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Abstract

A stochastic population projection model for First Nations in Canada

is produced and demonstrated for the years 2002 through 2032. The

projection model uses historical time series and expert knowledge from

traditional cohort-component based projections to specify parametric dis-

tributions for the stochastic processes governing population growth or

decline. Probabilistic intervals for the future course of Canada’s First Na-

tions’ population trajectory are calculated using computer simulations.

A method for small-area population projections is demonstrated and a

National forecast is produced as an example of the model.
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1 Introduction

Using classical methods, population projection is fundamentally an arithmetic

accounting exercise. Sets of non-parametric, deterministic assumptions are

made about current population counts, survival and fertility over time, adjust-

ments are made for net migration, then a vector of population counts by age

is advanced through time using simple matrix multiplication. Modern meth-

ods like stochastic population projections retain the classical framework while

taking advantage of advancements in time series methods and the decrease in

the cost of computing. All population projection methods are fundamentally

about producing plausible scenarios for the trajectory of the counts and age-sex

distribution of a population.

Population projections are an important tool in the formation of public

policy, business planning and the social sciences. Their uses include forecasting

environmental pressures, housing, educational and infrastructure needs, even

ethnic mobility.1 Debates over the growth or decline of regional, national and

indeed global populations and the nature of these changes rest on population

projections of the type examined in this paper.

For First Nations2 in Canada engaging in the self-government process, popu-

lation projection is a vital yet lacking tool. Many are forming new governments

and negotiating funding agreements that stretch into the future without reliable

estimates of their future needs. Governance involves long-run planning processes

and nations with statistical offices readily employ population projections to in-

form their policies. First Nation governments, many without statistical capacity,

are unable to produce reliable estimates of their future populations, which poses

a challenge for the effectiveness of their long term planning. An objective of this
1Ethnic mobility refers to mobility within defined ethnic groups. For the aboriginal pop-

ulation in Canada, it generally refers to movements of the same people among Metis, Inuit,
First Nations with status and First Nations without status.

2In this paper First Nations are defined as registered (status) Indians.
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paper is to provide a flexible population projection model for First Nations in

Canada to estimate their future populations, as any nation would, in order to

inform their policy and planning.

As an example of the utility of population projections for First Nations,

consider future educational and housing requirements, including infrastructure

investment and program development. These investments require an informed

estimate of a First Nation’s future population and age structure. An accurate

population projection will provide just that. Without a population projection,

estimates of future need are uninformed and the misallocation of resources today

will result in unmet need in some areas and surplus provision in others. First

Nations communities face some of the toughest living conditions in Canada and

the efficient allocation of scarce resources is a necessary condition for improve-

ment.

The projections carried out in the final section of this paper show that,

as a fraction of the total First Nations population, First Nations youth are in

decline. This is contradictory to the popular belief that First Nations, as a

population, are getting younger. This belief may be based on the fact that

the number of First Nations youth has historically constituted an increasing

fraction of the total population. If policies were to be put in place for an ever-

increasing young First Nations population it would result in the misallocation

of resources. Additionally, the prediction intervals implied by the realizations of

the simulations for population totals and component indices are wider than the

“high, low” range assumed by the forecasts using classical methods produced by

Statistics Canada. Long-range policy decisions should consider the full range of

possible population trajectories suggested by stochastic forecasts because even

these forecasts may understate the range of possible outcomes if they do not

model all the relevant sources of uncertainty.
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Using the classical tools of population projection, Statistics Canada has pro-

duced an estimate of the total aboriginal population and its components (North

American Indians3, Metis and Inuit) in Canada for 2001 to 2017 (Statistics

Canada, 2005). These projections use a regional cohort component approach.

That is, they classify populations according to three dimensions: age, sex and

geography and assume deterministic trajectories for representative indices gov-

erning the population counts for each dimension. This method is unable to pro-

duce probabilistic statements about projections, nor does it force the producer

to acknowledge the stochastic nature of the underlying demographic indices.

The Demography division at Statistics Canada has since developed a mi-

crosimulation platform “Modgen” and it is not pursuing the development of

capacity in stochastic methods for population projections. Microsimulation is

resource intensive and its utility over stochastic methods has not been fully

established, particularly for small area forecasts (Malenfant, 2011). The limi-

tation of microsimulation for First Nations in Canada in the present context is

that Statistics Canada has estimated all the life-event hazard models used in

microsimulation for all Canadians. Even if they were to re-estimate the hazard

models for First Nations at a national level, it is unknown if this would be an

improvement over a stochastic forecast within which expert users can embody

local knowledge.

This paper also seeks to address the gap between the projections from clas-

sical models and the newly developed microsimulation models by contributing a

stochastic population projection model for Canada’s First Nations. The model

seeks to be adaptable to a regional scale where the benefits of microsimulation

are uncertain and stochastic projections may be a reliable alternative.

The rest of this paper is organized in the following way: section 2 presents
3Referred to as First Nations in this paper, though our projections are inclusive of only

First Nations with Registered Indian status.
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background on population projection methods and the research on First Na-

tions populations in Canada. Section 3 discusses the sources of data used in the

projection and section 4 presents the method used to forecast each of the com-

ponents underlying the projection. Section 5 presents a method for small area

forecasts and in section 6 we demonstrate the model using computer simulations

for a national forecast. Finally, section 7 offers some concluding remarks.

2 Background

2.1 Classical Method: Cohort-Component Approach

Until recently, demographic forecasting was conducted almost exclusively using

the cohort-component method (CCM) (Keyfitz, 1977). The CCM is conducted

by estimating demographic components from vital statistics and subsequently

making assumptions about their expected trend. Specifically, a population is

divided by age and sex, though additional dimensions may be included such

as geography.4 Then components relating to males’ and females’ age spe-

cific mortality, migration, and females’ reproductive likelihood are estimated.

These components are projected through time deterministically by extrapolat-

ing trends or assuming no change from their currently observed levels. Future

populations are derived from advancing the current population through time

based on assumptions about future components. Each component is used in

the creation of Leslie Matrices (Leslie, 1945). The literature has focused on

correcting biases is estimation methods and devising better ways to estimate

the respective components given data limitations.

As an example of the use of Leslie Matrices and the CCM, consider an initial

population by age vector at time t, Nt. Nt is advanced through time using
4For example: Statistics Canada, 2005.
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matrix products in the following way: suppose A is a Leslie Matrix containing

survivorship probabilities by age category on its left off diagonal and fertility in

its first row. Then the population by age vector at time t+ 1, Nt+1, is given by

the product:

Nt+1 = A ∗Nt (1)

A numerical example demonstrates the simplicity of this accounting ap-

proach, suppose: Nt =


10

10

0

 and A =


0 0.8 0

0.5 0 0

0 0 0

 where each row

of N and column of A corresponds to an age category. The off-diagonal ele-

ments of A in the second and third rows are survival probabilities and the first

row contains fertility rates. Then Nt+1 = A∗Nt =


8

5

0

. The total population
is the sum over the entries in N so with an initial population of 20, the Leslie

Matrix has left us with a total of 13 at time t+ 1.

The mechanics are worth discussing in detail. Suppose the rows of N are

categories corresponding to young, middle-aged and old people. The matrix

product A ∗Nt produces a transition for the number of people in each age cat-

egory in Nt to the subsequent age category.5 All people in each category are

exposed to two possible events in a transition: reproduction and death.6 Given

the respective probabilities of reproducing and dying during the transition, cor-

responding to the elements of A, the vector Nt+1 contains the expected number

of people in each age category after the transition. For our example, because

A3,2 = 0, no one survives the final transition (all ten from the middle-age cate-

gory die). Because A2,1 = 0.5, half the young people survive to the middle-age
5For example, all young people transition to middle-age.
6These events are not mutually exclusive, births occur before deaths.
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category. Finally, because A1,2 = 0.8, eight are born to the middle category as

they transition into old age and die. With adjustments made for migration and

sex, this is how population projections were done for much of the 20th century.

2.1.1 Mortality

Mortality has been a central focus. A recent review of the literature can be

found in Kielman (2005). The most common approach relies on a mortality

index: a level parameter that can summarize a survival-by-age schedule like

the off-diagonal entries in the second and third rows of the matrix A from

the previous example. A mortality index is generally a derivative of the life

table, for example life expectancy at birth. A life table is usually sex specific

and it describes mortality by different schedules. Examples of these schedules

include conditional life expectancy: the expected number of years remaining

conditional on having survived to a certain age and cohort survivorship: the

expected number of survivors remaining in each age category if a cohort of

100 0007 were to advance through their lifetime together. A full discussion of

life tables and their construction can be found in Keyfitz (1977). The mortality

index is projected forward in time using expert opinions about future realizations

or historical patterns. Life tables are then estimated at each projection step,

given the level of the index at that step, using a standard life table estimated

empirically or using standard life tables estimated by Coale and Demeny (1983)

for different regions around the world. Better fits are achieved by increasing the

number of parameters used in the model,8 though due to their complexity, multi-

parametric approaches lose their appeal when it comes time to make projections.

The most popular method for forecasting mortality is the Lee-Carter method

(1992) whereby a single level parameter (the index) describing life table mor-
7The radix, though sometimes a radix of 1 is used.
8Up to nine! eg: Rogers and Planck, 1983.
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tality is derived using a least squares singular value decomposition (SVD) of a

matrix whose columns correspond to centered estimates of the mortality rate by

age and whose rows correspond to the year of the mortality estimates. Specifi-

cally, if ma,t is the log mortality rate at time t for the ath age group and εa,t is

an idiosyncratic disturbance term, Lee and Carter propose we model mortality

in the following way:

ma,t = αa + βaγt + εa,t (2)

where αa, βa and γt are parameters to be estimated. The parameterization in

(2) is not unique which poses a problem for estimation by maximum likelihood

as there will be multiple maxima. As a solution, Lee and Carter impose two

restrictions:
∑
t γt = 0 and

∑
a βa = 1. From the first restriction it follows that

αa = m̄a, the time average of log mortality. The model is rewritten in terms

of the centered mortality rates: m̃a,t = ma,t − m̄a,t. Estimates of βa and γt are

derived from the SVD of the a×t matrixM whose elements correspond to m̃a,t.

Specifically, M is factorized such that M = BLU∗ where B is a unitary matrix,

L is a diagonal matrix with the singular values of M along its diagonal and U∗,

the conjugate transpose of U , is a unitary matrix. The estimate β̂a is found in

the ath element of the first column of B and γ̂t = β̂′m̄t. Alternative methods of

estimation include an eigen-decomposition of the matrix M. A full discussion of

estimation techniques can be found in Girosi and King (2007).

The level parameter γ̂t is then modeled using a time series approach and

at each projection interval a new life table is derived from the realization of

the level parameter. Generally the best fitting time series model is a random

walk with a drift (Girosi and King, 2006). Variants and adjustments to the

Lee-Carter method are sufficient to comprise a literature on their own. For

example, Wilmoth (1993) provides a weighted SVD approach using maximum
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likelihood and Lee (2000) discusses further extensions to the model. The Lee-

Carter approach is relatively robust to structural changes (Carter, 1996, 2000)

making it ideal for long run mortality forecasts, however Lee and Miller (2001)

propose using only post 1950 data to limit the influence of structural shifts.

An alternative to the Lee-Carter method, used for shorter projection hori-

zons, is the relational model of mortality (Brass, 1971). Brass’ insight was to

realize that survival functions are linearly related, specifically:

lx ≈ ((1 + exp(α)) ∗ ((1− lsx)/lsx)β)−1 (3)

where lx and lsx are two survivor schedules with x denoting the age category

and s denoting the standard schedule. With a little manipulation (3) can be

written as:

logit(lx) = α+ β(logit(lsx)) (4)

and α and β can be estimated using OLS. That is, with a logit transformation,

two survivor schedules can be linearly related with α governing the level of mor-

tality and β governing the relationship between childhood and adult mortality.

These parameters can be forecast using time series methods or expert opinions

and life tables at projection intervals can be derived from them, though usually

only α is forecast. This is the approach taken by both Hunsinger (2011) and

Hartmann and Strandell (2006).

In this study, I adopt a bi-parametric approach, forecasting α and allowing β

to change because I believe the relationship between childhood and adult mor-

tality will not remain constant. Instead I predict that a slight shift will occur

whereby the First Nations survival schedule starts to converge in tempo to the

national average. I allow β to change through the forecast in a deterministic
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Figure 1: Survival schedule allowing α to change from 0 to 0.7

fashion. This is because historical data and expert opinions about the distribu-

tion of β, beyond a general trend, is unavailable thus an informed parametric

specification is impossible. Evidence for this convergence comes from survival

schedule estimates in Williamson and Roberts (2004), Miller (1982), and Health

Canada (2002) for the years 1956, 1978 and 2002.

As a demonstration of the effects of varying the mortality indices, Figures

1 and 2 shows how a survival schedule changes in location and shape for given

changes in α and β.
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Figure 2: Survival schedule allowing β to change from 1.0 to 1.7
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2.1.2 Fertility

Fertility, particularly for First Nations, has proven difficult to forecast (Loh

and George, 2003). Like mortality, representative indices of fertility are gen-

erally modeled as non-stationary series. Forecasting fertility instead of births

is preferred and often the total fertility rate (TFR) is estimated and forecast

(Hunsinger, 2010). The total fertility rate is the sum over age specific fertility

and it is equal to the expected value of the number of children born to a single

woman over her lifetime.

Sometimes a bi-parametric approach is taken to modeling reproduction, for

example, by forecasting the total fertility rate and mean maternal age at birth.

Age specific fertility and births can then be estimated at each forecast interval

(Billari, et al., 2010). Otherwise we must assume that the fertility schedule

(the tempo of fertility) remains unchanged and that only the TFR (quantum of

fertility) is dynamic. The distribution of births over a First Nations woman’s

lifetime is expected to shift (Bali, 2004) and in an effort to keep my model

as flexible as possible, I model both the tempo and quantum of fertility by

employing Brass’ Relational Gompertz Fertility Model.

According to Goldstein (2010), the Gompertz model’s use in studying fer-

tility is motivated by its initial application to modeling mortality rather than

behavioral reasons. This does not mean the model is unable to support behav-

ioral underpinnings and the objective of Goldstein (2010) is to demonstrate the

applicability of the Gompertz model when fertility is modeled as a function of

social diffusion. His specification allows for the tempo of fertility to be a func-

tion of a parameter A(x)9 that represents social diffusion. Specifically, if H(x)

is the cumulative fertility up to age x as modeled with the Gompertz function,

and h(x) = H ′(x), Goldstein models the tempo of fertility in the following way:

9 dA
dx

< 0, d2A
dx2 < 0
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h(x) = A(x)H(x) (5)

Social diffusion in this context is roughly the peer effects (inclusive of cultural

pressures) responsible for behavioral choices made with respect to fertility at

age x. In the context of the tempo of First Nations and Canadian fertility,

Goldstein’s specification would show the divergence in fertility schedules as a

behavioral response to different peer and cultural pressures, as modeled with

the A(x) parameter.

Though it could be argued that they are present in a reduced form,10 Brass’

model for fertility is ignorant of behavioral underpinnings. It proposes the

following: let H(x) be the cumulative fertility rate up to age x, and let TFR

denote the total fertility rate: the sum of fertility over all ages. Brass’ model

assumes that their ratio follows the Gompertz distribution:

H(x)/TFR = exp(A ∗ exp(B ∗ x)) (6)

If Y (�) is the complementary log-log transformation then we can write (6) as:

Y (H(x)/TFR) = −ln(−A)−B ∗ x (7)

implying a linear relationship in x between the left and right hand sides of (7).

Since this relationship holds for any H(x) and TFR, it hold for a standard

schedule (usually estimated from a rich data set) H(x)s, TFRs. With some

manipulation we can relate a standard fertility schedule expressed in the form of

(7) to any other fertility schedule using the Brass Relational Gompertz Fertility

Model:
10Changes in fertility and mortality’s tempo and quantum are at least in part a function

of behavioral effect and though they are not explicitly modeled in Brass’ specification, the
changes that do exist could be interpreted as behavioral effects.
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Y (H(x)/TFR) = α+ β ∗ Y s(Hs(x)/TFRs) (8)

where α and β can be estimated by OLS. This allows the user to relate two

separate fertility schedules using only two parameters for adjustment. The pa-

rameter α governs the age location (with smaller values implying a shift to the

left and larger values implying a shift right) while β governs the shape of the

distribution (with smaller values implying a relatively platy-kurtic distribution

and larger values implying a relatively lepto-kurtic one).11 Although the teen

fertility rate has not experienced much of a change in the most recent period

(Bali, 2004 & Guimond et al., 2009) for which we have data (1997-2004), I in-

clude Brass’ model for fertility as an extension to keep the model as flexible as

possible.

Fertility schedules have been subjected to multi-parameter estimates that

consistently find better fits than the univariate or zero-factor models that are of-

ten employed in forecasts. The trade-off, again, is that multivariate approaches

tend to have less regular time series, making them harder to forecast (Keyfitz,

1991).

Figure 3 shows the fertility schedule for First Nations and all Canadians.

It also shows how adjustments to α and β in the Relational Gompertz Model

affect the First Nations fertility schedule.

2.1.3 Migration

Relative to mortality and fertility, migration is highly variable and there is no

obvious method that applies to a model for First Nations population projec-
11Kurtosis is a measure of how “peaked” a distribution is. For the distribution of lifetime

fertility, a lepto-kurtic one would imply that women have all of their children in a narrow age
window. A platy-kurtic distribution of lifetime fertility would imply that women have their
children over a wide age window. The parameters α and β are therefore able to affect the
skewness of the distribution: for small α, β the distribution would be skewed to the left, for
large α, β the distribution would be skewed to the right.
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Figure 3: First Nations and Canadian fertility schedules and changes in param-
eters for the Gompertz Model of Fertility.
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tions. When making national level forecasts I assume that international mi-

gration is negligible and that the effects of intra and inter-regional migration

are manifested in the changes in mortality and fertility already accounted for

in the assumptions about the movements of their respective representative in-

dices. For example, it is expected that a family moving from a high fertility

remote region to a low fertility urban environment will experience two relevant

effects for the projection: their lifetime fertility will more closely approximate

their new living environment and their improved access to healthcare (urban

vs. rural) will manifest itself in longer life expectancies. Both of these effects

are accounted for in the trends of total fertility and mortality indices implying

lower total fertility and longer life expectancies at birth (CMHC, 1996). Indeed

it is exactly these sorts of adjustments, present in a reduced form, that drive

the component forecasts.

2.2 Uncertainty in Forecasting

A projection produces the true population counts at a future time if the sets

of assumptions underlying the projection are realized. As Keyfitz (1972) points

out “[population projections] can be incorrect only in the trivial sense that the

author made an arithmetic error that prevents his final number from being

consistent with his initial assumptions.”

Users of projections often interpret them as predictions: statements about

the defacto future state of populations independent of whether the realized fer-

tility, survival and migration coincide with their assumed counterparts in the

projection. Both demographers and users of projections seek the same outcome:

an accurate description of a future population. However, it is usually only the

demographer that intimately knows the assumptions underlying the projection

model. Indeed projections rarely hit their mark and sometimes forecasted vital
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rates will lie outside their high-low ranges even before the projection is pub-

lished. For example, births in 1990 were higher than the highest projection

scenario in the 1989 forecasts from the U.S. Bureau of the Census and they also

missed their mark from 1971 to 1990 by 15-20% (Lee and Tuljapurkar, 1994).

This is not entirely surprising, as fertility is difficult to forecast and errors are

compounded in long-range forecasts after 15 years, the point in the forecast

when the uncertain fertility rates are themselves being applied to an uncertain

cohort of reproductive age females. Furthermore, the assumptions embodied in

projections are complex and users are inclined to disregard the assumptions and

interpret final counts as unconditional statements about the future.

For much of the history of population projections, demographers were unable

to make clear probabilistic statements about their projections. As an alternative

many national statistical agencies would produce “high, medium, low” estimates

based on three different sets of assumptions about the drivers of population

growth or decline without reference to their respective probabilities.

With respect to the lack of probabilistic statements in demographic projec-

tions, progress has been made. The classical methods are now under revision

with two major alternatives taking their place: stochastic population projection

and microsimulation.

The theory of stochastic processes had its genesis in the 1930’s (for exam-

ple, A.A. Markov and A.N. Kolmogorov). The theory progressed rapidly and

starting in the 1970’s, with the development of time series methods (Box and

Jenkins, 1976), new tools became available to users of time series data. It is

only in the past twenty years that these tools have been applied to the field

of demography. Presently some national statistical agencies take advantage of

these new tools to produce probabilistic population projections (eg: Hartman

and Strandell, 2006). These new methods retain the classical projection frame-
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work. However, they require the producer to specify parametric distributions

over the possible courses of demographic indices at each step in the projection.

Using Monte Carlo simulations, many realizations of the population trajectory

are traced and probabilistic intervals can be estimated based on the realizations

of the simulations. The transition from the classical methods has been slow for

many statistical offices because the classical methods are elegantly simple, while

stochastic methods are complex; they require customized computer programs

and the capacity to use sophisticated statistical software.

While statistics, and forecasting in particular, has been derided as the prac-

tice of making errors, practitioners might suggest it is the practice of keeping

track of the errors they make. It is exactly this statistical framework that

has been adopted by demographers taking the stochastic population projection

approach. Billari et al., (2010) suggest that linking stochastic population pro-

jections to the CCM scenario approach, the approach still employed by most

official statistical offices, would facilitate the wide scale adoption of the modern

techniques.

The literature on stochastic forecasting has approached the problem of un-

certainty and forecasting three different ways. The first is to use time series

methods to extract the persistence and volatility of component indices over

time and then to extrapolate that persistence and volatility into the future

(eg: Lee and Tuljanpurkar, 1994), the approach taken in this paper. There

are two major limitations to this approach: structural breaks limit the useful-

ness of long time series when it is available and long time series are frequently

unavailable. The second approach uses observed errors from historical data

and extrapolates measures of historical error as a measure of future uncertainty

(eg: Stoto, 1983). Finally, in the random scenario approach, the traditional

cohort component framework is employed, but based on expert opinion, para-

20



metric distributions are specified for component indices. These indices are then

projected forward in time using Monte Carlo simulations to draw index val-

ues from the specified distributions at each step in the projection. The trend

towards using stochastic projection models of type presented in this paper or

more aptly the trend towards using microsimulation models in demographic

forecasting parallels the adoption of micro-based dynamic stochastic general

equilibrium models in macroeconomic forecasting. By modeling micro behav-

ior explicitly before aggregating, microsimulation addresses the Lucas critique,

while the purely stochastic approach does not. This means that if the policy

conditions affecting behavior surrounding First Nations fertility and mortality

were to drastically change, the method employed in this paper would no longer

apply.

Goldstein (2004) presents a modified random scenario approach as a com-

promise between fully stochastic forecasts like Lee & Tuljapurkar (1994) and

the CCM scenario approach employed in most national statistical offices. He

calibrates the stochastic component forecasts of his projection to reflect the sce-

narios presented in a national forecast by calibrating confidence intervals for

the cumulative average of the component to correspond to the CCM’s “high,

low” scenarios. This approach produces forecasts that are probabilistically con-

sistent in their forecasts of population size, age groups, fertility, mortality and

age structure. This is different than the CCM approach and a major advantage

because it capable of producing probabilistically consistent estimates of rates of

interest such as the dependency ratio or the working age population. Goldstein

shows that these calibrations can produce similar estimates of uncertainty as

their fully stochastic counterparts.

Another method currently employed in population projections is microsim-

ulation, widely considered the state of the art. It uses linked Census data to
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estimate hazard models for life-events. Life-events can include things like births,

deaths, marriage, ethnic mobility and migration. Indeed the number of events is

limited only by the demographer’s imagination and size and richness of the data

set. Just as the classical method has two dimension: age and sex, microsimu-

lation has a number of dimensions equal to the number of modeled life-events.

After estimating hazard models for life-events, a computer simulation is pop-

ulated with the individuals from the most recent census. Each individual in

the simulation is assigned attributes corresponding to their responses in the

census for the relevant life-events that are included in the simulation. Individ-

uals are then advanced through time using Monte Carlo simulations to assign

realizations of life-events to individuals (Malenfant, 2011).

2.3 Behavioral Considerations

Much of the success of population projection models is due to the smooth,

regular movements of demographic indices at the macro level. Demographers

are able to abstract away from the behavioral considerations that surely guide

individual choices that affect fertility and mortality because in the aggregate, the

data series they deal with are quite regular. While there is a literature, largely

in economics, investigating the behavior related to fertility and mortality on

a micro level, demography has only recently started to include these insights

in the form of microsimulation models. This literature explains the observed

variation in fertility by appealing to the co-variation in the opportunity cost of

parenting. As Becker (1965) points out, the cost of producing “commodities”12

in the household increases with the price of time. In another example, Hotz

and Miller (1988) investigate the relationship between life cycle fertility and the

female labor supply finding that variation in childcare costs do affect life cycle
12True to tradition, this part of the economics literature treats children as commodities

produced in the household
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spacing of births.

It can be argued, as I do in this paper, that these behavioral effects are

present in a reduced form in the projections of demographic indices. That is,

the trends and volatility imposed on my projections are a function of behavioral

responses to individual incentives at the micro level but I am able to abstract

from this level because in the aggregate these responses generate smooth, regular

movements. As an example of these smooth trends and a suggestive correlation,

Figure (4) presents two data series from a set of high growth countries, their

TFR and their GDP per capita. GDP per capita is a measure of the price of

time and, at least in this sample, it is negatively correlated with the TFR.

3 Data

The major difficulty in building a demographic projection model for Canada’s

First Nations is the lack of data. Up-to-date vital statistics are frequently miss-

ing or incomplete. To further complicate the process, Canada’s First Nations

have markedly different mortality, fertility and migration patterns than other

Canadians sometimes making imputing national level statistics for First Na-

tions unrealistic. For example, Canada’s First Nations have higher teen fertility

than national averages (Guidmond, et. al, 2009) implying that the distribu-

tion of fertility by age for First Nations is skewed to the left when compared

to the national average. The complication that this creates arises from the use

of standardized distributions of fertility by age to extract births and fertility

by age from an index such as the TFR, which has been forecast. A standard

distribution must be estimated for First Nations specifically.

Our primary source of data is Health Canada’s publication “A Statistical

Profile on the Health of First Nations in Canada: Vital Statistics for Atlantic

and Western Canada, 2001/2002.” This publication includes vital statistics
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Figure 4: The total fertility rate and GDP per capita for a set of high growth
countries, 1960-2009. Data from: World Bank, World Development Indicators,
last updated: Jul 28, 2011
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for the Registered (Status) First Nations population in Canada from regions

where valid data are available. Population counts are national and calculated

using the Indian Register from Indian and Northern Affairs Canada, now called

Aboriginal and Northern Development Canada (AANDC). Data on age specific

births and deaths, from which I calculate survival and fertility schedules are

aggregated from five of Health Canada’s regional offices: Atlantic, Manitoba,

Saskatchewan, Alberta and British Columbia. Data from British Columbia and

Alberta are for both on and off-reserve populations, while the data from the At-

lantic, Manitoba and Saskatchewan offices are for on-reserve populations only.

For a full description of collection methods and data limitations the reader is

encouraged to visit Health Canada’s website.13 It should be noted that this

data is currently under revision and being refreshed. As the program written

for this paper is automated in the sense that it takes data of the form pro-

duced in this publication, new projections using the refreshed tabulations will

be straightforward.

The time series of life expectancy at birth used to calibrate my forecasts of

mortality are from Statistics Canada publication “Vital Statistics and Health”.14The

time series used in the forecast of the First Nations total fertility rate is from

Loh and George (2003), though the raw data is from the Indian Register. The

complexity of estimating and adjusting First Nations fertility rates is presented

in detail in Loh and George (2003). For my purposes it is sufficient to note the

TFR series has been carefully adjusted for errors present in many other First

Nations TFR estimates.
13http://hc-sc.gc.ca/fniah-spnia/pubs/aborig-autoch/stats-profil-atlant/index-eng.php#a5
14http://www.statcan.gc.ca/pub/11-516-x/sectionb/4147437-eng.htm
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4 Method

I follow Hunsinger (2010), Goldstein (2004), Billari et al. (2010) and Hartmann

and Strandell (2006) in their construction of stochastic population projections

for Alaska, Italy, the United States and Sweden respectively. Like Hartmann

and Strandell (2006) and Billari et al. (2010), assuming that components are

independent, I forecast the Total Fertility Rate (TFR) and sex specific mortality

indices. I employ the CCM method with a modification. I advance the vector

of age specific population counts in five-year intervals in the following way:

Nt+1 = At+1 ∗Nt (9)

Different than (1), the matrix A now depends on time because its entries are

derived from the stochastic forecasts of TFR and mortality indices. Ages are

broken into five-year categories, corresponding with the five-year census and

projection intervals. Like Hunsinger (2010), I combine the findings from several

relevant sources to inform the specification of the distributions governing the

stochastic processes in the projection.

4.1 Mortality

In order to project an age and sex specific survival schedule we require a standard

schedule from which we can derive subsequent schedules in the projection. We

estimate a standard survival schedule for First Nations in Canada using age

and sex specific mortality rates published by Health Canada (2002). Since no

historical time series of First Nations mortality exists, we inform our projection

using several publications on First Nations mortality.

From Statistics Canada (2005), the 2017 estimates for male and female life

expectancy at birth are 73.3 and 78.4 years respectively. Estimates of the 2001
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male and female life expectancies at birth are 71.1 and 76.7 years implying

an annual increase of 0.06 for men and 0.11 for women. They arrive at these

estimates by assuming the difference between provincial averages and the First

Nations average will not change over the projection period and they impute the

First Nations life expectancies from provincial projections. Life expectancies

estimated from my survival schedule using 2002 data are 69.62 and 74.70 for

males and females respectively. I use my estimates of life expectancy for the

initial condition of the projection, to be consistent with the same data source

used for initial population counts and fertility.

Specifying the distribution from which consecutive draws form the stochastic

process governing First Nations mortality is more difficult. Again, there are

several sources to inform the specification.

First, I examine a historical (1979 – 2005) time series of Canadian life ex-

pectancy at birth and estimate a drift parameter of 0.25 for men and 0.15 for

women as the mean first difference of each series.15 The variance of the first

difference of each series provides an estimate for the variance of the distribu-

tion of errors for First Nations’ annual change in life expectancy. Since these

are annual estimates and the projection interval is five years, by assuming that

errors are independent, the variance for the distribution of errors at five year

intervals is five times the annual variance. Figure 5 shows the male and female

life expectancy at birth time series, along with their first difference.

Second, I consider two publications on First Nations life expectancy: Miller

(1982) and Roberts and Williamson (2004). From these papers I can estimate

annual gains in life expectancy simply by interpolating a straight line between

historical estimates and my current estimate. In terms of annual gains, these

are between 0.38 and 0.57 for males, and 0.34 and 0.71 for females. The more
15Approximate 95% confidence interval for males: [-0.008,0.515] and for females: [-

0.139,0.439], one sided t-test statistics of Ho : µ < 0 are 5.18 for males and 9.71 for females
therefore we reject the null at α = 1% level.
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Figure 5: Canadian life expectancy at birth in levels and first differences, 1979-
2005
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conservative estimates are from the period 1978 to 2001 (Miller), and the larger

estimates, the period 1956 to 2001 (Roberts and Williamson).

Together, these estimates provide evidence that life expectancy for First Na-

tions is increasing, though at a decreasing rate. This observation is theoretically

appealing. This is because there are diminishing returns to healthcare interven-

tion with respect to life expectancy (Schoder and Zweifel, 2009). That is to

say, for a given increase in the level of healthcare intervention, First Nations

can expect higher gains in life expectancy than populations that currently have

higher life expectancy. Therefore even if First Nations’ exposure to health care

increases linearly at historical rates we can expect declines in the rate of in-

crease in life expectancy. The concave nature of life expectancy over time is

also convenient for the way we model life expectancy. Roughly linear increases

in Brass’ α correspond to a concave increase in life expectancy.

I model Brass’ α as a random walk with a drift because mortality has very

high serial correlation (Lee and Carter, 1992):

BAt = BAt−1 + c+ εt, εt ∼ N(0, σBA) (10)

where c is calibrated to reflect estimates of the annual gains in life expectancy

at birth: the average of Statistics Canada’s implied estimates, estimates from

Miller (1982), Roberts and Williamson (2004) and my estimates of the Canadian

average between 1979 and 2005. Figure 6 shows the average survival schedule

for First Nations males and Canadian males. The intermediate schedules show

how they converge when modeled using Brass’ relational model and both α and

β are allowed to change.
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Figure 6: Convergence of survival schedules: average First Nations males and
Canadian males

30



4.2 Fertility

Governing my forecast of the TFR is a time series from 1974-1996 constructed by

Loh and George (2003). Figure 9 presents the TFR time series from 1974-1996

in addition to my TFR forecasts. Inspection of Figure 9 suggests a non-linear

time trend or a structural break in the series. In 1985 Bill C-31 was passed

which effectively redefined membership rules for First Nations. I believe this

caused a structural break in the series. Children with maternal First Nation

ancestry whose paternal ancestry was not First Nations who had previously

been excluded from the population were now included. The effect of this for the

TFR was a non-random redefinition of the population to include members with

systematically different (lower) fertility rates. I formally test this hypothesis

with Chow’s (1960) F − test of structural change over the interval 1980 to

1994. Figure 7 presents the results of the test indicating that there is indeed a

structural break in the 1980’s.

It is the post-Bill C-31 population that I am forecasting therefore I exclude

information prior to the structural break in my forecast. Following Lee (1993)

and Hartmann and Strandell (2010) I model fertility as a random walk with a

drift. It is the general consensus that both fertility and births are non-stationary

(Booth, 2006).16 I treat the TFR as the index value and I derive age specific

fertility at each projection step. The TFR is modeled quite simply as:

TFRt = TFRt−1 + c+ εt εt ∼ N(0, σTFR) (11)

where c is the drift parameter and both c and σTFR are estimated from the time

series of TFR after the structural break.17It should be noted that the estimate

of σ2
TFR used in the forecasts is conditional on the assumption of no further

16Under the null hypothesis of a unit root, the Augmented Dickey Fuller test fails to reject
the null at the α = 0.01 level for the First Nations TFR series.

17ĉ =
∑1996

t=1990 d(TFR)t
1996−1990

= −0.017, σ2
TFR =

∑1966
t=1990(d(TFR)t− ¯d(TFR))2

(1996−1990−1)
= 0.001
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Figure 7: Testing for a structural change in the total fertility data under H0 :
no structural change. The breakpoint is identified by the dashed line, which
corresponds to two years after Bill C-31 was passed. As the effects from the
change in the population’s definition would have taken some time, this is an
intuitive breakpoint.
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structural breaks.

The fertility schedule at each projection interval is constructed in the fol-

lowing way: let Ft be the fertility schedule at time t: a vector whose entries

contain age specific rates of fertility. It follows that
∑b
a Ft = TFRt where a

and b are the minimum and maximum ages of observed reproduction. If F st is

the standardized schedule from (12) it follows that
∑b
a F

s
t = 1.

Ft = F st ∗ TFRt (12)

4.3 Migration

As suggested in section 2, migration for First Nations at a national level is

negligible because the relevant effects of migration are accounted for in the

component forecasts. At a regional scale, however, migration becomes more

important. Mortality and fertility patterns change at a provincial and even a

regional scale. Migration affects population projections for small areas more

dramatically than for national forecasts. Migration parameters should be esti-

mated locally when making small area forecasts. Following Hunsinger (2010) I

suggest the following: suppose we have a vector of counts of in-migration and

out-migration by age category for the past five years, Mm, m ∈ {In, Out}.

The ith entry in the vectors corresponding to migration proportions are given

by: M i,s
m = M i

m/
∑
Mm, and these are treated as the standard, Ms

m. We can

estimate net migration by projecting the percentage of the population expected

to migrate at each projection interval. Let γm denote that percentage, then:

N i,∗
t = N i

t + {[(
∑

Nt ∗ γIn,t) ∗Ms
In]− [(

∑
Nt ∗ γOut,t) ∗Ms

Out]} (13)
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where N i,∗
t is the ith entry in the migration-adjusted population count vector.

The sum of its elements provides the estimate of the migration-adjusted total

population. This method assumes continuity in the age profile of migration and

that the relevant effect of migration is the percentage of the total population

that migrates.

5 Application to Small Area Forecast

While it would be hard to find a demographer willing to hang their hat on a

population projection for a small community, this does not mean it is not a

worthwhile endeavor. There will be two major components to our projection:

a base projection and a net migration projection. Difficulty in dealing with

migration is inversely proportional to the size and stability of the population

under study, hence migration in small, volatile populations like First Nations

communities pose a real challenge. The base projection is ignorant of migration

and simply advances a vector of population counts through time, though the

exact method depends on the availability and quality of data.

5.1 Counts-by-Age from Population Total

In the worst-case scenario, local death, birth and population counts by age cat-

egory are unavailable. This requires one to make some strong assumptions with

respect to the vital rates of the small area. The smallest amount of information

required to make a projection is simply a total population count. From that,

we can build a counts-by-age schedule in the following way:

Let Ns
x be the standard counts-by-age vector from national First Nations

data (x refers to the age category). We can estimate Nsa
x , the small area

schedule, by assuming a congruent distribution of the population. That is:

Nsa
x = (Ns

x/
∑
Ns
x)∗Community population. With Nsa

x in hand we can proceed
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to make the base projection. Given the paucity of data in this scenario, the

survival and fertility schedule must be constrained to the First Nations standard

schedules.

5.2 Base Projections Assuming Constant Proportions

For this type of projection, I assume that the community’s population will re-

main a constant proportion with respect to the First Nation to whom it belongs

and that the community’s survival and fertility schedules are not significantly

different from that of the First Nation or alternatively from the nationally esti-

mated First Nations standard schedule.

If No is the initial population vector of the First Nation, the total population

of the community in ten years is given by the following:

Community Total

F irst Nation Total
∗ (

∑
N i
t+2) = At+2 ∗ (At+1 ∗No) (14)

The A matrices are stochastic Leslie Matrices constructed as in section 3 us-

ing either the national standard schedules or schedules estimated for the First

Nation.

5.3 Base Projection Assuming Congruent Age Distributions

The second method is simply an application of 5.1. I assume the distribution of

people in each age category in the community is not different from the national

distribution and that national level estimates apply to the community.

Using this method, the total population in ten years is given by the following:

∑
N i
t+2 = At+2 ∗At+1 ∗ (Ns

x/
∑

Ns
x) ∗ Community Total (15)

Some First Nations communities are very small and while long run forecasts will

certainly be of limited utility, if informed estimates of migration can be made
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(as described in section 4) in consultation with community leaders, population

projections of two iterations (ten years) may be informative. As discussed in

section 2, after three intervals (15 years), uncertain fertility rates are being

applied to an uncertain cohort of reproductive age females. This compounding

of error and variability increasing in the number of intervals, particularly for

migration, will limit the usefulness of long-term forecasts.

6 Results For A National Projection: 2002-2032

Projections for 2002 through 2032 for the First Nations population in Canada

are produced using stochastic forecasts for both life expectancy and the TFR.

Estimates of uncertainty should be interpreted as prediction intervals reflecting

the uncertainty in the processes specified in section 4. There is still unaccounted

for uncertainty that will not be reflected in the estimates, for example the initial

population vector is itself an estimate though in the projection it is treated as

the true value. Even for the modeled uncertainty, I must assume that relatively

recent measures of variability are good measures of future uncertainty. All

figures and tables are produced from ten thousand simulations. For exposition

purposes, I present a smaller number in the figures, though prediction intervals

and summary statistics are calculated using all the simulations.

6.1 Mortality

Figure 8 shows twenty forecasts of life expectancy at birth for First Nations

males and females from 2002-2032. Ninety five percent of the forecasts are

within the dashed lines giving prediction intervals for the realization of life

expectancy at birth at each projection interval. On average, life expectancy

increases across the period at a decreasing rate. Table 1 provides a summary of

the simulated life expectancies at each projection interval. The ratio of female
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to male life expectancy in 2002 is 1.07 which falls to 1.03 in 2032.

Year Mean (M) 97.5% 2.5% Mean (F) 97.5% 2.5%
2002 69.55 69.55 69.55 74.63 74.63 74.63
2007 72.31 74.16 70.35 76.98 78.87 74.95
2012 74.86 77.47 72.04 79.11 81.65 76.32
2017 77.17 80.28 73.69 81.00 83.90 77.68
2022 79.29 82.70 75.31 82.67 85.63 78.90
2027 81.17 84.60 76.85 84.09 86.93 80.15
2032 82.81 86.15 78.32 85.26 87.85 81.35

Table 1: Male and female life expectancy at birth for First Nations in Canada
2002-2032 from ten thousand simulations. Statistics Canada’s 2017 estimates
are 73.3 and 78.4 for males and females respectively.

6.2 Fertility

Figure 9 shows one hundred realizations of the TFR forecast. Nintey five percent

of the realizations fall within the red dashed lines providing prediction intervals

for the forecast. Table 2 provides a summary of the TFR forecasts at each

projection interval. Statistics Canada’s TFR “high, low” scenarios for 2017 are

almost in alignment with the 95% prediction intervals implied by the realizations

of the TFR in my forecast.

Year Mean 97.5% 2.5%
2002 2.65 2.79 2.50
2007 2.57 2.77 2.36
2012 2.48 2.73 2.23
2017 2.40 2.69 2.10
2022 2.32 2.65 2.00
2027 2.24 2.60 1.89
2032 2.15 2.54 1.77

Table 2: Summary of ten thousand simulations the TFR. Statistics Canada’s
predictions for 2017 are 2.56, 2.18, 2.71 for moderate, high and low decline.
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Figure 8: Twenty realizations of First Nations’ life expectancy at birth for males
and females, 2002-2032.
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Figure 9: One hundred realizations of the total fertility rate for First Nations,
1996-2032 and the total fertility rate from 1974-2002.
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6.3 Total Population

Figure 10, the total population projection, shows, on average, a roughly linear

increase in Canada’s total First Nations population. Uncertainty increases with

the number of projection intervals, though not in the same way as the component

forecasts, fanning out over the projection interval as compared with the concave

curvature of the component confidence intervals. At the limit of the projection

some curvature begins to appear as the large generations from the current high

fertility rates are replace with younger cohorts with lower fertility rates. Table

3 presents a summary of the total population projections. Interestingly, the

confidence intervals for the total population are wider than the “high, low”

range in traditional CCM projections (46000 vs. 34000). This suggests that the

CCM approach leads forecastsers to overstate their confidence or that the “high,

low” range is not intended to correspond to 95% confidence intervals.

Year Mean 97.5% 2.5%
2002 717276 717276 717276
2007 770010 776021 764117
2012 828286 841896 814768
2017 889094 912072 866213
2022 949949 983730 916044
2027 1008792 1056198 961770
2032 1064243 1129094 1001174

Table 3: Total population projections 2002-2032. The 95% prediction interval in
2017 is lower than the medium growth scenario produced by Statistics Canada
for 2017: 971 000.

6.4 Population Distribution

Figure 11 presents four population pyramids extracted at different intervals of

the projection to demonstrate the changing age distribution of First Nations

in Canada. Note that the pyramids are quite base heavy, reflecting the rela-

tively high fertility rates among First Nations, but that the distribution becomes
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Figure 10: Total population: First Nations in Canada, 2002-2032
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smoother through the projection as lower fertility rates even out the population

age categories.

6.5 Percentage Growth and Youth

Figure 12 shows a histogram of the 2032 population as a percentage of the

2002 population. The histogram includes a kernel density curve showing the

approximately Normal distribution of the realizations of relative size of the 2032

to 2002 population. Most realizations of the relative size over the thirty-year

interval fall within the 140 to 155 percent range. This is impressive growth,

especially considering the Canadian born population as a whole is expected to

decline over the same thirty-year interval.

Figure 13 shows the trajectory of both the under-25 First Nations population

and the percentage of the total population that this cohort comprises, over the

projection range. The projection shows that as a fraction of the total population

this youth cohort is presently at its highest point and, in absolute terms, it will

be relatively stable over the projection period, increasing only slightly.

7 Conclusion

I outline a method for stochastic population projections using historical time se-

ries and expert informed forecasts of vital demographic rates for Canada’s First

Nations. I find that life expectancy will increase more rapidly for First Nations

than the average Canadian and more rapidly for males than for females. Aver-

age life expectancy in 2032 is estimated to be 82.81 and 85.26 years for males

and females respectively. The ratio of female to male life expectancy falls over

the entire projection interval. The mean total fertility rate in 2032 is 2.15, just

above the replacement rate. Contrary to a popularly held belief, the propor-

tion of First Nations under 25 is projected to decline, and in absolute terms,
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Figure 11: Population pyramids for First Nations in Canada, 2002-2032
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Figure 12: First Nations population in 2032 as a percentage of the population
in 2002, from ten thousand simulations.
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Figure 13: Under 25 First Nations population 2002-2032 in levels and as a
percentage of the total First Nations population.
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this youth cohort is expected grow only slightly within the 30 year projection.

The First Nations population in Canada is expected to grow to 1064243 people

by 2032 with 95% of the projections falling in the interval (1001174, 1129094).

The most important finding in this projection, beyond the forecasts of life ex-

pectancy, fertility and the youth cohort population, is the range of realizations

of the total population and its components. Traditional CCM forecasts have

understated the width of the relevant range for the First Nations population

suggesting a width of 34000 people by 2017 while the stochastic forecast’s 95%

prediction interval is over 46000 for the same year. The stochastic approach

makes the uncertainty in population forecasting explicit for the end user. Pol-

icy informed by population forecasts taking into account forecast uncertainty

is able to be cognisant of the limitations of forecasts and it is therefore an

improvement over the traditional scenario based approach.

I provide and example of how a small First Nation can make short-run popu-

lation projections to inform their policy making. Though these estimates depend

heavily on the underlying assumptions, some being much stronger than those in

the National forecast, hopefully this will provide a useful tool for First Nations

communities in their planning processes. Many First Nations in Canada are

in the process of preparing, or are already negotiating, self-government agree-

ments. Negotiating self-government agreements includes establishing a funding

framework that stretches into the future for things like education, housing and

infrastructure. The population projection tool outlined in this paper can inform

First Nations governments in the negotiation process with respect to their an-

ticipated needs. Accurate measures of future needs, and importantly accurate

measures of future uncertainty, will help in the negotiation of funding agree-

ments that allow for the efficient allocation of resources today such that future

needs are met and program funding is in accord with program demand.

46



References

Bali, R. (2004). New Estimates of Aboriginal Fertility, 1966-1971 to 1996 to
2001. Canadian Studies in Population. Vol. 3. 179-196.

Becker, G (1965). A Theory of the Allocation of Time. The Economic Journal.
Vol. 75. 493-517.

Billari, F.C., Graziani, R. & Melill, E. Simple but Flexible Stochastic Popula-
tion Forecasts based on Conditional Expert Opinions. Carlo F. Dondena
Center for Research on Social Dynamics, Department of Decision Sciences
and IGIER Universita Bocconi, Milan, Italy.

Booth, H. (2006). Demographic Forecasting: 1980 to 2005 in Review. Working
Papers in Demography No. 100. Australian National University.

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis : forecasting and
control (Revised Edition ed.). Englewood Cliffs, N.J.: Prentice Hall.

Brass, W. (1971). On the scale of mortality. In W. Brass (Ed.), Biological
Aspects of Demography (pp.69-110). London: Taylor and Francis.

Brass, W. (1974). Perspectives in population prediction: illustrated by the
statistics of England and Wales. Journal of the Royal Statistical A, 137,
532-583.

Brass, W. (1981). The use of the Gompertz relational model to estimate fer-
tility. International Population Conference, Manila 1981, 3, 345-362.

Coale, A. J., Demeny, P. G., & Vaughan, B. (1983). Regional model life tables
and stable populations(2nd ed.). New York: Academic Press.

Carter, L. R. (1996). Forecasting U.S. mortality: a comparison of Box-Jenkins
ARIMA and structural time series models. The Sociological Quarterly, 37,
127-144.

Carter, L. R. (2000). Imparting structural instability to mortality forecasts:
testing for sensitive dependence on initial conditions with innovations.
Mathematical Population Studies, 8, 31-54.

Chow, G.C., (1960) Tests of equality between sets of coefficients in two linear
regressions. Econometrica, 28, 591-605.

CMHC, Canadian Mortgage and Housing Corporation. (1996). Migration
and Mobility of Canada’s Aboriginal Population. Research and Develop-
ment Highlights. Available at:http://www.cmhc.ca/publications/en/rh-
pr/socio/socio024.pdf

47



Girosi, F., & King, G. (2006). Demographic Forecasting. Cambridge: Cam-
bridge University Press.

Girosi, F., & King, G. (2007). Understanding the Lee-Carter Mortality For-
casting Method. Available at: http://gking.harvard.edu/files/lc.pdf

Goldstein J. (2010). A Behavioral Gompertz Model for Cohort Fertility Sched-
ules in Low and Moderate Fertility Populations. Max Planck Institute for
Demographic Research Working Papers. 2010-021.

Guimond, E., Senecal, S., Lapointe, R., (2009). First Nations Teen Fer-
tility and Community Well-Being. Canadian Public Health Association
(CPHA) Annual Conference Winnipeg, Manitoba, Canada.

Hartmann, M. & Strandell, G. (2006). Stochastic Population Projections for
Sweden. Methodology reports from Statistics Sweden.

Health Canada. (2002). A Statistical Profile on the Health of First Nations in
Canada: Vital Statistics for Atlantic andWestern Canada, 2001/2002. Ac-
cessed online at: http://hc-sc.gc.ca/fniah-spnia/pubs/aborig-autoch/stats-
profil-atlant/index-eng.php#app3

Honaker, J., King, G., & Blackwell, M., (2010). Amelia: Amelia II: A Pro-
gram for Missing Data. R package version 1.2-18. http://CRAN.R-
project.org/package=Amelia

Hotz, J. & Miller, R. An Empirical Analysis of Life Cycle Fertility and Female
Labor Supply. Econometrica Vol. 56. 91-118.

Keilman, N. (Ed.). (2005). Perspectives on mortality forecasting (Vol. II.
Probabilistic Models). Stockholm: Swedish Social Insurance Agency.

Keyfitz, N. (1977). Applied Mathematical Demography. New York: John
Wiley and Sons.

Keyfitz, N. (1972). On population forecasting. Journal of the American Sta-
tistical Association, 67, 347-363

Keyfitz, N. (1981). The limits of population forecasting. Population and De-
velopment Review, 7, 579-593

Keyfitz, N. (1991). Experiments in the projection of mortality. Canadian
Studies in Population, 18, 1-17.

Lee, R. D. (2000). The Lee-Carter method for forecasting mortality, with var-
ious extensions and applications. North American Actuarial Journal, 4,
80-93

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality.
Journal of the American Statistical Association, 87, 659-671.

48



Lee, R. D., & Miller, T. (2001). Evaluating the Performance of the Lee-Carter
Method for Forecasting Mortality. Demography, 38, 537-549.

Lee, R. D., & Tuljapurkar, S. (1994). Stochastic population forecasts for the
United States: Beyond high, medium, and low. Journal of the American
Statistical Association, 89, 1175-1189

Leslie, P.H. (1945). The use of matrices in certain population mathematics.
Biometrika, 33(3), 183–212.

Loh, S & George, M.V. (2003). Estimating the Fertility Level of Registered
Indians in Canada:A Challenging Endeavour. Canadian Studies in Popu-
lation, Vol. 30(1), 2003, 117-135.

Malenfant, E. (2011). Demography Division, Statistics Canada. Personal
Communication.

Miller. 1982. Mortality Patterns In A Canadian Indian Population. Canadian
Studies in Population, Vol. 9. 17-31.

Piche, V. & George, M.V. 1973. Estimates of Vital Rates for the Canadian
Indians, 1960-1970, Demography, 10, 3: 367-382.

Rogers, A., & Planck, F. (1983). Model: a general program for estimating
parameterized model schedules of fertility, mortality, migration, and mar-
ital and labor force status transitions. Laxenburg, Austria: International
Institute for Applied Systems Analysis.

Statistics Canada, Michalowski, M. Loh, S. Verma, R. B. P., Germain, M.F.,
Grenier, C. (2005). Projections of the Aboriginal Populations, Canada,
Provinces and Territories. Available online: http://www.statcan.gc.ca/bsolc/olc-
cel/olc-cel?catno=91-547-XIE&lang=eng

Stoto, M. A. (1983). The Accuracy of Population Projections. Journal of the
American Statistical Association, 78, 13-20

Williamson, P. & Roberts, J. (2004). First Nations People. Emond Mont-
gomery Publications.

Wilmoth, J. R. (1993). Computational methods for fitting and extrapolating
the Lee-Carter model of mortality change (Technical Report). Berkeley:
Department of Demography, University of California.

49


