Roll (1992) indicates that heterogeneity

in index construction can cause substantial divergence in behavior. In other words, since

the indices are mostly homogenous across stock markets, they are more appropriate for

detecting national as opposed to sectoral trends.

The MSCI total return indices have two variants for each country: an index incorpo-

rating net dividends and an index incorporating gross dividends. The net dividend indices

aim to reflect the minimum possible dividend reinvestment by incorporating withholding

taxes. Alternatively, the gross dividend indices aim to reflect the value of the index under

the maximum possible dividend reinvestment. For exact definitions, see MSCI (2009). In

determining if there exists international diversification opportunities for investors, it seems

that the net indices represent the worst case scenario while the gross indices represent the

best case scenario. Thus, since both types of indices appear desirable in certain contexts,

and using both indices would act as a robustness test, I have decided to use both types of

indices throughout the empirical section.

6.2 Countries examined

With the data limitations in mind, I had to restrict my analysis to more “developed”

markets. Moreover, given Canada’s position in the G7 it seems reasonable to hypothesize

that there may be higher levels of integration between Canada’s equity markets and those

of other member nations than the level of integration between Canada’s equity markets

and non-member nations. Simultaneously, it is also likely that nations with strong ex-

port/import ties to Canada may have similarly strong ties to Canada’s equity markets.
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Therefore, I have decided to examine the possibility of cointegrated stock markets primar-

ily between Canada and the G7 nations, which are Canada, France, Germany, Italy, Japan,

the United Kingdom, and the United States. Having selected the countries to include, I first

need to take the natural logarithm of the level of the index, since the theoretical sections

above have focused on this transformation of the indices. Figures 1 and 2 graph the weekly

log levels of the net and gross total return indices for Canada, Japan, Italy, and the United

States for the period of 1999-2009. Table 4 presents the summary statistics for the logs of

the total return indices for the countries selected.
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Figure 1: Net Indices: 1999-2009
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Figure 2: Gross Indices: 1999-2009
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Both series from weekly data and normalized so each index has same mean; Source: Bloomberg
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Table 4: Summary Statistics for the G7 Stock Indices, 1999-2009

Country Mean Standard Minimum Maximum
Deviation

Net Total Return Indices

Canada 7.735 0.4253 7.05 8.573
France 8.106 0.2935 7.489 8.687
Germany 7.903 0.3379 7.095 8.605
Japan 8.218 0.2432 7.652 8.58
Italy 6.689 0.3025 6.06 7.259
United 8.156 0.264 7.653 8.705
Kingdom
United 7.848 0.1751 7.364 8.159
States

Gross Total Return Indices

Canada 7.954 0.4375 7.26 8.814
France 8.428 0.3042 7.801 9.031
Germany 8.179 0.3459 7.364 8.9
Japan 8.319 0.2436 7.753 8.684
Italy 6.973 0.3203 6.362 7.576
United 8.448 0.264 7.944 8.997
Kingdom
United 8.198 0.1771 7.743 8.528
States

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009).
Source: Bloomberg

7 Unit Root Specification

In Section 3.1, I noted that while there may be an epistemological debate in econo-

metrics regarding the validity of the random walk model of stock prices, I do not add to

that literature. Instead, I utilize the current unit root tests and interpret them as either

evidence for or against the random walk hypothesis, while bearing in mind the well known

issues.

The most widely accepted test for unit roots is the augmented Dickey and Fuller
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(1979) test (ADF test hereafter). In particular, the test is given by the following:

∆yxt = α + ρyx,t−1 + γt +
p∑

j=1

θj∆yx,t−j + ϑt (63)

where γ = 0 in an ADF test conducted with no linear trend term, p is the number of lags

which, in this case, is 1, yxt is a scalar, and x is the country in the regression.

The null hypothesis is that there is a unit root (i.e., ρ = 0 in equation (63)), and,

therefore that the variable yxt is integrated of order one, or I(1). Given the well known size

and power problems associated with ADF tests, I use the 1% critical value as my rejection

rule.

Lag selection is very important for testing for cointegration. Thus, for each series,

before I conduct the ADF tests, I use Schwarz’s Bayesian information criterion (SBIC

hereafter) — rather than Akaike’s information criterion since the SBIC is more parsimonious

— to select the appropriate number of lags (p) to include in the regression. For all series,

both net and gross, the SBIC indicated that one lag was optimal. Moreover, including 1 lag

appropriately controls for serial autocorrelation in the results in Section 8.4 with respect to

the Johansen (1988) pairwise tests.

The presence or absence of a trend term is also important. Thus, to determine if

one should be included, I use the first differences of each series and then conduct a t-test

on the mean. Surprisingly, the test indicates that there is no trend term for all the series.

As a result, the appropriate specification for the ADF test is one lag (p = 1) and no trend

term (γ = 0).

Table 5 reports the results from ADF tests on both the net and gross indices under

the “Levels” heading. The results indicate that all variables have a unit root. Indeed, in

absolute terms the largest statistics are both for Germany and are only 1.562 and 1.652

compared to the 1% critical value of 3.960. In other words, there is strong evidence in

favour of the unit root hypothesis. To ensure that the data are indeed integrated of order

one, however, I also first difference the data and then conduct the ADF test with zero lags

(as indicated by the SBIC) and no trend term. Table 5 reports the full results under the

“First Difference” heading. As expected, I am easily able to reject the null hypothesis of a
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unit root for each series at the 1% level. For robustness, I also use the Phillips and Perron

(1988) test for both the data in levels and in first differences and again find strong evidence

that all the series are integrated of order one. In the interest of brevity, the results of the

Phillips and Perron (1988) tests are not reported.

Table 5: ADF test results

Levels First Differences
No Trend Trend No Trend

Country Net Gross Net Gross Net Gross
Canada -1.304 -1.418 -1.456 -1.46 -25.36 -25.53
France -1.381 -1.391 -1.381 -1.425 -24.05 -24.16
Germany -1.308 -1.27 -1.562 -1.652 -22.98 -23.1
Japan -1.488 -1.49 -1.346 -1.338 -24.52 -24.56
Italy -1.298 -1.26 -1.314 -1.447 -23.25 -23.35
United -1.366 -1.375 -1.247 -1.279 -16.93† -16.94†

Kingdom
United -1.711 -1.705 -1.53 -1.493 -25.34 -25.34
States
Critical values 1% 5%
No Trend -3.960 -3.410
Trend -3.430 -2.860

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009).
Source: Bloomberg
† ADF included one lag

Since I have now found that all variables are integrated of the same order (necessary

for the Engle and Granger (1987) two-step procedure and the Zivot and Andrews (1992)

tests, but not necessary for the Johansen (1988) procedure), it seems highly appropriate to

use a cointegration framework and determine if there is evidence that portfolio home bias

may simply be an optimal response from investors. Thus, in Section 8 I employ pairwise

tests for cointegration and in Section 9 I use the Johansen (1988) procedure to test for

cointegration in the system as a whole. Recall that if national indices are cointegrated (i.e.,

β = 1), the implication is that investors have fewer opportunities for diversification. In

other words, a home bias in investors’ portfolios is less “puzzling” if test results indicate

that there are cointegrating vectors within the G7 nations.
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8 Testing for Pairwise Cointegration

8.1 Why a pairwise approach?

While international investors will most likely consider investing in multiple countries

at one time, I test for cointegration using a pairwise approach for three main reasons: (i) the

systems approach may not find all cointegrating vectors in a finite sample (due to the size

and power issues of the Johansen (1988) procedure) and so the gains from diversification

may be exaggerated, (ii) pairwise cointegration still has important economic implications —

if there are pairs of countries with cointegrated indices, investors from either country should

diversify their holdings elsewhere (e.g., if the Canadian and US markets are cointegrated, it

would not make sense for long-term Canadian investors to buy US assets for the purpose of

diversification) — and (iii) there are many more testing procedures available if a pairwise

approach is used, so robustness checks are easier under a bivariate specification. As Allen

and MacDonald (1995) note, a pairwise analysis is instructive since it “demonstrates which

series are moving together in the long-run.” Moreover, many studies have used the bivariate

approach, for examples see Kanas (1998), Allen and MacDonald (1995), and Chang (2001).

Thus, in Sections 8.2 to 8.4 I conduct pairwise analysis, while in Section 9 I use a systems

approach.

8.2 Engle and Granger (1987) two-step

Although there are many testing procedures for cointegration, one of the simplest

and oldest tests is the Engle-Granger two-step. Specifically, if two variables are both I(1)

and cointegrated and one is regressed on another, the residuals from the regression will be

stationary (or I(0)). To carry out this test, I follow the method proposed by Engle and

Granger (1987) as explained by Enders (1995). Specifically, I run the following regressions:

yxt = α0xz + α1xzyzt + εxz,t, ∀ x 6= z (64)

∆ε̂xz,t = ρε̂xz,t−1 +
p∑

j=1

θj∆ε̂xz,t−j + et (65)
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where yxt and yzt are the logged levels of the total return indices (gross or net) in countries

x and z respectively.

In the first step, equation (64), I regress the index level of one country onto that of

another and save the residuals. In the second step, equation (65), I perform an ADF test

with no constant (since the regressand is a residual none is needed) but 2 lags since there is

autocorrelation in the errors and two lags was selected by the Bayesian information criterion.

If the two variables are cointegrated (i.e., the ADF test indicates that in equation (65) ρ ≤ 1)

the slope coefficient, α1xz, can be interpreted as the ‘strength’ of the cointegrating relation

since it measures the sensitivities — the change in the index level in the regressand country

brought about by a one percentage point increase in index level of the regressor country. I

report the full results in Tables 6 and 7 below.

Table 6: Engle and Granger (1987) ADF tests — Net Indices

France Germany Japan Italy United United
Kingdom States

Canada -1.919 -2.661 -1.194 -1.886 -1.804 -0.9936
France -2.778 -2.393 -1.911 -2.503 -1.809
Germany -2.61 -1.09 -1.961 -1.514
Japan -2.202 -2.339 -3.285∗

Italy -3.701∗∗ -1.824
United -1.769
Kingdom
Critical values 1% 5% 10%

-3.430 -2.860 -2.570

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009).
Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level

The tables indicate that there are very few long-run relationships between the equity

markets of the G7 countries. Indeed, the only country pairs with cointegrated indices are

Italy and the United Kingdom and Japan and the United States. Importantly, it does not

appear that the use of either gross or net indices is affecting the results in this case since

the results are remarkably consistent across both.
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Table 7: Engle and Granger (1987) ADF tests — Gross Indices

France Germany Japan Italy United United
Kingdom States

Canada -1.998 -2.511 -1.009 -2.194 -1.683 -0.7179
France -2.63 -1.978 -2.073 -2.335 -1.283
Germany -2.321 -1.164 -1.795 -1.088
Japan -2.005 -2.192 -3.463∗∗

Italy -3.403∗∗ -1.543
United -1.436
Kingdom
Critical values 1% 5% 10%

-3.430 -2.860 -2.570

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009).
Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level

8.3 Zivot and Andrews (1992) tests

While the Engle and Granger (1987) two-step procedure provides a quick way and

relatively simple method of determining if two variables are cointegrated, it has limitations.

Specifically, if there is a structural break in either the trend or the intercept, the Engle and

Granger (1987) procedure may yield incorrect results. To allow for this possibility I employ

Zivot and Andrews (1992) tests for cointegration which allow for an unknown structural

break in the relationship (in either the trend term or the intercept). A discussion of how

this test works is beyond the scope of this paper; however, interested readers should see

Maddala and Kim (1998, 401) and Zivot and Andrews (1992).

The Zivot and Andrews (1992) tests are conducted in a similar fashion as the Engle

and Granger (1987) test for cointegration: I first regress the logged level of each country’s

total return index (gross and net) on one another using equation (64) and save the residuals

(i.e., αxz has the same interpretation as in Section 8.2). I then use the Zivot and Andrews

(1992) test (with two lags, similar to the Engle and Granger (1987) two-step above) to test

if the residuals are random walks. Like the ADF test, the Zivot and Andrews (1992) test

has a null hypothesis of a unit root in the data (i.e., the null hypothesis is that there is no

cointegration). Tables 8 and 9 report the full results below.

As with the Engle and Granger (1987) tests, the results of the Zivot and Andrews
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Table 8: Zivot and Andrews (1992) tests — Net Indices

France Germany Japan Italy United United
Kingdom States

Canada -3.682 -3.934 -4.392 -4.406 -3.087 -4.949

France -3.972 -4.849 -4.545 -5.437* -8.924**
(2000w38) (2001w17 )

Germany -5.117* -4.238 -4.016 -6.149**
( 2007w13) (2005w20 )

Japan -4.793 -4.117 -4.297

Italy -5.074 -5.379*
(2002w24)

UK -4.991
Critical values 1% 5%

-5.57 -5.08

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009). Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level
Date of structural break indicated by year and week in parenthesis (if significant)

Table 9: Zivot and Andrews (1992) tests — Gross Indices

France Germany Japan Italy United United
Kingdom States

Canada -4.696 -4.542 -4.236 -5.094* -3.442 -4.579
(2006w33)

France -3.85 -4.732 -4.765 -4.932 -6.474**
(2003w8)

Germany -4.618 -4.338 -3.921 -5.688**
(2006w33)

Japan -5.05 -4.242 -4.285

Italy -5.138* -6.426**
(2002w43) (2002w14)

UK -5.025
Critical values 1% 5%

-5.57 -5.08

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009). Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level
Date of structural break indicated by year and week in parenthesis (if significant)

(1992) are relatively consistent between both net and gross indices. The results indicate

however, that once regime shifts are taken into account, the markets of the G7 are strongly

38



related to that of the United States — much more so than the results in Section 8.2.

Given the fundamental changes that have taken place over the past decade in the world

of finance it should not be particularly surprising that structural breaks do matter in this

case. Indeed, for both index types, the number of cointegrating vectors increases from 2 in

the Engle and Granger (1987) framework to 5 in the Zivot and Andrews (1992) framework.

Moreover, most of these additional vectors are from regressions including the US market.

Specifically, France, Germany and Italy are cointegrated with the US indices, often at the

1% confidence level, after I allow for structural breaks. Notice too that the breaks were

scattered throughout the years between 2001 and 2007 and only one of the breaks in 2001

itself (France). Also, it is important to note that the Zivot and Andrews (1992) framework

is unable to examine structural breaks at the tails of the observation periods. Specifically, I

could not explore the possibility of a structural break in the first or last 15% of observations

— thus eliminating all of 2009 and much of 2000 and 2008 from the years that were allowed

to have a structural break.

8.4 Johansen (1988) test procedure

The Engle and Granger (1987) and Zivot and Andrews (1992) procedures I used in

Section 8 both utilize the residuals of OLS regressions to determine if the two variables are

cointegrated. The Johansen (1988) procedure, on the other hand, estimates the number of

cointegrating vectors directly from the vector autoregression (VAR) representation itself:

Yt = µ + γt + ut. (66)

For a complete derivation see Johansen (1988) or Juselius and Hendry (2000). Using this

procedure, only one step is required; however, much more about the structure of the data

itself must be considered.

Under the Johansen (1988) procedure, it is imperative to properly control for de-

terministic terms. To do so, I again use the results of the t-tests on the means of the first

differences of the logged levels of each series from Section 8.2. Since each series, when first

differenced, has a mean of zero, I elect to restrict my model to one having no trend term
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as suggested by Juselius and Hendry (2000) and an unrestricted constant term. Having

now chosen the appropriate deterministic terms I can utilize the Unobserved Components

Representation — slightly different than the Vector Error Correction Model (VECM) — of

the system as follows:

∆Yt = Π(Yt−1 − γ(t− 1)− µ) + µ∗ +
p−1∑

j=1

cj∆Yt−j + εt (67)

Yt = [yxt yzt]′ ∀ x 6= z

where the number of cointegrating vectors (r) is equal to rank(Π), and p is the number of

lags. I then use this representation to study the possibility of pairwise cointegration within

the G7.

The Johansen (1988) method in this case tests the null hypothesis, H0 : r ≤ q

against the alternative, HA : r > q, q = 0, 1. For example, suppose the test were to reject

H0 : r = 0, but not reject H0 : r = 1. This indicates that there is a cointegrating vector. Of

course, because the series all have unit roots, there can be no more than one cointegrating

vector for each pairwise test. Note also that I follow the usual practice and use r to indicate

the number of cointegrating vectors — not be confused with the notation used for returns,

rxt, which always has a time t and country x index in the subscript.

Lastly, since there are well known power issues with respect to the Johansen (1988)

method (i.e., the test does not reject a false null hypothesis often enough in finite samples),

I use the Reimers (1992) finite sample correction, and 1% critical values (see Cheung and

Lai (1993) for a discussion). Specifically, I multiply each statistic by:

T − pm

T
(68)

where T is the number of time observations, p is the number of lags, and m is the number of

left hand variables. In this case, the correction is: 547−(1)(2)
547 ' 0.9963. I report the results

of the Johansen (1988) tests in Tables 10 and 11.

In the interest of brevity, I have only reported the trace statistic and excluded the

somewhat less reliable λmax statistic. Unlike the results from Section 8, the results of
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Table 10: Johansen (1988) Trace Statistic Results† — Net Indices

France Germany Japan Italy United United
Kingdom States

Canada
r ≤ 0 7.400 9.068 5.962 8.133 7.067 6.989
r ≤ 1 1.606 1.648 1.486 1.444 1.590 1.701
France
r ≤ 0 16.011 17.263 9.167 11.372 21.393*
r ≤ 1 3.004 1.191 1.941 2.131 1.733
Germany
r ≤ 0 16.957 9.661 14.124 18.136
r ≤ 1 1.011 4.112 3.737 1.384
Japan
r ≤ 0 16.295 19.167 20.389*
r ≤ 1 1.294 1.372 1.785
Italy
r ≤ 0 18.235 22.807*
r ≤ 1 1.649 1.988
United
Kingdom
r ≤ 0 27.818*
r ≤ 1 2.049

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009). Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level
1% critical value for H0 : r ≤ 0 is 20.04
1% critical value for H0 : r ≤ 1 is 6.65
†The Reimers (1992) finite sample correction has been applied to all statistics

the Johansen (1988) procedure are not consistent between the two types of total return

indices used (i.e., the results from the net indices differ significantly from those of the gross

indices). In the net indices, I find that there are 4 cointegrating vectors, all of which include

the United States in the cointegration relationship. Specifically, I find that the net indices

of France, Japan, Italy, and the United Kingdom are all cointegrated with the net index

of the United States. On the other hand, when using the gross indices, I find only one

cointegrating relationship, between Japan and the United States. Interestingly, the results

from the Johansen (1988) tests using net indices look remarkably similar to those of the

Zivot and Andrews (1992) results; however, the results from the Johansen (1988) tests using

gross indices are extremely similar to those of the Engle and Granger (1987) two-step. It is

important to bear in mind that the Johansen (1988) procedure, like the Engle and Granger
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Table 11: Johansen (1988) Trace Statistic Results† — Gross Indices

France Germany Japan Italy United United
Kingdom States

Canada
r ≤ 0 8.415 9.385 5.285 10.006 7.776 5.014
r ≤ 1 1.776 1.706 2.012 1.472 1.711 1.799
France
r ≤ 0 15.063 8.980 9.324 11.439 6.427
r ≤ 1 2.882 1.784 1.810 2.152 1.949
Germany
r ≤ 0 10.220 9.378 13.501 8.541
r ≤ 1 1.689 3.867 3.708 2.364
Japan
r ≤ 0 6.925 9.384 22.328*
r ≤ 1 1.453 1.622 1.783
Italy
r ≤ 0 15.452 6.267
r ≤ 1 1.574 1.541
United
Kingdom
r ≤ 0 7.564
r ≤ 1 1.896

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009). Source: Bloomberg
** denotes significance at 1% level; * denotes significance at 5% level
1% critical value for H0 : r ≤ 0 is 20.04
1% critical value for H0 : r ≤ 1 is 6.65
†The Reimers (1992) finite sample correction has been applied to all statistics

(1987) two-step, does not allow for a structural break in the data.

The Johansen (1988) framework is easily extended to a systems approach where

the researcher can test if there are cointegrating relationships between more than two vari-

ables. With respect to the UCR (67), in a systems framework with m variables Π can have

rank(Π) ≤ m − 1. In other words there can be up to m − 1 cointegrating vectors. While

other researchers (e.g., Kasa (1992) and Allen and MacDonald (1995)) have carried out such

multivariate examinations, it is not immediately clear exactly what a cointegrating vector

involving multiple countries would imply for long-term investors and the possible presence

or absence of gains from international diversification. Moreover, since my theoretical explo-

ration was for bivariate cointegration, it seems most appropriate to maintain the pairwise

approach in my empirical work.
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9 Systems Approach

The empirical analysis I have done so far has focused on bivariate tests for cointe-

gration. While a pairwise approach has very important economic implications (as well as

intuition), it is somewhat removed from the reality of investors. Indeed, one could use ma-

trix algebra to model seven or more indices as a system of possibly cointegrated variables. I

do not derive a multivariate model here; however, because the algebra for such an extension

is complex and the economic conclusion is similar to the bivariate case: the fewer stochastic

trends there are, the less are the gains from international portfolio diversification, and the

less puzzling the evidence for investor home bias.

Thus, as a last application of the theory developed in the first half of this essay, I test

for cointegration between any of the G7 indices simultaneously. To do so, I again use the

Johansen (1988) procedure from Section 8.4. Indeed, consider the unobserved components

representation (67) once more. In the current multivariate framework Yt becomes:

Yt = [rCAN,t rFRA,t rGER,t rJAP,t rITA,t rUK,t rUS,t]′. (69)

As in the bivariate case, rank(Π) indicates the number of cointegrating vectors.

Similar to the pairwise analysis, the maximum possible number of cointegrating vectors is

one less than the number of variables in Yt, which in the case of the G7 stock markets

would be six. In a multivariate framework, it is not as clear what an intermediate number

of cointegrating vectors (i.e., 5 ≥ rank(Π) ≥ 1) indicates in terms of long term diver-

sification opportunities for investors. Granger’s Representation Theorem (GRT) provides

some insights though. In particular, GRT states that the number of variables is equal to

the number of cointegrating vectors plus the number of stochastic trends. For example, if

there are 5 cointegrating vectors then there would be 2 stochastic trends. In other words,

all variables would be some linear combination of the two stochastic trends and an I(0)

noise term. More importantly for this essay, however, is that the greater the number of

stochastic trends, the lower the less correlated the variables are in the long-run (i.e., the

more stochastic trends, the greater the possible gains from diversification).

The deterministic components I found to be appropriate for the pairwise approach
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— an unrestricted constant with no trend — are still valid since all of the series had the

same properties in this respect. The number of lags included, however, had to be increased.

While for both the net and gross indices the SBIC indicated 2 lags were required, serial

autocorrelation was present in the residuals when the model was estimated. The higher

number of lags required for the system as a whole compared to the pairwise estimates could

be caused by a plethora of phenomena. For example, it may be due to one or more volatile

exchange rates because all the series are in USD terms (it may well have been a country

with no bivariate cointegrating vectors) or a structural break. Nonetheless, in an effort to

control for the serial autocorrelation I increased the number of lags to 3, which removed all

autocorrelation in the errors. Table 12 reports the results of the Johansen (1988) systems

procedure.

Table 12: Johansen (1988) System Trace Statistic Results

Null 5% Critical Net Indices Gross Indices
Hypothesis Value Trace Trace

Statistic† Statistic†

r ≤ 0 124.24 120.17 118.55
r ≤ 1 94.15 74.85 77.01
r ≤ 2 68.52 47.7 48.35
r ≤ 3 47.21 29.3 28.46
r ≤ 4 29.68 14.47 12.59
r ≤ 5 15.41 6.18 5.22
r ≤ 6 3.76 0.65 0.72

Data is weekly and in logged levels (from 2 January 1999 to 3 July 2009). Source: Bloomberg
† The Reimers (1992) finite sample correction has been applied to all statistics

The results here are starkly different from the pairwise approach: I find there to

be no cointegrating vectors at the 5% level for either set of indices after I apply the finite

sample correction (68), which in this case is 545−(3)(7)
545 ' 0.9617. While these results maybe

somewhat difficult to rationalize with the bivariate results, it is important to bear in mind

that the Johansen (1988) procedure does not allow for a structural break. Moreover, Gre-

gory et al. (2004) found that the correlation of p-values between a pairwise “residual-based

test and a system-based test is very low even as the sample size gets large.” Also, recall that

the results from the pairwise analysis were not indicative of highly related markets (i.e.,

the greatest number of bivariate cointegrating vectors I find from the pairwise analysis is 5
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out of a possible 21). There is also evidence of structural breaks in the data since the Zivot

and Andrews (1992) procedure finds more cointegrating vectors than the Engle and Granger

(1987) procedure for both types of indices. Nonetheless, the results of the systems approach

indicate that any market in the G7 would offer investors gains in terms of diversification.

10 Conclusion

This essay focuses on the possibility that investor home bias is actually a rational

choice rather than a pathology. To examine this possibility, I develop a bivariate model

of two unit root stock prices and find that when the two prices are cointegrated investors

optimally shift their holdings towards one asset. This polarization simultaneously reduces

their level of diversification. In other words, in the case of a common stochastic trend, the

cost of a home bias to investors (particularly long term investors) is less than indicated

by previous studies. Importantly, the results are robust for both the traditional portfolio

problem and the exponential CARA utility function.

These results, however, do not explain home bias. Indeed, the puzzle is not just in

explaining why people in a given country are not very well diversified internationally. One

must also explain why investors in other countries are also not diversified internationally in

a completely different way (i.e., one must explain why all investors hold mostly domestic

assets). For example, from Canada’s perspective home bias would imply that Canadian

investors hold mostly Canadian assets. Such holdings could easily be explained if either

(i) expected returns on Canadian assets were greater than on those of foreign assets or

(ii) Canadian assets were lower risk than foreign assets. In this example, the home bias

puzzle is then why foreigners do not similarly own mostly Canadian assets. Researcher, like

French and Poterba (1991), have argued that the perceived risk and return on domestic

and foreign assets may vary from nation to nation (like the cases explored in Section 5.2)

and thus explain why each country’s investors seem to be home biased. I expand on this

hypothesis and show that cointegrated markets actually magnify the impact of varying

perceptions of risk and return and make home bias easier to explain. In particular, I show

that perhaps French and Poterba (1991) overstated the high implied expected returns for

home markets (i.e., investor expectations about home markets were not as wrong as French
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and Poterba (1991) concluded).

Thus, with the above theoretical results in mind, I conduct tests to determine if

the G7 markets were actually cointegrated for the period of 1999 to 2009. Specifically, I

examine empirically the possibility that home bias is less costly (and/or puzzling) than

originally reported by French and Poterba (1991) and others. My findings, however, are

not indicative of highly integrated markets. In particular, I found few cointegrating vectors,

implying that a home bias may still be quite expensive to investors, and thus still puzzling

to researchers. Specifically, under the systems method, I found zero cointegrating vectors,

which would indicate that all of the series are driven by separate stochastic trends. Thus,

while home bias can sometimes be an optimal response for investors, in the case of the G7

markets it appears that for the last ten years it has been more of a pathology.

A logical extension of my research would be to obtain portfolio data and use it

directly to test the theory I develop above. However, such data is extremely difficult to

obtain. Similarly, analyzing the trends in home bias over the past decade would also be

insightful given my findings in this essay.

46



References

Allen, D. E. and G. MacDonald (1995, February). The long-run gains from international
equity diversification: Australian evidence from cointegration tests. Applied Financial
Economics 5 (1), 33–42.

Baele, L., C. Pungulescu, and J. Ter Horst (2007). Model uncertainty, financial market
integration and the home bias puzzle. Journal of International Money and Finance 26 (4),
606–630.

Chang, T. (2001). Are there any long-run benefits from international equity diversification
for Taiwan investors diversifying in the equity markets of its major trading partners, Hong
Kong, Japan, South Korea, Thailand and the USA. Applied Economics Letters 8 (7), 441–
446.

Cheung, Y. W. and K. S. Lai (1993). Finite-sample sizes of johansen’s likelihood ratio tests
for cointegration. Oxford Bulletin of Economics & Statistics 55 (3), 313–329.

Cochrane, J. (1991). A critique of the application of unit root tests. Journal of Economic
Dynamics and Control 15 (2), 275–284.

Coeurdacier, N. (2009). Do trade costs in goods market lead to home bias in equities?
Journal of International Economics 77 (1), 86–100.

Danthine, J. and J. Donaldson (2005). Intermediate financial theory. Burlington, MA:
Academic Press.

DeFusco, R. A., J. M. Geppert, and G. P. Tsetsekos (1996, May). Long-run diversification
potential in emerging stock markets. The Financial Review 31 (2), 343–63.

Dickey, D. and W. Fuller (1979). Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American statistical association 74 (366), 427–431.

Enders, W. (1995). Applied econometric time series (1 ed.). New York, NY: Wiley.

Engle, R. and C. Granger (1987). Co-integration and error correction: representation,
estimation, and testing. Econometrica, 251–276.

Fama, E. (1965). The behavior of stock-market prices. Journal of business 38 (1), 34.

French, K. R. and J. M. Poterba (1990, December). Japanese and u.s. cross-border common
stock investments. Journal of the Japanese and International Economies 4 (4), 476–493.

French, K. R. and J. M. Poterba (1991, May). Investor diversification and international
equity markets. American Economic Review 81 (2), 222–26.

Granger, C. (1981). Some properties of time series data and their use in econometric model
specification. Journal of Econometrics 16 (1), 121–130.

Gregory, A., A. Haug, and N. Lomuto (2004). Mixed signals among tests for cointegration.
Journal of Applied Econometrics 19 (1), 89–98.

Grubel, H. (1968). Internationally diversified portfolios: welfare gains and capital flows.
The American Economic Review , 1299–1314.



Grubel, H. and K. Fadner (1971). The interdependence of international equity markets.
Journal of Finance, 89–94.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic
Dynamics and Control 12 (2-3), 231 – 254.

Juselius, K. and D. F. Hendry (2000, December). Explaining cointegration analysis: Part
ii. Discussion Papers 00-20, University of Copenhagen. Department of Economics.

Kanas, A. (1998). Long-run benefits from international equity diversification: a note on the
Canadian evidence. Applied Economics Letters 5 (10), 659–663.

Kanas, A. (1999). A note on the long-run benefits from international equity diversification
for a UK investor diversifying in the US equity market. Applied Economics Letters 6 (1),
49–53.

Karlsson, A. and L. Nordén (2007). Home sweet home: Home bias and international diver-
sification among individual investors. Journal of Banking and Finance 31 (2), 317–333.

Kasa, K. (1992). Common stochastic trends in international stock markets. Journal of
Monetary Economics 29 (1), 95–124.

Kho, B., R. Stulz, F. Warnock, and K. Sinlim-Dong (2006). Financial globalization, gover-
nance, and the evolution of the home bias. NBER Working Paper .

Levy, H. and M. Sarnat (1970). International diversification of investment portfolios. The
American Economic Review , 668–675.

Lewis, K. K. (1996). What can explain the apparent lack of international consumption risk
sharing? The Journal of Political Economy 104 (2), 267–297.

Lewis, K. K. (1999). Trying to explain home bias in equities and consumption. Journal of
Economic Literature, 571–608.

Lo, A. and A. MacKinlay (1988). Stock market prices do not follow random walks: Evidence
from a simple specification test. Review of financial studies, 41–66.

Maddala, G. and I. Kim (1998). Unit roots, cointegration, and structural change. Cambridge
Univ Pr.

Markovitz, H. (1959). Portfolio selection: Efficient diversification of investments. New
York: John Wiley.

MSCI (2009). Index definitions. http://www.mscibarra.com/products/indices/equity
/definitions.jsp.

Narayan, P. and R. Smyth (2004). Modelling the linkages between the Australian and
G7 stock markets: common stochastic trends and regime shifts. Applied Financial Eco-
nomics 14 (14), 991–1004.

Obstfeld, M. and K. Rogoff (2000). The six major puzzles in international macroeconomics:
Is there a common cause? NBER Macroeconomics Annual 15, 339–390.

Panton, D., V. Lessig, and O. Joy (1976). Comovement of international equity markets: A
taxonomic approach. Journal of Financial and Quantitative Analysis, 415–432.

48



Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis.
Econometrica, 1361–1401.

Phillips, P. and P. Perron (1988). Testing for a unit root in time series regression.
Biometrika 75 (2), 335–346.

Poterba, J. and L. Summers (1989). Mean reversion in stock prices: Evidence and implica-
tions. NBER working paper .

Reimers, H. E. (1992, December). Comparisons of tests for multivariate cointegration.
Statistical Papers 33 (1), 335 – 359.

Ripley, D. (1973). Systematic elements in the linkage of national stock market indices.
Review of Economics and Statistics, 356–361.

Roll, R. (1992). Industrial structure and the comparative behavior of international stock
market indices. Journal of finance, 3–41.

Samuelson, P. (1969). Lifetime portfolio selection by dynamic stochastic programming. The
Review of Economics and Statistics, 239–246.

Sims, C. (1988). Bayesian skepticism on unit root econometrics. Journal of Economic
Dynamics and Control 12 (2/3), 463–74.

Sørensen, B., Y. Wu, O. Yosha, and Y. Zhu (2007). Home bias and international risk sharing:
Twin puzzles separated at birth. Journal of International Money and Finance 26 (4),
587–605.

Taylor, M. and I. Tonks (1989). The internationalisation of stock markets and the abolition
of UK exchange control. The Review of Economics and Statistics, 332–336.

Tobin, J. (1958). Liquidity preference as behavior towards risk. The Review of Economic
Studies, 65–86.

Zivot, E. and D. W. K. Andrews (1992, July). Further evidence on the great crash, the
oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statis-
tics 10 (3), 251–70.

49


