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Abstract

This paper will provide an overview of some recent developments in the area
of cluster robust inference and test these methods under relatively more strin-
gent conditions than has been undertaken in previous analyses. The methods
under consideration are, the conventional CRVE, Bell and McCaffrey (2002)
bias reduced linearization methods, the wild cluster bootstrap, and Young
(2016) effective degrees of freedom corrections. Certain known issues regarding
computational drawbacks of these methods will be discussed as well, highlight-
ing certain properties which researchers should be aware of. Specifically, these
estimators will be tested when the number of clusters is small and when there
is a significant variation in cluster sizes. Finally, a generalization in the topic of
two-way cluster robust estimation is tested, where Bell and McCaffrey (2002)
residual adjustments will be applied to the standard two-way clustering ap-
proach.
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1 Introduction

The need for cluster robust methods arises when the model disturbances are cor-

related within some level of the data. An example of this would be within-group

correlation with groups being Canadian provinces or American states. The primary

issue is that, with the presence of within-cluster correlation, the usual ordinary least

squares (OLS) standard errors tend to be biased downwards resulting in the rejec-

tion of true null hypotheses. The most obvious approach one could take in order to

correct for this would be to add group level fixed-effects. However, Bertrand, Duflo,

and Mulanaithan (2004) provide evidence that adding group fixed-effects may not

entirely account for the intra-group correlation that causes the bias. Additionally,

Kloek (1981), one of the original motivators for this idea, also notes that if a variable

does not vary within a cluster, these fixed effects cannot be used. Hence, when the

researcher is faced with this scenario, the utilization of cluster robust standard errors

is required.

The most common approach is the cluster robust covariance matrix estimator

(CRVE), which is implemented in Stata and was proposed by Liang and Zeiger

(1986).1 This covariance matrix estimator can be shown to be consistent given three

assumptions. These assumptions are that, the number of clusters tends to infinity,

the within-cluster error correlations are equal for each cluster, and the number of

observations within each cluster is the same for all clusters. However, these relatively

strong assumptions are not likely to hold in practice. For example, one may encounter

what is considered to be a ‘small’ number of clusters if they wish to cluster the data

according to Canadian provinces. Cameron, Gelbach, and Miller (2008) provide evi-

dence that the standard CRVE over-rejects quite severely in the case where there are

only ten clusters. A large variation in cluster sizes, such as fifty state-sized clusters

1Also referred to as CR1.
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also results in CR1 performing poorly, as shown in MacKinnon and Webb (2016).

Various methods have been proposed to correct for these known issues. Specifi-

cally, a cluster robust version of the wild bootstrap seems to be an improvement over

the conventional CRVE when encountering varying cluster sizes. For the problem of a

small number of clusters, a method proposed by Bell and McCaffrey (2002) modifies

the residuals in a way similar to that of the heteroskedasticity robust HC2 and HC3

corrections in MacKinnon and White (1985). Due to their resemblance to their het-

eroskedasticity robust counter-parts, these methods are typically referred to as CR2

and CR3. More recently Young (2016) has extended these methods by proposing

modifications to CR1, CR2, and CR3. Additionally he suggests using what he terms

effective degrees of freedom corrections. These methods will be explored in detail

later.

As given in MacKinnon and Webb (2016), the basic set up is a linear model which

is estimated by OLS,

y =



y1

y2
...

yG


= Xβ + u =



X1

X2

...

XG


β +



u1

u2

...

uG


(1)

where the gth cluster has Ng observations. In general, the matrix X and vectors

y and u have N =
∑G

g=1Ng rows. Additionally, X has dimension N × k and the

parameter vector β is k×1. As the disturbances are assumed to be uncorrelated across

clusters, the covariance matrix of the vector of disturbances u is block diagonal with
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each Ng ×Ng block given by

E(ugu
′
g) = Ωg, g = 1, ..., G (2)

where Ωg is unknown for each cluster g.

Moulton (1990) highlights why clustering is an important issue by providing an

example which illustrates the difference in magnitude between the true covariance

matrix and the standard OLS covariance matrix. Suppose the simplest regression

model with a constant and one independent variable, with coefficient β2. Denote

the conventional OLS covariance matrix as varc(β̂) = σ2(X ′X)−1 and suppose that

var(β̂) is the true covariance matrix.2 If it is supposed first that all intra-cluster

correlations are constant and given by ρg, then it can be shown that, given Ng equal

for each cluster,

var(β̂2)

varc(β̂2)
= 1 + (Ng − 1)ρg, (3)

where the square root of the right-hand side is called the Moulton factor.3 From this

one can observe that, even if within-cluster correlations are small, the conventional

OLS standard error may be significantly larger than the correct standard error if

Ng is large. Additionally, this factor is increasing in ρg implying that the larger the

intra-cluster correlation, the more biased the conventional OLS standard errors will

be.

In this paper I will compare recent results in the literature with methods proposed

previously, where I will be testing these newer results under more stringent conditions

2It is worthwhile to note that the variance of the estimate of the parameter β2 is simply the
second diagonal element of these covariance matrices.

3The details of this are given in the appendix.
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and environments than done previously. Additionally, certain extensions of the wild

cluster bootstrap using modified residuals will be tested as well. These methods will

be tested when the number of clusters is small and when there is a large variation in

the number of observations per cluster. Lastly, a small extension of two-way clustering

will also be tested whereby CR1 will be replaced by other standard error estimates.

Here I find a significant improvement in performance over the conventional two-way

standard error estimates.

The contribution of this analysis is twofold. Firstly, it is to scrutinize certain

methods which have not been analyzed under situations where they are likely to fail.

Monte Carlo simulations will be used extensively to draw conclusions regarding the

performance of the most commonly used cluster robust estimation techniques and how

they compare with recently proposed extensions. The second contribution will be to

discuss the methods of two-way clustering, propose a small extension, and analyze

the performance of these extensions using Monte Carlo experiments. This is neces-

sary due to the less than ideal performance of the conventional method for two-way

cluster robust estimation, which shows favourable performance in only a few scenarios.

The outline for this paper is as follows. Section 2 will briefly cover the basics of

all cluster robust estimation methods which will be tested in this analysis. This sec-

tion will also include a brief discussion on when these methods are known to perform

poorly. Section 3 will discuss the issues and limitations associated with computing

cluster robust estimators. Section 4 will contain the first set of Monte Carlo experi-

ments testing the recently proposed estimators and comparing their performance to

conventional methods. Finally, Section 5 will discuss how two-way clustering can be

extended and Monte Carlo evidence will be provided to show how these extensions

can improve the performance of two-way cluster robust estimation.
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2 Cluster Robust Inference: An Overview

Here I provide a general summary of which methods will be tested with some of their

basic properties and known issues or strengths. This discussion will be an overview

and one should appeal to the original publications on these methods for more detail

and asymptotic theory.

2.1 Conventional CRVE

This method was originally proposed by Liang and Zeiger (1986) and is the robust

covariance matrix estimator employed by Stata’s cluster command. The form of this

covariance matrix estimator is given by

CR1 =
G(N − 1)

(G− 1)(N − k)
(X ′X)−1

( G∑
g=1

X ′gûgû
′
gXg

)
(X ′X)−1 (4)

where ûg are the residuals corresponding to cluster g ∈ (1, 2, · · · , G) and Xg is the

Ng × k portion of the matrix of observations X. Alternatively, one could write

this in a more compact fashion by using {·} to denote a block diagonal matrix and

CCR1 = G(N−1)
(G−1)(N−k) . Then (4) could be written as,

CR1 = CCR1(X
′X)−1X ′{ûgû′g}X(X ′X)−1. (5)

This method controls for error heteroskedasticity across clusters, correlation within

clusters of a general form, and heteroskedasticity within clusters. However, this is

only under the assumption that the number of clusters G becomes arbitrarily large.

Additionally, the degrees of freedom adjustment CCR1 is asymptotically negligible as
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it tends to N
N−k ≈ 1 as G→∞.

One benefit of CR1 is that it is computationally cheap, relative to other methods,

as it does not require the inversion of any large matrices.4 For example, CR2 and

CR3 require inverting Ng×Ng matrices which, depending on cluster size, may become

computationally impractical or even unfeasible. A drawback, however, as pointed out

in Cameron, Gelbach, and Miller (2008), is that E(ûgûg
′) 6= Ωg = E(ugu

′
g) implying

that it is a biased estimator. While (4) may be biased, it is also known that it is typ-

ically biased downward.5 Due to the bias present in CR1, Bell and McCaffrey (2002),

proposed corrections where they used (4) and replaced ûg with modified residuals.

These modifications, in the cluster robust case, are analogous to the heteroskedastic-

ity robust residual modifications proposed by MacKinnon and White (1985).

Initially, the proposed hypothesis test using this estimator was utilizing critical

values based on the Student’s t distribution with N −k degrees of freedom. However,

Donald and Lang (2007) and Bester, Conley, and Hansen (2011) suggest, and provide

evidence that, a t(G − 1) distribution is much more appropriate. In fact, this is the

method which Stata uses and will be the distribution used for simulation experiments

involving CR1 in this analysis. Other methods as suggested by Carter, Schnepel, and

Steigerwald (2015) suggest using what is termed effective number of clusters, G∗,

which depends on the Xg matrices. These methods will not be discussed further.

However, one may refer to MacKinnon and Webb (2016) for simulation evidence in-

volving these distributions.

4Despite the computation of (X ′X)−1 being unavoidable, this matrix is only k× k, which for all
practical purposes is a non-issue.

5When using ûg instead of the true disturbances Kézdi (2004) provides simulation evidence
suggesting that the bias is downward and between 9% to 16%.
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2.2 Bias Reduced Linearization

Initially proposed by Bell and McCaffrey (2002), these methods involve a rescaling

of the residuals in order to deal with the bias associated with (4). This is due to the

fact that when the number of clusters is small, the standard error estimates have a

strong tendency to be downwards biased. They propose using

u̇g = (I − Pgg)−1/2ûg g = 1, · · · , G (6)

as a transformation of the standard OLS residual. Here Pgg ≡Xg(X
′X)−1X ′g, which

is the Ng × Ng block of the projection matrix PX = X(X ′X)−1X ′ corresponding

to cluster g. Since this method is a generalization of the heteroskedasticity robust

method HC2, it is commonly referred to as CR2. Additionally they use an alternative

method whereby the symmetric square root is replaced by the inverse. This again

is a cluster robust generalization of the heteroskedasticity robust case proposed by

MacKinnon and White (1985), HC3, hence it is referred to as CR3. Hence, one may

write,

CR2 = (X ′X)−1
( G∑
g=1

X ′g((I − Pgg)−1/2ûg)((I − Pgg)−1/2ûg)′Xg

)
(X ′X)−1 (7)

and, CR3 simply replaces (·)−1/2 with (·)−1. If we let Mgg = I − Pgg (7) may be

written more compactly as

CR2 = (X ′X)−1X ′{M−1/2
gg ûgû

′
gM

−1/2
gg }X(X ′X)−1/2. (8)

Results presented by Cameron, Gelbach, and Miller (2008) suggest that CR3 adjust-

ment performs better than the CR1 adjustment when using the t(N−k) distribution.

However, they did not compare the rejection rates of CR3 to CR1 when using what is
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now the preferred method employing a t(G− 1) distribution. While the performance

of the estimators CR2 and CR3 may be better than that of the conventional alter-

native CR1, it should be noted that these methods are computationally expensive.

This is due to the unavoidable inversion of the Ng×Ng matrices which appear in the

residual rescalings.

2.3 Effective Degrees of Freedom Corrections

Bell and McCaffrey (2002) proposed this idea initially. They suggest using degrees of

freedom based on the Satterthwaite (1946) approximation. This idea was motivated

by the fact that the standard errors of OLS coefficients are only χ2-distributed under

a particular set of assumptions. Additionally, they show that the alternative distri-

bution, using G− 1 degrees of freedom, was only true if X ′gX(X ′X)−1lp is constant

for all clusters g ∈ (1, 2, ..., G), where lp is a k × 1 vector which has the pth element

equal to one, and zero otherwise. However, in general, this condition does not hold.

Instead they suggest using an alternative t-distribution based on a different degrees of

freedom calculation. The following exposition is based on a simplified version, which

is useful for our scenario and can be attributed to Imbens and Kolesar (2012).

Formally, they define the N ×G matrix Z where the gth column is given by

Zg = (IN − PX)′g(INg − Pgg)−1/2Xg(X
′X)−1lp, (9)

where (IN−PX)g refers to the Ng rows of the N×N projection matrixMX = I−PX .

Then the relevant degrees of freedom are given by

υZ =

(∑G
i=1 λi

)2
∑G

i=1 λ
2
i

, (10)
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where the λi are the eigenvalues of the square matrix Z ′Z. Ideally one would be using

the eigenvalues of Z′ΩZ; however, Ω is difficult to estimate correctly. Imbens and

Kolesar (2012) propose a structure for Ω which leads to a slightly different degrees of

freedom correction. However, this will not be explored in this paper. Additionally, it

is worthwhile to note that as opposed to the scenario where one uses G − 1 degrees

of freedom, this method results in different degrees of freedom depending on which

coefficient one is testing.

Tipton (2015) and Pustejovsky and Tipton (2016) endorse using CR2 with the

degrees of freedom correction given by (10). Recently, Young (2016) has proposed a

method which is similar to that of Bell and McCaffrey (2002), using a similar degrees

of freedom correction also based on Satterthwaite (1946). The method proposed

involves testing whether or not a linear combination of the coefficient vector w′β

is significantly different than a specified null value w0. Using Vi as the estimated

covariance matrix of β, he rewrites the usual test statistic, denoted by t̃i as

t̃i =
w′β − w0√
w′Viw

=

w′β−w0√
σ2w′(X′X)−1w√

w′Viw
σ2w′(X′X)−1w

=

w′β−w0√
σ2w′(X′X)−1w√

u′

σ
Bi

u
σ

. (11)

where he assumes that Vi can be re-expressed as a standard normal quadratic form

with the matrix Bi.
6 Next, he notes that if u is iid normal, then this quadratic form

has mean µi = trace(Bi) and variance vi = 2[trace(BiBi)].
7 Additionally, if Bi is an

idempotent matrix, this quadratic form is a χ2 random variable with µi degrees of

freedom.

6Here i refers to a specific covariance matrix estimator, that is, i = CR1, CR2, CR3.
7The mean comes from the property of iid as, in general with quadratic forms, E(X ′AX) =

trace(AΣ)+µ′Aµ. Since it is assumed that Σ = I and µ = 0, we find that E(u′

σ Bi
u
σ ) = trace(Bi).

The variance comes from the fact that in general, if a ∼ N(0, σ2I) andM is a symmetric idempotent

matrix of rank m, then a′

σM
a
σ ∼ χ

2(trace(M)).
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However, if Bi is not idempotent, corrections can be made such that the resulting

expression will mimic the moment conditions of the idempotent form. This correction

involves multiplying the expression in the denominator of (11) by 2µ/v so that it will

have mean 2µ2/v and variance 4µ2/v. The next step is to mimic the conventional t-

statistic by dividing the denominator by the degrees of freedom of the approximately

χ2 distributed random variable. Then (11) becomes

t̃i =
w′β − w0√
w′Viw

=

w′β−w0√
σ2w′(X′X)−1w√
1
µ

w′Viw
σ2w′(X′X)−1w

=

w′β−w0√
σ2w′(X′X)−1w√
1

2µ2/v
u′

σ
(Bi

2µ
v

)u
σ

(12)

which is approximately t-distributed with 2µ/v effective degrees of freedom. Here the

effective degrees of freedom calculation is given by (10) where now the eigenvalues

come from the matrix Bi.

Next, to calculate the Bi matrices, first recall the expression for CR1 given in

(4) and the corresponding CR2 and CR3 adjustments. In order to write this more

compactly, where {·} represents a block diagonal matrix we define the following,

z′ = z′CR1
= w′(X ′X)−1X ′

z′CR2
= w′(X ′X)−1X{M−1/2

gg }

z′CR3
= w′(X ′X)−1X ′{M−1

gg }

(13)

and (11) implies that,

w′Viw

σ2w′(X ′X)−1w
=
u′

σ
Bi
u

σ
. (14)

Then the relevant Bi matrices can be written as

Bi =
Ci
z′z

MX{zi,gz′i,g}MX i = CCR1 , CCR2 , CCR3 (15)
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with CCR2 = CCR3 = 1, and CCR1 being the CR1 degrees of freedom adjustment

present in (4). As mentioned before, now t̃i will be approximately t-distributed with

2µi/vi effective degrees of freedom.

2.4 Wild Cluster Bootstrap Methods

The wild cluster bootstrap was originally introduced by Cameron, Gelbach, and Miller

(2008) as a technique to deal with the conventional CRVE performing poorly when

the number of clusters is small. One noteworthy feature of this method is that

the within-cluster error correlations are preserved through the use of an auxiliary

probability distribution, which is applied to the residuals. This is different than the

wild bootstrap used to control for heteroskedasticity, where the auxiliary random

variable is applied to each observation. Suppose we wish to use this method to test

the hypothesis that a specific coefficient is zero. Just for illustration purposes, suppose

this coefficient is the last element of the vector β, βk. First, we illustrate this method

for the CR1 estimator. However, it may be generalized. The procedure is as follows:

1. Estimate (1) by OLS.

2. Calculate the t-statistic for the hypothesis that βk = 0 using the square root of

the kth diagonal element of the covariance matrix CR1 as the standard error.

3. Re-estimate the original model with the restriction βk = 0 imposed. This is

done to obtain restricted residuals ũ and restricted parameter estimates β̃.

4. In each of the b ∈ B bootstrap replications, generate a new set of bootstrap

dependent variables using the bootstrap DGP

y∗big = Xigβ̃ + ũigv
∗b
g (16)
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where vg is a Rademacher random variable specific to each cluster, which takes

on the value 1 or -1 with equal probability.

5. For each b ∈ B, estimate (1) using y∗b as the dependent variable and calculate

the bootstrap t-statistic t∗bk for the hypothesis that βk = 0 using the bootstrap

residuals.

6. Calculate the bootstrap P value

p̂∗ =
1

B

B∑
b=1

I(|t∗bk | > |tk|) (17)

where I(·) is the indicator function.

However, this is not the only variation of the wild cluster bootstrap, as one may ad-

just the residuals in the fashion suggested by Bell and McCaffrey (2002) and perform

the same procedure. As suggested by MacKinnon (2015), one may replace ũig in (16)

with u̇ig = M
−1/2
gg ũig or üig = M−1

gg ũig.

Upon first inspection, one may expect that the residual transformations would be

far too computationally expensive as one would be needing to compute an inverse or

a symmetric square root inverse on each bootstrap replication. However, this is not

the case. Rather, as mentioned in MacKinnon (2015), this computation only needs to

be made once and then it can be reused in each bootstrap replication. Of course, this

does not negate the fact that if the Ng ×Ng matrices are large enough, this method

becomes computationally impractical or even unfeasible.

Additionally, Webb (2014) outlines the issues associated with this procedure when

the number of clusters is small. When G is small, so too is the number of unique

bootstrap samples. What this then implies is that the number of unique samples
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depends on the auxiliary distribution being applied to the residuals. Additionally,

he points out that if one uses the Rademacher distribution, there are only 2G unique

bootstrap samples and only 2G−1 unique t-statistics in absolute value. Hence, if

G is small, then it will be the case that any given t-statistic can appear multiple

times. This is problematic as the procedure supposes that if there are B bootstrap

replications, there will be B unique t-statistics. As a result of this, he suggests

a 6-point distribution which has moments that resemble those of the Rademacher

distribution. This random variable takes on the values

vg =

(
−
√

3

2
,−
√

2

2
,−
√

1

2
,

√
1

2
,

√
2

2
,

√
3

2

)
, (18)

each occurring with equal probability. Such a distribution increases the number of

bootstrap samples from 2G to 6G.

2.5 Multi-Way Clustering

The need for multi-way clustering arises when there is more than one variable where

the disturbances display intra-cluster correlation. An example of this could be the

need to cluster on both province and time variables. The most straight-forward

method to deal with this problem is to add fixed effects corresponding to the vari-

ables which exhibit within-cluster correlation. However, as mentioned previously,

this is not always feasible. Alternatively, it may be that adding fixed effects does

not fully control for the intra-cluster correlation. The most well known procedure

was proposed by Cameron, Gelbach, and Miller (2011). However, as their simulation

evidence shows, these methods are very sensitive to certain properties in the data.

This analysis will be focused solely on two-way clustering. However, generalizing
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this method for n-way clustering is a straightforward application of the two-way

case. Essentially, this process is done by clustering on each variable individually

and then clustering on the intersection of these groups, summing the two former

and subtracting the latter. The setting differs slightly from (1) and is as follows.

Consider the case where each observation belongs to more than one dimension of the

data. That is, suppose that each individual belongs to a group g ∈ (1, 2, ..., G) and

also a group h ∈ (1, 2, ..., H). Then one may rewrite the model in (1) as

yigh = x′ighβ + u, (19)

where it is assumed that for i 6= j, E(uighuig′h′ |xigh,xig′h′) = 0 unless g = g′ or

h = h′. Then the idea is that the covariance matrix for β̂ can be computed as the

sum of the one-way cluster covariance matrices.

The quantity we are interested in is v̂ar(β̂), and we denote v̂arG(β̂) as the one-way

cluster robust estimate (CR1) corresponding to the group of clusters g ∈ (1, 2, ..., G).

Cameron, Gelbach, and Miller (2011) suggest the following,

v̂ar(β̂) = v̂arG(β̂) + v̂arH(β̂)− v̂arG∩H(β̂) (20)

where G ∩ H must be subtracted to avoid double-counting. However, one must be

aware that there are certain practical limitations to this method. That is, there is

the possibility that some of the diagonal elements of (20) are negative, which would

imply negative variance and that the covariance matrix is not positive definite. Of

course, this is quite problematic, and Cameron, Gelbach, and Miller (2011) propose

the following way to correct this issue. First, perform an eigenvalue decomposition

on the matrix given in (18) to obtain v̂ar(β̂) = DΛD′, where D is the matrix where

the columns are the eigenvectors of (20), and Λ = {λi}, the eigenvalues of (20). Next,
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replace Λ with Λ+ = {λ+i } where λ+i = max{0, λi}. Then finally, replace v̂ar(β̂) with

v̂ar+(β̂) = DΛ+D′. Additionally, the authors reported that, when the eigenvalues

were negative, typically they were not large in absolute value.

2.6 Known Issues

As stated previously, the asymptotic theory for cluster robust estimation is pred-

icated on the number of clusters becoming arbitrarily large. Angrist and Pischke

(2009) proposed what they called the ‘rule of 42’, which essentially says that 42 is a

large enough number of clusters to assume the asymptotic properties hold in finite

samples. However, this is not generally true, and can only be relied upon in certain

scenarios. There are a few well known cases where this ‘rule’ tends to fail. One such

setting where this rule is violated is when there is large variation in the number of

observations per cluster. MacKinnon and Webb (2016) find that given 50 clusters

proportional to the populations of US states, the conventional CRVE does not per-

form well. However, they also show that the wild cluster bootstrap does alleviate

most of this issue, and that its performance also depends on how much within-cluster

correlation is present in the data.

Additionally, MacKinnon and Webb (2016) highlight the issues associated with

the wild cluster bootstrap and the conventional CRVE when the clustered data incor-

porates treatment effects. They show that when using dummy variables for treatment,

regardless of whether or not cluster size is equal, there can be severe over-rejection

when the number of treated (or untreated) clusters is small. Additionally, it is shown

that this is the case in a few different settings. These scenarios include, when one

is using cluster-level treatments, and when using difference-in-difference regressions

with and without fixed-effects. Furthermore, it is the case that the situation is least
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favourable when some or all of the treated clusters are small.

In terms of two-way clustering, the problem appears to be quite sensitive to how

many clusters there are in either of the groups upon which one wishes to cluster. In

Cameron, Gelbach, and Miller (2011) the best results were achieved when there were

an equal number of clusters per group and the number of clusters is large. That is,

the best case was when G = H = 100. Aside from this case, they obtained fairly

severe over-rejection when either, or both groups, had a small number of clusters.

However, they did obtain an improvement on these rejection rates when they also

included group specific fixed-effects.

Finally, as will be outlined in the next section, a large number of these methods

are not computationally trivial. That is, it may be the method that performs best

is impractical in certain data sets. This can occur when the number of observations

for any cluster is extraordinarily large. In fact, as shown in the next section, these

methods actually become unfeasible in certain scenarios. As a result of this, one must

be aware of the size of the clusters they are using, the amount of memory available on

the system which one is using, and make the choice of which method to apply taking

these into consideration.

3 Computational Properties of Cluster Robust Es-

timation

As mentioned previously, one potential drawback of certain cluster robust methods

is that they possess an unavoidable matrix inversion, where the matrix needing to be

inverted can be relatively large. The need for matrix inversion typically arises when

solving a system of linear equations. However, in practice, computationally there are
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much more efficient ways of solving such a system without the need for expensive

matrix inversions. For example, performing an LU-decomposition or Gaussian elim-

ination are ways to avoid computing a matrix inverse. In MATLAB when solving a

system of the form Ax = b, the famous ‘\’ command executes a series of algorithms

which have been optimized to solve linear systems as efficiently as possible. This

algorithm works by utilizing different approaches depending on whether the matrix

is square, triangular, hermitian, or a number of other characteristics. By using this

method, one can be certain that the system of linear equations is being solved in the

manner which is best for the problem at hand and with no matrix inversion necessary.

Figure 1: Run time of matrix inversion in MATLAB

However, when the computation of an inverse of a matrix is unavoidable, oper-

ations tend to become computationally expensive quite quickly. In fact, as shown

in the appendix, the approach MATLAB, Stata, and R use to compute the inverse

of a matrix has a computational complexity of O(n3). This fact implies that the

run-time of such an algorithm increases cubically as n increases. In the case of the

methods requiring such an inverse, CR2, CR3, and Young’s corresponding methods,

n here would be the number of observations for a given cluster. Figure 1 shows the
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run-time for the matrix inversion algorithm implemented in MATLAB, as the size of

the matrix increases.8 The figure here was created by constructing an n × n matrix

with each entry generated from a N(0, 1) distribution, and then inverting that matrix.

However, only the run-time corresponding to the matrix inversion itself was measured

here. It is also worthwhile to note that this is an ideal situation for matrix inversion

as the matrix is what one would term well-conditioned. That is, it is possible to

have a ‘near-singular’ matrix which, while an inverse may exist analytically, it may

be difficult or impossible to invert it numerically.

Figure 1 clearly shows the rate of increase of the computational run-time and

it’s nonlinear nature. Even using a value as low as n = 5000, we see that a matrix

inversion will take nearly 10 seconds to be computed. If one were to have many

large clusters, computing CR2 or CR3 could take upwards of several minutes, which

is not highly problematic, but relatively inconvenient. Additionally, if one considers

the fact that some of these matrices may not be well-conditioned, the run-time of

these inversion algorithms can increase significantly. While this has the potential to

be time consuming, an even more serious issue is how to actually store these n × n

matrices.

When using a regression package such as Stata, the matrices themselves will be

stored in RAM. As one can see in (6) the matrix which is being inverted and stored

is Ng ×Ng. Suppose one had a data set with 100,000 observations where the number

of observations per Canadian province is proportional to the province’s population.

In this case, the Mgg = I − Pgg matrix corresponding to observations from Ontario

would be 38500×38500. If the matrix is double-precision, that is, each floating-point

8The specifications of the machine one is using plays a significant role in the computation time
of these algorithms. In the case of this experiment the processor was a 3.4 Ghz. i7 2600 (4 cores, 8
GB) and the operating system was 64-bit Linux.
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Table 1: RAM Required to Store n× n Matrices

n = 500 n = 2500 n = 10000 n = 25000 n = 40000 n = 50000
Memory Required
(GBs)

0.00186 0.00745 0.74505 4.65661 11.92093 18.62645

number occupies 8 bytes, then an n × n matrix will take up n2 × 8/10243 gigabytes

of memory. Table 1 illustrates the different amounts of memory required to store

double-precision matrices of different sizes.

As we can see, storing the Mgg matrix is clearly unfeasible if a given cluster is

large enough. While of course there are systems with enough RAM to support such a

calculation, this needs to be taken into account when one is considering which cluster

robust method to employ. That is, if a specific data set possesses such a large cluster,

then a high-powered computer, beyond the typical desktop, would be required. If one

does not have such a system at their disposal, a compromise may have to be made

whereby the method used is not necessarily the one best fit for the analysis, but the

one which is computationally feasible. However, in the future as computation and

memory become cheaper, this is a problem which should ultimately disappear. That

being said, presently, it is certainly something which anyone applying cluster robust

estimation needs to be aware of.

Finally, another potential issue, which arises in all of the methods discussed, is

that of numerical accuracy. Numerical accuracy is a problem which arises any time

one is performing arithmetic with floating-point values. Since floating-point numbers

ultimately have a finite number of digits, rounding-off may be done at every stage of

a numerical routine. When a numerical routine involves a significant number of steps,

any round-off error has the potential to accumulate throughout the algorithm pro-

ducing large errors which have compiled over time. For example, even something as

seemingly innocuous as defining a variable in MATLAB as x = 0.1 involves round-off
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error, as 1/10 is an infinite series in binary. The result of this is that our variable x

will be very close to 1/10, but not exact.

Currently, MATLAB, Stata, and R all use the IEEE standard 64-bit double (or

32-bit single if specified) format.9 A simple example given by Golub and Van Loan

(2013) shows, how using this format, one can encounter quite different results despite

having mathematically identical expressions. If one considers the quadratic equation

x2 − 2px− q = 0, solving this using the quadratic formula will give one of the roots

of this equation to be

r1 = p−
√
p2 + q (21)

However, if one were to multiply (21) by
p+
√
p2+q

p+
√
p2+q

, then we would get a mathematically

identical expression given by

r2 =
−q

p+
√
p2 + q

. (22)

Then, using IEEE double floating-point arithmetic we would obtain, which one can

check using the program of their choice, the following values:

r1 = −4.097819328308106× 10−8

r2 = −4.050000332100021× 10−8
(23)

where the second is correct.10

While numerical accuracy is not something someone may necessarily be able to

account for when applying any of the cluster-robust methods discussed in this anal-

ysis, it is useful to be aware of it. The most important take-away is that not all

9The IEEE is a computing standard which was developed in 1985 and is used almost unanimously
in computing software.

10To obtain this one needs to set q = 1 and p = 12345678.
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mathematically equivalent expressions will produce equivalent results numerically.

Finite precision implies that round-off error is ubiquitous in the numerical routines

which software packages make use of to compute these estimators. Not all routines

are alike numerically, and some may perform more accurately than others. It may be

the case that the idiosyncrasies in these routines produce significantly different results.

4 Monte Carlo Experiments

In this section, a series of Monte Carlo experiments are run which are meant to test

and compare these estimators under different scenarios. While some of these estima-

tors have been tested under these circumstances, many have not, nor have they been

put in direct comparison with one another. Young (2016) compares the method he is

proposing with the conventional CR1, CR2, and CR3 estimators. However, the small-

est number of clusters in any given experiment is G = 11, and the average number of

clusters is G = 211. With G this large, it is hard to infer how well these estimators

perform in the case where there is a small number of clusters. Cameron, Gelbach, and

Miller (2008) performed similar experiments comparing various bootstrap methods,

including the wild cluster bootstrap. One drawback of their simulation results is that

they are based on a mere 1000 replications. With such a small number of replications,

it is unlikely that such results would be reliable due to the amount of randomness

associated with such a small sample size. To illustrate this, certain experiments were

run multiple times with only 1000 replications and the results varied wildly. Exam-

ples of this are given in the appendix.
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4.1 Number of Clusters

The first set of experiments will be testing all methods discussed previously for dif-

ferent numbers of clusters. Specifically, the number of clusters will be G = 5, G = 10,

G = 20, and G = 30. The first two sets of tests will be using R = 25000 repli-

cations and equal cluster sizes of Ng = 30. However, the third set of experiments,

with unequal cluster sizes, will be using R = 10000 replications as these tests are

computationally intensive due to the relatively large cluster sizes.

4.1.1 Homoskedastic Disturbances

Following the experiment suggested by Cameron, Gelbach, and Miller (2008), the

data were generated according to

yig = β0 + β1xig + uig = β0 + β1(zg + zig) + (εg + εig). (24)

Here zg, zig, ug, and uig are independent N(0, 1) draws and the parameters are set

as β0 = 0 and β1 = 1. The zg and ug are cluster specific standard normal random

variables which induce the within-cluster correlation present in each generated sample.

The results of this experiment are given below in Table 2, where WB2 and WB3 are

the wild cluster bootstrap with the residual modifications corresponding to CR2 and

CR3, respectively. YCR1, YCR2, and YCR3 refer to the adjustments on the CR1,

CR2, and CR3 estimators proposed by Young (2016) and CRdf
2 is CR2 with the Bell

and McCaffrey (2002) degrees of freedom correction.

Here we are performing the hypothesis test that β1 = 1 which has been imposed

in the DGP. Since the null hypothesis β1 = 1 is true, what one would expect is that

if the test has appropriate size, it will reject the null hypothesis exactly 5% of the
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Table 2: Rejection Rates: Tests of Nominal Size 0.05 (Homoskedasticity)

Clusters
G = 5 G = 10 G = 20 G = 30

CR1 0.0992 0.0896 0.0750 0.0672
CR2 0.0640 0.0692 0.0636 0.0602
CR3 0.0270 0.0438 0.0496 0.0497

Method WB1 0.0742 0.0567 0.0510 0.0513
WB2 0.0310 0.0483 0.0479 0.0492
WB3 0.0489 0.0523 0.0503 0.0508
YCR1 0.0678 0.0667 0.0615 0.0590
YCR2 0.0482 0.0556 0.0563 0.0558
YCR3 0.0317 0.0458 0.0511 0.0519

CRdf
2 0.0934 0.0806 0.0678 0.0624

time. Of course, judging by the table, especially when the number of cluster is small,

this is not the case. What can be seen is that, given the smallest number of clusters

G = 5, the conventional CR1 estimator under performs in comparison to every other

estimator, rejecting almost 10% of the time. However, we can see that as the num-

ber of clusters increases, the rejection rate approaches 5%. This is consistent with

the asymptotic theory and previous simulation experiments performed by Cameron,

Gelbach, and Miller (2008).

Additionally, we notice that the wild cluster bootstrap methods improves upon

the performance of CR1, CR2, and CR3. In fact, when G = 5 we can see that WB3

outperforms all other estimators rejecting 4.89% of the time. Additionally, we see

that the Young (2016) corrections also improve the performance of the conventional

standard errors. However, the difference in performance between Young’s methods

and the wild cluster bootstrap appears to be negligible when G is small. Additionally,

once G increases it appears that the bootstrap methods produce the best results. This

is especially the case when G = 30, as we can see that WB1, WB2, and WB3 reject

at a rate which is very close to the desired 5% level. CR2 also very nearly rejects at

exactly 5% in the cases where G = 20 and G = 30.
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Considering how it is always possible that computing a CR2 or CR3 residual

correction is numerically impractical, it could be that WB1 is the best option given

a small number of clusters. This is because once G = 10, WB1 seems to perform

reasonably well, and realistically, G = 5 is an extreme case which one is not necessarily

likely to encounter in practice anyway. Also, in this analysis, the auxiliary distribution

being used in the wild bootstrap procedure is the Rademacher distribution, which

Webb (2014) has shown is not necessarily the best choice when G is quite small.

Hence, this means that one may see better results using a different auxiliary random

variable, such as the one given in (18).

4.1.2 Heteroskedastic Disturbances

Now we consider disturbances which are correlated within clusters and heteroskedas-

tic. In this case the data are generated by

yig = β0 + β1xig + uig = β0 + β1(zg + zig) + (εg + εig) (25)

with zg, zig, εg being independent N(0, 1) draws, but instead εig ∼ N(0, 9×(zg+zig)
2),

and again Ng = 30, and there are R = 25000 replications. This specification intro-

duces additional complications by adding heteroskedasticity along with the within-

cluster correlation. In a scenario such as this, the traditional OLS covariance matrix

estimator assuming iid disturbances performs quite poorly, as shown in Cameron,

Gelbach, and Miller (2008), rejecting nearly 30% of the time regardless of the number

of clusters. Table 3 shows the result of this experiment.

As we see in the table, the result with heteroskedastic disturbances is similar to

that of the case of homoskedasticity, however, with a slight loss in performance. When
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Table 3: Rejection Rates: Tests of Nominal Size 0.05 (Heteroskedasticity)

Clusters
G = 5 G = 10 G = 20 G = 30

CR1 0.0901 0.0841 0.0757 0.0665
CR2 0.0744 0.0751 0.0647 0.0610
CR3 0.0450 0.0512 0.0505 0.0522

Method WB1 0.0628 0.0520 0.0515 0.0487
WB2 0.0256 0.0442 0.0486 0.0465
WB3 0.0555 0.0547 0.0502 0.0490
YCR1 0.0598 0.0637 0.0629 0.0582
YCR2 0.0557 0.0585 0.0571 0.0558
YCR3 0.0503 0.0540 0.0524 0.0541

CRdf
2 0.1059 0.0841 0.0693 0.0642

the number of cluster is smallest, that is G = 5, YCR3 seems to perform the best.

However, as the number of clusters increases, the wild cluster bootstrap methods

perform the best in comparison to the other estimators. Due to the computational

complexity of Young’s methods and the residual modifications, they have the possi-

bility of being quite expensive to compute depending on one’s data set. As a result of

this, the wild bootstrap with no residual modifications appears to be the best option

for G ≥ 10. However, if the data set being used does not have any clusters with an

exceptionally large number of observations, this is not a major concern.

Overall, as we would expect, the results do not change all that much once het-

eroskedasticity is introduced. The reason for this is, as mentioned before, that these

methods control for disturbance heteroskedasticity across clusters and within-cluster

correlation. The one exception to this, as Young (2016) outlines, is that the bias

and effective degrees of freedom calculations are being done under the assumption

of iid normal disturbances. However, as he explains, even in the case of non-iid dis-

turbances, it can still improve inference in comparison to the CR1, CR2, and CR3

estimators. As a result of this, despite the fact that the disturbances are heteroskedas-

tic and correlated within-clusters, Young’s adjustments do reject at a rate relatively
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close to what one would desire.

4.2 Unequal Cluster Sizes

In this scenario we consider data generated by the process given in (25). However,

now the cluster sizes are no longer equal. In this experiment we look at three differ-

ent scenarios, one with G = 13 and cluster sizes proportional to Canadian provinces

and territories, one with G = 10 with cluster sizes proportional to only the Cana-

dian provinces, and one with G = 50 with cluster sizes proportional to US states.

Each experiment is done with a total of N = 2000 observations. This implies that,

in the case of Canada including the territories, the smallest clusters only have two

observations and the largest cluster, corresponding to Ontario, has 385 observations.

Similarly for the United States, the smallest cluster only has 4 observations while the

largest has 244.

The case where cluster sizes are proportional to Canadian provinces imposes two

potential issues for these methods, as it is a relatively small number of clusters and

the cluster sizes vary significantly. The case of G = 50, corresponding to the US, is

interesting because of Angrist and Pischke’s ‘rule of 42’, which states that G = 42

is sufficient to consider the number of clusters large. However, as shown in MacKin-

non and Webb (2016), this fails to hold for the wild bootstrap and the conventional

CRVE. Here we wish to test how this variation in cluster sizes affects the performance

of the methods under consideration in this analysis.

Table 4 shows the results of these experiments where the starred Canadian provinces

entry refers to the case of G = 10, where the territories have been removed. At first

glance, what we see is that removing the clusters corresponding to the territories

slightly improves the performance of a few estimators, and worsens it for others.
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Table 4: Rejection Rates: Tests of Nominal Size 0.05 (Unequal Cluster Sizes)

Cluster Size
Proportional To:

Canadian Provinces Canadian Provinces* American States
CR1 0.2259 0.2004 0.0982
CR2 0.1172 0.0995 0.0770
CR3 0.0379 0.0271 0.0582

Method WB1 0.0738 0.0691 0.0549
WB2 0.0561 0.0582 0.0550
WB3 0.0270 0.0244 0.0476
YCR1 0.1020 0.0912 0.0748
YCR2 0.0443 0.0396 0.0628
YCR3 0.0348 0.0182 0.0538

CRdf
2 0.0921 0.0850 0.0740

Specifically, we see that CR1, CR2, WB1, and YCR1 perform slightly better once the

smallest clusters, representing the territories, have been removed. Generally, however,

the performance of all estimators suffers compared to the case where cluster sizes are

equal. However, with that being said, it would appear that WB2 provides the most

reliable inference in the case of Canadian provinces. However, in the case of cluster

sizes proportional to American states, WB3 and YCR3 perform the best.

Additionally, we see that the Young (2016) adjustments tend to perform consid-

erably worse than in the constant cluster size case. This is particularly noticeable in

the Canadian provinces case where YCR1 rejects roughly 10% of the time. Further-

more, we see that, for the case of the American states, while the number of clusters

G = 50 could be considered large, almost every estimator performs worse than in

the case where G = 30 and the number of observations per cluster was equal. These

results are consistent with what was found in MacKinnon and Webb (2016), whereby

the variation in cluster sizes produced relatively poor results despite the number of

clusters being large. That being said, WB2 appears to perform the best in the context

of Canadian provinces, and WB3 or YCR3 performs the best when G = 50. However,
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in the case of cluster sizes proportional to American states WB1 performs relatively

well, and may be preferred due to its computational efficiency.

5 Two-Way Clustering

When Cameron, Gelbach, and Miller (2011) initially proposed the two-way clustering

procedure as given in (20), the one-way cluster robust estimator being used was CR1.

What they propose does not indicate that using CR1 is the only covariance matrix

estimator which would be valid in this procedure. As they show, an alternative way

to write out the two-way cluster covariance matrix estimator given by (20) is to use

an N ×N indicator matrix SG. This matrix, SG, is such that the ijth entry will be

equal to one if the ith and jth observation belong to the same cluster and will be

equal to zero otherwise. Using this idea implies we can redefine the original CRVE

given in (4) by the following way

CR1 = CCR1(X
′X)−1

( G∑
g=1

X ′gûgû
′
gXg

)
(X ′X)−1

= CCR1(X
′X)−1X(ûû′.× SG)X(X ′X)−1,

(26)

where .× is element-by-element multiplication. Using this interpretation will now

be useful for the two-way case. Here we will go into slightly more detail than what

Cameron, Gelbach, and Miller (2011) provided in order to clearly illustrate the pro-

cess.

Suppose instead, if we have two levels of the data upon which we wish to cluster,

then we define the indicator matrix SGH corresponding to both groups. This clearly

illustrates how the two-way covariance matrix estimator may be written as a sum

of each of its one-way cluster robust components, as one can observe that SGH =
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SG + SH − SG∩H . Hence, one may rewrite (26) as

CR1
two-way = CCR1(X

′X)−1X ′(ûû′.× SGH)X(X ′X)−1

= CCR1(X
′X)−1X ′(ûû′.× (SG + SH − SG∩H))X(X ′X)−1

= CCR1 [(X
′X)−1X ′(ûû′.× SG)X(X ′X)−1+

(X ′X)−1X ′(ûû′.× SH)X(X ′X)−1

−(X ′X)−1X ′(ûû′.× SG∩H)X(X ′X)−1].

(27)

For the degrees of freedom adjustment, CCR1 , Cameron, Gelbach, and Miller (2011)

propose using three different adjustments, one corresponding to each group of clus-

ters. That is, one would have CG
CR1

= G
G−1

N−1
N−k , CH

CR1
= H

H−1
N−1
N−k , and CI

CR1
= I

I−1
N−1
N−k

where I is the number of clusters formed from the intersection of the two groups.

Hence, instead of CCR1 being applied to all three terms in (27) each term would be

multiplied by its respective degrees of freedom adjustment. An alternative calcula-

tion which has been proposed would be to use only one adjustment, CCR1 = J
J−1

N−k
N−1 ,

where J = min(G,H). However, this will not be used in this analysis.

As shown in the previous section, CR1 is outperformed by every other estimator

in the case where G is small. In fact, for the extreme cases such as G = 5 and

G = 10, CR1 performs quite poorly, rejecting nearly 10% of the time. Since the cases

where the two-way cluster robust estimator fails to perform well is typically where

either G or H is small, we will apply similar adjustments as those proposed by Bell

and McCaffrey (2002) to the two-way case. The reason for doing this is that these

corrections are meant to adjust for the bias present in the one-way CR1 estimator,

which is highly problematic when there is a small number of clusters.

These adjustments will be made by replacing û in (27) by u̇ = M
−1/2
X u in the
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CR2 case and ü = M−1
X u in the CR3 case. As before, the degrees of freedom ad-

justment is no longer present in the CR2 and CR3 estimators. The intuition for why

these adjustments improve inference is the same as in the one-way case, where the

original CR1 estimator over-rejects when the number of clusters is small. The CR2

and CR3 adjustments systematically change the size of the standard errors by rescal-

ing the residuals and hence reduce the rejection frequency. Of course, as mentioned

previously, the computational limitations of these methods will still be present as one

is still required to perform an unavoidable matrix inversion.

5.1 Two-Way Monte Carlo Experiments

This exercise is a two-way random effects model for the disturbances which also in-

cludes a heteroskedastic component. Following Cameron, Gelbach, and Miller (2011),

the data were generated according to

yigh = β0 + β1x1igh + β2x2igh + uigh, (28)

with β0 = β1 = β2 = 1. Using a rectangular design, this implies there are G×H obser-

vations implying the i subscript is not necessary in this scenario. Here x1gh = zg+z1gh

and x2gh = zh + z2gh where each of the z1gh and z2gh are an iid N(0, 1) draw with

zg and zh being a cluster specific N(0, 1) draw. Additionally, ugh = εg + εh + εgh

where εg and εh are N(0, 1) and εgh induces conditional heteroskedasticity as εgh ∼

N(0, |x1gh × x2gh|).

The first case being considered will be where G = H and the number of clusters

will range from 10 to 50 in each group. Next, we will consider the case where the

number of clusters per group is not equal with G < H in each case. Since this
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Table 5: Rejection Rates: Tests of Nominal Size 0.05 (Equal Number of Clusters)

Cluster Size
G = H = 10 G = H = 20 G = H = 30 G = H = 40 G = H = 50

CR1 0.1628 0.1533 0.1066 0.1038 0.0846 0.0892 0.0743 0.0801 0.0743 0.0739

CR
df
1 0.1230 0.1157 0.0882 0.0858 0.0736 0.0780 0.0668 0.0713 0.0671 0.0668

Method CR2 0.1387 0.1294 0.0937 0.0915 0.0770 0.0811 0.0682 0.0741 0.0687 0.0684

CR
df
2 0.1031 0.0950 0.0758 0.0757 0.0666 0.0686 0.0613 0.0661 0.0622 0.0628

CR3 0.0862 0.0790 0.0708 0.0710 0.0636 0.0655 0.0589 0.0646 0.0607 0.0615

CR
df
3 0.0603 0.0530 0.0569 0.0560 0.0542 0.0561 0.0518 0.0575 0.0544 0.0557

experiment has two right hand side independent variables, we will be considering

inference based on the two coefficients β̂1 and β̂2 testing whether or not β1 = 1 and

β2 = 1. Additionally, two critical values will be used, the first are from the t(N − k)

distribution and the second are from the t(min(G,H) − 1) distribution. What one

would expect is that the latter will outperform the former, and this is indeed the

result we see in the next section.

5.1.1 Equal Number of Clusters

The first set of experiments was performed for the case where G = H, and the results

of the experiment can be found in Table 5. The results are based on R = 25000

replications and the tests have a nominal size of 5%. This implies that since the null

hypothesis is true, a test with proper size should reject exactly 5% of the time. In the

table, the superscript df refers to the critical values based on Student’s t-distribution

with min(G,H)−1 degrees of freedom, and no subscript simply refers to the one with

N − k degrees of freedom. Additionally, the first value refers to the rejection rate for

β̂1, while the second refers to the value for β̂2.

Immediately we notice, as one would expect, that the case using min(G,H) − 1

t-distribution outperforms that of the N − k degrees of freedom distribution in every

scenario. Additionally, as is consistent with what was found in Cameron, Gelbach,
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and Miller (2011), the performance of the CR1 two-way estimator depends signifi-

cantly on the size of G and H. That is, CR1 severely over-rejects when G and H

are small. However, it approaches 5% as the number of clusters becomes large. In

fact, in the case where G = H = 10 essentially all estimators being considered do not

perform well. The only exception to this is CRdf
3 which rejects 10% less often than

CR1, rejecting relatively close to 5% of the time.

As G and H increase in size, we see that essentially all of the estimators begin

to reject less frequently. However, even when G = H = 50, we find that CR1 is still

slightly over-rejecting and as a result is outperformed by CR2 and CR3, although

by not nearly as much as the case when G and H were small. Perhaps again what

is most interesting, and has been seen in the previous section, is that the rejection

rate of CR3, especially with the min(G,H)− 1 degrees of freedom, seems to depend

very little on the number of clusters. However, with that being said, it seems quite

clearly that inference could be improved quite significantly by opting to perform the

rescaling of the residuals.

5.1.2 Unequal Number of Clusters

In these experiments the same data generating process was used as in the previous

subsection with the slight difference being that in each case G < H. A rectangular

design is still used implying that the total number of observations is still N = G×H

with exactly one observation corresponding to each (g, h) pair. What we should

expect from these experiments is that inference on β̂2 should be more reliable than

that of β̂1. This is because in the DGP, the independent variable which has cluster

g specific random components, and thus a smaller number of clusters, is the one

corresponding to β̂1. Table 6 which shows the results of these experiments confirms
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Table 6: Rejection Rates: Tests of Nominal Size 0.05 (Unequal Number of Clusters)

Cluster Size
G = 10 H = 50 G = 20 H = 50 G = 30 H = 50 G = 40 H = 50

CR1 0.1411 0.0939 0.1018 0.0780 0.0870 0.0778 0.0785 0.0741

CRdf
1 0.0971 0.0580 0.0828 0.0612 0.0736 0.0659 0.0712 0.0665

Method CR2 0.1149 0.0879 0.0886 0.0730 0.0775 0.0717 0.0728 0.0698

CRdf
2 0.0757 0.0528 0.0717 0.0563 0.0658 0.0610 0.0649 0.0621

CR3 0.0750 0.0711 0.0703 0.0628 0.0640 0.0629 0.0628 0.0623

CRdf
3 0.0480 0.0412 0.0556 0.0484 0.0539 0.0535 0.0552 0.0539

this expectation. Additionally, as in the previous case these results are based on

R = 25000 replications.

In this scenario, the results differ somewhat significantly from the case where

G = H. The rejection rate for the hypothesis test that β1 = 1 is larger than that of

the rejection rate for the hypothesis that β2 = 1, which is what was expected. As

mentioned previously, since G < H in each set of experiments and the performance

of these estimators depends quite heavily on how large G and H are, this result is

not surprising. This is because if we recall that x1gh = z1gh + zg, this implies that

the independent variable x1gh with corresponding parameter β1 has a cluster specific

element for each cluster g ∈ (1, 2, · · · , G). However, aside from this, the result is

quite similar to the case with G = H.

As before, we see that when G is small, CR1 heavily over-rejects and CR2 improves

somewhat on this over-rejection, but CRdf
3 is by far and away the best. Similarly, we

see that using min(G,H) − 1 degrees of freedom produces much better results than

usingN−k degrees of freedom. One interesting result is that, in the case whereG = 10

and H = 50, we see that CRdf
3 actually slightly under-rejects for both parameters,

which was never the case when G = H. Again, as before, G increasing seems to have

little effect on the performance of CRdf
3 relative to the improvement seen in CR1 and

even CR2. However, with that being said, it appears still that the best choice is in

33



fact CRdf
3 when the number of clusters per group is unequal.

5.2 Drawbacks and Further Extensions

Here I will highlight a few issues associated with two-way clustering which are mainly

logistical. Additionally I will discuss other ways one could approach two-way cluster-

ing by computing two-way wild cluster bootstrap standard errors.

5.2.1 Drawbacks

As highlighted previously, we know the computational complications which can arise

when computing the residual adjustments u̇g = (Mgg)
−1/2û and üg = (Mgg)

−1û if

any given cluster is too large. However, this problem may only be exacerbated by

the fact that we are required to cluster on G ∩ H as well, implying that one may

be required to perform considerably more matrix inversions than in the case of the

one-way clustering. While the simulation evidence suggests that CRdf
3 is the best

candidate for two-way clustering, these computational limitations need to be kept in

mind when looking to employ this method. That is, if one knows that any group

g ∈ (1, 2, · · · , G), or h ∈ (1, 2, · · · , H), or their intersection is particularly large, CRdf
1

may be the only appropriate way to approach such a problem. However, that being

said, as Cameron, Gelbach, and Miller (2011) show, the performance of CR1 can be

improved by adding group specific fixed-effects as well.

Another issue is that presently no major regression package supports two-way

clustering with CR2 or CR3. The experiments performed in this analysis were done

using code which I have written in MATLAB specifically for the purpose of these

Monte Carlo experiments.11 However MATLAB is not necessarily the most user-

11This was done by modifying a MATLAB script originally written by Daniel Taylor, which
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friendly way, nor the most popular way, to perform OLS due to the lack of general

implementation. In terms of ease of use, a program like Stata, or even R, is much

more straightforward when dealing with data and running regressions. However, due

to the fact that there is already Stata implementation for two-way standard errors

using CR1, it should be relatively straightforward to adapt this procedure to allow

for the residual adjustments as well.

5.2.2 Extensions

A natural extension of the methods discussed in this section would be to ask how

one would employ a two-way wild cluster bootstrap. Here it is useful to now make

the distinction between the bootstrap-t and the bootstrap-se procedure as outlined

in Cameron, Gelbach, and Miller (2008). In a bootstrap-se procedure one computes a

bootstrap estimate of the standard error which would replace the basic OLS standard

error in the denominator of the t-statistic or the Wald statistic. Here we assume

again that we have a linear model as given in (1), and the disturbances are correlated

within-clusters. We also assume, without a loss of generality, that we are interested in

testing whether or not the last coefficient, βk, is significantly different from a null value

β0
k . The following is an example of how one may compute a wild cluster bootstrap-se

procedure.

1. Estimate (1) by OLS.

2. Re-estimate the original model with the restriction βk = 0 imposed. This is

done to obtain restricted residuals ũ and restricted parameter estimates β̃.

3. In each of the b ∈ B bootstrap replications generate a new set of bootstrap

computed two-way cluster robust standard errors using CR1. The original two-way cluster robust
estimation using CR1 script can be found on his homepage.
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dependent variables using the bootstrap DGP

y∗big = Xigβ̃ + ũigv
∗b
g (29)

where vg is a Rademacher random variable specific to each cluster which takes

1 or -1 with equal probability.

4. For each b ∈ B estimate (1) using y∗b as the dependent variable to obtain the

parameter estimate β̂∗b.

5. Form the test statistic tbse =
β̂k−β0

k

seβk,B
where

seβk,B =

(
1

B − 1

B∑
b=1

(β̂∗bk −
¯̂
β∗k)

2

)1/2

(30)

and

¯̂
β∗k =

1

B

B∑
b=1

β̂∗bk . (31)

This procedure differs from the bootstrap-t procedure at the fourth step where

one is no longer required to compute a bootstrap t-statistic on every replication, but

rather, just obtain the parameter estimate β̂∗b. As Cameron, Gelbach, and Miller

(2008) outline, the wild cluster bootstrap-t is preferred to the wild cluster bootstrap-se

for one primary reason. Both methods are asymptotically valid. However, bootstrap-

se procedures do not provide asymptotic refinement which causes issues when the

number of clusters is small. While the bootstrap-t procedure may be preferred for

this reason, it is not clear how this method could be employed in the two-way cluster

case.

One could quite easily adapt the bootstrap-se procedure to the two-way case by

simply calculating three sets of bootstrap standard errors. That is, suppose we have
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two groups, G and H. We could then calculate the one-way standard errors seGβk,B,

seHβk,B, and seG∩Hβk,B
, and then form the two-way cluster bootstrap standard error

se2−wayβk,B
= seGβk,B + seHβk,B − se

G∩H
βk,B

. (32)

This method would provide two-way wild cluster bootstrap standard errors using

the less preferred bootstrap-se procedure. While this procedure is relatively straight-

forward, such is not the case when trying to extend the wild cluster bootstrap-t

procedure to the two-way case.

The problem arises due to the fact that we are no longer simply calculating a

parameter estimate on each bootstrap replication in order to construct a standard

error. Rather, there is a standard error being constructed on each bootstrap repli-

cation in the denominator of the bootstrap t-statistic. What this implies is that, if

we first clustered on G, we would obtain a set of bootstrap t-statistics where the

bootstrap DGP was generated by applying an auxiliary random variable to the re-

stricted residuals from each cluster g ∈ (1, 2, · · · , G). Similarly, one would compute

a set of bootstrap t-statistics corresponding to H and G ∩H. This implies that one

would have three sets of t-statistics and three bootstrap p-values. Essentially, there

is no way to compute three separate standard errors in order to employ the two-way

cluster standard error calculation. Despite this, a future analysis could involve using

the two-way bootstrap-se procedure and comparing its performance to the two-way

CR1, CR2, and CR3 methods.
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6 Conclusion

Cluster robust estimation has been present in econometric literature for over three

decades. During this period many different approaches have been taken to improve

inference when the errors exhibit within-cluster correlation. However, one major

drawback of some of the methods which have been proposed is that they are quite

computationally intensive. In this analysis, these issues have been discussed in detail

highlighting some of the primary problems one encounters numerically when using

these estimation techniques. Specifically, the problem with the inversion of large ma-

trices has been discussed in detail where it is clear that, depending on the data set

one is using, certain estimators become computationally impractical. In addition to

this, not all numerical routines are equal and due to the nature of floating-point op-

erations, they may produce different results despite being mathematically equivalent.

The main result from the first set of Monte Carlo simulations is that, in the

extreme case of G < 10, WB3 provides the most reliable inference in the case of

homoskedasticity, and YCR3 in the case of heteroskedasticity. Additionally, the wild

cluster bootstrap procedure without the residual adjustments (WB1) seems to be a

relatively good alternative if the computational limitation of inverting the Mgg matri-

ces is present. Once G > 10, the performance of WB1 seems to be superior, especially

when considering how computationally cheap it is relative to the residual adjustments

and effective degrees of freedom corrections. However, applying the residual correc-

tions to the wild cluster bootstrap procedure does seem to improve performance over

WB1. This result is especially apparent when G = 5, where WB3 appears to correct

for the over-rejection present in WB1. The case where there is variation in the size

of the clusters severely impacts the performance of almost every estimator being con-

sidered. This is especially true when G is small.
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The extension of two-way clustering, where the Bell and McCaffrey adjustments

was applied to the two-way case provided favorable results. Aside from the compu-

tational limitations, it appears that applying CR2 or CR3 to the two-way standard

error procedure is always an improvement over CR1. Specifically, the simulations

provide evidence that two-way CR3, and using critical values from a t-distribution

with min(G,H) − 1 degrees of freedom, produces the best results. Additionally, a

bootstrap-se procedure was discussed for the case of two-way cluster robust estima-

tion. That is, a way that one could compute two-way wild cluster bootstrap standard

errors to be used in t or Wald statistics.

In order to obtain reliable inference when one is faced with the problem of having

disturbances correlated within-clusters, one is required to choose the method which

is most appropriate for the problem at hand. While it is not always clear which

approach one should take, this analysis should serve to assist anyone who requires

cluster robust estimation in the one-way or two-way case. As we have seen, the most

commonly used estimator CR1, which is the default option in Stata, under-performs

in every scenario when compared to other options. This fact is most apparent in the

two-way case where CR2 and CR3 adjustments vastly improve the performance of the

two-way cluster standard error estimates.
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8 Appendix

A.1 The Moulton Factor

Here we follow Moulton (1990) and fill in some of the details of the algebra to

derive the previously mention Moulton factor. First consider the following model

y = Xβ + u

E(u) = 0

E(uu′) = σ2V = σ2[(1− ρ)IN + ρSS′]

(A1)

where S is aN×G indicator matrix for membership of a given cluster g ∈ (1, 2, · · · , G)

and ρ is the within-cluster correlation. Additionally we are assuming that β is k × 1

and X is N×k. Here we wish to know how the true covariance matrix corresponding

to this model compares to that of the standard OLS covariance matrix. Estimating

this model by OLS, we know that the estimate of the parameter vector is given by

β̂ = (X ′X)−1X ′y. (A2)

Inserting y from (A1) implies that

β̂ − β = (X ′X)−1X ′u (A3)

and since we are assuming here that β̂ is unbiased, var(β̂) is simply the expectation

of

(β̂ − β)(β̂ − β)′ = (X ′X)−1X ′uu′X(X ′X)−1 (A4)

conditional on X. Since u is the only stochastic quantity on the right-hand side of

the previous expression and we know the form of E(uu′) from (A1), this expectation
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is given by,

(X ′X)−1X ′E(uu′)X(X ′X)−1 = σ2(X ′X)−1X ′V X(X ′X)−1

var(β̂) = σ2(X ′X)−1X ′[(1− ρ)IN + ρSS′]X(X ′X)−1.

(A5)

However, one may simplify this expression further by definingN = X ′SS′X(X ′X)−1

as one can now rewrite (A5) as

σ2(X ′X)−1[X ′(1− ρ)INX + ρX ′SS′X](X ′X)−1

= σ2(X ′X)−1[(1− ρ)X ′X + ρX ′SS′X](X ′X)−1

= σ2(X ′X)−1[(1− ρ) + ρX ′SS′X(X ′X)−1︸ ︷︷ ︸
N

]

= σ2(X ′X)−1[1 + ρ(N − 1)].

(A6)

Next, if we consider the case where the number of observations per cluster is Ng for

each cluster, and all of the regressors are fixed within clusters, then (A6) can be

rewritten as

var(β̂) = σ2(X ′X)−1[1 + ρ(Ng − 1)]. (A7)

Finally, since the standard OLS covariance matrix is varc(β̂) = σ2(X ′X)−1, we may

rewrite (A7). If we suppose, without a loss of generality, that we are interested in

the standard error of the last element of the parameter vector, βk, then the Moulton

factor is given by √
var(β̂k)

varc(β̂k)
=
√

1 + ρ(Ng − 1). (A8)

�
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A.2 Matrix Inversion by LUP-Decomposition

Here we wish to show that the algorithm, which most common software packages

such as MATLAB, R, and Stata make use of to compute the matrix inverse, has

computational complexity O(n3). This exposition is based on Cormen et. al (2011),

and simply shows the triple-nested structure of the algorithm, with n repetitions

at each step. This explanation is three-fold, first showing how one may compute

an LUP-decomposition, secondly how to compute a matrix inverse from an LUP-

decomposition, and lastly showing the algorithm used to perform this calculation.

Suppose we have a non-singular matrix A we wish to invert. To do this we need to

find a lower triangular matrix L, an upper triangular matrix U , and a permutation

matrix P so that PA = LU . A permutation matrix P is simply a matrix which is

constructed by rearranging the rows or columns of the identity matrix; its purpose is

to rearrange the columns or rows of the matrix you apply it to.

One key feature of an LUP-decomposition, as opposed to an LU-decomposition,

is that it involves pivoting. Pivoting is done to improve the numerical stability of the

LU-decomposition algorithm where the pivot is chosen to be the element with the

largest magnitude among the pivot candidates. The first step is to move a nonzero

element ak1 from the first column to the (1,1) position of the matrix. For the pur-

pose of numerical stability, ak1 is the number with the largest magnitude in the first

column.1 This would be the same thing as multiplying A by the permutation matrix

Q, where Q is simply the identity matrix with the first and kth row interchanged.

1SinceA is non-singular we know at least one element in every column must be nonzero. However,
by choosing the largest value this helps to avoid using numbers which are close to zero in floating-
point format (‘numerically’ zero).
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Taking this into account, one may rewrite the product of Q and A as,

QA =

ak1 w′

v Ã

 (A9)

where the column vector v = (a21, a31, · · · , an1)′ except ak1 in v is replaced by a11,

the row vector w′ = (ak2, ak3, · · · , akn), and Ã is the rest of the matrix A, which is

now (n− 1)× (n− 1). Now since it is guaranteed that ak1 6= 0 we can avoid dividing

by zero and rewrite QA as,

QA =

ak1 w′

v Ã

 =

 1 0

v/ak1 In−1

×
ak1 w′

0 Ã− vw′/ak1

 . (A10)

Next, we note that Ã−vw′/ak1 is non-singular which can be proved by contradic-

tion. Suppose to the contrary that the (n−1)×(n−1) matrix Ã−vw′/ak1 is singular,

this implies that rank(Ã−vw′/ak1) < n− 1 which implies that the lower n− 1 rows

of the matrix

ak1 w′

0 Ã− vw′/ak1

 has row rank less than n−1. However, what this

then implies is that the entire matrix must have rank less than n which contradicts the

fact that A is non-singular, hence Ã− vw′/ak1 is also non-singular. However, since

it can be shown that any non-singular matrix possesses an LUP-decomposition (see

Cormen et al. 2001), then the matrix Ã−vw′/ak1 must have an LUP-decomposition

which may be found recursively. That is, there is a permutation matrix P̃ , a unit

lower-triangular matrix L̃, and an upper-triangular matrix Ũ so that,

P̃ (Ã− vw′/ak1) = L̃Ũ . (A11)
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Then, if one defines

P =

1 0

0 P̃

Q (A12)

this is also a permutation matrix as it is the product of two permutation matrices.

To sketch a proof this suppose in general you have two n × n permutation matrices

B and C and you apply the permutation B ×C. The resulting matrix will simply

be a reordering of the rows and columns C which will then still be row or column

reordering of the identity matrix, and hence a permutation matrix. Now we may find

the LUP-decomposition as,

PA =

1 0

0 P̃

QA
=

1 0

0 P̃

×
 1 0

v/ak1 In−1

×
ak1 w′

0 Ã− vw′/ak1


=

 1 0

P̃ v/ak1 P̃

×
ak1 w′

0 Ã− vw′/ak1


=

 1 0

P̃ v/ak1 In−1

×
ak1 w′

0 P̃ (Ã− vw′/ak1)


=

 1 0

P̃ v/ak1 In−1

×
ak1 w′

0 L̃Ũ


=

 1 0

P̃ v/ak1 L̃

×
ak1 w′

0 Ũ


= LU .

(A13)

Where we see that since L̃ is lower-triangular so is L and Ũ is upper-triangular hence
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so is U . Next we show the steps of the algorithm used to compute this decomposition

as presented in Cormen et al. (2001).

1. n = # of rows of A
2. define π[1, · · · , n] as a vector
3. for i = 1 to n
4. π[i] = i
5. for k = 1 to n
6. p = 0
7. for i = k to n
8. if |aik| > p
9. p = |aik|

10. k′ = i
11. if p == k
12. error “singular matrix”
13. exchange π[k] with π[k′]
14. for i = 1 to n
15. exchange aki with ak′i
16. for i = k + 1 to n
17. aik = aik/akk
18. for j = k + 1 to n
19. aij = aij − aikakj

Since this algorithm has a triply nested looping structure, it has a run time of O(n3).

Next we wish to know how to compute a matrix inverse from an LUP-decomposition.

After performing the previously explained procedure one would have a decomposition

of the n×n matrixA so that PA = LU . In order to do make use of this we construct

the set of linear equations

AX = In (A14)

where the inverse of A given by X is a set of n distinct equations of the form Ax = b.

One way to write this is to let Xi denote the ith column of X and using the notation

from Section 2 let li be the unit basis vector with one in the ith position and zeros

elsewhere. Then the equation given in (A14) can be solved for X using our LUP-

decomposition to solve each of the equations

AXi = li i = 1, · · · , n. (A15)
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What this then implies is that the inverse A−1 can be computed in time O(n3).

A.3 Variation in Experiment Results when R = 1000

Here in order to illustrate the variation in results when using a relatively small

number of replications, as in Cameron, Gelbach, and Miller (2008), several sepa-

rate Monte Carlo simulations were run with R = 1000. Table A1 shows the results of

these experiments, where the DGP is the same as that of the heteroskedastic case from

Section 4 and G = 10. Here we see that the results vary significantly between each

replication, with the difference between the highest and lowest value being greater

than 1% for almost every method. One of the largest differences is in WB3 where the

in one experiment it over-rejects at 6.2% and then in the next it under-rejects at 4.6%.

Table A1: Rejection Rates: Repeated Experiment

Trial

1 2 3 4 5

CR1 0.0850 0.0970 0.0880 0.0860 0.0980

CR2 0.0750 0.0840 0.0750 0.0770 0.0890

CR3 0.0590 0.0570 0.0580 0.0470 0.0590

Method WB1 0.0520 0.0590 0.0590 0.0540 0.0620

WB2 0.0410 0.0480 0.0470 0.0380 0.0520

WB3 0.0520 0.0610 0.0620 0.0460 0.0620

YCR1 0.0660 0.0730 0.0660 0.0650 0.0770

YCR2 0.0620 0.0680 0.0630 0.0570 0.0730

YCR3 0.0580 0.0570 0.0630 0.0510 0.0670

CRdf
2 0.0840 0.0940 0.0870 0.0900 0.0960
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One way to think about why there is so much variation between experiments is

to think of a binomial random variable with probability p and n trials. Since we are

interested in how many times a success, being a rejection of the null, occurs over the

number of replications, really we want to use this information about the binomial

random variable to think about the sample proportion. Suppose we think of the

variable as being X ∼ b(n, p) where n is the number of replications and p is the

likelihood of a rejection. A true null hypotheses tested at the 5% level, should reject

exactly 5% of the time if the test has proper size and hence p = 0.05. Then the

sample proportion is just the number of successes (rejections of the null) divided by

n. Then, the variance of X/n is just the variance of X divided by n2, as we know

that given a constant a, var(aX) = a2var(X). Since a binomial random variable has

variance p(1−p) this implies that the variance of the sample proportion is p(1−p)/n.

Hence we see that the variation of the rejection rate is decreasing in n. That is, more

replications will decrease the variance.
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