
Asymmetric Tax Competition, Agglomeration
Economies, and Natural Resources

by

Ohad Raveh

An essay submitted to the Department of Economics
in Partial fulfillment of the requirements for

the degree of Master of Arts

Queen’s University
Kingston, Ontario, Canada

August 2009

c©Ohad Raveh 2009



Abstract

The Canadian constitution entitles the provinces to fully benefit from nat-
ural resources found in their territories; thus, rents accrued from natural re-
sources are usually used by the respective provinces for their own development.
However, due to reasons of agglomeration economies, it would be more efficient
to have the federal government redistribute the rents to places that could make
better use of them. This theoretical paper is an attempt to account for that
phenomenon; in effect, it extends the standard asymmetric tax competition
theory, firstly by considering asymmetry in infrastructure levels, and secondly
by adding a natural resource sector. Initially, a simple model of two asymmet-
ric regions that differentiate solely by their population size is constructed. The
model predicts the effects of adding a natural resource to the smaller region,
especially in the context of possible agglomeration in either of the regions.
By comparing between the outcomes under cooperative and non-cooperative
settings, the model shows how inefficiency arises from the improper usage of
the resource rents. In a tax competition setting, the natural resource gives the
smaller region an advantage, so that most of the nation’s capital might be drawn
to it, given a large enough resource. Therefore, due to the natural resource, the
nation only benefits from sub-optimal welfare level, and faces the possibility of
reaching an undesired Nash Equilibrium outcome where agglomeration occurs
in the smaller region.
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1 Introduction

Canada is a resource abundant country. Its resources, composed mainly of energy,

minerals and forests, are spread across its varied regions. The Canadian economy

relies quite heavily on these resources — according to Statistics Canada, in 2007

the natural resource sector was responsible for approximately 12% of Canada’s total

GDP. However, perhaps more importantly, these natural resources play a key role in

one of Canada’s main political issues nowadays — regional imbalances.

According to the Canadian Constitution Act of 1982,1 the regions are entitled

to fully benefit from the natural resources found in their territories. Thus, having

several regions without natural resources, and a few with, creates an imbalance in the

federation. One aspect of this imbalance is derived from the fact that regions with

profitable natural resources invest the rents accrued in the development of their own

territory, while (supposedly) neglecting the interest of the federation.

A question then arises — what is the interest of the federation? Indeed, this

is quite debatable. However, in this paper we view this interest to be maximizing

the welfare of the residents of the entire nation. Is this welfare maximized in the

case where each region exploits its natural resources to its own good? From the

perspective of the federation, are the rents accrued from natural resources invested in

the most efficient manner? We look into one specific aspect of this issue, to try and

form answers to these questions; this aspect relates to urban increasing returns, also

known as agglomeration economies.

Referring to theories on agglomeration economies, initially laid by Marshall (1920),

it is suggested that firm productivity is not only dependent on how production is

organized within a firm, but also on its location. A firm located in an area where there

is concentrated economic activity can benefit from positive externalities in the form

of knowledge spillovers, shared inputs, and labor market pooling; thus, potentially

1Specifically, by footnote (23) of the consolidated Constitution Act of 1982 that refers to Section
(92a) of the Constitution Act of 1867.
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exhibiting increasing returns to scale in production. Indeed, this was confirmed by

Baldwin et al., in their study for Statistics Canada (2007).

That said, we note that regions with more significant economic agglomeration

present greater potential for increased productivity, and for higher returns on invest-

ment. Therefore, we ask — should a federation benefit from agglomeration economies

by redistributing natural resource rents to regions with higher concentration of eco-

nomic activity? Does the nation suffer from allowing the regions to fully benefit from

the natural resources found in their territories, instead of directing their rents to

where the return on investment would be maximized?

In this paper we look into the specific case of Ontario and Alberta to better under-

stand the general phenomenon. Ontario, according to Statistics Canada, is the most

populous region in Canada, with around 12.5 million residents (as of 2009); moreover,

it has the largest economy in the nation — almost twice the size (in GDP terms) of

the second largest one (Quebec). Albeit having the highest economic concentration

in Canada, Ontario has limited natural resources; it is, in fact, influenced mostly

by its service sector as well as by its large manufacturing sector which accounts for

around half of the country’s manufacturing output. On the other hand, Alberta is

a smaller region in both population and economic terms. It has approximately 3.5

million residents (as of 2009), and an economy that is half the size (in GDP terms)

of Ontario’s. However, as opposed to Ontario, Alberta benefits from many natural

resources found in its territory; namely, oil and gas, forests, and large farm lands.

Alberta is, in fact, the largest oil and gas producer in Canada, and the second largest

gas exporter in the world, with oil reserves that are second only to Saudi Arabia’s

in size. To better understand their economic influence — in 2008, revenues from the

energy sector alone surpassed $100 billion; note that the aforementioned Constitution

Act makes Alberta their sole beneficiary.

Adopting Zodrow and Mieszkowski’s basic capital tax competition model (1986),

and Bucovetsky’s addition of asymmetry in population size (1991), we construct a
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simple asymmetric tax competition model that tries to mimic the situation seen in

Alberta and Ontario. In its basic form the model has two regions (members of the

same nation) that differ solely by their population size. The nation has fixed supply of

capital and labor, the former being perfectly mobile across the nation and the latter

immobile. Regional governments want to maximize the welfare of their residents;

thus, they compete for the national capital by means of tax competition. The larger

region (which has more population) does not have natural resources, while the smaller

(less populated) one does (although not initially). We extend the theory by adding

asymmetry in infrastructure levels, to account for possible agglomeration effects in

either of the regions (thus, adopting concepts from the New Economic Geography

literature). Thereafter, the model is extended further, as we add a natural resource

sector to the smaller region. We aim to realize how resources are allocated across the

nation given this setting, and perhaps more importantly, how the natural resource

affects that allocation, especially with regard to the advantages it gives the smaller

region in the national tax competition, and in the possibility of causing unwanted

agglomeration in that region (as opposed to having it in the larger region, to the

benefit of the entire nation). Ultimately, through this model, and the analysis to

follow, we try to answer the questions posed earlier in this section. Note that there

has been much discussion over natural resources in the economic literature; however,

no serious attempt was made at examining the role of natural resources in the context

of fiscal competition.

The paper is structured as follows — in the following section we go through a

literature review of the two main phenomena seen in the model; namely, capital tax

competition and agglomeration economies. Thereafter, the basic model is outlined.

Section 3 presents the analysis. That section is divided to two sub-sections; the

first goes through the analysis under cooperative environment (deriving the social

optimum), while the second looks into the non-cooperative case (deriving the Nash

Equilibrium outcome). Each sub-section follows three stages. The first stage goes
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through the analysis of the basic model, having neither infrastructure nor a natural

resource sector in the smaller region. The second stage adds infrastructure to each of

the regions so that we get increasing returns to scale in production; thus, potentially

having agglomeration in either of the regions. The third and final stage adds a

natural resource sector to the smaller region. A comparison is then made between the

cooperative and non-cooperative outcomes. Following that, in section 5 we consider

possible extensions and limitations to the model, and in section 6 we conclude.

2 Literature Review

Two main topics represent the building blocks of the model — the first being capital

tax competition, and the second agglomeration economies. There is a large body of

literature on each; therefore, this section is divided to two separate sub-sections, each

covering the relevant literature on one of these topics.

2.1 Capital Tax Competition

Let us firstly look into the definition of a tax competition, as it was suggested by

Wilson and Wildasin (2004). In a broad sense, a tax competition may be defined

as any form of non-cooperative tax setting by independent governments. Narrowing

this definition to be more applicable to what is seen in this paper, a tax competition

would be regarded as non-cooperative tax setting by independent governments, where

each government’s policy choices influence the allocation of a mobile tax base of the

other regions. Note that in our case this mobile tax base is capital.

Early contributions to this field were initially made by Oates (1972) as well as

by Tiebout (1956). Starting with Tiebout (1956), who in some sense adopted the

more general definition of tax competition, we see the first concept of tax competi-

tion arising, though in a different and simpler context from what is seen in recent

related literature. In his paper, Tiebout (1956) presented a model of many regions,

where each is controlled by its landowners who seek to maximize the after tax value
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of the region’s land by attracting more people to reside in it. This was done by

presenting competitive tax levels, which brought up a tax competition between the

regions. Since in his model regions were utility takers, making it similar to models

of competitive markets for private goods, the equilibria was pareto efficient so that

the tax competition for households led to efficient provision of public goods (referred

to as the Tiebout Hypothesis). At a later stage this result was extended by Fischel

(1975) and White (1975) to include mobile firms.

Oates (1972), on the other hand, adopted the narrower definition of tax com-

petition. In his paper, which looked into the efficiency problems associated with

competition for capital by local governments, it was hypothesized that regions are,

in fact, interdependent, so that actions taken by one regional government, in order

to increase the welfare of its residents, affected (or rather decreased, given scarce

national resources) the welfare of the residents in a different region. In the literature

this is referred to as Fiscal Externality ; presenting this idea formed the main differ-

ence between this line of thought, and Tiebout’s. As opposed to the latter, this new

approach resulted in inefficient equilibria where taxes and public expenditure were

set at suboptimal levels, due to this fiscal externality.

It was only in the 80s that Oates’s intuition was formalized; firstly by Beck (1983),

then by Wilson (1986) and Zodrow and Mieszkowski (1986). Beck’s model is regarded

as being less general, while Wilson’s presents cumbersome production structure; thus,

it is Zodrow and Mieszkowski’s (1986) that is considered the basic tax competition

model (Wilson 1999). Drawing on Pigou’s proposition (1947) that public services are

undersupplied when distortionary taxes are used, as well as on Atkinson and Stern’s

analysis of that proposition (1974), Zodrow and Mieszkowski formalized the concept

of fiscal externality. This is, in fact, the model on which this paper is largely based

on; therefore, it is important to discuss it more thoroughly.

In their model there are n identical regions, in a nation with a fixed amount of

capital. Capital is perfectly and costlessly mobile across regions, while labor is not.
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Each region levies a head tax on residents, and a source-based per unit tax on capital.

Residents have identical preferences over private consumption and a pure public good,

and each owns an equal share of the nation’s capital. Firms use capital and labor to

produce a single output that is used partially by the government to produce a pure

public good (whereas in a later stage this pure public good turns to business services,

and at the final stage both the public good and the business services are considered

concurrently). Each region acts strategically, and tries to derive the optimal tax rate

that maximizes the utility of its residents, subject to the regional budget constraint;

thus, a tax competition is modelled along Cournot-Nash lines. Under the case where

the head tax is constrained, the following key result is derived:

MBGi
=

MCGi

1 + Ti

Ki

dKi

dTi

> 1 , ∀i ∈ n

The above outcome is given a Modified Samuelson Condition (Batina 1990) interpre-

tation, which shows the discrepancy between the social value of an additional unit of

capital and the social opportunity cost of this unit, measured from the single region’s

viewpoint. Consequently, we see that in equilibrium public services would be under-

supplied in each of the regions. This is an important outcome that will be replicated

in the analysis made in this paper.

Note that in both Wilson’s (1986) and Zodrow and Mieszkowski’s (1986) models,

the regions are assumed so small as to have no influence on national variables. Thus,

the equilibrium outcome must equalize the utility levels of all residents across the

nation as well as have all regions undertake similar policies; the outcome is, thus,

symmetric. As opposed to these two models, in Wilson (1987) the terms of trade are

not exogenously given, and so the equilibrium outcome dictates that different regions

have different policies; however, since regions are still assumed small, the utility of

the residents remain to be equal across the nation, and the result is still symmetric

in that sense. Wildasin (1988) presents a model with finite number of jurisdictions,

where each can potentially influence national variables; nonetheless, he assumes equal

population in each region, and restricts his attention to symmetric Nash Equilibria
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only. In general, Hoyt (1991) shows that as the number of regions drops, the tax rates

as well as the public good levels rise; nevertheless, we take note that all the above

models present inefficient outcomes.

Departing from these symmetric settings, Bucovetsky (1991) and Wilson (1991)

advanced Zodrow and Mieszkowski’s model by considering an asymmetric environ-

ment. In both papers the asymmetry is derived solely from differences in population

size. Both present a model that resembles Zodrow and Mieszkowski’s, with the ex-

ception of having only two regions, a larger (more populated) one, and a smaller (less

populated) one. The result is similar in both papers. It is shown that differences in

population size imply differences in the perceived elasticity of capital supply to each

region. Specifically, the result shows that the supply of capital to the larger region

is less responsive to tax changes, so that an unilateral tax increase in the larger re-

gion makes it lose less capital per capita than the capital per capita that would have

been lost in the smaller region had it had undertaken a similar move. This, in turn,

implies that in equilibrium the larger region may levy higher tax rates, which is the

key outcome derived from these two models.

Note that the benchmark case of this paper follows Bucovetsky’s (1991) setting.

This is because we initially take Zodrow and Mieszkowski’s model, restrict it to two

identical regions, and add the sole asymmetry in the regional population sizes. How-

ever, thereafter we extend this theory by adding infrastructure that brings about

increasing returns in production (thus, presenting the possibility of having agglomer-

ation in either of the regions) as well as by introducing a natural resource sector in

the smaller region.

2.2 Agglomeration Economies

The concept of external economies, i.e. that positive externalities may cause agglom-

eration, was first introduced by Alfred Marshall (1920). Marshall identified three

main causes for having economic integration —
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• Labor Market Pooling : localized firms benefit from a greater selection of industry-

specific skilled workers which, thus, ensures lower probability of labor shortage.

• Shared Inputs : localized industries benefit from the production of nontradable

specialized inputs, especially given the short proximity to each other (which

may potentially present lower transportation and trading costs).

• Knowledge Spillovers : clustered firms benefit from improved production func-

tions, compared to isolated firms.

This concept was later formalized in several seminal papers by Krugman (1991),

Krugman and Venables (1995), and Venables (1996). These papers form the basis for

the New Economic Geography literature; they analyze the relationship between trade

integration and industrial location, or in other words, they introduce and formalize

the concept of agglomeration economies. Specifically, it is Krugman’s paper (1991)

that presents the basic model in the field. Building on Dixit and Stiglitz’s framework

(1977) of increasing returns to scale and monopolistic competition, Krugman develops

a two-region, two-good model involving labor mobility, planet-level scale economies,

and trade costs. In this model, both firms and consumers decide where to locate. It

is found that firms choose to locate at the larger market, because it is where their

trading costs are minimized; conversely, consumers choose to locate where there is

a larger number of firms because this offers them greater access to manufactured

goods. Thus, these two effects, which Krugman identifies as backward and forward

linkages, produce agglomeration of economic activity in a manufacturing core and an

agricultural periphery. That said, this paper, as well as the other seminal ones, show

how economic integration could lead to increased concentration of economic activity.

One of the main results of these models is that once activity is agglomerated in

a certain region, it gets stuck there, because of demand and supply linkages. Thus,

a consequence of this is that mobile factors may not respond to marginal changes

in taxes once they are locked in an industrial cluster (Forslid and Andersson 2003);
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nonetheless, Hartman (1985), Boskin and Gale (1987) and Slemrod (1990) show that

taxes affect the concentration of industries.

Following that, the connection between tax competition and agglomeration economies

was firstly investigated by Persson and Tabellini (1992), who considered the effects of

integration on tax competition. In their model capital is the mobile factor, with its

ownership distributed across the population, and taxes are set by the median voter.

It is shown that economic concentration intensifies tax competition, so that tax rates

decrease; also, they show that capital becomes more responsive to tax incentives, but

yet the median voter shifts to the left so that the tax reduction is mitigated.

After Persson and Tabellini (1992), there have been few attempts to address issues

of tax competition in an economic-geography framework. Three such attempts were

made by Ludema and Wooton (2000), Kind et al. (2000), and Baldwin and Krugman

(2004). Ludema and Wooton (2000) examine the tendency of tax competition between

national governments to influence the location of manufacturing activity. Working

under the framework of a homogeneous-good oligopoly and moving costs, where both

factor-mobility and trade costs are varied (meaning that agglomeration can occur

due to each), they mainly focus on the effects of integration on the intensity of tax

competition. They find that agglomeration occurring due to decreased trade costs

attenuates tax competition, while that which occurs due to increased labor mobility

has mixed effects.

Kind et al. (2000) use a new economic geography model to analyze tax competition

between two countries trying to attract internationally mobile capital; specifically,

they investigate how spatial agglomeration of economic activity affects the outcome

of capital tax competition. They present a model of two identical countries, where

capital, goods, and firms are internationally mobile. Here also the tax competition

depends on the interaction between two forces of agglomeration; however, as opposed

to Ludema and Wooton (2000), in this case the two acting forces are trade costs and

pecuniary externalities. They show that a country hosting an agglomeration may find

9



it optimal to levy a source based tax on capital income.

Finally, Baldwin and Krugman (2004) present a two-nation, two-sector, and two-

factor model, having capital mobile and labor immobile. Their paper looks at the

impact of tighter goods market integration on tax competition when agglomeration

economies are significant. In their model, they set one sector to have constant returns

technology, while the other has increasing returns in its production, to bring about

the possibility of agglomeration; the model presented in our paper follows a similar

setting. Their analysis shows that firms choose to locate at the agglomerated region,

allowing the government of that region to set higher tax rates compared to those of

the other region. In practical terms, they explain why, for instance, in the European

economy it has not been the case that integration has led to a narrowing of tax

differentials, but rather the opposite. This result is relevant to our paper, where we

make an attempt to undertake a parallel discussion, but with an application to the

Canadian economy.

While there are differences in the equilibrium concepts used in these papers, they

all provide examples where tax competition does not lead to equal tax rates between

regions. More importantly however, these papers show that the inertia resulting from

concentration of economic activity in one region gives rise to a rent that is taxable,

so that a region hosting an agglomeration may charge higher taxes without losing

capital or its industrial base.

In our paper we follow the above models since we, as well, look into the connection

between agglomeration economies and capital tax competition. However, we extend

the ideas presented in these models, as we try to understand how the addition of a

natural resource sector affects that connection.

3 The Benchmark Model

Let us use the framework of the basic capital tax competition model developed by

Zodrow and Mieszkowski (1986), in its simplest form — using 2 regions, which are
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members of a common nation. Each region has a fixed supply of immobile population

(denoted by L1 and L2; where L1 + L2 = L, which is the nation’s population size),

and the nation has a fixed supply of perfectly and costlessly mobile capital (denoted

by K∗); thus, making K∗, L1, and L2 exogenously determined. Adopting then the

framework presented by Bucovetsky (1991), the two regions are identical in all re-

spects, except for their population size. Region 1 is larger than region 2, such that

L1 > L2. This asymmetry aspires to capture the main difference —in its simplest

form— between the region without the natural resource (region 1), and the one with

(region 2) [even though this natural-resource-addition will only be noted at a later

stage].

Each member of the nation works and provides one unit of labor, as well as owns

an equal amount of the nation’s capital which amounts to (K∗/L) = k∗.2 Let us

denote the share of the nation’s population in each region by Si; therefore, we have:

Si =
Li

L
(1)

Thus, the average capital-labor ratio in the nation is S1k1 + S2k2, such that the

following holds:3

S1k1 + S2k2 ≤ k∗ (2)

In each region, production is undertaken in a manufacturing sector4 by capital and

labor, through a production function, F (Ki, Li) [i ∈ (1, 2), for each region],5 that is

concave and has constant returns to scale in both capital and labor, is twice differ-

entiable in both factors, and follows the Inada Conditions.6 In its per capita form,

2Throughout the paper capital letters would represent level variables, while small letters would
represent per capita amounts.

3Note that when capital is fully employed [such that ρ > 0, or otherwise that the unit tax on
capital is not large enough to make the returns on capital negative] then the following equation holds
with an equality.

4Note that currently there is a single sector in each region (manufacturing); in a later stage a
second sector will be added to region 2 (natural resource).

5This notation will be used similarly throughout the paper.
6Such that:

lim
K→∞

FK(K,L) = 0 , lim
L→∞

FL(K,L) = 0 , lim
K→0

FK(K,L) =∞ , lim
L→0

FL(K,L) =∞
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f(k),7 we therefore have fk > 0, fkk < 0.

In each region, output can be transformed into private consumption good, X, or

pure public good, G, such that:

Xi +Gi = F (Ki, Li) (3)

Each region levies a per-unit, source-based, tax on capital (denoted as Ti) to fund

its expenditure on the public good. Therefore, the regional government’s budget

constraint is as follows:

Gi = TiKi (4)

The after-tax rate of return on capital is ρ; although determined endogenously (by

the free capital mobility condition8), ρ is taken as given by each region. Following

that, the pre-tax rate of return on capital would be ρ + Ti. There are many firms

(each being a price taker) that operate in each of the regions, and there is free entry

to the market. Capital markets are competitive such that profit maximization by

each firm yields:9

fki
(ki) = ρ+ Ti (5)

Also, the free entry condition yields:10

wi = f(ki)− fki
ki (6)

7Given the constant returns to scale property of F (·):

F (K,L)
L

= f(k)

8Capital moves freely and costlessly between regions so that ρ is equalized across the nation;
thus, the following free capital mobility condition must hold in equilibrium:

fk1 − T1 = fk2 − T2

Note that the reason for having each of the sides of this equation to be equal to ρ is explained by
equation (5).

9Profit of a representative firm in either of the regions is πi = Li[f(ki)−(ρ+Ti)ki−wi]. Therefore,
profit would be maximized at dπi/dki = 0.

10The free entry condition imposes π = 0, for all firms in the nation.
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Residents of this nation have identical preferences, represented by a strictly quasi-

concave utility function, U(X,G), with the following properties: UX , UG > 0,

UXX , UGG < 0, and UXG > 0;11 in addition, they own equal shares of the firms (in

their respective regions). Therefore, given that residents spend all their income on

private consumption, a representative resident’s budget constraint would be:

xi = f(ki)− (ρ+ Ti)ki + ρk∗ (7)

4 Analysis

This section is divided to two parts — the first looks into the social optimum anal-

ysis and goes through the national social planner’s decision making process, and

the second explores the Nash Equilibrium outcome, where each region acts non-

cooperatively, and a tax competition is modelled along Cournot-Nash lines. These

two parts derive the allocation of resources in the nation under cooperative and non-

cooperative means, respectively; in addition, each of these parts is further divided

into three sub-sections, as shall be seen later on.

A comparison is undertaken between the outcomes of the cooperative and non-

cooperative cases, to better understand the effects of a natural resource endowment

under the asymmetric tax competition and agglomeration economies environment,

when having two regions with different population sizes. Also, a numerical example

accompanies each of the sub-sections, to show how the model and its results work in

practice. A key assumption that holds in all parts of this section is that an interior

solution is feasible.12

11Note that X and G are assumed to be normal goods. Also, the following is assumed to hold:

lim
X→∞

UX(X,G) = 0 , lim
G→∞

UG(X,G) = 0 , lim
X→0

UX(X,G) =∞ , lim
G→0

UG(X,G) =∞

12So that whenever an interior solution is discussed, it is assumed that there are sufficient levels
of capital, taxes, and public goods in the nation, to make that solution feasible.
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4.1 Social Optimum Analysis

As mentioned earlier, this section will be divided to three sub-sections. The first sub-

section follows Bucovetsky’s formulation (1991), as presented in the former section;13

it represents the benchmark case. The following two sub-sections extend that theory.

The second sub-section replaces the pure public good with a manufacturing-related

infrastructure that brings about increasing returns to scale in output and therefore

shows the effects of agglomeration economies. Thereafter, the third and final sub-

section adds a natural resource sector to region 2, and explores its effects given the

former addition of infrastructure.

4.1.1 Benchmark Case

There exists a benevolent social planner in the nation. The objective of this social

planner is to find the levels of capital, public goods, and taxes that would maximize

the welfare of the nation’s residents,14 by considering the nation as a whole. In

effect, we try to derive the socially optimal division of capital in the nation. Using

the formulation presented in the former section, equation (3) can be re-written, as

follows:

Lixi = Lif(ki)−Gi (8)

Thus, the planner’s problem would be expressed as follows:

max
{k1,k2,G1,G2,x1,x2}

L1U(x1, G1) + L2U(x2, G2)

subject to:

L1x1 + L2x2 = L1f(k1) + L2f(k2)−G1 −G2

k∗ = S1k1 + S2k2

0 < k1, k2, G1, G2, x1, x2

13With the difference of having the regions take ρ as given, as opposed to them taking account of
their influence on ρ (as was done in Bucovetsky’s paper (1991)). Ignoring this terms of trade effect
simplifies the analysis and allows us to focus on agglomeration and natural resources more clearly.

14Note that in the problem to follow, determination of regional tax rates is implicitly done.
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The social planner would maximize the aggregate welfare of the nation’s residents

(with respect to the regional capital, public goods, and private consumption) sub-

ject to the national budget constraint (which implicitly assumes transfers are made

freely across the nation), the national per-capita capital constraint (which implicitly

assumes capital is traded freely and costlessly between the regions), as well as subject

to having strictly positive choice variables.15

Lemma 1. There exists a unique social optimum, at which k1 = k2, K1 > K2 (due

to L1 > L2), and Li(MRSGixi
) = 1.

Proof. See Appendix 1.

Therefore, in this benchmark case there would be a unique social optimum where the

social planner would divide the nation’s capital so that the regional per-capita capital

level would be equal across the nation, but the total capital level would be higher in

region 1 because of its higher population size. Also, at that optimum public goods will

be supplied efficiently in each of the regions; in fact, the widely recognized Samuelson

Condition (Samuelson 1954) would hold, as in each of the regions we would have the

following condition:16

Li∑
i=1

MRSGixi
= MRTGixi

= 1

Example - Benchmark Case A numerical example is accompanied to each of the

sections to follow. This would help to better illustrate the conclusions from the general

analysis. Note that the same functional forms are used in the numerical examples

15Note that both the national budget constraint and the national per-capita capital constraint
appear in equality in the problem. The former appears in equality due to the nation’s residents
experiencing local non-satiation in x and G. The latter appears in equality due to the assumption
that taxes are not large enough to have negative returns on capital, so that ρ > 0 and capital is fully
employed. Also, all choice variables are strictly positive because an interior solution is forced by the
properties of the production and utility functions. Lastly, note that in the problem G1 and G2 are
implicitly bounded and determined by the summation of the regional budget constraints, presented
previously.

16As was proved in Appendix 1, at the optimum we have Li(MRSGixi) = 1, which is equivalent
to the Samuelson Condition presented.
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throughout the paper to better emphasize the differences between the sections.

Let us assign the following functions and figures:17

U(xi, Gi) = (xi)
0.5(Gi)

0.5 , F (Ki, Li) = (Ki)
0.6(Li)

0.4

K∗ = 5, L = 5, such that L1 = 3, L2 = 2

Therefore, the problem to be solved by the planner would be as follows:18

max
{k1,k2,G1,G2,x1,x2}

3(x1)
0.5(G1)

0.5 + 2(x2)
0.5(G2)

0.5

subject to:

3x1 + 2x2 = 3(k1)
0.6 + 2(k2)

0.6 −G1 −G2

1 =
3

5
k1 +

2

5
k2

0 < k1, k2, G1, G2, x1, x2

L = 3(x1)
0.5(G1)

0.5+2(x2)
0.5(G2)

0.5 − λ(3x1+2x2−3(k1)
0.6−2(k2)

0.6+G1+G2) + δ(1−3

5
k1−

2

5
k2)

First-order conditions:

(i) Lk1 : 3λ0.6(k1)
−0.4 = δ3/5 ⇒ 0.6λ(k1)

−0.4 = δ/5

(ii) Lk2 : 2λ0.6(k2)
−0.4 = δ2/5 ⇒ 0.6λ(k2)

−0.4 = δ/5

(iii) LG1 : 3(x1)
0.5(G1)

−0.5/2− λ = 0

(iv) LG2 : (x2)
0.5(G2)

−0.5 − λ = 0

(v) Lx1 : 3(x1)
−0.5(G1)

0.5/2− 3λ = 0

(vi) Lx2 : (x2)
−0.5(G2)

0.5 − 2λ = 0

From FOCS (iii)–(vi), we get:

LiUGi

Uxi

= 1⇒

[
Li∑
i=1

MRSGixi
= 1

]
17Note that each follows its respective assumptions, as they were presented earlier.
18Given that all choice variables must be positive at the optimum, their Kuhn-Tucker multipliers

would be 0; thus, we ignore them when solving the problem.
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From FOCS (i) and (ii), we get: [(
k2

k1

)0.4

= 1

]

Thus, at the unique social optimum k1 = k2 = 1, K1 = 3 > K2 = 2 (by L1 = 3 >

L2 = 2), and
∑Li

i=1MRSGixi
= 1 — as expected.

In this benchmark case public goods are supplied efficiently in each of the regions,

and per-capita capital is equalized across the nation; thus, we get a symmetric out-

come (in per capita levels). This will be changed as we introduce the option of having

agglomeration economies, as we are about to see in the following sub-section.

4.1.2 Infrastructure Stage

In this sub-section, we depart from the basic formulation of the model, and extend the

theory to make a better resemblance to the situation seen in Canada, using concepts

from the New Economic Geography literature. The model is similar in every respect

to what has been presented previously, except for having the government investing in

manufacturing-related infrastructure,19 instead of in a pure public good.

Having no public goods, output in each region can now be transformed into pri-

vate consumption good, X, or manufacturing-related infrastructure, P , such that

X + P = Output. However, to account for the possible agglomeration effects (due

to the differences in population sizes), the infrastructure is added as a multiplica-

tive factor on the manufacturing production function,20 such that together with the

manufacturing production, output exhibits increasing returns to scale in P , L, and

K. To keep the setting general this multiplicative factor would be a function of P ,

denoted as I(P ), which is concave in P , twice differentiable,21 and follows the Inada

19Infrastructure is referred to as being manufacturing-related because at a later stage, when a
natural resource sector is added to region 2, this specification would be important.

20And thus does not enter into the residents’ utility function, as is the case in Zodrow and
Mieszkowski (1986).

21Such that:
IP > 0, IPP < 0
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Conditions.22 Thus, output in each region would be:23

I(Pi)F (Ki, Li) (9)

In addition, since now the government spends solely on infrastructure, the regional

government’s budget constraint becomes:

Pi = TiKi (10)

Also, equations (5)–(7) now become:24

I(Pi)fki
= ρ+ Ti (11)

wi = I(Pi)[f(ki)− fki
ki] (12)

xi = I(Pi)f(ki)− (ρ+ Ti)ki + ρk∗ (13)

The residents’ utility function remains the same, only now since there is no public good

agents get utility from private consumption only, and so a representative resident’s

utility function becomes U(x).25

Since residents get utility solely from private consumption, and because the social

planner (who still maintains the same objective as before) is able to equalize con-

sumption among all residents nationwide, the aim of the planner’s problem would,

thus, be to maximize the residents’ private consumption (X1 +X2).
26 Therefore, the

22Such that:
lim

P→∞
IP = 0 , lim

P→0
IP =∞

23Given the constant returns to scale property of F (·):

I(Pi)F (Ki, Li) = LiI(Pi)f(ki)

24All of which derived using the same reasoning presented previously.
25Having the same properties applied to it, as before.
26Given the current formulation, and due to having local non-satiation in x, we know that X1 +

X2 = L1I(P1)f(k1) + L2I(P2)f(k2)− P1 − P2.
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social planner’s problem would now be as follows:27

max
{k1,k2,P1,P2}

L1I(P1)f(k1) + L2I(P2)f(k2)− P1 − P2

subject to:

k∗ = S1k1 + S2k2

0 ≤ k1, k2, P1, P2

Here also the national budget constraint and the national per-capita capital con-

straint implicitly assume that, firstly, transfers are made freely across the nation, and

secondly, capital is traded freely and costlessly between the regions.

Lemma 2. The social planner’s problem may have two local, asymmetric, maxima

at either k1 > k2 or k2 > k1; however, the global maximum (viewed as the social

optimum in this case) would be at k1 > k2 ≥ 0, K1 > K2 ≥ 0 (due to L1 > L2),

P1 > P2 ≥ 0, and MBPi
= MCPi

(at regions where ki > 0 at the optimum).

Proof. See Appendix 2.

Therefore, this case emphasizes the effects of possible agglomeration economies. Un-

like the outcome in the benchmark case, here, due to the output having increasing

returns to scale in K,L, and P , the social planner could possibly direct most (or all)

of the nation’s capital into either of the regions; however, due to having larger popu-

lation in region 1 the social optimum would be where k1 > k2. Thus, we see that the

social planner takes advantage of the agglomeration occurring in region 1 (due to its

larger population size), by directing most (or all) of the nation’s resources there. This

is a key outcome, since as we shall see in a later stage, under non-cooperative behavior

27As reasoned previously, here also the national per-capita capital constraint appears in equality
due to the assumption that capital is fully employed. In addition, note that in the given problem
P1 and P2 are both implicitly bounded and determined by the summation of the regional budget
constraints, presented previously. Lastly, as opposed to the base case, here all choice variables are
non-negative, because as we shall see later, corner solutions are a possibility (due to the output
having increasing returns to scale in K, L, and P ).
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the nation does not benefit from the agglomeration economies, and the welfare level

of the residents of the federation is, consequently, sub-optimal.

This outcome presents another notable result; since there are no distortions, and

no tax or infrastructure competitions presented, manufacturing-related infrastructure

in each region reaches its efficiency level (up to where the marginal cost of producing

another unit of infrastructure equals the marginal benefit from that unit).28 Again,

we shall see at a later stage how this result is changed under non-cooperative envi-

ronment.

Example - Infrastructure Stage Let us assign the following functions and fig-

ures:29

I(Pi) = (Pi)
0.5 , F (Ki, Li) = (Ki)

0.6(Li)
0.4

K∗ = 5, L = 5, such that L1 = 3, L2 = 2

Note that now output exhibits increasing returns to scale (in P , L, and K). We first

consider the interior-solution case; thereafter, corner solutions will be considered and

compared to the interior case to determine the global maximum. The problem to be

solved would be as follows:30

max
{k1,k2,P1,P2}

Z(·) = 3(P1)
0.5(k1)

0.6 + 2(P2)
0.5(k2)

0.6 − P1 − P2

subject to:

1 =
3k1

5
+

2k2

5

0 < k1, k2, P1, P2

L = 3(P1)
0.5(k1)

0.6 + 2(P2)
0.5(k2)

0.6 − P1 − P2 + λ(1− 3

5
k1 −

2

5
k2)

28Only in regions that have a positive amount of capital at the optimum.
29Following the assumptions made earlier on the functional forms.
30Given that all choice variables must be positive in this case, their Kuhn-Tucker multipliers would

be 0; thus, we ignore them when solving the problem.
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First-order conditions:

(i) Lk1 : 3(P1)
0.50.6(k1)

−0.4 = λ3/5

(ii) Lk2 : 2(P2)
0.50.6(k2)

−0.4 = λ2/5

(iii) LP1 : 3(P1)
−0.5(k1)

0.6/2 = 1

(iv) LP2 : (P2)
−0.5(k2)

0.6 = 1

Solving through these FOCS we get that k1 = 0.2961, k2 = 2.056. Let us denote this

as point a. Thus, Z(a) = 2.8971.

Conjecture: This problem has two local maxima at the corners; one at k1 = 0, and

another at k2 = 0. The global maximum (and thus the social optimum) is found at

k2 = 0.31

Proof: From FOCS (iii) and (iv), we get P1 = 9(k1)
1.2/4, P2 = (k2)

1.2. Therefore,

substituting this to Z(·), we get:

Z(·) =
9(k1)

1.2

4
+ (k2)

1.2

∀ i, j (such that i 6= j, and i, j ∈ (1, 2)):

dZ(·)
dki

∣∣∣∣
ki=0

= 0
dZ(·)
dkj

∣∣∣∣
kj>0

> 0

Therefore, If we start at ki = 0 and transfer capital from region j to region i, social

welfare would be decreased. Thus, there are two local maxima at the corners; one at

k2 = 0 (denoted as point b), and another at k1 = 0 (denoted as point c). Substituting

these to Z(·), we get:32

Z(b) = 4.1534 > Z(c) = 3.003 > Z(a) = 2.8971

31In case output would not exhibit increasing returns to scale in K, L, and P , then the interior
case would, in fact, be the global maximum (and thus the social optimum); however, it is beyond
the scope of this paper to prove this.

32Note that the interior case (point a) is, in fact, a local minimum.

21



Therefore, social welfare is maximized at point b, where k2 = 0.33

�

This example emphasizes the effects of agglomeration economies. As opposed to

the benchmark case, here there are two local maxima, each representing a case of

agglomeration in either of the regions. Thus, in this extreme case the social planner

would prefer to place all of the nation’s capital in one of the regions; however, given

its higher population size, it would be most beneficial for him to do so in region 1.

4.1.3 Natural Resource Stage

Let us extend the theory further, and add a natural resource sector to region 2.

Again, this extension is adopted to make a better resemblance to what is currently

seen in Canada (although this can basically be applied to any federation with similar

environment).

This new natural resource sector attracts capital and labor (from within the

amounts allocated to region 2), is equally owned by the residents of region 2, and

uses a fixed factor, Q,34 (together with labor and capital) to produce output, through

the following production function:35

H(K2
2 , L

2
2, Q) (14)

Similarly to the production function in the manufacturing sector, we assume this one is

concave and exhibits constant returns to scale in K, L, and Q, is twice differentiable in

33Note that at this point MBP1 = MCP1 = 1, as expected.
34This fixed factor represents the natural resource endowment.
35Note that superscript ’1’ refers to the manufacturing sector, while superscript ’2’ refers to the

natural resource sector. This notation will be used similarly throughout the paper.
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all factors, and follows the Inada Conditions.36 Also, in its per capita form, h(k2
2, q),

37

we assume to have hk2
2
(k2

2, q) > 0, hk2
2k2

2
(k2

2, q) < 0, hq(k
2
2, q) > 0, and hqq(k

2
2, q) < 0.

Given this new production sector, labor is now divided between the two sectors

in region 2 as follows:

L1
2 + L2

2 = L2 (15)

Also, the updated capital-labor ratio in the nation is S1k1 +S1
2k

1
2 +S2

2k
2
2.38 Therefore,

the per-capita capital constraint in the nation becomes:39

S1k1 + S1
2k

1
2 + S2

2k
2
2 ≤ k∗ (16)

In this new sector the region collects tax on capital, denoted as T 2
2 ;40 however, it may

also collect a non-distorting lump sum tax on the natural resource rents, denoted as

z. For simplicity, we assume that z is chosen freely, subject to having the resource

rents as an upper bound. This may not be critical for the social optimum analysis,41

but will play an important part at a later stage (in the non-cooperative behavior

section).

There are many firms that operate in the natural resource sector. As before,

because each of them is a price taker, and since capital markets are competitive,

36Such that:

lim
K→∞

HK(K,L,Q) = 0 , lim
L→∞

HL(K,L,Q) = 0 , lim
K→0

HK(K,L,Q) =∞ , lim
L→0

HL(K,L,Q) =∞

Note that the same is not considered for Q because under the current formulation (which follows
throughout the remaining of the paper) it is considered an exogenously determined fixed factor.

37Due to having constant returns to scale in K, L, and Q, we have:

H(K2
2 , L

2
2, Q)

L2
2

= h(k2
2, q)

38As we have Si
2 = Li

2/L2, i ∈ (1, 2).
39Once again, assuming that capital is fully employed, this constraint holds in equality.
40Such that:

T 1
2 + T 2

2 = T2

41As it is expressed implicitly in the problem.
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profit maximization by firms yields:42

hk2
2
(k2

2, q) = ρ+ T 2
2 (17)

There is a free entry condition in the natural resource sector;43 thus, the wage given

at that sector is as follows:44

w2
2 = h(k2

2, q)− hk2
2
k2

2 − hqq (18)

Therefore, residents who are employed in the natural resource sector will now have

the following budget constraint:45

x2
2 = h(k2

2, q)− hk2
2
k2

2 − hqq + ρk∗ (19)

Once again, the benevolent social planner would like to maximize the welfare of the

residents; thus, he will find the optimal allocation of resources so that X1 +X2 would

be maximized. Since in each region output can either go to private consumption or

to manufacturing-related infrastructure,46 the following must hold:47

X1 +X2 = L1I(P1)f(k1) + L1
2I(P2)f(k1

2) + L2
2h(k2

2, q)− P1 − P2 (20)

Therefore, the social planner’s problem in this case would be as follows:

max
{k1,k1

2 ,k2
2 ,P1,P2,L1

2,L2
2}
L1I(P1)f(k1) + L1

2I(P2)f(k1
2) + L2

2h(k2
2, q)− P1 − P2

42Profit of a representative firm in the natural resource sector is π2
2 = L2

2[h(k2
2, q)− (ρ+ T 2

2 )k2
2 −

w2
2−hqq]; therefore, profit would be maximized at dπ2

2/dk
2
2 = 0, while firms take the price of capital,

labor, and natural resource as given. Also, note that equation (11), for the other sectors (and other
region), still holds.

43So that π2
2 = 0 for all firms in the natural resource sector of region 2.

44Note that equation (12), which represents the wage level at the other sectors (and other region),
still holds.

45Note that the budget constraint for residents who are employed in the manufacturing sector of
region 2, or for residents of region 1, remains to be equation (13).

46Note that we take the simplifying assumption that the only infrastructure that can be invested
in by the regions is manufacturing-related. This is not to say that the natural resource sector does
not use infrastructure; however, it simplifies the analysis to operate under the extreme case of having
only manufacturing-related infrastructure, whereas it would not change the qualitative results if we
assumed otherwise.

47This constraint holds in equality due to having local non-satiation in x.
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subject to:

k∗ = S1k1 + S1
2k

1
2 + S2

2k
2
2

L2 = L1
2 + L2

2

0 ≤ k1, k
1
2, k

2
2, P1, P2, L

1
2, L

2
2

As before, the national budget constraint allows for free transfers between the regions,

and the national per-capita capital constraint allows for free mobility of capital across

the nation. In addition, the labor constraint in region 2 allows for free labor mobility

within that region.48

Lemma 3. The social planner’s problem may have two local, asymmetric, maxima

at either k1 > k1
2 or k1

2 > k1; however, the global maximum (viewed as the social

optimum in this case) would be at k1 > k1
2 ≥ 0, K1 > K1

2 ≥ 0 (due to L1 > L1
2),

k2
2 > 0, P1 > P2 ≥ 0, and MBPi

= MCPi
(at regions that have positive capital in

their manufacturing sector).

Proof. See Appendix 3.

Therefore, we see the effects of adding a natural resource to the smaller region, from

the social planner’s perspective. In effect, not much is changed from the former case

with infrastructure and agglomeration economies. The natural resource sector will

attract some of the nation’s capital, and some of the region’s labor; however, since

the social planner would still take advantage of the agglomeration economies in the

larger region (due to its higher population size), it would still direct most (or even all,

when it comes to manufacturing-related capital) of the nation’s resources to region 1,

including rents accrued from the natural resource. The social planner would, in fact,

use the natural resource for the benefit of the nation as a whole, investing its profits

48Once again, it is assumed that capital is fully employed so that the national per-capita capital
constraint appears in equality; region 2’s labor constraint appears in equality as well, by definition.
Also, all choice variables are non-negative due to the possibility of having corner solutions. Lastly,
note that P1 and P2 are implicitly bounded in the problem by the summation of the regional budget
constraints, presented previously.

25



in the places that would make the best use of it; having a larger population, with

more influential agglomeration, makes region 1 that place. Again, as shall be seen

at a later stage, this outcome will be inherently changed under the non-cooperative

behavior environment, where the natural resource will largely benefit the region in

which it is located, instead of the entire nation.

As before, here also we see that under the cooperative case each region is supplied

with its efficient level of manufacturing-related infrastructure;49 again, under non-

cooperative behavior, where tax and infrastructure competitions take place, this will

be changed, as will be seen in the following section.

Example - Natural Resource Stage Let us assign the following functions and

figures:50

I(Pi) = (Pi)
0.5 , F (K1

i , L
1
i ) = (K1

i )0.6(L1
i )0.4 , H(K2

2 , L
2
2, Q) = (K2

2)0.6(L2
2)

0.2Q0.2

K∗ = 5, Q = 0.8368, L = 5, such that L1 = 3, L2 = 2

Note that output exhibits increasing returns to scale (in P , L, and K) in each of the

regions’ manufacturing sectors, as well as exhibits constant returns to scale in region

2’s natural resource sector, as required. As was done previously, we first consider the

interior-solution case; thereafter, corner solutions will be considered and compared to

the interior case to determine the global maximum. The problem to be solved would

be as follows:51

max
{k1,k1

2 ,k2
2 ,P1,P2,L1

2,L2
2}
Z(·) = 3(P1)

0.5(k1)
0.6 + L1

2(P2)
0.5(k1

2)0.6 + L2
2(k

2
2)0.6q0.2 − P1 − P2

49As long as it has positive amounts of capital in its manufacturing sector.
50Following from the previous example, in addition to adding the natural resource sector. Also

note that Q was chosen so that eventually we get q = 1.
51Given that all choice variables must be positive in this case, their Kuhn-Tucker multipliers would

be 0; thus, we ignore them when solving the problem.
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subject to:

1 =
3k1

5
+
k1

2L
1
2

5
+
k2

2L
2
2

5

2 = L1
2 + L2

2

0 < k1, k2, P1, P2

L = 3(P1)
0.5(k1)

0.6 +L1
2(P2)

0.5(k1
2)0.6 +L2

2(k
2
2)0.6q0.2 − P1 − P2 + λ(1− 3

5
k1 − L1

2

5
k1

2 −
L2

2

5
k2

2) + δ(2− L1
2 − L2

2)

First-order conditions:

(i) Lk1 : 3(P1)
0.50.6(k1)

−0.4 = λ3/5

(ii) Lk1
2

: L1
2(P2)

0.50.6(k1
2)−0.4 = (λL1

2)/5

(iii) Lk2
2

: L2
20.6(k2

2)−0.4q0.2 = (λL2
2)/5

(iv) LP1 : 3(P1)
−0.5(k1)

0.6/2 = 1

(v) LP2 : L1
2(P2)

−0.5(k1
2)0.6/2 = 1

(vi) LL1
2

: (P2)
0.5(k1

2)0.6 − (λk1
2)/5 = δ

(vii) LL2
2

: (k2
2)0.6q0.2 − (λk2

2)/5 = δ

Solving through these FOCS we get that k1 = 0.021627, k1
2 = k2

2 = 2.4676,

L1
2 = 1.1632, L2

2 = 0.8368, q = 1. Let us denote this as point a. Thus, Z(a) = 2.4613.

Conjecture: This problem has two local maxima at the corners; one at k1 = 0, and

another at k1
2 = 0. k2

2 would have an interior solution at each of the points. The

global maximum (and thus the social optimum) is found at k1
2 = 0.52

Proof: From FOCS (iv) and (v), we get P1 = 9(k1)
1.2/4, P2 = (L1

2)
2(k1

2)1.2/4. There-

fore, plugging this to Z(·), we get:

Z(·) =
9(k1)

1.2

4
+

(L1
2)

2(k1
2)1.2

4
+ L2

2(k
2
2)0.6q0.2

52As before, in case output in the manufacturing sectors in each of the regions would not exhibit
increasing returns to scale in K, L, and P , then the interior case would, in fact, be the global
maximum (and thus the social optimum); however, it is beyond the scope of this paper to prove
this.

27



∀ i, j (such that i 6= j, and i, j ∈ (1, 2)):

dZ(·)
dk1

i

∣∣∣∣
k1

i =0

= 0
dZ(·)
dk1

j

∣∣∣∣
k1

j >0

> 0

Also, ∀ k2
2:

dZ(·)
dk2

2

> 0

Therefore, If we start at k1
i = 0 and transfer capital from region j to region i, social

welfare would be decreased. Also, from the above condition we see that there must

be an interior solution in k2
2 at any optimum.53 Thus, there are two local maxima at

the corners; one at k1
2 = 0 (denoted as point b), and another at k1 = 0 (denoted as

point c). Plugging these to Z(·), we get:54

Z(b) = 4.5368 > Z(c) = 2.4657 > Z(a) = 2.4613

Therefore, social welfare is maximized at point b, where k1
2 = 0.55

�

This example emphasizes the effects of adding a natural resource sector to the smaller

region under the given setting. Given the agglomeration economies, we see how the

social planner directs most of the nation’s resources, including the natural resource

rents, to one of the regions (given the two local maxima); specifically, we see how the

planner puts the resource rents into their best use, by investing them completely in

region 1 (given the global maximum), where the agglomeration is most influential due

to its higher population size. In fact, in this extreme case, the planner supplies the

efficient level of capital to the new natural resource sector in region 2; however, he

directs all of the manufacturing-related capital to region 1, and consequently invests

in infrastructure in region 1 only. In effect, all of the resource rents go to region 1.

Let us now continue to the non-cooperative behavior part of the analysis, where

we shall see how some of the results derived in this part change.

53Due to the Inada Conditions imposed on H(·), which are being effective by not imposing in-
creasing returns to scale as in the manufacturing sectors.

54Note that as in the previous example, the interior case (point a) is in fact a local minimum.
55Note that at this point MBP1 = MCP1 = 1, as expected.
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4.2 Nash Equilibrium Analysis

In this part we have no central planner that looks for the benefit of the federation.

Here, the two regions act separately, where each aims to maximize the welfare of its

own residents. Under this non-cooperative setting, tax and infrastructure competi-

tions arise as each region sets its tax and infrastructure levels taking as given those

set by the other region. Consequently, each region best reacts to the actions of the

other, and a Nash Equilibrium outcome is pursued. Having no central planner, note

that under this non-cooperative setting natural resource rents accrue to the regional

government (although this would only become relevant once a natural resource is

added to the model), as opposed to what was seen under the former, cooperative,

setting.

As in the former section, here also we have three sub-sections, for each stage of

the model. In the first sub-section we return to the benchmark setting, having a pure

public good. In the second sub-section, manufacturing-related infrastructure replaces

the pure public good to take account of possible agglomeration economies. Thereafter,

in the third sub-section, a natural resource sector is added to region 2 (on top of the

infrastructure addition). In each of these cases we aim to better understand the non-

cooperative outcome, and compare it to the results we derived previously under the

cooperative setting.

4.2.1 Benchmark Case

Following the setting of the benchmark model, as was presented previously, let us

now look into the behavior of each of the regions, with an aim of characterizing

the Nash Equilibrium outcome that might arise. Note that in this case the regional

governments set Ti and Gi, so there is only tax competition (as opposed to the

following sub-sections, where the regions also choose infrastructure levels to attract

capital).

By equation (5) each region derives ki(Ti) so that it can vary ki by its choice of
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Ti. Totally differentiating equation (5) with respect to ki and Ti, we get:

dki

dTi

=
1

fkiki

< 0 (21)

By equation (4), we get the following:

dGi

dTi

= Liki + TiLi
dki

dTi

(22)

Also, by substituting equation (5) to equation (7), we get:

dxi

dTi

= fkiki
(k∗ − ki)

dki

dTi

− k∗ (23)

By substituting equation (21) to equation (23), we now get:

dxi

dTi

= −ki (24)

Each region aims to set the tax level that would maximize the welfare of its residents.

Keeping this objective in mind, each region would, thus, maximize the utility of

a representative resident, subject to the budget constraints of the region and the

resident. Therefore, in its simplest form the problem of each of the regions would be

expressed as follows:56

max
{Ti}

U(xi, Gi)

Let us denote UGi
/Uxi

by m(xi, Gi); thus, we get:57

dxi

dTi

+m(xi, Gi)
dGi

dTi

= 0 (25)

Substituting equations (22) and (24) to equation (25), and rearranging, we get:58

Lim(xi, Gi) =
1

1 + Ti

ki

dki

dTi

> 1 (26)

In equilibrium, equations (4), (21), and (26) (for each of the regions), as well as the

national per-capita capital constraint (k∗ = S1k1 +S2k2) and the free capital mobility

condition (fk1 − T1 = fk2 − T2) — must hold.

56Note that given the assumptions made on the utility function, as well as based on the setting
of the problem — there would be an interior solution to the given problem, in each of the regions,
such that Ti, ki, Gi, xi > 0. Therefore, corner solutions are not considered in this case (though this
may not apply to the equilibrium outcome).

57This was derived by totally differentiating U(xi, Gi) with respect to xi and Gi.
58Note that by equation (21) Lim(xi, Gi) > 1.
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Lemma 4. Under the benchmark setting, there exists a unique and symmetric (in

per capita terms) Nash Equilibrium outcome, in which k1 = k2, T1 = T2, K1 > K2,

and G1 > G2 (due to having L1 > L2).59

Proof. See Appendix 4.

Thus, we see that despite having different population sizes in the two regions, the

asymmetric tax competition that arises still brings about a unique and symmetric

outcome (in per capita terms). This will be changed once we introduce the possibility

of having agglomeration economies, in the next sub-section.

Also note that as opposed to the social optimum outcome under the benchmark

case, here (by equation (26), which must hold in equilibrium for each region) we get:

Li∑
i=1

MRSGixi
> MRTGixi

= 1

Thus, in this case the marginal rate of transformation between private and public

goods is smaller than the sum (across residents of the region) of the marginal rates of

substitution between the two, which means that the Samuelson Condition (Samuel-

son 1954) does not hold; this, in turn, implies that the pure public good is now

undersupplied in each of the regions, due to the non-cooperative behavior.

Moreover, following the standard definition of the Marginal Cost of Public Funds

(MCPF),60 presented by Browning (1976), we can assign result (26) such an inter-

pretation. Meaning, in equilibrium each of the regions will face excess costs when

raising an additional unit of revenue,61 caused by the distortionary taxes and the

tax competition. This further emphasizes the difference from the social optimum’s

59Albeit being insightful, we do not examine whether this Nash Equilibrium outcome is stable or
not; this goes beyond the scope of this paper. Note that this remark holds true for the remaining of
the paper.

60The definition refers to the MCPF as the social cost of financing an increment of public spending.
It divides that social cost to two main portions; the first being the reduction in private spending
(which equals to one), and the second being the change in excess burden required to raise the
additional unit of revenue, induced by the distortionary taxes.

61This excess cost amounts to 1

1+
Ti
ki

dki
dTi

− 1.
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benchmark case, where the MCPF was equal to one (so that there was no extra cost

for raising an additional unit of revenue, as taxes were not distortionary).62

Example - Benchmark Case Let us assign the following functions and figures:

U(xi, Gi) = (xi)
0.5(Gi)

0.5 , F (Ki, Li) = (Ki)
0.6(Li)

0.4

K∗ = 5, L = 5, such that L1 = 3, L2 = 2

Then, given the analysis presented in the previous part, the equilibrium conditions

would be as follows —

By equation (4):

G1 = 3T1k1 , G2 = 2T2k2

By equation (21):

dk1

dT1

=
1

−0.24(k1)−1.4
,

dk2

dT2

=
1

−0.24(k2)−1.4

By equation (26):

3x1

G1

=
1

1− T1(k1)0.4

0.24

,
2x2

G2

=
1

1− T2(k2)0.4

0.24

By the national per-capita capital constraint:

5 = 3k1 + 2k2

By the free capital mobility condition:

0.6(k1)
−0.4 − T1 = 0.6(k2)

−0.4 − T2

Solving through these conditions, we get a unique and symmetric (in per capita terms)

Nash Equilibrium outcome at k1 = k2 = 1, T1 = T2 = 0.185, K1 = 3 > K2 = 2, and

G1 = 0.555 > G2 = 0.37 — as expected.

Comparing this result to the one derived under the social optimum’s benchmark

case, we see that the nation’s capital will be divided between the two regions in the

62This result is presented in footnote (16).
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same manner; however, in the social optimum case we got that G1 +G2 = 2.5, while

in this Nash Equilibrium outcome the parallel result is G1 +G2 = 0.925. This follows

the previous explanation over the higher MCPF and undersupply of public goods

under the non-cooperative behavior. Indeed, we see how in this case the nation is

supplied with lower level of the public good, compared to what was supplied under

the social optimum case.

4.2.2 Infrastructure Stage

Continuing to the second stage of the model, the regional governments now invest

solely in manufacturing-related infrastructure (instead of in the pure public good).

The setting of the model follows that which was presented previously (in the second

sub-section of the social optimum analysis), only in this case we operate under a non-

cooperative environment where each regional government sets Ti and Pi to maximize

the welfare of its residents, so that tax and infrastructure competitions arise.

By equation (11) each region derives ki(Ti, Pi), so that it can vary ki by its choice

of Ti and Pi. Totally differentiating equation (11) with respect to ki, Ti, and Pi, we

get the following:63

dki

dTi

∣∣∣∣
Pi=c

=
1

I(Pi)fkiki

< 0 (27)

dki

dPi

∣∣∣∣
Ti=c

=
−IPi

fki

I(Pi)fkiki

> 0 (28)

Given that under the current setting there is no pure public good, and since the

regional governments can equalize private consumption across the residents in their

respective regions, each regional government would, thus, aim to maximize Xi, subject

to the regional budget constraint. Therefore, by equations (13) and (10), the regional

63Note that dki/dTi and dki/dPi are partial derivatives; in each, the second variable remains
constant. This notation holds for the remaining of the paper.
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problem would be as expressed as follows:64

max
{Ti,Pi}

Li[I(Pi)f(ki)− (ρ+ Ti)ki + ρk∗]

subject to:

Pi = TikiLi

Solving through this problem, we get:

L = Li[I(Pi)f(ki)− (ρ+ Ti)ki + ρk∗]− λ(Pi − TikiLi)

First order conditions:

LTi
: −Liki + λ(kiLi + TiLi

dki

dTi

) (29)

LPi
: LiIPi

f(ki)− λ(1− TiLi
dki

dPi

) (30)

Rearranging equation (29), we get:

λ =
1

1 + Ti

ki

dki

dTi

(31)

By dividing equation (29) by equation (30) and rearranging, we get the following

result:

LiIPi
f(ki) =

1− TiLi
dki

dPi

1 + Ti

ki

dki

dTi

(32)

Both equations, (31) and (32), must hold in equilibrium for each of the regions. To

interpret these results — equation (31) is assigned a standard MCPF interpretation

(Browning 1976). The shadow price of government revenue (λ) is equal to the social

cost of financing an incremental unit of infrastructure. Given result (27), we can

conclude that this social cost is higher than one (or in other words, higher than the

reduction in private spending); thus, as was seen in the benchmark case, here also the

64Note that given the assumptions made on the production and infrastructure functions, as well
as based on the setting of the problem — there would be an interior solution to the given problem,
in each of the regions, such that ki, Pi, Ti > 0. Therefore, corner solutions are not considered in this
case (though this may not apply to the equilibrium outcome). Also, note that the regional budget
constraint appears in equality because we have IPi > 0.
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distortionary taxes and the tax competition setting bring about higher social costs

for financing an additional unit of infrastructure.65

Equation (32) expresses the relationship between MCPi
and MBPi

. In the social

optimum cases (in the stages that had infrastructure) we realized that efficiency im-

plies having the two equal. In this case, we see how the non-cooperative environment

prevents the two regions from reaching efficiency in that sense. For that, we need to

follow Zodrow and Mieszkowski’s Stability Condition (1986).

Let us assume that the marginal cost of diverting a unit of output to infrastructure

(which is equal to unity) is greater than the associated increase in output due to

an increase in the marginal productivity of capital. This assumption ensures that

raising taxes will drive out capital. This happens because raising taxes increases

the marginal productivity of capital (through the increase in infrastructure), which

increases output; however, since the cost of adding infrastructure is greater than this

associated increase in output, higher taxes will, in fact, drive capital away rather than

the opposite. This, in turn, ensures that the model is stable (because otherwise taxes

would always be raised by the two regions). That said, the Stability Condition would

be as follows:

1− LikiIPi
fki

> 0 (33)

Conjecture: Given the Stability Condition we get that in equilibrium MBPi
> 1 for

each of the regions.

Proof: Let us assume that MBPi
> 1, so that by equation (32) we have:

1− TiLi
dki

dPi

1 + Ti

ki

dki

dTi

> 1 ⇒ −Li
dki

dPi

>
1

ki

dki

dTi

⇒ −kiLi
dki

dPi

>
dki

dTi

Substituting equations (27) and (28) to this result, we get:

kiLiIPi
fki

dki

dTi

>
dki

dTi

Because dki/dTi < 0, we get:

1− kiLiIPi
fki

> 0

65This extra social cost amounts to λ− 1.
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This result is equivalent to equation (33).

�

Therefore, we see that unlike the outcome under the social optimum, in this case

we have MBPi
> MCPi

= 1 (in equilibrium), which means that infrastructure is

undersupplied in each of the regions.

In equilibrium, equations (10), (27), (28), (31), (32), and (33) (for each of the

regions), as well as the national per-capita capital constraint (k∗ = S1k1 + S2k2) and

the free capital mobility condition (I(P1)fk1 − T1 = I(P2)fk2 − T2) — must hold.

Lemma 5. In the infrastructure stage there exists no symmetric Nash Equilibrium

outcome in both per-capita capital and infrastructure levels.

Proof. In case we have k1 = k2 and P1 = P2 in equilibrium, then by the free capital

mobility condition, we must also have T1 = T2. However through equation (10),

having k1 = k2 and P1 = P2 means we must then have T2 > T1 in equilibrium.

Therefore, we can not have k1 = k2 and P1 = P2 in equilibrium.

�

Thus, we see that under non-cooperative environment, the addition of manufacturing-

related infrastructure that brings about possible agglomeration economies in one of

the regions, prevents the regions from reaching a symmetric equilibrium in both per-

capita capital and infrastructure. This, in turn, means that agglomeration would

indeed occur in any possible equilibrium outcome, as we are about to see.

Lemma 6. In the infrastructure stage there exist two possible Nash Equilibria out-

comes. The first has agglomeration in region 1 (such that k1 > k2, and P1 > P2), and

the second has agglomeration in region 2 (such that k2 > k1, and P2 > P1).

Proof. See Appendix 5.
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Therefore, similar to the social optimum result, here also the outcome implies that

there could be two possible cases of agglomeration, in either region 1 or region 2. The

main difference between these two results is that under the social optimum case the

planner could choose to reach the preferred optimum of agglomeration in region 1;

however, in this case, this is not controllable. The unwanted outcome of agglomeration

in region 2 is a viable possibility, as will be evident through the numerical example

to follow.

Example - Infrastructure Stage Let us assign the following functions and figures:

F (Ki, Li) = (Ki)
0.6(Li)

0.4 , I(Pi) = (Pi)
0.5

K∗ = 5, L = 5, such that L1 = 3, L2 = 2

Then, given the analysis presented in the previous part, the equilibrium conditions

would be as follows —

By equation (10):

P1 = 3T1k1 , P2 = 2T2k2

By equation (27):

dk1

dT1

=
1

−0.24(k1)−0.9(3T1)0.5
,

dk2

dT2

=
1

−0.24(k2)−0.9(2T2)0.5

By equation (28):

dk1

dP1

=
5

12T1

,
dk2

dP2

=
5

8T2

By equation (32):

(k1)
0.1

2(3T1)0.5
=

−0.25

1− (T1)0.5

(k1)0.10.24(3)0.5

,
(k2)

0.1

2(2T2)0.5
=

−0.25

1− (T2)0.5

(k2)0.10.24(2)0.5

By equation (33):

1− 0.9(k1)
0.6(P1)

−0.5 > 0 , 1− 0.6(k2)
0.6(P2)

−0.5 > 0

By the national per-capita capital constraint:

5 = 3k1 + 2k2
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By the free capital mobility condition:

0.6(k1)
−0.4(P1)

0.5 − T1 = 0.6(k2)
−0.4(P2)

0.5 − T2

Solving through these conditions, we get an asymmetric Nash Equilibrium outcome

at k2 = 1.992 > k1 = 0.339, T2 = 0.086 > T1 = 0.075, K2 = 5.976 > K1 = 1.695, and

P2 = 0.343 > P1 = 0.076.

This shows that the undesired outcome of having agglomeration in the smaller

region is indeed a possible result. Comparing this outcome to the one derived under

the social optimum’s infrastructure case, the difference is quite significant. While the

social planner would direct all of the nation’s capital to region 1 (such that k2 = 0),

the non-cooperative outcome (as seen above) not only lets region 2 hold positive

amounts of capital (such that k2 > 0), but in fact directs most of the nation’s stock

to it (such that k2 > k1 and K2 > K1).

In addition, we see how infrastructure is undersupplied across the nation, as was

conjectured previously. In the social optimum’s infrastructure case we had P1 +P2 =

2.8971, while in this Nash Equilibrium outcome we have P1 + P2 = 0.419, which is

lower. This shows some of the previously discussed effects of the distortionary taxes

and the tax competition setting.

Continuing to the following sub-section, we will see how adding a natural resource

to the smaller region worsens the situation as it makes it easier for region 2 to com-

pete for capital and infrastructure, and thus increases the probability of reaching the

undesired result of having agglomeration in that region.

4.2.3 Natural Resource Stage

Let us now add a natural resource sector to region 2. Again, this model follows

that which was presented previously (in the third sub-section of the social optimum

analysis), except for having a non-cooperative environment in this case, such that

each region sets its levels of taxes and infrastructure to maximize the welfare of its

residents, and natural resource rents accrue to the regional government instead of to a
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central planner. Once again, given the simultaneous movement, tax and infrastructure

competitions arise, which will have significant effects on the division of resources in

the nation.

Since in region 1 nothing has changed from the former section, all the analysis done

previously still holds for that region. Therefore, this section will focus its analysis

mainly on region 2 (up to the point where interpretation is given, so that the nation

as a whole is considered).

By equation (17) region 2 determines k2
2(T 2

2 , q), so that it can vary the level of

k2
2 by its choice of T 2

2 , L1
2, and L2

2. Because lump sum tax is levied on the natural

resource rents, region 2’s budget constraint would now be:

P2 = T 1
2L

1
2k

1
2 + T 2

2L
2
2k

2
2 + z (34)

Also, we allow for free mobility of labor between the two sectors in region 2, so

that in equilibrium marginal productivities are equal across the region, such that the

following holds:66

I(P2)[f(k1
2)− fk1

2
k1

2] = h(k2
2, q)− hk2

2
k2

2 − hqq (35)

Since region 2 can equalize private consumption across its residents, and because

we have no pure public good under this setting, then region 2’s government would

aim to maximize X2 subject to its regional budget constraint and the free labor

mobility condition. Given equations (13), (15), and (19), region 2’s problem would

be expressed as follows:67

max
{P2,T 1

2 ,T 2
2 ,L1

2,z}
L1

2[I(P2)f(k1
2)−(ρ+T 1

2 )k1
2]+(L2−L1

2)[h(k2
2, q)−(ρ+T 2

2 )k2
2−hqq]+L2ρk

∗−z

subject to:

P2 = T 1
2L

1
2k

1
2 + T 2

2 (L2 − L1
2)k

2
2 + z

I(P2)[f(k1
2)− fk1

2
k1

2] = h(k2
2, q)− hk2

2
k2

2 − hqq

66By equations (12) and (18).
67Note that equation (15) is substituted into the problem, instead of L2

2. Also note that the
comment made in footnote (64) is relevant to this problem as well.

39



Solving through this problem, we get:

L = L1
2[I(P2)f(k1

2)− (ρ+T 1
2 )k1

2]+ (L2−L1
2)[h(k2

2, q)− (ρ+T 2
2 )k2

2−hqq]+L2ρk
∗−z−

λ2(P2−T 1
2L

1
2k

1
2−T 2

2 (L2−L1
2)k

2
2−z)− δ(I(P2)[f(k1

2)−fk1
2
k1

2]−h(k2
2, q)+hk2

2
k2

2 +hqq)

First order conditions:

Lz : −1 + λ2 = 0 (36)

LP2 : L1
2IP2f(k1

2)− λ2(1− T 1
2L

1
2

dk1
2

dP2

)− δ(IP2f(k1
2)) = 0 (37)

LT 1
2

: −L1
2k

1
2 + λ2(L

1
2k

1
2 + T 1

2L
1
2

dk1
2

dT 1
2

) + δk1
2 = 0 (38)

LT 2
2

: −(L2 − L1
2)k

2
2 + λ2((L2 − L1

2)k
2
2 + T 2

2 (L2 − L1
2)
dk2

2

dT 2
2

)− δk2
2 = 0 (39)

LL1
2

: I(P2)[f(k1
2)− fk1

2
k1

2]− h(k2
2, q) + hk2

2
k2

2 + hqq + λ(T 1
2 k

1
2 − T 2

2 k
2
2) = 0 (40)

By substituting equation (36) to equation (38), we get:

δ = −

T 1
2L

1
2

dk1
2

dT 1
2

k1
2


Furthermore, by substituting equation (36) to equation (39), we get:

δ =

T 2
2 (L2 − L1

2)
dk2

2

dT 2
2

k2
2


Thus, because all choice variables are by definition non-negative, and since equations

(38) and (39) must hold in equilibrium simultaneously, then we have:

δ = 0 (41)

By result (41), equations (37)–(39) now become:

LP2 : L1
2IP2f(k1

2)− λ2(1− T 1
2L

1
2

dk1
2

dP2

) = 0 (42)

LT 1
2

: −L1
2k

1
2 + λ2(L

1
2k

1
2 + T 1

2L
1
2

dk1
2

dT 1
2

) = 0 (43)

LT 2
2

: −(L2 − L1
2)k

2
2 + λ2((L2 − L1

2)k
2
2 + T 2

2 (L2 − L1
2)
dk2

2

dT 2
2

) = 0 (44)
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Assuming that z is unrestricted so that lump sum tax can be levied on the natural

resource rents such that λ2 = 1,68 we have the following results from equations

(42)–(44):69

T 1
2 = T 2

2 = 0 (45)

L1
2IP2f(k1

2) = 1 (46)

Then, by equation (45), we get the following result from equation (40):

I(P2)[f(k1
2)− fk1

2
k1

2] = h(k2
2, q)− hk2

2
k2

2 − hqq (47)

Firstly, by result (47) we see that having free labor mobility within the region requires

that the marginal productivities in each of the sectors be equal, as was imposed

initially. Secondly, adopting the same interpretations presented previously, we see the

effects of having a natural resource in an extreme case where there is no restriction

on the amount of lump sum tax that can be levied on its rents. The shadow price

of region 2’s government revenue (λ2) is equal to one, as opposed to that of region

1, which is higher than one (by result (31), as was explained previously). In MCPF

terms, this means that in region 2 the social cost of financing an incremental unit of

infrastructure is equal to the reduction in private spending (which is equal to one), so

that the regional government bears no extra cost when financing infrastructure. This

happens because in this case region 2 faces no distortionary taxes; the profits from

the natural resource and the unrestricted lump sum tax levied on them do not affect

the residents’ decisions (as otherwise occurs under distortionary environment) so that

the regional government can, in fact, supply an efficient level of infrastructure. This is

seen by result (46); due to having MCPF2 = 1, we thus get that MBP2 = MCP2 = 1.

In region 1 the results remain as before. The MCPF is higher than one, the region

uses distortionary taxes (such that T1 > 0), and MBP1 > MCP1 so that infrastructure

68Note that the case where z is restricted is considered in the Extensions and Limitations section
of the paper.

69These results hold because we have λ2 = 1, dki
2/dT

i
2 < 0, Li

2 > 0. Also, note that results
(31)–(33) still hold for region 1, as before.
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in the region is undersupplied. Comparing this to the outcome in region 2, the effects

of adding a natural resource to the smaller region become clearer. Unlike the outcome

under the social optimum, here the natural resource rents stay within region 2, and

are used strictly for the development of that region.

In equilibrium, equations (10), (31), (32), and (33) hold for region 1, equations

(34), (36), (45), (46), and (47) hold for the natural resource sector in region 2, and

equations (27), and (28) hold for the manufacturing sectors in both regions. In

addition, the following two conditions must hold as well:70

k∗ = S1k1 + S1
2k

1
2 + S2

2k
2
2 (48)

hk2
2

= I(P1)fk1 − T1 = I(z)fk1
2

(49)

From this we see that having the natural resource in the smaller region lets it compete

aggressively in a tax competition setting, to the point where it does not need to impose

any capital tax to reach its efficient level of infrastructure. This is a key outcome,

because albeit being extreme (given that z is unrestricted in this case) it nevertheless

illustrates how having a natural resource under non-cooperative setting provides the

region with an advantage in the national competition over capital. Moreover, it

shows how a natural resource worsens the situation we reached in the previous case

(having only infrastructure, with no natural resource), as it significantly increases the

probability of reaching the unwanted outcome of having agglomeration in the smaller

region, in equilibrium.

Also, because we assume that z is chosen freely subject to having the resource

rents as an upper bound, and since the natural resource rents largely depend on the

size of the resource (as the resource rents are equal to L2
2hqq), we can conclude that

the higher Q is the higher would the upper bound on z be. Thus, if we assume that

region 2 takes full advantage of these rents, so that it sets z to be equal to its upper

bound, it would necessarily mean that a larger natural resource (or in other words, a

70The first being the national per-capita capital constraint, and the second being the free capital
mobility condition (note that by result (45), equation (34) becomes P2 = z).
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higher Q) entails a larger z.

Lemma 7. If z is set to be equal to its upper bound, the larger that upper bound would

be the more capital will region 2 attract, to the point where if z ≥ P1 then k1
2 > k1.

Proof. As presented in the proof in Appendix 5, by equation (32) we get T1(k1), so

that dk1/dT1 > 0. That said, in equilibrium the free capital mobility condition must

hold, so that we have the following:

I(P1)fk1 > I(z)fk1
2

Thus, if z ≥ P1 then by the above and because fk1
i k1

i
< 0 ∀k1

i , we must have k1
2 > k1

in equilibrium. Also, we see that as z →∞, then k1 → 0.

�

Therefore, in this case where we have z being unrestricted, we see how adding a large

enough natural resource to the smaller region brings about an undesired outcome.

Not only do the resource rents not get redistributed more efficiently across the nation

(as occurred in the social optimum case), but they in fact cause agglomeration in the

smaller region, having higher levels of infrastructure and capital in that region than

in the larger one.

Example - Natural Resource Stage In this case two examples are presented.

The two have an identical setting, with the sole difference of having a different size of

a natural resource (hence, a different size of Q). This will emphasize the propositions

that have been raised in the previous discussion.

Example 1 - A Small Natural Resource

Let us assign the following functions and figures:

F (K1
i , L

1
i ) = (K1

i )0.6(L1
i )0.4 , I(Pi) = (Pi)

0.5 , H(K2
2 , L

2
2, Q) = (K2

2)0.6(L2
2)

0.2Q0.2
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K∗ = 10, Q = 3.7, L = 10, such that L1 = 9, L2 = 1

Then, given the analysis presented in the previous part, the equilibrium conditions

would be as follows —

By equations (10) and (34):

P1 = 9T1k1 , P2 = z

By equations (27) and (28):

dk1

dT1

=
1

−0.24(k1)−0.9(9T1)0.5
,

dk1

dP1

=
5

36T1

By equations (32) and (46):

3(k1)
0.1

2(T1)0.5
=

−0.25

1− (T1)0.5

(k1)0.10.72

, L1
2(k

1
2)0.6(2z0.5)−1 = 1

By equation (47):

0.4(P2)
0.5(k1

2)0.6 = 0.2(k2
2)0.6q0.2

By equation (48):

10 = 9k1 + S1
2k

1
2 + S2

2k
2
2

By equation (49):

0.6(k1)
−0.4(P1)

0.5 − T1 = 0.6(k1
2)−0.4(P2)

0.5 = 0.6(k2
2)−0.4q0.2

Solving through these conditions, we get an asymmetric Nash Equilibrium outcome

at k1 = 1.153847 > k2
2 = 0.45 > k1

2 = 0.225, T1 = 0.689 > T 1
2 = T 2

2 = 0, and

P1 = 7.15 > P2 = z = 0.574.

Therefore, we see from these results that agglomeration occurs in region 1, as

under the current setting region 1 attracts more capital than the two sectors of region-

2 combined, and it has a higher level of infrastructure. Let us now look into the case

of having a larger natural resource.
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Example 2 - A Large Natural Resource

This example uses the same setting presented in the previous case, only now we have

a larger natural resource so that Q = 86.

The equilibrium conditions remain as before; solving them through with the

updated size of the natural resource we get an asymmetric Nash Equilibrium out-

come at k2
2 = 2.45 > k1

2 = 1.225 > k1 = 1.2, T1 = 0.7 > T 1
2 = T 2

2 = 0, and

P1 = 7.5 > P2 = z = 2.3.

Thus, we see the effects of having a larger natural resource. In this case, the

per-capita capital is higher in the smaller region; specifically, in per capita terms

the manufacturing sector in region 2 now attracts more capital than that of region-

1. The infrastructure level remains higher in region 1; however, comparing this to

example one, we see that the infrastructure level in region 2 has increased more than

four times, while that of region 1 remained approximately the same. The result is

clear — a larger natural resource creates agglomeration in the smaller region, as

was conjectured previously. In this case the agglomeration is only partial; however,

choosing yet a higher Q would continue this trend, and would present higher levels

of per-capita capital and infrastructure in region 2 compared to those in region 1.

Through this example we see how the natural resource affects the tax and infras-

tructure competitions. Adding the natural resource to region 2 lets it compete more

aggressively against region 1 on the national capital and infrastructure, and thus in-

creases the probability of achieving the undesired outcome of having agglomeration

in the smaller region (as occurred in example two).

5 Extensions and Limitations

This paper presented a simple model of asymmetric tax competition, with an addition

of a natural resource. Given the complexity of the subject matter, there are numerous

extensions and refinements that are worth noting. Some of these extensions were

considered and eventually left out of the model due to reasons of length and time
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constraints; however, note that the final insights and conclusions would not have

changed qualitatively even if these extensions were to be included.

In the model we assume that labor is fixed in each of the regions; this simplify-

ing assumption contributed much to the analysis, yet it was largely unrealistic, as

in Canada as well as in other western multi-regional federations, labor mobility and

population migration is free and unconstrained. Therefore, an important extension

to consider is having free labor mobility between the regions. More specifically, one

could consider such mobility with an attachment-to-home component where residents

get utility from being close to home (and thus migrate only in case the utility gained

elsewhere surpasses that which gained at home with the attachment-to-home compo-

nent included), as was presented by Mansoorian and Myers (1993).

Another potential extension is the addition of multiple periods to the model. Such

an extension, as was initially presented in a similar context by Hotelling (1931), could

provide insights on several important issues that concern the main topic of this paper.

Namely, how does the natural resource industry divert resources from other sectors

across time? This is especially interesting when having other sectors that are more

innovative. Furthermore, in a case where the natural resource is exhaustible (as seen

in Canada), then should resource rents be saved, and if so, how? This important topic

of intergenerational equity relates strongly to the discussion presented in this paper,

as the usage of the rents concerns such issues as capital tax competition, investments

in infrastructure, and fiscal competition. These rents may also affect other Macro-

related factors such as, for instance, the real exchange rate, which in turn gives rise

to the Resource Curse phenomena (Sachs and Warner 2001) where it is conjectured

that natural resources impede economic growth. Looking into this in a multi-regional

setting may provide new and interesting insights on the effects of adding a natural

resource to a small region, especially in the context of possible agglomerations.

This paper follows Zodrow and Mieszkowski’s work (1986) quite closely; that said,

there are actually two additional exercises considered by Zodrow and Mieszkowski in
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their paper which may add further insights to our case, if applied to the current

setting. The first exercise goes through the case where z (the lump sum tax on the

natural resource rents) is restricted,71 so that the smaller region needs to use some

distortionary taxes. In that case we see that despite having the natural resource,

region 2 bears higher social costs when financing infrastructure, so that MCPF2 > 1;

in addition, MBP2 > MCP2 such that infrastructure is undersupplied, in equilibrium.

It would be interesting to look into this case, and see how z affects the equilibrium

outcome, and whether it can still cause agglomeration in the smaller region, when

it is restricted. The second exercise combines the benchmark case with that of the

infrastructure stage; under that setting the government invests in both infrastructure

and a pure public good. Going through this analysis could show more clearly how

adding a natural resource affects the supply of public goods (in addition to the effects

on tax and infrastructure competitions as well as on possible agglomeration effects);

also, it may bring new insights on the composition of public spending (between infras-

tructure and the pure public good) as was done under similar setting (only without

a natural resource) by Keen and Marchand (1997).

Finally, another important extension to consider is the role of the government in

correcting the inefficiency resulting by the natural resource. As was seen in the anal-

ysis part, under non-cooperative environment, the natural resource rents are invested

in region 2, so that agglomeration may occur in the smaller region, although efficiency

requires that these rents, as well as most of the nation’s capital and infrastructure,

be addressed to the more populated jurisdiction. Thus, the government has room to

intervene. Boadway and Flatters (1982) suggest the option of equalization payments

as a viable correction mechanism. Hindriks et al. (2008) show that such a mechanism

is beneficial, when having infrastructure competition between two heterogeneous re-

gions, both for the federation and for each of the regions. The equalization payments

mechanism is, in fact, used in-practice in several federations, including Canada. In

71Note that in Zodrow and Mieszkowski (1986) there was no natural resource considered, and so
the parallel exercise in their paper had the head tax constrained.
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the context of this paper, such a correction can be made by making transfer payments

between the regions. In an extreme case, such a transfer can reach the amount of the

resource rents, so that the effect of adding a natural resource to the smaller region is

completely reversed. Theoretically, it would be possible to reach efficiency this way,

despite the non-cooperative behavior. Indeed, this could be an interesting exercise to

investigate, as it provides a potential solution to the problem raised in this paper.

6 Conclusions

This theoretical paper touched on a vital issue in the Canadian economy. Having

a resource-rich economy, Canada faces the question of whether it makes the best

economic use of these resources by letting the regions to fully benefit from the natural

resources located in their jurisdictions.

Although being a broad question that addresses many topics, we try in this paper

to take one perspective of this issue to better assess the current situation. That

perspective is the welfare level of the residents of the federation. In a case where

the natural resource is located in a smaller region (which is less populated), will the

nation benefit from taking advantage of the possible agglomeration economies in the

more populated region by investing the resource rents there?

To be able to look into that more carefully, we tried to mimic Alberta and On-

tario’s case by adopting Zodrow and Mieszkowski’s (1986) capital tax competition

model (for the two-region case), in conjunction with Bucovetsky’s (1991) addition of

asymmetry in labor. The standard asymmetric tax competition theory was extended

by considering asymmetry in infrastructure levels (thus, adopting concepts from the

New Economic Geography literature), and at a later stage by adding a natural re-

source sector to the smaller region. Two routes were then investigated, one which

followed the social optimum, and another that followed a more realistic setting of

non-cooperative behavior. Each route was sub-divided to three stages, to be able to

better realize the effects of possible agglomeration economies and the addition of a
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natural resource to that.

Although each stage of the model provided its own insights, it is the final results

that are most interesting. Under the social optimum analysis we saw that the na-

tion’s welfare is maximized when we have agglomeration in the more populated region

(directing most, if not all, of the nation’s manufacturing-related capital to region 1),

and also when the natural resource rents do not fully stay in region 2, but are in fact

invested in the development of the larger region. This is in contrast, and in complete

opposition, to the outcome derived under the non-cooperative behavior analysis. In

that case we saw that the natural resource rents do not reach region 1; they stay in

the smaller region, and are inefficiently invested there. In addition, we realized that

the natural resource gives region 2 an advantage in the national tax and infrastructure

competitions, to the point where having a large enough natural resource may in fact

create agglomeration in the less populated region, which is, in efficiency and welfare

terms, an undesired outcome.

Indeed, we see this outcome emerging in practice. According to Statistics Canada,

Alberta currently has the lowest personal and business tax rates in Canada. In 2008

its corporate income tax general rate was set at 10%, making it the lowest in the

nation; in addition, it had no capital, employer payroll, or sales tax at all. For

comparison, in the parallel period in Ontario the corporate income tax general rate

was set at 14%, and its capital, employer payroll, and sales tax rates were set at

0.225%, 1.95%, and 8% respectively. Thus, we see the outcome of the tax competition

between the two regions. Also, we see clear indicators for emerging agglomeration

economies in Alberta. Firstly, in recent years Alberta consistently had the highest

investment per capita among the provinces; in 2008, for instance, its investment per

capita level was more than double the national average. Secondly, its manufacturing

base is rapidly growing; in the period between 2007 and 2008 (being a representative

period for recent years) Alberta’s manufacturing shipments increased by 6.9%, which

was the highest increase in the nation. Thirdly, Alberta’s annual GDP growth rate

49



has been the highest in Canada for the past two decades. In addition, its GDP

per capita is consistently the highest in the country as well; in fact, in 2008 it was

approximately 60% above the Canadian average. All of this to show that what our

simple model predicted is actually occurring (or perhaps in the process of occurring)

in practice. Nonetheless, we can not completely attribute the above figures to the

abundance of Alberta’s natural resources; however, given that the energy sector alone

is responsible for more than third of Alberta’s total GDP (and since Ontario has

limited natural resources), the link between these economic indicators and Alberta’s

resources becomes clear, and even necessary.

In conclusion, this paper showed how the current situation brings about an in-

efficiency that negatively affects the Canadian economy (and could potentially do

the same in any other multi-regional federations), and which merits governmental

intervention (possibly in the form of equalization payments) for correcting that. Nev-

ertheless, this topic is far from being exhausted. Several main questions remain open

for further study, some of which were raised in the previous section.
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A Appendix 1

Proof of Lemma 1. Let us assume that m = (k1, k2, G1, G2, x1, x2) is the social opti-
mum point, where k1 = k2, Li(MRSGixi

) = 1, and G1, G2, x1, x2, k1, k2 > 0.

The problem to be solved is as follows -

max
{k1,k2,G1,G2,x1,x2}

Z(·) = L1U(x1, G1) + L2U(x2, G2)

subject to:

L1x1 + L2x2 = L1f(k1) + L2f(k2)−G1 −G2

k∗ = S1k1 + S2k2

0 < k1, k2, G1, G2, x1, x2

Stage 1 - Z(·) is continuous and defined over a closed and bounded set
S ∈ Rn. Therefore, by the Extreme-Value Theorem: ∃ a maximum
a = (k1, k2, G1, G2, x1, x2), in S, s.t: Z(x) ≤ Z(a) ∀ x ∈ S. Since Z(·) is continuous
and differentiable, a would be either a stationary or a boundary point, and would
thus be located by the Kuhn Tucker method.

Stage 2 - Showing that point m is a potential maximum.

From the above problem, it is possible to derive the lagrangian expression,
as follows:

L = L1U(x1, G1) + L2U(x2, G2) − λ(L1x1 + L2x2 − L1f(k1) − L2f(k2) + G1 +
G2) + δ(k∗− S1k1− S2k2) + α(k1) + β(k2) + γ(G1) + ς(G2) + ϕ(x1) + ξ(x2)

FOCS:
(1) Lk1 : λL1fk1 − δS1 + α = 0
(2) Lk2 : λL2fk2 − δS2 + β = 0
(3) LG1 : L1UG − λ+ γ = 0
(4) LG2 : L2UG − λ+ ς = 0
(5) Lx1 : L1Ux − λL1 + ϕ = 0
(6) Lx2 : L2Ux − λL2 + ξ = 0

Kuhn-Tucker Conditions:
(7) λ(L1x1 + L2x2 − L1f(k1)− L2f(k2) +G1 +G2) = 0
(8) δ(S1k1 + S2k2 − k∗) = 0
(9) α(−k1) = 0
(10) β(−k2) = 0
(11) γ(−G1) = 0
(12) ς(−G2) = 0
(13) ϕ(−x1) = 0
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(14) ξ(−x2) = 0

The point - (k1 = k2, G1, G2, x1, x2, λ, δ > 0, α, β, γ, ς, ϕ, ξ = 0) follows conditions
(1)–(14),72 as well as all constraints in S. Therefore, by Stage 1 and the above, point
m is a potential maximum of Z(·).

Stage 3 - Showing that point m is the maximum of Z(·), and is in fact the only
maximum.

Proof by contradiction:
Let us assume that ∃ a maximum m’ 6= m s.t Z(x) ≤ Z(m’) ∀ x ∈ S.
This would mean that there could be two options:

Option 1:

In m’ ∃ k′
1 and k

′
2, s.t: k

′
2 > k

′
1.

Then, since (fk1/fk2) 6= 1, then FOCS (1) and (2) can not hold together.
∴ [ Option 1 is not a maximum of Z(·) ] (I)

Option 2:

In m’ ∃ k′
1 and k

′
2, s.t: k

′
2 < k

′
1.

Then, since (fk1/fk2) 6= 1, then FOCS (1) and (2) can not hold together.
∴ [ Option 2 is not a maximum of Z(·) ] (II)

⇓

By (I) and (II), m’ is not the maximum of Z(·).
∴ The initial supposition is contradicted.
∴ Point m is the single, and thus global, maximum of Z(·).

�

72Also note that at this point Li(MRSGixi
) = 1 holds in each of the regions by FOCS (3)–(6),

which is what is assumed to have in m.
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B Appendix 2

Proof of Lemma 2. Let us assume that m = (k1, k2, P1, P2) is the social optimum
point, where k1 > k2, P1 > P2, MBPi

= 1,73 and P1, P2, k1, k2 ≥ 0.

The problem to be solved is as follows -

max
{k1,k2,P1,P2}

Z(·) = L1I(P1)f(k1) + L2I(P2)f(k2)− P1 − P2

subject to:

k∗ = S1k1 + S2k2

0 ≤ k1, k2, P1, P2

Stage 1 - Z(·) is continuous and defined over a closed and bounded set
S ∈ Rn. Therefore, by the Extreme-Value Theorem: ∃ a maximum a = (k1, k2, P1, P2),
in S, s.t: Z(x) ≤ Z(a) ∀ x ∈ S. Since Z(·) is continuous and differentiable, a would
be either a stationary or a boundary point, and would thus be located by the Kuhn
Tucker method.

Stage 2 - Showing that point m is a potential maximum.

From the above problem, it is possible to derive the lagrangian expression,
as follows:

L = L1I(P1)f(k1) + L2I(P2)f(k2) − P1 − P2 − λ(S1k1 + S2k2 − k∗) + α(k1) +
β(k2) + γ(P1) + δ(P2)

FOCS:
(1) Lk1 : L1I(P1)fk1 − λS1 + α = 0
(2) Lk2 : L2I(P2)fk2 − λS2 + β = 0
(3) LP1 : L1f(k1)IP1 − 1 + γ = 0
(4) LP2 : L2f(k2)IP2 − 1 + δ = 0

Kuhn-Tucker Conditions:
(5) λ(S1k1 + S2k2 − k∗) = 0
(6) α(−k1) = 0
(7) β(−k2) = 0
(8) γ(−P1) = 0
(9) δ(−P2) = 0

Given the constraints of the problem (having interior or corner solutions, and capital
fully employed), at the optimum we must have:

α, β, γ, δ ≥ 0 and λ > 0

73For regions with (ki > 0) ∈ m.
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Therefore, the FOCS become:
(10) Lk1 : I(P1)fk1 = (λ− α)/L
(11) Lk2 : I(P2)fk2 = (λ− β)/L
(12) LP1 : IP1 = (1− γ)/F (K1, L1)
(13) LP2 : IP2 = (1− δ)/F (K2, L2)

In case we have an interior solution (so that α, β, γ, δ = 0), by FOCS (12)–(13)
we get Pi(F (Ki, Li)) for i ∈ (1, 2). For convenience, let us denote Pi(F (Ki, Li)) by
ai. In case we have a corner solution in k2 (so that k2 = 0 and β > 0), we get the
same, only additionally we impose λ = β.

The point - (k1 > k2 (so that k1 > 0, k2 ≥ 0), P1 = a1 > P2 = a2 (so that
a1 > 0, a2 ≥ 0), λ > 0, α, β, γ, δ ≥ 0) follows conditions (1)–(13),74 as well as all
constraints in S. Therefore, by Stage 1 and the above, point m is a potential maxi-
mum of Z(·).

Stage 3 - Showing that point m is the maximum of Z(·).

Proof by contradiction:
Let us assume that ∃ a maximum m’ 6= m s.t Z(x) ≤ Z(m’) ∀ x ∈ S.
This would mean that there could be two options:

Option 1:

In m’ ∃ k′
1 and k

′
2, s.t: k

′
2 = k

′
1 (and k

′
1, k

′
2 > 0, since otherwise the value function

would be valued at 0, which is certainly not the maximum).
∴ by FOCS (10)–(11): I(P1)/I(P2) 6= 1. ⇒ FOCS (10)–(11) can not hold together.
∴ [ Option 1 is not a maximum of Z(·) ] (I)

Option 2:

In m’ ∃ k′
1 and k

′
2, s.t: k

′
2 > k

′
1.

Case 1: Conditions (1)–(13) do not hold.
∴ [ Option 2 is not a maximum of Z(·) ] (II)

Case 2: The point - (k
′
2 > k

′
1 (so that k

′
2 > 0, k

′
1 ≥ 0), P

′
2 = a

′
2 > P

′
1 = a

′
1 (so

that a
′
2 > 0, a

′
1 ≥ 0), λ > 0, α, β, γ, δ ≥ 0) follows conditions (1)–(13), as well as all

constraints in S. Thus, m’ is a potential maximum of Z(·).

Conjecture 1: In an interior solution Z(m)− Z(m’) > 0

74Also note that at this point MBPi = 1 (for regions with (ki > 0) ∈ m) by FOCS (12)–(13),
which is what is assumed to have in m.
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Proof 1: From FOCs (10)–(11), we get:

I(a1)fk1

I(a2)fk2

= 1

This condition must hold at the optimum. By this condition, and since f(·) and
fk are continuous, differentiable and monotonous, fk > 0, fkk < 0, and the Inada
conditions hold - then it must mean, by S1k1 + S2k2 = k∗, that:
(k1 , k2) ∈ m and (k

′
1 , k

′
2) ∈ m’ are each unique.

Also, by definition: k1 > k
′
1 and k

′
2 > k2 ⇒ K1 > K

′
1 and K

′
2 > K2; therefore,

by S1k1 + S2k2 = k∗ and the former condition: (K1 −K
′
1) = (K

′
2 −K2).

Plugging m and m’ to Z(·), we get:
Z(m) = I(a1)F (K1, L1) + I(a2)F (K2, L2)− a1 − a2

Z(m’) = I(a
′
1)F (K

′
1, L

′
1) + I(a

′
2)F (K

′
2, L

′
2)− a

′
1 − a

′
2

Let:
A = I(a1)F (K1, L1) , B = I(a2)F (K2, L2) , C = a1 , D = a2

E = I(a
′
1)F (K

′
1, L

′
1) , F = I(a

′
2)F (K

′
2, L

′
2) , G = a

′
1 , H = a

′
2

Therefore:
Z(m)− Z(m’) = (A− E) + (B − F ) + (C −G) + (D −H)

By L1 > L2, and since we have (K1 −K
′
1) = (K

′
2 −K2), we get:

[(F (K1, L1)− F (K
′
1, L1)) > (F (K

′
2, L2)− F (K2, L2))]

Therefore:
(A− E) + (B − F ) > 0
(C −G) + (D −H) > 0

Thus, we have:
Z(m)− Z(m’) > 0 , QED.

∴ [ Option 2 is not a maximum of Z(·) ] (III)

Conjecture 2: In a corner solution Z(m)− Z(m’) > 0

Proof 2: In a corner solution we have -
Z(m) = I(a1)F (K∗, L1)− a1

Z(m’) = I(a
′
2)F (K∗, L2)− a

′
2

Since L1 > L2 ⇒ F (K∗, L1) > F (K∗, L2), and a1 > a
′
2.

Thus, we have:
Z(m)− Z(m’) > 0 , QED.
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∴ [ Option 2 is not a maximum of Z(·) ] (IV)

By (I)–(IV), m’ is not the maximum of Z(·).
∴ The initial supposition is contradicted.
∴ Point m is the single, and thus global, maximum of Z(·).

�

59



C Appendix 3

Proof of Lemma 3. Let us assume that m = (k1, k
1
2, k

2
2, P1, P2, L

1
2, L

2
2) is the social op-

timum point, where k1 > k1
2, P1 > P2, MBPi

= 1,75 and P1, P2, k1, k
1
2, k

2
2, L

1
2, L

2
2 ≥ 0.

The problem to be solved is as follows -

max
{k1,k1

2 ,k2
2 ,P1,P2,L1

2,L2
2}
Z(·) = L1I(P1)f(k1) + L1

2I(P2)f(k1
2) + L2

2h(k2
2, q)− P1 − P2

subject to:

k∗ = S1k1 + S1
2k

1
2 + S2

2k
2
2

L2 = L1
2 + L2

2

0 ≤ k1, k
1
2, k

2
2, P1, P2, L

1
2, L

2
2

Stage 1 - Z(·) is continuous and defined over a closed and bounded set
S ∈ Rn. Therefore, by the Extreme-Value Theorem: ∃ a maximum
a = (k1, k

1
2, k

2
2, P1, P2, L

1
2, L

2
2), in S, s.t: Z(x) ≤ Z(a) ∀ x ∈ S. Since Z(·) is continu-

ous and differentiable, a would be either a stationary or a boundary point, and would
thus be located by the Kuhn Tucker method.

Stage 2 - Showing that point m is a potential maximum.

From the above problem, it is possible to derive the lagrangian expression,
as follows:

L = L1I(P1)f(k1) +L1
2I(P2)f(k1

2) +L2
2h(k2

2, q)− P1 − P2 − λ(S1k1 + S1
2k

1
2 + S2

2k
2
2 −

k∗) − µ(L1
2 +L2

2−L2) + α(k1) + β(k1
2) + ς(k2

2) + ϕ(L1
2) + ζ(L2

2) + γ(P1) + δ(P2)

FOCS:
(1) Lk1 : L1I(P1)fk1 − λS1 + α = 0
(2) Lk1

2
: L1

2I(P2)fk1
2
− λS1

2 + β = 0

(3) Lk2
2

: L2
2hk2

2
− λS2

2 + ς = 0
(4) LP1 : L1f(k1)IP1 − 1 + γ = 0
(5) LP2 : L1

2f(k1
2)IP2 − 1 + δ = 0

(6) LL1
2

: f(k1
2)IP2 − λk1

2/L− µ+ ϕ = 0

(7) LL2
2

: h(k2
2, q)− λk2

2/L− µ+ ζ = 0

Kuhn-Tucker Conditions:
(8) λ(S1k1 + S1

2k
1
2 + S2

2k
2
2 − k∗) = 0

(9) µ(L1
2 + L2

2 − L2) = 0
(10) α(−k1) = 0
(11) β(−k1

2) = 0

75For regions with positive amounts of capital in their manufacturing sector, in m.
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(12) ς(−k2
2) = 0

(13) γ(−P1) = 0
(14) δ(−P2) = 0
(15) ϕ(−L1

2) = 0
(16) ζ(−L2

2) = 0

Given the constraints of the problem (having interior or corner solutions, and capital
fully employed), at the optimum we must have:

α, β, γ, δ, ς, ϕ, ζ ≥ 0 and λ, µ > 0

Therefore, the FOCS become:
(17) Lk1 : I(P1)fk1 = (λ− α)/L
(18) Lk1

2
: I(P2)fk1

2
= (λ− β)/L

(19) Lk2
2

: hk2
2

= (λ− ς)/L
(20) LP1 : IP1 = (1− γ)/F (K1, L1)
(21) LP2 : IP2 = (1− δ)/F (K1

2 , L
1
2)

(22) LL1
2

: f(k1
2)IP2 = λk1

2/L+ µ− ϕ
(23) LL2

2
: h(k2

2, q) = λk2
2/L+ µ− ζ

In case we have an interior solution (so that α, β, γ, δ, ς, ζ, ϕ = 0), by FOCS (20)–(21)
we get Pi(F (K1

i , L
1
i )) for i ∈ (1, 2). For convenience, let us denote Pi(F (K1

i , L
1
i )) by

ai. In case we have a corner solution in k1
2 (so that k1

2 = 0, L1
2 = 0 and β, ϕ > 0), we

get the same, only additionally we impose λ = β, and ϕ = λk1
2/L+ µ.

The point - (k1 > k1
2 (so that k1 > 0, k1

2 ≥ 0), k2
2 > 0, P1 = a1 > P2 = a2 (so

that a1 > 0, a2 ≥ 0), λ, µ > 0, α, β, γ, δ, ς, ζ, ϕ ≥ 0) follows conditions (1)–(23),76

as well as all constraints in S. Therefore, by Stage 1 and the above, point m is a
potential maximum of Z(·).

Stage 3 - Showing that point m is the maximum of Z(·).

Proof by contradiction:
Let us assume that ∃ a maximum m’ 6= m s.t Z(x) ≤ Z(m’) ∀ x ∈ S.
This would mean that there could be two options:

Option 1:

In m’ ∃ k′
1 and k1′

2 , s.t: k1′
2 = k

′
1 (and k

′
1, k

1′
2 > 0, since otherwise the value function

would certainly not be at the maximum).
∴ by FOCS (17)–(18): I(P1)/I(P2) 6= 1. ⇒ FOCS (17)–(18) can not hold together.
∴ [ Option 1 is not a maximum of Z(·) ] (I)

76Also note that by FOCS (20)–(21), at this point MBPi
= 1 (for regions with positive capital in

the manufacturing sector, in m).
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Option 2:

In m’ ∃ k′
1 and k1′

2 , s.t: k1′
2 > k

′
1.

Case 1: Conditions (1)–(23) do not hold.
∴ [ Option 2 is not a maximum of Z(·) ] (II)

Case 2: The point - (k1′
2 > k

′
1 (so that k1′

2 > 0, k
′
1 ≥ 0), P

′
2 = a

′
2 > P

′
1 = a

′
1 (so

that a
′
2 > 0, a

′
1 ≥ 0), λ, µ > 0, α, β, γ, δ, ς, ζ, ϕ ≥ 0) follows conditions (1)–(23), as

well as all constraints in S. Thus, m’ is a potential maximum of Z(·).

Conjecture 1: In an interior solution Z(m)− Z(m’) > 0

Proof 1: From FOCS (17)–(18), we get:

I(a1)fk1

I(a2)fk1
2

= 1

This condition must hold at the optimum. By this condition, and since f(·) and
fk are continuous, differentiable and monotonous, fk > 0, fkk < 0, and the Inada
conditions hold - then it must mean, by S1k1 + S1

2k
1
2 + S2

2k
2
2 = k∗, that:

(k1 , k
1
2 , k

2
2) ∈ m and (k

′
1 , k

′
2 , k

2
2) ∈ m’ are each unique; also, due to equation

(17) k2
2 would be at the same level in both m and m’.

Also, by definition: k1 > k
′
1 and k1′

2 > k1
2 ⇒ K1 > K

′
1 and K1′

2 > K1
2 ; therefore,

by S1k1 + S1
2k

1
2 + S2

2k
2
2 = k∗ and the former condition: (K1 −K

′
1) = (K1′

2 −K1
2).

Plugging m and m’ to Z(·), we get:
Z(m) = I(a1)F (K1, L1) + I(a2)F (K1

2 , L
1
2) +H(K2

2 , L
2
2, Q)− a1 − a2

Z(m’) = I(a
′
1)F (K

′
1, L

′
1) + I(a

′
2)F (K

′
2, L

′
2) +H(K2

2 , L
2
2, Q)− a′

1 − a
′
2

Let:
A = I(a1)F (K1, L1) , B = I(a2)F (K1

2 , L
1
2) , C = a1 , D = a2

E = I(a
′
1)F (K

′
1, L

′
1) , F = I(a

′
2)F (K1′

2 , L
1′
2 ) , G = a

′
1 , H = a

′
2

J = K = H(K2
2 , L

2
2, Q)

Therefore:
Z(m)− Z(m’) = (A− E) + (B − F ) + (C −G) + (D −H) + (J −K)

Thus, by L1 > L1
2, and since we have (K1 −K

′
1) = (K1′

2 −K1
2), we get:

[(F (K1, L1)− F (K
′
1, L1)) > (F (K1′

2 , L
1
2)− F (K1

2 , L
1
2))]

Therefore:
(A− E) + (B − F ) > 0
(C −G) + (D −H) > 0
(J −K) = 0
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Thus, we have: Z(m)− Z(m’) > 0 , QED.

∴ [ Option 2 is not a maximum of Z(·) ] (III)

Conjecture 2: In a corner solution Z(m)− Z(m’) > 0

Proof 2: In a corner solution we have -
Z(m) = I(a1)F (K∗ −K2

2 , L1) +H(K2
2 , L

2
2, Q)− a1

Z(m’) = I(a
′
2)F (K∗ −K2

2 , L
1
2) +H(K2

2 , L
2
2, Q)− a′

2

Since L1 > L1
2 ⇒ F (K∗ −K2

2 , L1) > F (K∗ −K2
2 , L

1
2), and a1 > a

′
2.

Thus, we have:
Z(m)− Z(m’) > 0 , QED.

∴ [ Option 2 is not a maximum of Z(·) ] (IV)

By (I)–(IV), m’ is not the maximum of Z(·).
∴ The initial supposition is contradicted.
∴ Point m is the single, and thus global, maximum of Z(·).

�
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D Appendix 4

Proof of Lemma 4. The two regions operate under identical technology, so that both
use the same production function to produce output. Therefore, if k1 = k2 then by
equation (21) we have:

dk1

dT1

=
dk2

dT2

Thus, in that case by equation (26) we have:[
L1m(x1, G1) =

1

1 + T1

k1

dk1

dT1

]
=

[
L2m(x2, G2) =

1

1 + T2

k2

dk2

dT2

]

As a result, we get an identical reaction function in each of the regions, so that in
case k1 = k2, we have:

T1(k1) = T2(k2)

By the same reasoning, if k1 6= k2 then all three equations presented above appear
with an inequality. Therefore, by the above and because S1 + S2 = 1 and fk1 = fk2

(if k1 = k2), then in case k1 = k2, we have:

k∗ = S1k1 + S2k2

fk1 − T1(k1) = fk2 − T2(k2)

Thus, all equilibrium conditions hold, which makes k1 = k2 a Nash Equilibrium
outcome.

Conjecture: k1 = k2 is the unique Nash Equilibrium outcome in this case.

Proof:

Substituting equation (4) to equation (8), and dividing by Li, we get:

xi = f(ki)− Tiki

Rearranging this, we get:

Ti =
f(ki)− xi

ki

From this, we derive the following:

dTi

dki

=
Tiki − f(ki) + xi

2k2
i

However, since by the above xi > f(ki), then:

dTi

dki

> 0
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Given that dTi/dki > 0 and fkiki
< 0, then starting at the Nash Equilibrium outcome

where k1 = k2, if we move capital from region 2 to region 1 then fk1 decreases, T1

increases, fk2 increases, and T2 decreases, so that the following holds ∀ k1 > k2:

fk2 − T2 > fk1 − T1

Otherwise, if we move capital from region 1 to region 2 then fk2 decreases, T2 increases,
fk1 increases, and T1 decreases, so that the following holds ∀ k2 > k1:

fk1 − T1 > fk2 − T2

By that we conclude that k1 = k2 represents the unique Nash Equilibrium in this
case.
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E Appendix 5

Proof of Lemma 6. In each region the following must hold in equilibrium:

Xi + Pi = LiI(Pi)f(ki)

Substituting equation (10) to the above, and dividing by Li, we get:

xi = I(Pi)f(ki)− Tiki

Rearranging this, we get:

Ti =
I(Pi)f(ki)− xi

ki

From this, we derive the following:

dTi

dki

=
Tiki − I(Pi)f(ki) + xi

2k2
i

However, since by the above xi > I(Pi)f(ki), then:

dTi

dki

> 0

Then, by equation (10):
dPi

dki

> 0

Given that dTi/dki > 0, dPi/dki > 0, and fkiki
< 0, then starting at the point where

k1 = k2 and P1 = P2, if we move capital from region 2 to region 1 then fk1 decreases,
I(P1) increases, T1 increases, fk2 increases, I(P2) decreases, and T2 decreases, so that
at some point we might have:

I(P1)fk1 − T1 = I(P2)fk2 − T2

Otherwise, if we move capital from region 1 to region 2 then fk2 decreases, I(P2)
increases, T2 increases, fk1 increases, I(P1) decreases, and T1 decreases, so that at
some point we might have:

I(P1)fk1 − T1 = I(P2)fk2 − T2

Therefore, since under either of the cases all other equilibrium conditions hold (besides
the free capital mobility condition), we conclude that there exist two possible equi-
libria, one having agglomeration in region 1 (where k1 > k2, and thus by dPi/dki > 0
and equation (10), P1 > P2), and the other having agglomeration in region 2 (where
k2 > k1, and thus by dPi/dki > 0 and the free capital mobility condition, P2 > P1).
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