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Abstract

An existing condition, called control function separability, characterizing the feasi-

bility of control function estimation of nonparametric systems of simultaneous equa-

tions with scalar disturbances, developed by Blundell and Matzkin, 2014, is shown

to be equivalent to a triangular representation condition. An alternative charac-

terization of control function separability in terms of model structural derivatives is

given. Necessary and almost necessary conditions are developed, showing that control

funciton separability is restrictive to the point of effectively requiring two additional

structural monotonicity conditions, symmetry in the inverse structural equations in

the main dependent variable, and a control function that is linear in the structural

disturbances. It is further shown how these conditions can be used easily to rule

out control function separability, and thus to rule out the feasibility of the control

function approach.
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1 Introduction

Identification of parameters and structural features in the presence of endogeneity in

the disturbances is a well-known problem in econometrics. In settings where models

are linear in the parameters, there are relatively straightforward and well-established

strategies for dealing with this endogeneity, including the method of instrumental

variables (IV) and the generalized method of moments (GMM).

In nonparametric settings where linearity assumptions are relaxed, however, and

especially when the model disturbances are nonadditive, identification in the pres-

ence of endogeneity becomes much more of a challenge. In nonparametric models,

generally, identification and estimation of structural functions is not always feasi-

ble, particularly in smaller datasets (Matzkin, 2006). In some cases, IV and GMM

or other approaches remain applicable. Frequently, however, the most efficient and

feasible approach is that of control variables, or control functions (Wooldridge, 2010).

While the control function approach is generally efficient and relatively easy to

implement, it is known to lack robustness across various sets of assumptions, and fre-

quently requires restrictive distributional conditions (Imbens & Wooldridge, 2007).

Characterizing the kinds of econonometric models suitable for control function es-

timation, therefore, is important for applied work. Control function methods have

proven generally versatile1, but their application to nonlinear systems of simultane-

ous equations with nonparametric disturbances in particular has been restricted to

1For recent examples, see Petrin & Train, 2010 and Rau, 2013.
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triangular systems of equations.

A previous finding in the literature, by Blundell and Matzkin, 2014, however,

shows that a condition they name “control function separability” completely charac-

terizes the (nonempty) set of nontriangular systems of simultaneous equations with

scalar disturbances that can be estimated using the control function approach. In

this paper, I show that showing that this condition holds is equivalent to showing

that the system can be written as a triangular system by reparametrization of the

disturbances. This result both gives an alternative method of verification of control

function separability and permits a better understanding of its restrictive nature,

which is later discussed.

I also give an alternative characterization of this condition in terms of a ratio of

partial derivatives of the structural functions, which is simpler and more accessible

than a similar condition given by Blundell and Matzkin.

Furthermore, I argue that, in practice, control function separability in nonpara-

metric systems of simultaneous equations requires two additional monotonicity con-

ditions on the structural equations, as well as linearity in the control function itself

and certain formal similarity between the two inverse structural functions. The re-

strictiveness of the separability condition was noted briefly by Blundell and Matzkin,

but the specific restrictions have not been previously spelled out. The necessary

conditions developed in this paper can be used quickly to rule out control function

separability without attempting to verify it explicitly.
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Because control function separability is a recently developed condition which has

not been explored in the literature beyond preliminary exposition, I make reference in

this analysis mainly to the paper by Blundell and Matzkin (2014), where the condition

was first presented.

The remainder of this paper is structured as follows. Section 2 gives the theo-

retical background for control functions and control function separability by way of

referring to the existing literature, and defines the structural model used by Blundell

and Matzkin that will be referred to throughout the paper. Section 3 presents two

alternative characterizations of control function separability, including the triangular

representation condition, with illustrative examples. Section 4 presents necessary and

almost necessary conditions for the separability condition, with applications. Section

5 concludes.

2 Background

2.1 Control functions

Control functions are observed variables, or functions of variables, which have the

effect of “purging” the explanatory variables in a model of their endogeneity, so that

the parameters or non-parametric features of interest can be identified. Typically, a

control function is an estimator of an unobserved variable, such as a reduced form

disturbance. The control function approach, which requires the presence of an ex-
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cluded exogenous variable, is conceptually similar to that of instrumental variables,

and in the ordinary linear case amounts to the same thing (see Imbens & Wooldridge,

2007). In nonlinear settings, the control function method is more parsimonious, and

likely more efficient, than alternative methods (Wooldridge, 2010).

The earliest complete demonstration of what is now called control function estima-

tion is Heckman’s two-step method for estimation in the presence of sample selection

effects (Heckman, 1976), although the conceptual framework for the approach can be

seen in Telser, 1964. The method was formalized in a later paper (Heckman, 1985).

Blundell and Powell, 2003, were the first to show how the control function method

can be applied to semiparametric and nonparametric models.

The control function approach involves writing down an equation for a given

endogenous variable in a structural model. When this equation is in reduced form, it

can be estimated to yield estimates of its disturbances, which under certain conditions

can be used as a control function, to be included in the estimation of a corresponding

structural equation so as to remove simultaneity. A structural equation combined

with a reduced form equation for an endogenous variable corresponds in form to a

“triangular” system of simultaneous equations, where the second equation does not

depend on the left-hand side of the first.

For illustration, a very general nonparametric, nonseparable example of such a

system from Imbens and Newey (2009) can be considered. The structural equation
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is as follows:

Y = g(X, ε),

where X are observed explanatory variables, ε is a vector of disturbances and the

unknown function g is the econometric object of interest. The reduced form for a

unique endogenous variable X2 is given:

X2 = h(Z, η),

where Z is a vector of exogenous covariates and η is a scalar disturbance in which

the unknown function h(Z, η) is monotonically increasing.

In this framework, a control variable V is any observable variable such that X

and ε, the explanatory variables and the disturbances, are independent conditional

on V . In practice, an estimate η̂ of the reduced form disturbance η, or a one-to-one

function of η, can often serve as the control function. In Imbens and Newey (2009),

this control function was the conditional CDF of the reduced form disturbance η.

Once a control variable is available, the structural relationship between Y and X can

be identified from the distribution of Y conditional on X and V .

It should be noted that nonparametric estimation is known to face the problem of

dimensionality. Large sample sizes are required to identify and estimate an unknown

structural function which is not specified up to a vector of parameters. As a result,

researchers have turned to estimating various averages and derivatives of structural

functions (Matzkin, 2006). These are lower-dimensional, but still useful, objects which

5



can be feasibly estimated using smaller datasets. For example, Imbens and Newey,

2009, showed how to identify and estimate certain quantile, average and policy effects.

Imbens and Newey examined triangular systems, remarking that the general

model, described above, is not compatible with general simultaneous systems, such

as supply-demand systems, where the reduced form for each equation would con-

tain two disturbances. Similarly, Wooldridge (2010), surveying the literature, shows

how a control function approach can be used in nonlinear triangular systems with

nonadditive disturbances, but notes that triangularity is a restrictive assumption.

In some cases, however, such as in the supply-demand system case, a simulta-

neous relationship of economic nature between two or more variables is known or

assumed, where each dependent or left-hand variable is a function of at least one of

the other dependent variables. Here, estimation cannot proceed by straightforward

estimation of a reduced-form equation, as each equation in the system is subject to

the simultaneity problem. As a result, it is at first unclear in what manner or under

what conditions control functions can be used in nontriangular systems of nonlinear

equations, such as systems of the following form,

Y = g(X, ε),

X2 = h(Z, Y, η),

where X2 is included in X and Z is exogenous. Blundell and Matzkin (2014), on

that question, proved an important result, showing that a condition they refer to as
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“control function separability” was a necessary and sufficient condition for the obser-

vational equivalence of certain non-triangular simultaneous systems with triangular

systems, and thus for the feasibility of control function estimation.

Their result can be seen as an application of a result by Kasy (2010), regarding

the one-dimensionality of the reduced form of the endogenous variable, to structural

systems of simultaneous equations.2 Blundell and Matzkin’s contribution is important

in addition to Kasy’s because it applies specifically to simultaneous systems. In some

cases, the reduced form equation for the endogenous variable is obscured by the form

of the corresponding simultaneous system given from economic theory.

Observational equivalence with a triangular system, established by control func-

tion separability, allows for the identification and estimation of certain structural

quantities in nonlinear systems of simultaneous equations with nonadditive, nonpara-

metric disturbances using the control function technique. Blundell and Matzkin show

that structural derivatives of the function, the average structural function as defined

by Blundell and Powell (2003), the local average response function as defined by Al-

tonji and Matzkin (2005) and the quantile structural function as defined by Imbens

and Newey (2009) can be identified in this way.

While the control function separability condition gives a conclusive answer to the

question of when control functions can be used in the nonparametric setting examined

2Blundell and Matzkin (2014) give an alternative characterization of control function separability.
If the reduced form equation for y2, the endogenous variable, can be expressed as a function of the
exogenous variable x and a function of the disturbances vector (ε1, ε2), then the condition is met.
This is equivalent to the one-dimensionality of the equation in x given the control function. See
Propositions 2 and 3, Kasy (2010).
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by Blundell and Matzkin, it is a restrictive condition outside of linear models. In

some settings, it may also be difficult to show that the condition does not hold for a

given model, because establishing the condition amounts to showing the existence of

functions it may simply be difficult to construct.

Before showing my own result regarding the equivalence of control function separa-

bility and the existence of a triangular system with scalar disturbances corresponding

to the structural system by a reparametrization of the disturbances, as well as fur-

ther results, I briefly summarize Blundell and Matzkin’s main result below, using

their notation.

2.2 Control function separability

Consider a triangular system whose form is given by Model (T) below, and which

satisfies several nonparametric assumptions. There is first, Assumption T.1, that

m1 and s are continuously differentiable on the supports of their arguments. The

second, Assumption T.2, is that (ε1, η) is independent of scalar x (x is exogenous).

Third, Assumption T.3 states that conditional on any value of x on its support, the

densities of the scalar disturbances (ε1, η) and the scalar dependent variables (y1, y2)

are continuous and have convex support. And fourth, Assumption T.4 requires that

functions m1 and s are strictly increasing3 in their disturbances given any values of

3The results of this paper can be shown to hold under general monotonicity, but I assume positive
monotonicity for simplicity.
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their respective covariates.

Model (T) y1 = m1(y2, ε1),

y2 = s(x, η).

Given a system of this form and under these assumptions, control function estimation

is known to be relatively straightforward. The second equation, free of simultaneity,

can be estimated in order to yield an estimate η̂ of η, which can be conditioned upon

in estimation of the first equation in order to yield consistent estimates of various

structural quantities relating to m1.

While triangular systems are amenable to control function estimation under rea-

sonable assumptions, triangularity is a significant restriction on the variety of models

the structural features of which can be identified in this way. Blundell and Matzkin

ask whether systems of the form given by Model (S), shown below, are ever such

that they are observationally equivalent to a triangular system of form (T), so that

the alternative triangular system can be estimated and yield the same estimates of

structural quantities as the non-triangular system. As with the triangular system,

the authors restrict their analysis to systems of continuous scalar variables.

Model (S) y1 = m1(y2, ε1),

y2 = m2(y1, x, ε2).

We can consider Model (S) in the context of similar assumptions as those described
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for Model (T). S.1 through S.4 correspond closely to assumptions T.1 through T.4.

Under these assumptions, (S) can always be written in an inverse form, with distur-

bances as functions of observables, as a system of the form of Model (I) below. There

is also an additional assumption, S.5, which is necessary to show the equivalence of

control function separability and the feasibility of the control function approach. S.5

is a crossing assumption stating that the partial cross-derivatives of the two structural

functions with respect to the endogenous variables, when multiplied together, are less

than one.

Model (I) ε1 = r1(y1, y2),

ε2 = r2(y1, y2, x).

A structural inverse system of equations given by Model (I) above is said to satisfy

control function separability if, on the supports of the observable variables, there exist

functions v : R2 → R and q : R2 → R such that

a) r2(y1, y2, x) = v(q(y2, x), r1(y1, y2)),

b) q is strictly increasing in its first argument,

c) v is strictly increasing in its first argument.

Blundell and Matzkin prove that if, and only if, a simultaneous system in the form

of (I), whether triangular or not, satisfies control function separability, then it is

observationally equivalent to some triangular system (T).

10



Observational equivalence means that the distributions of the observable variables

(y1, y2), conditional on x for all values of x on its support, in each of these models are

identical. Thus, a simultaneous system’s eligibility for estimation with the control

function approach for triangular systems described above is characterized completely

by the control function separability condition.4

3 Characterizing separable systems

3.1 Triangular representation

It can be shown that simultaneous systems satisfying control function separability

and meeting a set of assumptions given below can be rewritten in triangular form

by a change of variables, and, conversely, that triangular systems can be written

as simultaneous systems which satisfy control function separability. In other words,

the existence of a triangular representation of a formally non-triangular simultaneous

system is necessary and sufficient for control function separability. The observational

equivalence between a system of form (S) that satisfies the condition and a triangular

system of form (T) corresponds, as intuition suggests, to their formal equivalence.

For illustration, consider Model (S) in the semiparametric linear case (where

4See Blundell & Matzkin, 2014, for a more complete explanation of observational equivalence as
it relates to the feasibility of the control function approach.
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control function separability always holds), as follows,

y1 = αy2 + ε1, (3.1)

y2 = βy1 + γx+ ε2, (3.2)

where identification conditions requiring that αβ < 1 and γ 6= 0 are met and assump-

tions S.1 through S.5 are met more generally. The system, rewritten in terms of the

inverse equations, can be seen to satisfy the separability condition,

ε1 = y1 − αy2, (3.3)

ε2 = (1− αβ)y2 − γx− β(ε1) (3.4)

where v(η, ε1) = η − βε1 and q(y2, x) = (1− αβ)y2 − γx are each increasing in their

first arguments. Equivalently, the system can also be written in triangular form,

y1 = αy2 + ε1, (3.5)

y2 =
γ

1− αβ
x+ η, (3.6)

where η = ε2+βε1. It can be seen intuitively that control function separability allows

y1 to “disappear” from the second structural equation, allowing a kind of triangularity.

A formal statement of the equivalence of control function separability and tri-

angular representation under general (nonlinear) conditions, given the assumptions

in Blundell and Matzkin (2013), and the corresponding proof, follow, using similar
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notation to Blundell and Matzkin.

Proposition 1. For a structural system of form (S) for which assumptions S.1 to

S.5 hold, control function separability holds if and only if there exists a system of form

(T), where assumptions T.1 to T.4 hold, for which the structural disturbances (ε1, ε2)

of (S) can be reparameterized as (ε1, η), where η is an increasing function of ε2 given

ε1, so that the inverse equations of (S) are equivalent to the inverse equations of (T).

Proof Consider a simultaneous system of equations of inverse form (I), cor-

responding to a system of form (S), that satisfies the condition of control function

separability as defined above. The system can be written

ε1 = r1(y1, y2),

ε2 = r2(y1, y2, x),

= v(q(y2, x), r1(y1, y2)),

= v(q(y2, x), ε1),

where, as assumed, (ε1, ε2) is distributed independently of x. By the definition of

control function separability, v is strictly monotonically increasing in q(y2, x), so we

can write

q(y2, x) = v−1(ε2, ε1), (3.7)

where v−1, the inverse function of v with respect to its first argument, is strictly

increasing in ε2 given any value of ε1 by assumption. Because q is strictly increasing
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in its first argument we can also invert it and write the following:

y2 = q−1(x, v−1(ε2, ε1)).

Now we define s ≡ q−1. Since (ε2, ε1) is independent of x, so should be (v−1(ε2, ε1), ε1),

which we can call (η, ε1). Also note that s is strictly increasing in η.

Since (I) is a special case of (S), we have that y1 = m1(y2, ε1). We can now write

the observationally equivalent system, which is known to exist, as

Model (T) y1 = m1(y2, ε1),

y2 = s(x, η),

where y1 is strictly increasing in ε1 by assumption, s is strictly increasing in η by the

monotonicity of q and thus of q−1, and (η, ε1) is independent of x as discussed. The

continuous differentiability of m1 is assumed, and the continuous differentiability of s

follows from the implicit function theorem and the continuous differentiability of r2.

The conditional density of ε1 is continuous and has convex support by assumption,

while the continuity and convex support of the conditional density of η follow from

the continuity and monotonicity of v−1, so we have a triangular system of the form

of Model (T). It can be easily seen that the two inverse equations for (T) take the

forms, respectively, of the first inverse equation in (I), and (3.7), rewritten in terms

of η, so that the equivalence between the two inverse systems is satisfied.

The converse can also be proven. Consider a triangular system of form (T) with
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disturbances (ε1, η) which has been obtained through a system of form (S) by remap-

ping the disturbances from (ε1, ε2) to (ε1, η) = (ε1, u
−1(ε2, ε1)) where u is continuous,

differentiable and increasing in η. By monotonicity, we can write the inverse system,

ε1 = r1(y1, y2),

η = s−1(y2, x).

Redefining s−1 ≡ q, we have

ε1 = r1(y1, y2),

η = q(y2, x).

We can define an arbitrary5 continuously differentiable function v : R2 → R that is

monotonically increasing in its first argument for all values of its second argument

and further define

ε2 ≡ v(η, ε1),

= v(q(y2, x), r1(y1, y2)),

≡ r2(y1, y2, x).

Note that v and q are each increasing in their first arguments as required for control

function separability, and that r2 is separable as required. v and q can always be

5The form of the system that can be shown to satisfy control function separability is only unique
up to the relationship between η and ε2.
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defined such that r2 is strictly increasing in y2 and thus invertible in y2.

To see this, note that we require

∂r2(y1, y2, x)

∂y2
=
∂v(ε1, η)

∂η

∂q(y2, x)

∂y2
+
∂v(ε1, η)

∂ε1

∂r1(y1, y2)

∂y2
> 0 (3.8)

for all values of the arguments in the domain. This condition follows from taking the

partial derivatives of both sides of the equation

r2(y1, y2, x) = v(q(y2, x), r1(y1, y2)), (3.9)

which is a condition of control function separability. Monotonicity in the first argu-

ment of each of the structural functions requires the first term of (3.8) to be positive.

Since v is chosen, we can construct it with respect to ε1 such that ∂r2/∂y2 > 0

by making (∂v/∂η)(∂q/∂y2) sufficiently large that when ∂v/∂ε1 cannot be made the

same sign as ∂r1/∂y2 (for non-monotonic r1 in y2) the inequality still holds.

This is a more general result than required, but u is included within the set of

possible functions v that can be defined, since it corresponds to a system (S) with

its monotonicity assumptions, so the specific result holds.

Now that we have the inverse system, we can invert and write

y1 = m1(y2, ε1),

y2 = m2(y1, x, ε2),
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where m2 is increasing in ε2 by the monotonicity of s in its second argument and

m1 increases in its disturbance by assumption. m1 is continuously differentiable

by assumption and m2 is as well by construction of r2. As discussed, (ε1, ε2) is

independent of x. The conditional density of ε1 is continuous and has convex support

by assumption, while the continuity and convex support of the conditional density of

ε2 follow from the continuity and monotonicity of v and T.3.

It can be shown, by the way v and q were constructed, that the crossing assumption

S.5 is met and the equilibrium is unique, which is a requirement for the result. By

construction, and indeed for any system satisfying control function separability, it

follows by (3.8) in more compact notation, that

r2y2 = vηqy2 + vε1r
1
y2
, (3.10)

where subscripts indicate the variable with respect to which the partial derivative

was taken. We also have, by taking the partial derivative of (3.9) with respect to y1

of the inverse function r2:

r2y1 = vε1r
1
y1
. (3.11)

And substituting, we have

r2y2 = vηqy2 +
r1y2r

2
y1

r1y1
.

It is shown in the Appendix that r1y2r
2
y1
/r1y1r

2
y2

= m1
y2
m2
y1

, so that we can write the
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following:

1 =
vηqy2
r2y2

+m1
y2
m2
y1
,

m1
y2
m2
y1

= 1− vηqy2
r2y2

< 1,

where the second equality holds by the assumed positivity of vη, qy2 and r2y2 . The

crossing assumption is thus met.

So we have a system of form (S) for which the conditions for control function

separability holds, as required.

While the control function separability condition does characterize systems where

the control function approach described earlier can be used, there remains a question

whether this condition is more or less practically useful or easily verified than the

triangular representation condition.

3.1.1 Triangularity in previous examples of separability

Here I re-examine two previous examples in the literature of simultaneous systems

that satisfy control function separability, in light of the result above. Blundell and

Matzkin (2014) include an example of a demand system with latent taste variables

in their paper to illustrate the applicability of control function separability. I discuss

it here, omitting the exposition. The first order conditions of the demand system

yield a nonparametric, nonlinear inverse simultaneous system that satisfies control
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function separability, as follows:

ε1 = (y1 − u(y2))x1,

ε2 =

(
x2

u′(y2)
+ x1

)
− (y1 − u(y2))x1,

=

(
x2

u′(y2)
+ x1

)
− ε1,

where x1 and x2 are exogenous prices. In this system, v(η, ε1) = η− ε1 and q(y2, x) =

x2/u
′(y2) + x1. However, the system can be easily rewritten as a triangular system

since u is strictly concave, in the following form,

y1 = u(y2) +
ε1
x1
,

y2 = (u′)−1
(

x2
ε1 + ε2 − x1

)
,

= (u′)−1
(

x2
η − x1

)
,

where y1 is increasing in ε1 and, by the concavity of u, y2 is increasing in η = ε1 + ε2.

The equation for y2 is in reduced form, free of any simultaneity in y1. While a non-

triangular simultaneous system in terms of ε1 and ε2 does exist, it cannot generally

be written down analytically, and seems to exist as an abstraction away from the

underlying triangular structure.6 Since control function separability is a property of

simultaneous systems (not triangular systems), it is not ultimately helpful for this

example, and can be verified in any case by establishing triangularity as shown.

6The authors in fact wrote the original utility functions in terms of latent variables ε1 and ε1+ε2.
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As a second example, in a related paper, a nonlinear, nonadditive system given

in terms of the inverse equations is shown to satisfy control function separability

(Blundell, Kristen & Matzkin, 2013). The system of structural inverse equations can

be written as follows:7

ε1 = Λ−11 (y2) + Λ−12 (y1),

ε2 =

(
1

b2(x)
− c

)
Λ−11 (y2)− cΛ−12 (y1)−

g2(x)

b2(x)
,

=

(
1

b2(x)

)
Λ−11 (y2)−

g2(x)

b2(x)
− cε1,

where c is a constant, x is exogenous, b2, Λ1, and Λ2 are strictly increasing functions,

and 1/b2(x)− c is positive on the support of x. Once again, this inverse system can

be easily rearranged, yielding a triangular system, as follows:

y1 = Λ2(Λ
−1
1 (y2) + ε1),

y2 = Λ1(g2(x) + b2(x)(ε2 + cε1)),

= Λ1(g2(x) + b2(x)η),

where η = ε2 + cε1.

These examples are illustrative of the implied triangularity of systems that satisfy

control function separability. While both could be represented as non-triangular

simultaneous systems in terms of ε1 and ε2, a simple linear change of variable permits

7In the original paper, the inverse equation for ε2 was written down incorrectly, as is implicitly
made clear later in the paper.
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the triangular representation. The non-triangular representation of the system above

is as follows:

y1 = m1(y2, ε1) = Λ2(Λ
−1
1 (y2) + ε1),

y2 = m2(y1, x, ε2) = Λ1

(
cΛ−12 (y1) + g2(x)/b2(x) + ε2

1/b2(x)− c

)
.

This unwieldy system is unlikely to arise from economic theory. It is also restrictive

in a particular way.

To the first point, the system would be more likely to arise in terms of its inverse

system, in which case its triangular representation would be easily seen. To the

second, this simultaneous system can be seen to require the monotonicity of m1 in y2

and of m2 in y1. It also requires that y1 enter both inverse equations in the same way,

up to a linear transformation, and that the control function η = v−1(ε2, ε1) = ε2 + cε1

is linear. These are not incidental features of the model, but necessary in general, in

practice, as will be shown later in this paper.

In both cases, furthermore, control function separability does not appear to be

more easily verified or mathematically accessible than the equivalent condition of

admitting triangular representation; both are arrived at by straightforward manipu-

lation of the first order conditions or inverse equations.
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3.2 Additional characterizations

An equivalent characterization of control function separability that follows from the

proof of Proposition 1 is the existence of functions q and w, both monotonically

increasing in their first arguments, such that with respect to a system of form (I),

the following holds:

q(y2, x) = w(r2(y1, y2, x), r1(y1, y2)). (3.12)

In other words, control function separability can also be thought of as the condi-

tion where a one-to-one function of ε2 = r2(y1, y2, x), given ε1 = r1(y1, y2), can be

constructed that does not depend on y1.

An additional new condition characterizing control function separability can be

shown. It is derived from one given by Blundell & Matzkin in terms of partial deriva-

tives of the structural and inverse functions, which follows 8. Given a system of form

(I) and another of form (T) not known to be equivalent, if and only if the following

condition holds for all x, y1 and y2,

r2x
r2y1m

1
y2

+ r2y2
=
s−1x
s−1y2

, (3.13)

then the control function separability condition is met. In (3.13), subscripts indicate

the variable with respect to which the partial derivative is taken and s−1 refers to the

inverse function of s with respect to its second argument. By Blundell and Matzkin’s

8In Blundell and Matzkin’s paper, the function s−1 is erroneously denoted by s for the condition
(3.13).
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theorem, if and only if this condition is met, the two systems are observationally

equivalent.

Verifying this condition, however, requires computing partial derivatives of the

inverse functions. In some cases of interest, the inverse system may be unwieldy.

In the Appendix, I derive a similar, equivalent condition of somewhat simpler form

which depends only on the partial derivatives of the structural functions, for cases in

which the structural functions are more easily accessible. If and only if the equation,

sx =
m2
x

1−m2
y1
m1
y2

, (3.14)

always holds, then the control function separability condition is met, by my argument

and by Theorem 2 in Blundell & Matzkin. This alternative characterization is free of

reference to the inverse functions, and can be used to verify observational equivalence

of two systems of form (S) and (T). Intuitively, it can be quickly seen that in a system

already written in triangular form, m2
y1

= 0 and m2
x = sx, yielding the equality.

This condition also illustrates some of the significance of the crossing assumption

S.5, which states that for all values of (y1, y2, x, ε1, ε2) in their domain, m1
y2
m2
y1
< 1.

We can rearrange the condition,

m2
x

sx
= 1−m2

y1
m1
y2
,

and see that the right-hand side will, by the crossing assumption, always be positive.

We can see that a necessary (but not sufficient) condition for control function separa-
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bility in a system that meets assumptions S.1-S.5 and a possibly equivalent triangular

system is that the partial derivatives of m2(y1, x, ε2) and s(x, η) with respect to x are

of the same sign for all values of (y1, y2, x, ε1, ε2) on their supports.

4 Applicability of control function separability

4.1 Restrictiveness of the condition

What makes the control function separability worthy or unworthy of study is its

usefulness for identification and estimation of quantities relevant to economic theory.

Its practical restrictiveness has not been investigated in the literature other than in

some preliminary observations made by Blundell and Matzkin. Here I develop some

necessary derivative conditions for control function separability and argue that, in

practice, the condition is restrictive to the point that it is equivalent to requiring two

additional monotonicity conditions, as well as additional functional form restrictions

including linearity in the control function.

To examine the necessary derivative conditions, recall that the condition (3.8)

must hold, as follows,

∂r2(y1, y2, x)

∂y2
=
∂v(η, ε1)

∂η

∂q(y2, x)

∂y2
+
∂v(η, ε1)

∂ε1

∂r1(y1, y2)

∂y2
> 0,

for all values of the variables on their supports. For a given simultaneous system
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of nonparametric equations arising from economic theory, of the form (I), and for a

corresponding control function η = v−1(ε2, ε1), assuming it exists, the equality and

the inequality above are necessary, respectively, for control function separability to

be satisfied and for the monotonicity of the structural equations in their disturbances

to hold.

The condition in this form can be seen to be highly restrictive. Because it

must hold for all admissible values of the variables, it is specifically the case that

(∂v(η, ε1)/∂ε1)(∂r
1(y1, y2)/∂y2) is finitely bounded below by the changing (negative)

value of −(∂v(η, ε1)/∂η)(∂q(y2, x)/∂y2). For a structural simultaneous system, there

is no guarantee on the sign of ∂r1(y1, y2)/∂y2, despite the crossing assumption, which

requires the quantity to be of the opposite sign to ∂r2(y1, y2, x)/∂y1, or else of the

same sign and of sufficiently small magnitude.

In the permissible case that r1 is not monotonic in the endogenous variable y2,

the partial derivative of v with respect to its second argument is required to either

remain very small or else balance on a knife edge, changing sign approximately when

∂r1(y1, y2)/∂y2 does.

In practice, there is no reason to expect these knife-edge scenarios, and control

function separability is perhaps only realistically applicable when r1 is monotonic in y2

(or equivalently when m1 is monotonic in y2), so that simply by v being monotonic in

the same direction, in its second argument, (∂v(η, ε1)/∂ε1)(∂r
1(y1, y2)/∂y2) is positive

and the condition is met. Indeed, Blundell and Matzkin’s demand example, where
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control function separability is met, is a case where the structural function m1(y2, ε1)

is monotonic in y2.

The inequality above, as well as an earlier result that r1y2r
2
y1
/r1y1r

2
y2

= m1
y2
m2
y1

,

which is proved in the Appendix, can be combined with the fact that r2y2 = 1/m2
ε2

to

show that the following is necessary for a system that satisfies assumption S.5 and

control function separability,

−∂v(η, ε1)

∂η

∂q(y2, x)

∂y2

∂m2(y1, ε2, x)

∂ε2
<
∂m1(y2, ε1)

∂y2

∂m2(y1, ε2, x)

∂y1
< 1,

where the left hand side is always negative by the positive monotonicity of v, q and

m2 in their second arguments. Written this way, control function separability and the

crossing assumption jointly hem in the magnitude of the product of the structural

cross-derivatives in both the positive and negative directions.

It can also be shown that m2 must always, in practice, be monotonic in y1. Con-

sider the equation (3.11), which is a necessary condition for the separability condition:

r2y1 = vε1r
1
y1
.

It can be rearranged and written explicitly as follows:

∂r2(y1, y2, x)/∂y1
∂r1(y1, y2)/∂y1

=
∂v(η, ε1)

∂ε1
. (4.1)

This is certainly a restrictive condition on the functional form of the inverse structural
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equations r1 and r2. Without parametric restrictions (since this is a nonparametric

setting), it can first be observed that maintaining even the same sign on each side of

the equation, without strict monotonicity, is a highly nongeneric outcome. In practice,

it cannot be expected to hold under ordinary conditions unless, at the very least, r2

is monotonic in y1 and v is monotonic in the same direction in ε1 (r2 is monotonic

by assumption). As can be easily shown using prior results, r2y1 > 0 if and only if

m2
y1
< 0, assuming S.4 holds. That is, m2 must be monotonic in y1 in the opposite

direction of m1 in y2. In the examples discussed in Blundell & Matzkin (2014) and

Blundell, Kristensen & Matzkin (2013), the structural equation m2 is indeed strictly

decreasing in y1.

The condition (4.1), however, further requires the quotient of two functions in y1,

y2, and x (for r2) to yield a function in η and ε1. (In particular, this requires r2y1

to be free of x.) In Blundell and Matzkin’s demand system example, this condition

is met by the quotient being equal to −1. In other words, y1 enters each of the

inverse equations r1 and r2 in the same way, up to a linear transformation.9 For the

condition to be met in a less restrictive way would require, again, very nongeneric

cases or still-restrictive parametric restrictions.

It is also shown in the Appendix that

∂r2(y1, y2, x)/∂y1
∂r1(y1, y2)/∂y1

= −(∂m2(y1, ε2, x)/∂y1)(∂m
1(y2, ε1)/∂ε1)

∂m2(y1, ε2, x)/∂ε2
, (4.2)

9Such a linear transformation must, of course, have constants as coefficients.
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which implies that, equivalently, each of the disturbances ε1 and ε2 must enter the

structural equation m2 in the same way (indirectly through y1 in the case of ε1), up

to a linear transformation, in practice.

In practice, then, control function separability will thus usually only hold in cases

where the function v(η, ε1) is linear in ε1. In such a case, v would also generally need

to be linear in η so as to satisfy (3.9). Accordingly, the control function η = v−1(ε1, ε2)

would also be linear in ε1 and ε2.

In summary, a system (S), except in unusual nongeneric circumstances, will satisfy

control function separability only when m1 is strictly monotonic in y2, m
2 is strictly

monotonic in y1 in the opposite direction, y1 enters each of the inverse equations in the

same way, up to a linear transformation, and the control function η = v−1(ε1, ε2) is

linear in each of its arguments. These conditions hold for the demand system example

in Blundell & Matzkin, 2014, as well as the nonlinear system example in a related

paper (Blundell, Kristensen & Matzkin, 2013), which are the only examples in the

literature in which control function separability is explicitly investigated and satisfied.

The conditions are also, of course, satisfied for linear simultaneous equations systems

with additive scalar disturbances.

4.2 Ruling out control function separability

Given an arbitrary nonlinear simultaneous system where assumptions S.1 through

S.5 are thought to hold, it may be difficult to conclude with certainty that control
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function separability does not hold in systems where that is the case. The practical

inability to construct functions v and q satisfying the condition does not itself imply

their nonexistence.

The alternative characterization of the separability condition, (3.14), given earlier

can be used to rule it out. Necessary conditions for control function separability, when

shown not to hold, also, of course, amount to sufficient conditions for the nonexistence

of v and q. Two examples follow.

4.2.1 Example

A simultaneous system (S) could take the following functional form with additive

nonparametric disturbances,

y1 = c(y2) + ε1, (4.3)

y2 = y1 + y1x+ ε2, (4.4)

where unknown function c(.) is the econometric object of interest and x is exogenous.

We assume that c is differentiable, strictly increasing and strictly concave. We also

assume that assumptions S.1 to S.4 are met, and that c is such that the crossing

assumption required for a unique equilibrium is met.

We know that a necessary (and sufficient) condition for the applicability of the
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control function approach, (3.14), is that

sx =
m2
x

1−m2
y1
m1
y2

. (4.5)

While this condition is not very useful as a sufficient condition, since the function s

is usually unknown at the outset, it can be easily used to rule out control function

separability. For the system described above, it can be shown that the condition

requires that, for all values of y1, x and y2,

sx =
y1

1− (1 + x)(c′(y2))
,

which is an impossibility, since s cannot be a function of y1 by the definition of

triangularity and y1 will not cancel out. Therefore, the control function approach

cannot be used to identify and estimate this system.

Observational equivalence can also be ruled out in a weaker sense by reference to

the almost-necessary conditions described in Section 4.1. The inverse system corre-

sponding to equations (4.3) and (4.4) is written as follows:

ε1 = y1 − c(y2), (4.6)

ε2 = −y1(1 + x) + y2. (4.7)

It is quickly observed that y1 does not enter each of the equations in the same way

up to a linear transformation. This rules out, in all likelihood, the possibility of an

observationally equivalent triangular system.
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4.2.2 Example

Another example can be considered from the literature on property taxation and

house valuation. In a book by Bloom, Borsch-Supan, Ladd and Yinger (1988), a

simultaneous system of equations is developed, modelling house valuation and the

effective tax rate between two periods. The model’s structural form is simplified for

the purposes of presentation in this paper, as follows:

y1 − x1
x1

=
−β(y2 − x2)
0.03 + βy2

+ ε1, (4.8)

y2 = x3
1

y1
+ ε2, (4.9)

where all observable variables are strictly positive and exogenous and β is assumed

nonnegative. Assumptions S.1 through S.5 are assumed to hold. In terms of economic

theory, y1 represents the value of a house in the second period, and x1 its value in

the first, so that the left hand side of (4.8) represents the growth in house valuation

between the two periods. y2 is the effective property tax rate in the second period,

and x2 the rate in the first. x3 is an observable, exogenous variable representing

housing and neighborhood characteristics.

It can be observed that (4.8) (the left-hand side of which is a positive monotonic

function of y1) is strictly decreasing in y2, and that (4.9) is strictly decreasing in y1.

In other words, the two structural cross-derivatives have the same sign. While this

is permissible under weak support and parametric conditions for identification, by

the crossing assumption, it almost certainly is not permissible for control function
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separability, by the conditions developed earlier.

Alternatively, the inverse system can be written down as follows:

ε1 =
y1 − x1
x1

+
β(y2 − x2)
0.03 + βy2

, (4.10)

ε2 = y2 − x3
1

y1
, (4.11)

by which we see that y1 does not enter each inverse equation in the same way. Ac-

cordingly, we can almost certainly rule out control function separability, without

attempting to find functions v and q.

Finally, we can conclusively confirm, by (4.1), that the above system is not obser-

vationally equivalent to a triangular system by noting that the partial derivative r2y1

is a function of x3.

5 Conclusion

In this paper, I have investigated the applicability of the control function separability

condition introduced by Blundell and Matzkin, 2014, which characterizes structural

systems of simultaneous equations in scalar variables where the method of control

functions can be used to estimate the main structural equation.

First, in an effort to discover whether the condition allows for the application of

the control function method to a wide class of nontriangular models, I have shown

32



that control function separability holds if and only if a system of simultaneous equa-

tions can be represented, by reparameterizing the model disturbances, as a triangular

system. In applying this result to the previous examples of systems satisfying control

function separability, I illustrate the unlikelihood of developing, from economic the-

ory, nontriangular structural systems which satisfy the condition and are not already

easily seen to be triangular.

Second, a new characterization of control function separability is given in terms

of the structural derivatives, and is used to rule out control function separability in

a nonparametric model.

Finally, conditions are developed which are variously necessary or almost necessary

for control function separability, with almost-necessity referring to conditions such

that only models with highly nongeneric properties would satisfy control function

separability without the conditions holding. These include monotonicity conditions

in the endogenous variables in the structural functions, the condition that the main

dependent variable of interest enters both inverse equations in the same way up to

a linear transformation, and the condition that the control function is linear in the

structural disturbances. Making reference to two examples, including a system of

simultaneous equations from the literature on house valuation and taxation, I use

these necessary conditions to rule out control function separability.

The contribution of this paper to the literature is to explain the practical limi-

tations of the control function separability condition, in part by recharacterizing it
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as a triangular representation condition. Future applied work with nonlinear, non-

parametric models with simultaneity may benefit from additional characterizations

of the condition and from a simple way to rule out the possibility of using the control

function method for nonparametric estimation of nonlinear systems of simultaneous

equations.
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A Appendix

Here I show that r1y2r
2
y1
/r1y1r

2
y2

= m1
y2
m2
y1

. For a system (S) meeting assumptions S.1

through S.4, we have the identities

y1 = m1(y2, r
1(y1, y2)),

y2 = m2(y1, x, r
2(y1, y2, x)).

Differentiating the first equation with respect to y1 and y2 yields

1 = m1
ε1
r1y1 , (A.1)

0 = m1
y2

+m1
ε1
r1y2 , (A.2)

which together yield m1
y2

= −r1y2/r
1
y1

. A similar process with respect to the second

equation yields m2
y1

= −r2y1/r
2
y2

. Multiplying both expressions together, and noting

that r1y1 and r2y2 are nonzero by monotonicity assumptions, we have our result.

I now prove the alternative characterization. Consider the following identity for a

simultaneous system (S) which meets assumptions S.1-S.5:

y2 = m2(y1, x, r
2(y1, y2, x)). (A.3)
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Partial derivatives can be taken, so that

1 = m2
ε2
r2y2 , (A.4)

0 = m2
y1

+m2
ε2
r2y1 , (A.5)

0 = m2
x +m2

ε2
r2x, (A.6)

where partial derivatives are written compactly as before. Similarly, by the following

identity for a triangular system (T),

y2 = s(x, s−1(y2, x)), (A.7)

and its partial derivatives,

1 = sηs
−1
y2
,

0 = sx + sηs
−1
x ,

and solving for r2y2 , r
2
y1

, r2x, s
−1
y2

and s−1x , we can substitute into Blundell and Matzkin’s

condition, whereby it follows that

−m2
x/m

2
ε2

(−m2
y1
/m2

ε2
)m1

y2
+ 1/m2

ε2

=
−sx/sη

1/sη
, (A.8)

since m2
ε2

is nonzero everywhere by the strict monotonicity of m2 in ε2, and since sη

is nonzero everywhere by the strict monotonicity of s in η. After simplifying, this
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yields the following condition:

m2
x

m2
y1
m1
y2
− 1

= −sx, (A.9)

I also show that

∂r2(y1, y2, x)/∂y1
∂r1(y1, y2)/∂y1

= −(∂m2(y1, ε2, x)/∂y1)(∂m
1(y2, ε1)/∂ε1)

∂m2(y1, ε2, x)/∂ε2
. (A.10)

We have, by (A.5) and (A.1), that r2y1 = −m2
y1
/m2

ε2
and r1y1 = 1/m1

ε1
. We then have

(A.10) by substitution.
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