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Abstract
My paper studies how a teacher's design of course evaluation affects students' grades. I build 
a theoretical model and use numerical examples to illustrate the results. The university values 
the education of its students and the sorting of its students into levels of ability. The teacher 

values  teacher evaluations and the standard deviation of the grades in his course. The 
university sets the teacher's valuation of the teacher evaluation relative to the standard 

deviation according to the university's valuation of education relative to sorting. The teacher 
attempts to achieve these objectives by designing a course evaluation that achieves a high 
class average and a high class standard deviation. The teacher is bound to grade fairly, and 

can only affect grades by choosing the weight on the assignment relative to the exam. When 
the university values education highly relative to sorting, the teacher chooses a weighting that 
achieves high grades and a low standard deviation. When the university values sorting highly 

relative to education, the teacher chooses a weighting that achieves low grades and a high 
standard deviation. In the model extension the teacher can also choose how difficult to make 

the exam relative to the assignment. When the university values sorting highly relative to 
education, the teacher can achieve lower grades and a higher standard deviation.



Acknowledgments

I would like to thank my supervisor Amy Sun for all her help.

I would like to thank all my friends who often discussed the paper with me and offered 
advice. 



Table of Contents

1. Introduction               1

2. Literature Survey 
2.1. Teacher Evaluations and Grades 4
2.2. Screening 9

3. The Model 13

4. Model Analysis 14

5. Numerical Example
5.1. Choices and Their Implications 20
5.2. Results 26

6. Model Extensions
6.1. Model Analysis 33
6.2. Numerical Example 36

7. Conclusion 45

8. Bibliography       48



1. Introduction

Students are the main input into the education process, and one of their strongest 

motivations to exert effort is to receive good grades. Students want to receive good grades 

because other universities and employers will use the grades as a signal of the students' 

ability. If the other universities and employers think a student is of high ability, then they will 

reward him with acceptance into their program or with higher wages. However, the grade a 

student receives is not completely within his control. The determination of grades is a process 

among students, teachers, and the university, where all the actors have their own motivations 

and roles. If grades are used as a signal of the ability of a student, an accurate signal would 

give the same impression to an employer whatever the impact the teachers and university had 

on the student’s grades. Though schools and employers do take many factors into 

consideration when interpreting a grade, one factor that must be considered to maintain to 

value of grades as a signal of student ability is the role of teachers and the university in the 

grade determination process. This paper is an investigation into the likely impact of teachers 

and universities on grades. Specifically, if teachers are motivated to achieve a high mean and 

a high standard deviation, how will they set the weights and difficulties on tasks?

There are two theories explaining why people who attain higher levels of education 

earn higher wages. The first is the human capital theory. It posits that people who go to 

school gain productive skills and then are paid a greater wage because they are more 

productive. The second is the screening theory. It posits that people who attain higher levels 

of education also tend to have other characteristic that are desirable to an employer such as 

intelligence, problem solving abilities, perseverance, good health, stable lifestyle, etc (Wiess 

1995). For a student entering university, there are two socially productive functions the 



university performs. First, it educates the student to improve his human capital. Second, it 

screens the student to signal to the labour market the ability of the student. 

In some cases one objective might be more important than the other to the university. 

For instance, most students who graduate from undergraduate programs do not continue to 

higher levels of education or get asked for their grades by their employers. So sorting these 

graduates into precise levels of ability is not important relative to educating them. However, 

each of these students will have attained a degree, which is a signal to employers of their 

ability. Educating these students, so that the degree can be a signal of good ability is 

relatively much more important. In contrast, the final years of a PhD, while both educating 

and sorting are still important, sorting is relatively more important because the graduates 

from a PhD program will be moving on the positions in universities and jobs of high 

productivity, where the employers are very concerned with the ability of the graduate. 

A university will give incentives to its teachers to perform these two functions. It will 

want its teachers to teach well, as well as sort students thereby enabling higher ability student 

to potentially separate themselves from lower ability students. The two mechanisms a 

university has to identify whether a teacher is properly performing these functions are teacher 

evaluations and whether the grades in the teacher's course are well spread out. A teacher 

might respond to teacher evaluations in a variety of ways, such as changing teaching 

practices, where he devotes his effort, or the type of tasks he requires of his students. One 

main consideration, and the one that is the focus of this paper, is changing the students' 

grades in order to have his students more satisfied with their grades and reward the teacher 

with better teacher evaluations. If a teacher is simultaneously trying to give out good grades 

and achieve grades that are well spread out, then he will be using the grades he is awarding to 



two ends, and will have to balance the two objectives in making decisions about the grades 

he awards. 

In this paper a model of a teacher responding to these incentives is presented and 

analyzed. Students are constrained in that they have one unit of time to split between working 

on an assignment and working on an exam, and they maximize the utility from their grade. 

They choose how to split their time between the two tasks. The grade on the assignment and 

the exam are either success or fail. Devoting more time to the assignment or the exam or 

having been endowed with more intelligence will increase the probability of success, but not 

guarantee a higher grade, thus capturing the chance aspect of university grading mechanisms. 

The teacher is constrained by the behavior of the students and maximizes a weighted sum of 

the mean of the grades and standard deviation of the grades. He chooses how to weight the 

two tasks in the basic model, and how to weight the two tasks and how difficult one task is 

relative to the other in the extensions.

The main result of this paper is that neither the teacher's incentive to achieve a high 

mean or the teacher's incentive to achieve a high standard deviation generally motivate him 

to have many grading mechanisms rather than only a few. In cases where the university has 

decided that teaching is more important, the students will achieve higher grades and a lower 

standard deviation. In cases where the university has decided that sorting is more important, 

the student will achieve lower grades and a higher standard deviation. Though the sacrifice of 

one for the other is not great. If teachers have control over the relative difficulty of different 

grading mechanisms, the grades may be even lower though they will also achieve greater 

sorting. 

The remainder of the paper is organized as follows. The Literature Survey section 



gives background on the related literature on the topic and highlights the differences between 

it and my model. The Model section outlines the model. The Model Analysis section solves 

the model to a point, and does comparative statics. The Numerical Example section solves 

the model given certain functional forms and ranges of the parameters. The Model  

Extensions section solves the model where the relative difficult of the two tasks is a choice 

variable for the teacher to a point, does comparative statics, and provides a numerical 

example.  The Conclusion section summarizes the finding and presents implications.

2. Literature Survey

2.1. Teacher Evaluations and Grades

Many papers have been written to investigate the relationship between teachers' 

grading standards and teacher evaluations. When teacher evaluations first became widely 

used, grades quickly increased, leading to the supposition that the teacher evaluations led to 

easier grading standards (Zangenehzadeh, 1988). As well, many of the papers that address the 

question found that there was a statistically significant positive relationship between higher 

grades and higher teacher evaluations, though it is usually found to be so small that it would 

not be a major concern of the teacher (Lichty, Vose, Peterson 1978). However, as Stratton, 

Myers, and King (1994) point out in response to the finding on the relationship between 

grades and teacher evaluation, using typical regressional analysis will only identify 

correlation, and it will be impossible to identify whether using teacher evaluations led to 

better teaching, and thus better student learning and higher grades, or whether teachers just 

lowered their standards to make getting higher grades easier to help their teaching 

evaluations. Litchy, Vose, and Peterson make the same point about how finding a relationship 



cannot settle which of the forces led to the correlation and proposed that a theoretical 

justification for the relationship between inflating grades and higher teacher evaluations was 

necessary in the discussion, though they were not the first to develop a theoretical model. 

Their model is an extension of The McKenzie Model, which they think is a good theoretical 

basis for explaining the impact of grade inflation. 

The McKenzie model takes the student as a utility maximizer, who has a time 

constraint and whose utility is a function of the grades he achieves in his various courses and 

the leisure activities he spends his time on. The student can commit time to courses, which 

will increase his academic achievement, and commit time to leisure, which will increase his 

utility from leisure. The portion of time committed to each activity that the student chooses 

will be where the marginal rate of substitution (MRS) of leisure for grades equals the relative 

time cost, or, on a graph, where the indifference curve is tangent to the budget line. The 

theoretical explanation of how grade inflation can improve teacher evaluations is that if 

academic achievement is made easier, the time cost of academic achievement is lower. This 

is captured on the graph as a pivot of the budget line outwards. There are two effects of 

academic achievement becoming cheaper: the substitution effect and the income effect. The 

substitution effect is the effect of the relative prices changing, and is an influence for the 

student to substitute away from the more expensive good to the cheaper good. In this case, 

the substitution effect is an influence for the student to substitute away from leisure and 

towards academic achievement. The income effect is the effect of the purchasing power of 

the individual changing. With one good cheaper the student can buy more in total than he 

could before, and its influence on consumption of the good whose price changed is 

determined by the MRS. If the MRS is such that the income effect leads the individual to 



consume less of the good, then the good is an inferior good. In the McKenzie model, the case 

analyzed is where academic achievement is an inferior good and thus the substitution effect 

and the income effect work in opposite directions. If the substitution effect is not dominated 

by the income effect, the student will commit more time to school, and thus both get a better 

grade, partially because grading standards are lower and partially because they are 

committing more time to school, and learn more, because they are committing more time to 

school. Their satisfaction is greater in both terms of grades and in terms of learning. They 

will have greater satisfaction from the course, and reward the teacher with higher teacher 

evaluations. If the substitution effect is dominated by the income effect, then academic 

achievement is a Giffen good. A Giffen good is a good that, when it becomes cheaper (more 

expensive) the consumer buys less of it (more of it). In this case, the student commits less 

time to school than before. Even so, the student may still reward the teacher with higher 

teacher evaluations because they are getting more satisfaction from the combination of 

leisure and schooling. 

They go on to say that if the university as a whole inflates its grades, either to elicit 

more effort from its students or to improve the students' satisfaction from school, it risks 

grade inflation progressing to the point where academic achievement becomes a Giffen good. 

If that occurs then the reputation of the school will be hurt, because the graduates are 

learning less than before but the grades will not reflect that. Employers will adjust their 

interpretation of the grads as a signal of student ability, and students will adjust their 

valuation of the signal, making academic achievement less valuable at all levels. This would 

lead to even less effort in school.  It would not be in the school's interest to allow grade 

inflation to progress so far that academic achievement would become a Giffen good. 



The McKenzie model is not the only model of its kind. Many papers investigate 

questions related to the students’ problem usually involving the tradeoff between school and 

leisure. Papers by Becker (1982), Wetzel (1977), Kelley (1972), Kelley (1975), Neslon and 

Lynch (1984), and Staaf (1972) are some examples. The policy implication usually under 

investigation in these papers is how a change in the technological level of teaching 

effectiveness would impact student achievement and student learning. An assumption they all 

make is that time devoted into school improves achievement. This assumption is supported in 

a recent paper by Stinebrickner and Stinebrickner (2008). They overcome the usually 

problem of endogenity in the question of the relationship between studying and academic 

achievement: people who study more are generally more intelligent, and that is why studying 

more is correlated with higher grades. They use an instrumental variable (IV) for quantity of 

time studying. The IV chosen was whether or not the student's randomly assigned roommate 

brought a video game console with him, and thus the student's hours of studying would be 

negatively effected but it would not be correlated with any other characteristics of the student 

because the assignment of roommates was random. They find that hours of studying does 

have a statistically significant impact on academic achievement. The impact of studying an 

extra hour a day has the same impact on first semester grades as an increase of 1.40 standard 

deviations on the American College Test, which is the entrance exam for people entering 

college in the USA.  

Though they find time studying does improve academic achievement, the link 

between teacher evaluations and grades likely hinges on teachers being able to elicit more 

effort. There is a paper by Wetzel (1977) that says that using a sample from Virgina 

CommenWealth University, he found evidence contradictory to the belief that teachers could 



affect the amount of effort a student devoted to school. He used the student's SAT scores as a 

proxy for effort in the course, using the rationale that people with higher SAT scores would 

learn at a quicker rate and therefore their effective effort, which would be a combination of 

effort and learning rate, would be higher. He found that nothing besides whether the student 

currently had a job was significant in determining the students effort, with special attention 

paid to the fact that both pre-course attitude towards the subject matter and post-course 

attitude towards the subject matter did not have statistically significant relationship with 

effort. This seems to indicate that the students' effort in a course cannot be affected by the 

teacher, whether in the form of better teaching techniques or technologies or awarding higher 

grades. This helps to explain the result that there seem to be not a strong relationship between 

grades and teacher evaluation because the teacher cannot impact the students’ behaviour. This 

lessens the ability of the teacher to improve the learning or the relative achievement of the 

student, thereby limiting his ability to improve his satisfaction of the course. 

This result supports the choice in my model that the students have a fixed amount of 

time to commit to school, and that the teacher must optimize within this constraint of the 

student. However, this result also leaves the answer to the question of why teachers would 

want to give high grades being that they perceive a relationship between high grades and 

good teacher evaluations despite it being only a weak relationship. Regardless of the actual 

relationship, if a teacher believes the relationship is generally strong, then he will be 

motivated to give out higher grades in the hopes of receiving higher teacher evaluations. The 

information the individual teacher generates is not enough to determine for himself whether 

the relationship is true, because he could always assume that his teacher evaluations would 

have been lower if the grades he gave out were lower.



2.2. Screening

There are two theories why people who attain higher levels of education get higher 

wages. The first is the human capital theory-- that people gain productive skills at university. 

The second is screening theory-- that employers use the information that the candidate has 

attained a higher level of education as a signal that he also has other desirable characteristics. 

Screening theory does not ignore the possibility of human capital accumulation. That's why 

Weiss (1995) states that screening theory subsumes human capital theory-- because it is just 

an addition to human capital theory. It says that whatever is true about human capital theory, 

it is also true that there is extra information available to the employer, above the fact that the 

candidate may have learned at school, with regard to the candidates’ productivity. Screening 

theory is usually based on attaining higher levels of education rather than academic 

achievement in the level of education attained. However, this does not mean that academic 

achievement is not also a screening mechanism that is used by employers in determining 

productivity. In fact, the very presence of schools giving out grades would indicate that they 

are attempting to provide a signal of the ability of the graduates. Wiess (1983) made a model 

where both the level of education attained and the grade attained were used as signals, in an 

attempt to capture a more realistic picture of reality, which includes grades. The model setup 

is that each person chooses an amount of education to attain, and at the end of his education, 

he takes a test that is either passed of failed. People of higher ability have a higher probability 

of success on the test.

Generally, the theoretical explanation why other productive characteristic are 

correlated with higher levels of education is that people with these characteristics can 



complete the school at a lower non-monetary cost, i.e. smarter people can complete school 

with less effort. However, in this model the test serves as a mechanism to encourage only the 

high ability people to choose higher levels of education. Employers have a strategy that maps 

a level of education and grade on the test into a wage offer. The strategy awards success on 

the test at higher levels of education greater than success on the test at lower levels of 

education. If the student has chosen a high level of education, then it is a signal of him being 

high ability, because the student believes that he can succeed on the test. If the student 

succeeds on the test it is a signal that there is a higher probability of the student being high 

ability. The employers’ expectations of individuals’ productivity based on the level of 

education they chose and their grade on the test is self-fulfilling in the sense that the 

individuals, knowing the expectations of the employers, choose levels of education that fulfill 

the employers expectations. This paper supports the idea in my model that grades can involve 

chance and still, though only when interacting with other signals be an accurate signal. In my 

model, the frame is only for one course and the grades do not interact with another signal. 

The grade is a signal that there is a higher probability of the student being of high ability, but 

it is not completely accurate. If the frame was widened to include infinite classes or levels of 

education, the same model of one course could have grades being a useful signal.

Since grades are used as a screening mechanism, and screening performs important 

societal benefits, schools will have the incentive to perform the function of awarding grades 

properly. Screening is not just a tool used by people of higher ability to separate themselves 

for their own benefit of achieving a higher wage. It has two societal benefits according to 

Stiglitz (1975). The first is that of providing the correct wage to people to induce the efficient 

amount of labour. It is a distortionary “information wage tax” if a person is given an 



improper wage based on improper screening. People of higher ability should be given a 

higher wage because they are more productive, and then will be induced to devote more of 

their time to labour. The second societal benefit is the purpose of matching. It is better to 

have a high ability person doing difficult and important work and a low ability person doing 

easy and unimportant work rather than the other way around. It is also better to have a good 

plumber being a plumber and a good stockbroker being a stockbroker rather than the other 

way around. Schools allow people to identify both which jobs they are especially good at and 

how good they are at these jobs. It is a societal function of the schools, and they have 

incentive to properly perform this function so that students will trust that their work in school 

will be properly rewarded and employers will trust that the graduates are properly sorted. 

Otherwise, the school will fail. In my model the university rewards the teachers partially 

based on the standard deviation of the grades in their courses in an effort to achieve good 

sorting.

William Chan , Li, Hao , and Wing Suen address the question of what grades a 

university will give to its students when it is free to give whatever grades it chooses. Since, 

grades are used as signal of graduates’ productivity, universities generally care about 

providing accurate signals of their students’ ability, but not completely. The significance of 

the grades it gives its students comes from the relationship between the grades it gives and 

the wages its graduates are offered. Employers offer wages to the graduates based on the 

expected productivity of the graduate given the grade he received, accounting for the 

possibility that the university inflated the grades. There are two states of the world, which 

differ in the proportion of good students attending the university. In the good state, the 

university has a higher portion of good students and a lower proportion of mediocre students, 



than it does in the bad state. The university can either give out a high proportion of As, equal 

to the high proportion of good students there are in the good state, or a low proportion of As, 

equal to the low proportion of good student there are in the bad state. With two possible 

proportions of high ability students (H and L), and two possible proportions of As given out 

(h and l), there are four possible cases: [H,h], [H,l], [L,h], and [L,l]. In the first and the last of 

the cases, the university accurately reports the quality of its students. It gives out a proportion 

of As that matches the proportion of good students. In case two, it under-represents the ability 

of its students, which it would never be in its best interest to do. In case four, it over-

represents the ability of its students, which could possibly improve the wages offered to its 

graduates. 

The university cares about a weighted sum of the success of its good graduates and its 

mediocre graduates, with a disproportionally high weight on the good graduates. The 

rationale for this increased weight on the higher ability students is that the university's 

benefits from success exhibit increasing returns to scale. The idea is that it is better in terms 

of reputation and financial contribution to the school to have one Nobel Prize winner or one 

CEO, rather than an equal amount of fame or wealth spread among many graduates. The 

optimal strategy for the university, given certain conditions, in the case with one university or 

two or many, is to randomize and inflate grades with a positive probability. This improves the 

welfare of the mediocre students, who will sometimes get As when they deserve Bs, at the 

cost of hurting the good students who now get offered a wage that accounts for the 

probability that they are a mediocre student, but even with the increased weight on the good 

students, it is the optimal strategy for the school. Even with an incentive to properly sort, that 

incentive can be dominated by others, and schools may purposely give inaccurate signals.



In my model the teacher is bound to give fair grades, and can only affect the grades 

by putting more weight on the easier or the more difficult task. The teacher does not care 

about which students are receiving what grades, but only cares about sorting to the extent that 

the standard deviation is high. It is as though the teacher care that there is the potential for the 

student to be sorted into different groups, but not how they are sorted. The difference is that 

in William Chan , Li, Hao , and Wing Suen higher ability students always get better or equal 

grades in school, but in my model, since chance is involved, that is not always the case. The 

teacher cannot enforce that the higher ability student get better grades because they might not 

have earned them, but they had a better chance of earning them.

3. The Model

There is one teacher and a [0,1] continuum of students. Each student has an 

intelligence level of q. The probability density function of q is denoted by f(q), and is bound 

within [qL,gH].

Each student will receive a grade for the course. The two tasks for the students are an 

assignment and an exam. The final grade a student receives is a weighted sum of the grade he 

receives on the assignment and the grade he receives on the exam, with the sum of the two 

weights equaling one. Thus, the grade a student receives is

€ 

M=αMa +(1−α)Me

where 

€ 

M a  is the student's grade on the assignment and 

€ 

M e  is the student's grade on the 

exam. The grade a student receives on a task is

€  

M i  =  1 with probability 

€ 

q P i ( l i )

                                    0 with probability 1-

€ 

q P i ( l i )            
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i =a,e



where Pi is function that transforms 

€  

l i  to a value within [0,1], and 

€  

l i  is the amount of time the 

student committed to working on task i. The following are characteristics of the P functions: 

1. dPi/dli >0, 2. 

€ 

d 2Pi / dli
2 <0 , 3. 

€ 

d Pa / d la  evaluated at la=0 is infinity, and 

€ 

d Pe / d le  evaluated 

at le=0 is infinity, and 4. 

€ 

Pa (l) >Pe (l)  for all values of 

€  

l  within [0,1].  The reasons for those 

characteristics are as follows: 1. + 2. probability of success on a task should increase with 

time spent on the task but at a decreasing rate, 3. the probability of success on a task if no 

time is spent on it should be zero, but it should be positive for positive amounts of time, and 

4. the two tasks should be different is some respect, specifically, one should be more difficult 

to succeed at.

The utility function of each student is 

€ 

u ( M ) .The following are characteristics of the u 

function: 

€ 

du / dg >0 , 

€ 

d 2u / dg 2 <0 . Each student has one unit of time available to divide 

between working on assignments and working on exams. Since 

€ 

dPi /dli >0 , 

€ 

dM /dPi >0 , and 

€ 

du/dM>0, the student will commit all of his one unit of time to the two tasks. Thus, the 

student's one choice variable is 

€  

l a , with the binding constraint requiring that 

€  

l e =1- 

€  

l a .

4. Model Analysis

Each student chooses a value of la to maximize his expected utility:
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The utility function of the teacher is a weighted sum of the mean and the standard 

deviation of the grades, with the sum of the two weights equaling one. Thus, the utility 

function of the teacher is
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The teacher chooses a value of alpha to maximize his utility. The teacher is 

constrained by the behavior of the students, in the sense the he cannot choose each student's 

la, but he can affect the students' choice of la with his choice of alpha. The teacher has perfect 

information, and, in particular, has information on how the students' choice of la is affected 

by, or is a function of, alpha. This is not unrealistic because teachers have likely learned 

general student behaviour from his past teaching experiences.

Recall, that

€  

U

€ 

=u(1)qPaqPe+u(1−α)(1−qPa)qPe+u(α)qPa(1−qPe)+u(0)(1−qPa)(1−qPe)

Setting the derivative of U with respect to la equal to zero yields the first order condition
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′[u(α)−u(0)]+
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qPe
′[u(1−α) −u(0)] =0

This equation implicitly defines the students' optimal choice of la denoted by la* as a 

function of alpha.

Notice that 

€  

l a
* is a corner solution for the values α=0 and α=1. Substituting α=1 into 

the FOC yields
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qPa
′[u(1) −u(0)] =0



and since 

€ 

P a
′ > 0  and 

€ 

P a
′′ < 0  (ie. 

€  

P a
′  is decreasing in 

€  

l a ), the 

€  

l a  that most satisfies the above 

equation is 

€  

l a =
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∞, and thus the solution to the constrained maximization problem would be 
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−∞, and thus the solution to the constrained maximization 

problem would be 
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l a
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It is also true that the solution to the FOC is never a corner solution for any values of 

alpha within (0,1). This is because both Pa' evaluated at la=0 is infinity, and Pe' evaluated at 

la=1 is infinity, and the student's objective function is increasing in both Pa and Pe.

Recall that
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The mean is the expected grade of a student with a particular value of q integrated 

over all values of q. The expected grade of a particular student can be simplified to the 

weight on the exam multiplied by the student's probability of success on the exam, plus the 

weight on the assignment multiplied by the student's probability of success on the 

assignment.

Notice that the standard deviation term is composed of only four terms. That is 

because there are two tasks, an assignment and an exam, and two possible grades for each 

task, 1 or 0. There are only four possible grades that a student can receive for the course: 0, α, 

1-α, 1. They are the results of the four possible combinations of the random grade 

determination processes for the assignment and for the exam, which are, respectively, fail-

fail, success-fail, fail-success, and success-success. The proportion of students that receive a 

certain grade is the probability that an individual student with a particular q will receive that 

grade, integrated over all values of q. Each term in the standard deviation is the proportion of 

students that will receive the particular grade multiplied by the square deviation of that grade 

from the mean.

T can be simplified to 
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Setting the derivative of T with respect to alpha equal to zero yields the first order condition
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where

€ 

dMean/dα=αqPa
′la′+(1−α)qPe

′la′+qPa −qPe

The FOC does not necessarily determine the value of alpha the teacher chooses, 

because there are bounds on the variable α and the maximum could either be an interior 

solution or a corner solution. The solution to the teacher's problem could either be at the 

solution to the FOC or at the corner values of α=0 or α=1.

€  

The student's 

€  

l a
* is a function of q and α. Therefore, comparative statics can be used to 

understand how the student's 

€  

l a
* changes with q and with α. The implicit differentiation 

formula can be applied to the student’s FOC, and states that

€ 

dF=(dF/dla)dla+(dF/dα)dα=0

 which implies

€ 

dla /dα=−(dF/dα)/(dF/dla)

where

€ 

−(dF/dα)= ′ u (1−α)[−q2Pa
′Pe +(1−qPa)qPe]−′ u (α)[qPa

′(1−qPe)−q2PaPe
′]
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The expression 

€ 

−(dF /dα)  is negative. The expression 

€ 

d F / d la cannot be signed. However, 

for the cases where the utility function is linear the expression simplifies to

€ 

qPa
′′[u(1−α) −u(0)]+qPe

′′[u(α) −u(0)]

which is negative. In this case, the entire expression is positive.

This is the intuitive result. It is intuitive to think that as the weight on the assignment 

increases so would the student's choice of time to commit to the assignment. For a given 

choice of la, an increase in the teacher's choice to alpha makes the probability of success on 

the assignment more valuable and the probability of success on the exam less valuable. 

Since, before the change in the teacher's choice of alpha, the marginal benefit of increasing la 

was equal to the marginal cost of decreasing 1-la, the change in alpha would upset this 

relationship. This would give the student an incentive to increase the time he commits to the 

assignment at the cost of decreasing the time he commits to the exam.

Implicit differentiation can be applied to the FOC to find an expression for

€ 

d la / d q , 

specifically

€ 

dla /dq=−(dF/dq)/(dF/dla)

where
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neither of which can be signed. However, for the cases where the utility function is linear the 

expressions simplify to

€ 

−(dF /dq) =(−1)[Pa
′[u(α)−u(0)]+Pe

′[u(1−α)−u(0)]]

and

€ 

dF /dla =qPa
′′[u(α)−u(0)]+qPe

′′[u(1−α)−u(0)]

Again, in this case, 

€ 

d F / d la  is negative. 

€ 

−(dF / dq)  is positive if the following condition is 

satisfied

€ 

Pa
′[u(α) −u(0)] >Pe

′[u(1−α) −u(0)]]

The condition can be interpreted as the marginal benefit of increasing la is greater than the 

marginal cost of decreasing 1-la. Since, according to the student's FOC these two terms are 

set equal to each other, and the numerator would be zero.

5.  Numerical Example

5.1. Choices and Their implications

In this numerical example the following functional forms were used:

€ 

u(M) =M

€ 

P a = la
1 / 2

€ 

Pe =0.95le
1/2 =0.95(1−la)1/2

and the distribution of q was set to uniform over the range [0.5,1].



The purpose of choosing 

€ 

u(M) =M  was to make the problem simple enough that the 

computer program would be able to solve it. Recall that the student's FOC is

€ 

[q2Pa
′Pe +q2PaPe

′][u(1)+u(0)−u(α)−u(1−α)]+qPa
′[u(α)−u(0)]+

€ 

qPe
′[u(1−α) −u(0)] =0

Only linear utility functions will have the property that 

€ 

[u(1)+u(0)−u(α)−u(1−α)]=0. If 

that is not the case then 

€  

l a
*  is a function of q. If 

€  

l a
*  is a function of q, the teacher's FOC is 

much more complicated to solve, and, it seems, outside the capacity of the computer program 

that was used in solving the model. Linear utility might be just as justifiable as a concave 

utility function though. With consumption concave utility functions are usually used, due to 

people’s characteristic of decreasing marginal utility. However, with grades, student my not 

have decreasing marginal utility. There are different echelons of grades that students can be 

in depending on their grades, meaning that different grades are valuable for different reasons. 

Just below the passing grade, the extra few grade points are valuable to the student because 

he will earn the degree, however the next points after that are not nearly as valuable. Just 

below 80, the next few grade points are valuable to the student because he will earn the 

dean’s honour list award or graduating with distinction, which might be helpful for getting a 

job, but the next few grade points after that are not nearly as valuable. The same story can be 

told for students who are continuing their schooling and a few more grade points will get 

them into a better school, or for students who are winning awards or making good impression 

on their teachers who might provide references in their future. Approaching the boundary to 

each of these echelons, the student's utility function is convex, and just past the boundary the 

student’s utility function is concave. A good approximation to an upwards-sloping wave 

function is a straight line. Notice the straight line in the graph below better captures the 

movement of the true utility function than any concave function could.



Figure 1: The above graph is sin(x) + x, as well as x

The functional forms 

€ 

Pa = la
1 / theta  and 

€ 

Pe =B(1−la )1/ theta, where theta>1 and B<1, 

were chosen for two reasons. First, they satisfy all the desired characteristics outlined earlier 

which were dPi/dli >0, 2. 

€ 

d 2Pi / dli
2 <0 , 3. 

€ 

d Pa / d la  evaluated at la=0 is infinity, and 

€ 

d Pe / d le  

evaluated at le=0 is infinity, and 4. 

€ 

Pa (l) >Pe (l)  for all values of 

€  

l  within [0,1].  Second, since 

they are meant to represent probabilities of success, they have the property that values of la 

within [0,1] will be transformed into values also within [0,1].  

The choice of theta=2 was to keep the computations simple, and also was not so high 

that marginal effects of changing la would be difficult to detect. The choice of B=0.95 was so 

that weight on the assignment would improve class average and weight on the exam would 

improve standard deviation. If the value of B was low enough, then too high a proportion of 

the students would be failing with weight on the exam, which would decrease the standard 

deviation.



The choice of the distribution of q being uniform was for simplicity and to keep 

interpretation of the results easier. The choice for the range of q to be [0.5,1] was to maintain 

the teacher's tradeoff between a high mean and a high standard deviation. The teacher's desire 

for a high mean is meant to be a force to increase α teacher chooses, while the teacher's 

desire for a high standard deviation is meant to be a force to decrease the α the teacher 

chooses. However, the range of q can drastically effect the impact of the teacher's choice of α 

on the standard deviation. The possibilities for the range of q are  [0,small],  [0,middle],  [0, 

big],  [0,1],  [small, small],  [small, middle],  [small,big],  [small,1],  [middle, middle], 

[middle, big],  [middle,1], [big, big], and [big, 1].

The cases where the range of q extends from an interior value to another interior 

value are too variable to address, with the bottom limit and the top limit each affecting the 

optimal choice of α differently. However, cases where q extends from a boundary, 0 or 1, to 

any other value can be address. In fact, all the cases where the range of q extends from 0 to 

any other value can be addressed at the same time. The solution to the maximization of the 

standard deviation in any of these case to α=1, because the students with low values of q are 

causing there to be too many students achieving a grade of zero. The teacher responds to this 

by attempting to put weight on the grade of 1 by making it easier to achieve. For, example, if 

the range of q was [0,1] then if α=1 there would be an equal number of people with a grade 

of zero as with a grade of 1.  All students would commit all their time to the assignment, 

giving all students a Pa=1. The only factor that would lead to student receiving different 

grades then would be their ability. A student with a q=1 would be guaranteed a grade of 1, 

while a student with a q=0 would be guaranteed a grade of 0. With all students having a Pa=1 

and with the entire weight on assignments, the class mean would be



€ 

q d q
0

1∫ = 0 .5

Since with full weight on the assignment, an equal number of students achieve a 

grade of zero as receive a grade of one. This would result in the highest possible standard 

deviation. If the teacher puts full weight on the exam, which is more difficult to achieve 

success in, there would be more people with a grade of 0 than with a grade of 1. Thus over 

this range of q, the highest standard deviation is achieved with α=1.

Skipping the cases where q extends from a small or middle value to 1 for a moment, 

because that is the case in the numerical example, if the range of q was [0.99,1], then when 

there is heavy weight on one task, whichever it is, and the students can specialize, too many 

will achieve a grade of 1. Though there will be some who achieve a grade of 0, the high 

percentage of students with a grade of 1 and the mean so close to 1 will lead to a low 

standard deviation. The standard deviation can be improved with an interior solution of α 

because though the points where the weight is placed are more tightly grouped, the weight 

will be spread more evenly across the points, leading to a higher standard deviation. In the 

graph below, the range of q was set to [0.99,1], and notice how interior values of alpha 

achieve greater standard deviation than corner values. Though this was not the case used in 

the numerical example, because in reality ability is more varied across student than this, the 

implications of it will be briefly discussed later.



Figure 2: alpha against standard deviation with the range of q [0.99,1]

In this numerical example the range of q is [0.5,1]. In contrast to the example where 

the range of q was [0,1], this time if α=1 the mean would be

€ 

2 q d q = 0 .7 5
0 .5

1∫

which would mean there are three times as many student achieving a grade of 1 as are 

achieving a grade of 0. Thus the teacher, wanting to increase the standard deviation, has the 

incentive to make achieving a grade of 1 more difficult by shifting weight to the exam. In this 

case, the q extends low enough that there are enough students achieving a grade of zero that 

the maximum of the standard deviation is achieved at α=0. 

The range of q[0,1] was rejected in favour of the range of q[0.5,1] to avoid the 

maximum for mean and standard deviation being achieved at the same value of α. Of the two 

situations realized by the two ranges of q, the latter more captures the problem faced by 

teachers, and more addresses the questions this paper is attempting to answer.



5.2. Results

Recall, the student's FOC

€ 

[q2Pa
′Pe +q2PaPe

′][u(1)+u(0)−u(α)−u(1−α)]+qPa
′[u(α)−u(0)]+

€ 

qPe
′[u(1−α) −u(0)] =0

Substituting the functional forms used in this example yields a closed formed solution for the 

student's optimal choice of la, specifically

€ 

la
* =

α 2

( 0 .9 5 (1 −α) ) 2 +α 2

The student's optimal la is a function only of α and not of q. The graph of la as 

function of α, increases slowly with α, then quickly, then slowly. That is to say that the 

marginal effect of an increase in alpha is greater for the middle values of α, and is smaller at 

lower and higher values of α. The story behind the graph is that the student chooses to 

specialize in one task or the other; when one task has much more weight on it he is slow to 

commit time to the other task, but, as the weight on the other task begins to overtake the 

weight on the first task, he quickly shifts time to that task. This is the result of the concavity 

of the Pa and Pe functions and the success-failure aspect to the grading system. The concavity 

of the probability of success functions Pa and Pe encourages diversification of time 

commitment rather than specialization. The graph on the left uses the functions 

€ 

P a = la
1 / 2 , 

€ 

Pe =0.95(1−la )1/ 2, and the graph on the right uses the functions 

€ 

Pa = la
1 / 5 , 

€ 

Pe =0.95(1−la )1/ 5

. Notice that the graph on the right increases more steadily with α. That is because those Pa 

and Pe functions are more concave, which rewards diversification of time commitment more 

highly.



          Figure 3: comparison of la* where probability of success functions have different levels of concavity

The success-failure aspect to the grading system encourages specialization of time 

commitment. For small weights on one of the two tasks, the student is unwilling to commit 

much time to that task because he must sacrifice the probability of success on the higher 

weighted task multiplied by the weight on that task. Though the probability of success is not 

affected much, the weight on the task is great enough that the student chooses to avoid the 

risk of failure on the higher weighted task. The two forces are at competition with each other 

in determining the shape of the curve, and though the success-failure aspect of the grading 

system cannot be altered for the sake of exhibition, when the concavity of the probability of 

success function is increased, the strength of that force becomes more powerful in 

comparison to the other and the effect was shown.

Neither the mean nor the standard deviation have a local maximum in interior values 

of α over the range of α [0,1]. With regard to the mean, there is a local maximum at α=0 and 

at α=1, with the α=1 maximum achieving a greater value of the mean than the value α=0 



achieves. With regard to the standard deviation, the is a local maximum at α=0 and at α=1, 

with the α=0 maximum achieving a greater value of the standard deviation than the value 

α=1 achieves.

                    Figure 4: mean against alpha                  Figure 5: standard deviation against alpha

The intuition for the two shapes is as follows. The mean is improved when there is 

heavy weight on one task rather than the weight being spread between the two tasks. For 

example, if all the weight is on the assignment, ignoring the presence of q, a student’s 

probability of success is 100%. If a tiny portion of the weight is shifted to the exam, then the 

probability that the student will succeed on the exam is much lower than the probability that 

the student will succeed on the assignment. The weight was shifted from where the student 

had a very high probability of success to where the student had a very low probability of 

success. The same logic applies to moving from a case where all the weight is on the exam to 

where a tiny portion of the weight is on the assignment. This shows that the teacher can 

improve the expected grade by allowing the student to specialized, that is, to commit all of 



his time to either one task or the other rather than splitting it between the two tasks. The 

remaining choice for the teacher is whether to allow the student to specialize on the 

assignment or the exam. Since the assignment is easier, in the sense that the same of amount 

of time committed to both the assignment and to the exam will yield a higher probability of 

success on the assignment, the local maximum at α=1 is greater than the local maximum at 

α=0.

The standard deviation is improved when there is heavy weight on one task rather 

than the weight being spread between two tasks as well. When the weight is entirely on one 

task, there are only two possible grades that a student can receive. That is to say that all 

students will receive either a grade of 0 or 1. When the weight is spread between the two 

tasks, there are four possible grades that a student can receive. That is to say that all the 

students will receive either a grade of 0, α, 1-α, or 1.  For the teacher there are two effects of 

on the standard deviation of his choice of α. First, he is deciding at what points along the 

grade distribution within [0,1] there will be weight. That is to say, he is deciding what the 

possible grades are. Second, he is indirectly deciding what the weight at each of the point 

will be. That is to say, he is indirectly deciding what proportion of students will achieve each 

grade.  The teacher's objective in these two decisions is to, as much as he can, simultaneously 

set the possible grades far away from the mean and to have the greatest weight on the grades 

that are the furthest from the mean. With this range of q, and the significance of it being 

discussed earlier, the maximum at α=0 is greater than any interior value or the maximum at 

α=1.

The maximum of the mean function is at α=1. When there is full weight on the mean, 

ie when G=1, the solution to the teacher's problem is α=1. The maximum of the standard 



deviation function is at α=0. When there is full weight on the standard deviation, ie when 

G=0, the solution to the teacher's problem is α=0. Since neither the mean nor the standard 

deviation has an interior maximum over the range of α [0,1], no linear combination of the 

two will have an interior maximum over the range. So, regardless of the choice of G, the 

solution to the teacher's problem is never an interior solution. That is to say, the only 

solutions are α=0 and α=1. These facts together imply that there must be a threshold value of 

G where, below that value, the solution to the teacher's problem is α=0, and above that value, 

the solution to the teacher's problem is α=1. In this numerical example, the threshold value is 

near G=0.3162. At that point the teacher jumps from an α=0 to an α=1.

The welfare of the students and teacher change with the parameter G. For the student, 

G does not directly affect his utility, but only indirectly because it affects the teacher's choice 

of α. However, since there are only two values of α that the teacher ever chooses, there are 

only two levels of welfare that the students ever achieve, and they are the welfare associated 

with an α=0 and a welfare associated with a α=1. Since the utility function is linear, the 

welfare of each student is the expected grade of the student. The expected grade of each 

student integrated over all students is the mean. The mean when α=1 is 0.75. The mean when 

α=0 is 0.7125 (=0.75*0.95). The student's welfare is greater if G is past the threshold value of 

G=0.3162 . That is to say, that if the teacher's incentives are weighted heavily enough on the 

mean, then the student's welfare will be greater.



Figure 6: student welfare against G

The teacher’s welfare changes with G as well. Tough, the teacher’s utility changes 

directly with G. As the weight on mean versus standard deviation changes, the teacher utility 

increases as the mean is always greater than the standard deviation for both values of α. For 

values of G between 0 and 0.3162 the teacher’s choice is α=0 which achieves a standard 

deviation of 0.2048 and a mean of 0.7125. As G increases over that range the teacher 

receives more of the benefit from the mean being greater than the standard deviation. For 

values of G between 0.3162 and 1, the teacher’s choice of α=1 which achieves a standard 

deviation of 0.1875 and a mean of 0.75. As G increases over that ranges the teacher receives 

more the benefit from the mean being great than the standard deviation, and since the mean 

as a proportion of the standard deviation is greater for α=1 than for α=0, the teacher’s welfare 

rises faster with G. The teacher’s welfare then is the max of the two curves, one being the 

teacher’s welfare when a=0 and the other being the teacher’s welfare when a=1. Notice that 

they cross at G=0.3126 where α=1 overtakes α=0.



               Figure7: teacher’s welfare at alpha=0 and alpha=1 against G

In reality though, it would be strange if the teacher benefited more or less depending 

on whether the university was pursuing good teaching or good sorting. It would most likely 

be the case that, if the teacher was rewarded according to these two goals, it would be some 

more complex function of the two. The teacher could be indifferent between any of the 

possible weights on mean versus standard deviation, and still exhibit the same behavior with 

respect to choosing α.

Comparative statics in this numerical example are very simple. The derivative of la 

with respect to α has already been discussed. Since, the students’ la only changes in response 

to α, and doesn’t change except to jump from 0 to 1 around G=0.3162, la only changes with 

G to jump at the same value of G, from the la=0 associated with α=0 to the la=1 associated 

with α=1. The graph is similar to the graph of the welfare of students in that it takes one 

value up to G= 0.3162 where there is a break and then takes another value afterward.



Figure8: student’s la* against G

Returning to the case where the range of q is [0.99,1], we might expected there to be 

two jumps in the teacher's choice of α rather than just one. The initial maximum, for G=0, 

would be at an interior value of α. At G=1 the maximum would still be at α=1. So there will 

at least be one jump. However, since both the class average and the standard deviation have a 

local maximum at α=0, there may be a jump from an interior value to α=0, and then another 

jump from α=0 to α=1.

6. Model Extensions

6.1. Model Analysis

In the basic model the functions Pa and Pe were not given functional forms. Then, in 

the numerical example of the basic model, they were given function forms, and the 

coefficient used in the Pe function was constant. In this model the functional forms of Pa and 



Pe are defined, just the same as they were in the numerical example, except that the 

coefficient used in Pe is variable and is the teacher’s choice variable. In this model 

€ 

Pa = la
1 / 2  

and 2/1)1( ae lBP −= . B is a measure of how much more difficult the exam is relative to the 

assignment. 

The students’ objective function is
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The first order condition is

€ 

q2B(1−2la)[u(1)+u(0)−u(α)−u(1−α)]+q(1−la)
1/2[u(α)−u(0)]+qBla

1/2[u(1−α)−u(0)]=0

The implicit differentiation formula can be applied to find an expression for 

€ 

d la / dα , 

specifically

€ 

dla /dα=(−dF/dα)/(dF/dla)

where
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Just as it was without function forms specified, αddF /− is negative, and adldF /

cannot be signed, but, if the utility function is linear, it will be negative, making the 

expression in total positive. 

The implicit differentiation formula can be applied to find an expression for dqdla / , 

specifically



)//()/(/ aa dldFdqdFdqdl −=

where

)]0()1([

)]0()([)1()]0()1()1()()[21(2)/(
2/3

2/3

uuBl

uuluuuulBqdqdF

a

aa

−−−

−−−−−−+−=−

α

ααα

and

)]0()1([)]0()([)1()]0()1()1()([/ 2/32/3 uuBluuluuuuBqdldF aaa −−−−−−−−−+= αααα

Again, as without specified functional forms specified, neither can be signed, and in the 

linear utility case, -dF/dq=0, because the condition for it to be positive(negative) is that the 

FOC be positive(negative). 

Since there is a new variable, B, the implicit differentiation formula can be applied to 

find an expression for dBdla , without functional forms first, specifically

)//()/(/ aa dldFdBdFdBdl −=

where, with Pj=Pe/B,
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dBdF /− is non-negative, because, with a linear or concave utility function, all three terms in 

dBdF /− are non-negative. With a linear utility adldF / is negative, and the sign of dBdla /

would be negative. This is intuitive because as the exam becomes easier to succeed in, that is, 



as the time committed to it receives a greater reward in terms of probability of success, the 

student has incentive to increase the amount of time he commits to the exam.

6.2. Numerical Example

The functional forms are the same as the ones used in the basic model, except rather 

than a coefficient in the expression for eP , a variable is used, so the functions are

MMu =)(

2/1
aa lP =

2/1)1( ae lBP −=

and the distribution of q was set to uniform over the range [0.5,1].

Substituting the functional forms used in this example yields a closed formed solution 

for the student's optimal choice of la, specifically
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α

+−
=

B
la

To give the reader an understanding of how the student's la and how the teachers 

objective function are affected by α and B, without including 3D graphs, a few graphs have 

been included. For a particular value of α=0.75, the graph of la against B looks like this



Figure9: students’ la* against B

For a particular value of B=0.75, the graph of la against α looks like this

Figure10: students’ la* against alpha

The graph of the teacher’s objective function against B, for a particular value of 

G=0.2, and particular α=0, looks like this



                 Figure11: teacher’s objective against B

The graph of the teacher’s objective function against α, for a particular value of 

G=0.2, and particular B=0.85, looks like this

                    Figure12: teacher’s objective against alpha

The teacher's objective function is still such that the teacher would never choose an 

interior value of α for all values of B, but it is concave in B for all values of α. Thus, the 



result from the base model, where the teacher only ever chooses an α of 0 to 1 remains true in 

this extended model. However, the teacher does, for values of G within a certain range, 

choose interior values of B. 

There is an interaction between these two choice variables that is of importance, and 

should be kept in mind. When α=1, the teacher choice of B is irrelevant, because there is no 

weight on the exam so it doesn't matter how difficult it is. When B=1, whether the teacher 

chooses α=0 or α=1 is irrelevant because the exam and the assignment are equally difficult. 

Since, when B=1, the teacher's objective function is symmetric in alpha, only the magnitude 

of the two weights matters and not which task has which magnitude.

The expected grade is convex in α but always decreasing in B. The expected grade 

can never increase with B because an increase in B only makes success in the exam more 

difficult to achieve, and thus less people achieve it. 

The optimal choices of α and B change with G. Since the maximum of standard 

deviation is achieved with α=0 and an interior value of B, when G=0, this is the solution. As 

G increases there is more weight put on the expected grade, which is decreasing in B, thus 

the solution shifts to a higher value of B, remaining with an α=0. B increases with G until the 

point G=0.334, when the maximum Beta=1 is reached. At this point, both the exam and the 

assignment are equally difficult to achieve success in and thus the choice of α=0, 1 is 

equivalent. After this point, the solution remains B=1 α=0 or 1, because this is the maximum 

for all values of G after this point. 

The optimal choice of B is a function of G, for all G within [0,1], and is

)1(
)3/2(

G
B

+−
−=

when that expression is less than the 1≤B  boundary, and 



1=B

when that expression is greater than or equal to 1.

The graph of B against G looks like this

Figure13: teacher’s B* against G

The graph of the mean against G looks like this

Figure14: mean against G in the extended model Figure15: mean against G in the basic model



    Figure16: mean against G for both models

For values of G below 0.2982, the extended model achieves a lower mean. At 

G=0.2982, the teacher’s choice is B=0.95, which is the fixed values of B in the basic model, 

and both models achieve the same mean. For the very small range between G=0.2982 and 

G=0.3162 the extend model actually achieve a higher mean than the basic model. This is 

because the teacher would raise the B marginal as G changes if he could, but in the basic 

model he only has the choice between B=0.95, by putting all the weight on the exam, and 

B=1, by putting all the weight on the assignment. Though he would raise B marginally if he 

could, α =0 still achieves a greater value of the mean than α =1. It is at the midpoint between 

G=0.2982 and G=0.3333, roughly, that it α =1 achieves a higher value of the mean in the 

basic model. From G=0.3333 to G=1 they achieve the same mean, though this is only 

because B is bound within [0,1], and so it cannot continue its upward trend. In reality, this 



upper bound could be interpreted as a minimum difficulty level of the course demanded by 

the university.

The relationship between the two means is based largely on the fixed B that was 

chosen in the basic model. For example, if the B in the basic model was 0.80, then the 

extended model would have a lower mean for value of G below G=0.1667. Then over the 

range of G=0.1667 to G=0.2500 the basic model would have a higher mean, because the B 

would rise in the extended model, but in the basic model the G would not have reached the 

value where α jumps from α =0 to α=1. Over the range of G=0.25 to G=0.3334 the extended 

model would again have a lower mean. After G=0.3334 the two means will be the same. The 

interpretation of the fixed value of B in the basic model is how much less likely it is the 

students will succeed on exams compared to assignments when it is out of the teacher’s 

control. Since, it likely is in the teacher’s control, it is impossible to say what a likely value 

of the fixed value of B in the basic model should be. Thus, comparisons between the 

magnitudes of means and standard deviations achieved in two models are more or less 

meaningless.

The graph of the standard deviation against G looks like this



       Figure17: standard deviation against G for the extended model Figure18: standard deviation against G for the basic model

             Figure19: standard deviation against G for both models

Again, it is at G=0.2982 that the extended model and the basic model achieve the 

same value of standard deviation. For values of G below that the standard deviation is much 



higher in the extended model, and there is only a small range over which the standard 

deviation is higher in the basic model. 

The graph of student welfare against G is increasing for the range of G where Beta is 

identical to the graph of the mean achieved because the students utility function is linear. 

Comparisons of students’ utility in the two models suffer from the same problem as did 

comparisons of the mean.

Notice that the teacher achieves a higher welfare by choosing both B and α rather than 

just α where the B is fixed at 0.95. In both cases for all G>0.334, the teacher is putting a full 

weight on the assignment, or equivalently, on an exam that is set to be equally as difficult as 

an assignment. However, before that range of G, the teacher achieves higher levels of welfare 

by altering the B he chooses. 

            Figure20: teacher’s welfare against G for the extended model              Figure21: teacher’s welfare against G for the basic model

Notice of the graph below, how the line representing the teacher's welfare when he 

chooses B is always greater than or equal to the line representing the teacher's welfare when 



B is fixed at 0.95. This is because the teacher can always do as well, by choosing B=0.95, 

and would only deviate from this choice if it improved his welfare.

         Figure22: teacher’s welfare against G for both models

7. Conclusion

G is the parameter of focus in this paper. In the introduction, G was explained to be 

the relative importance in the university program of having good education versus having 

good sorting. The university then achieved the optimal balance of these two goals by 

rewarding its teacher with a weighted sum of teacher evaluations and the class standard 

deviation. The teacher's objective with respect to grades was to achieve a high mean to elicit 

good teacher evaluations and achieve a high standard deviation. It will be helpful to return to 

the main results of the paper and interpret a high G to be the undergraduate program case and 

a low G to be the PhD case. 



In an undergraduate program you would expect there to be a higher weight on 

teaching evaluations rather than class grade standard deviation. This leads the teacher to put 

all the weight on the assignment. The students get better grades, because success in the 

course has been made easier. Even if the teacher has control over the relative difficulty 

between the assignment and the exam, since the weight on teacher evaluations is significantly 

high, the choice of the teacher can either not change or change to a grading standard that is 

identically difficult but with all the weight on an exam. The second tends to be the case in 

undergraduate programs, where there are very few grading mechanisms, and heavy weight on 

two or three exams over the course of a year. Though in reality there is more than one 

grading mechanism, the reality that there are few rather than many, matches the model 

predictions that there is one rather than two.

In a PhD program you would expect there to be a higher weight on the standard 

deviation rather than teacher evaluations. This leads the teacher to put all the weight on the 

exam. The students achieve a lower welfare because probability of success is lower. If the 

teacher has control over the relative difficulty between the assignment and the exam, then the 

exams will be even more difficult, but only assuming the difficulty level was relatively equal 

when it was outside the teacher's control, and a significantly low weight on teacher 

evaluations. This does not tend to be the case in PhD programs, where they have a few big 

papers to write rather than exams, but exams are just meant to be interpreted as the more 

difficult of the two tasks, and since big papers are often even more difficult than exams or 

assignments, the result can mesh well with reality after all. In PhD program, the students do 

have a few very difficult tasks.



The topic of this paper was an investigation into the determination of grades, which 

the sole function of are to be used as a signal of the ability of the student. Thus the 

implication of the paper must be about what this process reveals about the signal that grades 

are providing. The implication is that the grades awarded to the students are not fully in 

control of the university, the teachers, or the students, but it is the product of a process where 

the teachers are agents of the university and the students are the agent of the teachers. Since 

grades are meant to be a signal of the quality of a student, an accurate signal about a 

particular student would give the same impression to an employer whether the student was in 

a course that was difficult to succeed in or a course that was easy to succeed in. The 

information gained from this model should be used to signify that bad grades in 

undergraduate courses are much more likely to be indicative of low intelligence than bad 

grades in a PhD level course, because of the fact that PhD level courses are much more 

focused on sorting than undergraduate level courses, which, among other reasons, makes 

them more difficult.
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