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Abstract

This paper uses a parametric Heterogeneous Autoregressive [HAR] model augmented with cen-

tral bank public speech sentiment to forecast S&P 500 implied volatility (CBOE VIX). Text

sentiment computed by Natural Language Processing [NLP] algorithms may be measured with

error due to estimation inaccuracy which leads to statistical bias and inconsistency in OLS

estimation. As such, I propose two alternative methods to incorporate sentiment measures

and contrast their performance through out-of-sample performance and the Diebold-Mariano

[DM] test. Specifically, I examine both Instrumental Variable [IV] and Factor Analysis [FA]

approaches to handle measurement error. With a sample of 5,449 trading days and 1,189 US

Federal Reserve speeches, I find that (1) implementing financial and macroeconomic variables

results in similar predictive ability compared to the base HAR, (2) integrating policymaker

speech sentiment jointly with financial and macroeconomic variables significantly increases

predictive ability over the HAR under the Diebold-Mariano [DM] test, (3) sentiment is more

effective over short-term forecasts, becoming less effective as the forecast horizon expands, (4)

IV and FA methods do not achieve significant outperformance against a single sentiment mea-

sure, and (5) the choice of test diagnostic is important when comparing forecast performance.
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1 Introduction

Consumer and investor sentiment are hypothesized to be important drivers of a variety of

financial and macroeconomic phenomena. Long ago, Keynes (1936) proposed the idea of “an-

imal spirits”, where human psychology is a crucial determinant of financial decision mak-

ing. Consequently, some forms of sentiment could be key variables in modeling financial and

macroeconomic behaviour among economic agents. The usage of various forms of sentiment

in empirical research is increasingly common largely due to rapid advances in Natural Lan-

guage Processing [NLP] which have increased both accuracy in sentiment measurements and

computational efficiency. However, testing sentiment-based theories is still challenged by lim-

itations and methodological issues surrounding qualitative data, particularly when computing

sentiment measurements from text data. This paper operates under the premise that senti-

ment measured through NLP methods is not error-free, and examines potential strategies to

address measurement error in the context of modeling financial market volatility. In addition,

this paper differs from previous research in that the sentiment of central bank policymakers is

studied instead of more commonly examined types of sentiment, such as consumer or investor

sentiment.

The remainder of this section is organized as follows. The motivation behind the choice of

modeling volatility is introduced in subsection 1.1, the link between volatility and policymaker

sentiment is expanded upon in subsection 1.2, and subsection 1.3 delves into some of the recent

and relevant computer science literature related to sentiment analysis.
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1.1 Implied Volatility

Price discovery is a central component of capital markets and crucial to the well-functioning

of the financial sector. Risk, however, is widespread, and often shows up in the form of rapid

changes in asset prices – particularly for equity-backed securities. At the extreme, a high degree

of market volatility is strongly associated with more broad measures of macroeconomic chal-

lenges, often represented by substantial fear and uncertainty among economic agents (Chicago

Board Options Exchange 2021). As such, it may be of particular interest to investors, institu-

tions, and policymakers to better understand the drivers of volatility in asset prices.

There are many different methods to measure volatility in financial markets. This paper fo-

cuses on the CBOE Volatility Index (VIX), developed by the Chicago Board Options Exchange

[CBOE], which measures the S&P 500 30-day market implied volatility by averaging S&P 500

put and call prices. Chicago Board Options Exchange (2021) highlights many advantages of

the VIX. For instance, the VIX is not dependent on any particular option pricing model due

to it being purely options-based. The index is also commonly considered by practitioners to

loosely measure investor fear, some considering it a “fear gauge” of sorts. The VIX is therefore

widely used to assess market conditions, particularly due to its implementability in investment

portfolios. Fernandes et al. (2014) provides evidence and finds market returns are negatively

correlated with the VIX, suggesting that high levels of stock market volatility may conditionally

imply lower expected stock returns. To illustrate, Figure 1 demonstrates a clear negative uni-

variate relationship between the VIX and 120-day S&P 500 returns using daily rolling periods

between 1996-2018 from subsection 2.3.

2



Figure 1: Scatter Plot Between VIX and 120-day S&P 500 returns (1996-2018)

Because of the negative relationship between implied volatility and market returns, some trad-

ing strategies have emerged based on the VIX. For example, Clements and Fuller (2012) find

that combining long positions in equities and implied volatility increases risk-adjusted per-

formance. This is due to market turmoil simultaneously decreasing equity prices while also

increasing implied volatility, suggesting the VIX potentially being an effective hedge against

bear markets.

A large interest in forecasting implied volatility has emerged among practitioners since the

VIX’s inception, and various modeling approaches have been adopted by researchers. For ex-

ample, Jiang and Lazar (2020) use a Generalized Autoregressive Conditional Heteroskedastic-

ity [GARCH] model and finds strong model performance for both in-sample and out-of-sample

VIX forecasts. Fernandes et al. (2014) test variants of the Heterogeneous Autoregressive [HAR]

model and find it to be effective due to the VIX’s highly persistent nature. Some approaches to

VIX forecasting involve integrating various forms of sentiment measured by NLP algorithms.
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Lehrer et al. (2021) use deep learning methods to incorporate twitter sentiment as a proxy

for consumer confidence in a HAR-based model. The authors find that sentiment significantly

increases forecast accuracy, highlighting the potential benefits of sentiment inclusion. Further-

more, Shvimer et al. (2021) model the VIX using sentiment extracted from economic articles.

They use a Long Short-Term Memory [LSTM] text model combined with an Autoregressive

Integrated Moving Average [ARIMA] model and find a 5% improvement in out-of-sample fore-

casting accuracy relative to plain ARIMA.

Although numerous studies, including Lehrer et al. (2021) and Shvimer et al. (2021), find that

sentiment can improve VIX forecasts, the type of sentiment is important. Wang et al. (2005)

examine whether investor sentiment is a useful variable for forecasting volatility and find that

both market returns and volatility cause investor sentiment – not the other way around. This

indicates that it is more useful to directly include stock returns and lagged volatility in a fore-

casting model than to use investor sentiment, a noisy proxy. Importantly, this result suggests

that it is crucial to think carefully about the causality of measured sentiment and the depen-

dent variable being modeled.

This paper extends current research in two ways. First, sentiment from central bank poli-

cymaker speeches is extracted to test whether its implementation in a HAR model improves

implied volatility forecasts. Second, most current sentiment analysis research is based on

assuming, at least implicitly, that sentiment is accurately measured. However, sentiment is

estimated and thus likely contains error. To illustrate, NLP algorithms will compute differing

sentiment measures over the same underlying text despite identical training data, implying

that their measurements of true sentiment cannot all be simultaneously error-free. Many esti-

mators become biased under measurement error. For example, OLS estimation in a HAR-type
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model becomes biased towards zero. Therefore, I propose both instrumental variable and factor

analysis methods to address measurement error and test these against uncorrected measures

of sentiment in the context of forecasting the VIX.

1.2 Central Bank Policymaker Sentiment

The motivation for using central bank sentiment in the context of modeling implied volatility

is worth highlighting. Stock prices are hypothesized to be a reflection of expected future

discounted cash flow, and influenced by a myriad of determinants. One important determinant

of market expectations surrounding future risky cash flows is monetary policy. Consequently,

many US investors pay special attention to the Federal Reserve and its communications to the

public. For instance, Vähämaa and Äijö (2010) find uncertainty in equity markets to be heavily

influenced by the Federal Reserve, especially through FOMC meetings. Canadian evidence from

Young Chang and Feunou (2014) suggests that both realized and implied volatility decrease,

reflecting lower future uncertainty, when the Bank of Canada policy rates are announced.

In addition, the impact of central bank policy on equity markets is substantial in magnitude.

Bernanke and Kuttner (2005) estimate a 25 basis-point cut in the Fed’s policy rate is associated

with a 100 basis-point increase in stock prices. The authors find that monetary policy primarily

affects stock prices through its influence on expected future dividends and expected future

excess stock returns, as opposed to being influenced directly by real interest rates. For example,

tight money can increase the risk surrounding stocks by weakening firm balance sheets and

increasing risk-aversion, both of which raise the equity risk premium. However, they also find

that the majority of the variation in stock prices is due to non-monetary factors. This last

result might point to limitations of using sentiment derived from central bank policymakers in

VIX modeling.
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The linkage between variation in central bank policy and uncertainty in financial markets

has the potential to be studied. Specifically, the VIX is considered to be a proxy for fear

and uncertainty. Therefore, communications from the central bank towards the public may

be useful in forecasting indicators of fear and uncertainty, such as the VIX. That said, the

literature is unclear on the usefulness of policymaker sentiment in VIX forecasting largely due

to limited existing research in this area.

1.3 NLP and Sentiment Analysis

Text data is increasingly common in economic research. Gentzkow et al. (2017) provide a

detailed introduction to its uses in economics while outlining relevant statistical methods for

applied work. The richness of text data is highlighted by the authors; a large quantity of

human interactions are taking place digitally which offers great potential to better understand

social and economic activities. Moreover, due to rapid advances in the field of NLP, the ability

to capture information from text data has increased dramatically. Most economic research,

however, currently focuses on implementing a single NLP model to make quantitative mea-

surements from the data. In the context of sentiment analysis, this suggests that sentiment

measures may contain error. This paper instead contrasts four state-of-the-art text models

and applies both IV and FA methods to address possible measurement error. Recent computer

science literature related to these four text models is further detailed in the remaining of this

section.

One important semi-recent NLP breakthrough is the Transformers architecture developed by

Vaswani et al. (2017) at Google AI. Transformers introduce substantial improvements in the

way text is modeled, particularly with the introduction of self-attention. In short, self-attention
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computes representations of a given token1 sequence by relating the positions of every token

with each other. As a result, the neural network is able to focus on the most important rela-

tions between embedded tokens to better capture linguistic context. In addition, Transformers

greatly reduce computation time by allowing parallelization2. This architecture forms the basis

of many of the newest and most performant NLP text models.

Based on the Transformer architecture, the Bidirectional Encoder Representations from Trans-

formers [BERT] language model introduced by Devlin et al. (2019) marked an important turn-

ing point in NLP, considered by many a new era of text modeling. It achieved records in 11

natural processing tasks, including strong performance in sentiment analysis which is of partic-

ular relevance to this paper. BERT uses Masked Language Modeling [MLM] which masks token

inputs at random. Its deep bidirectional3 Transformer is pre-trained by predicting each masked

input using text data from both English Wikipedia (2.5 billion words) and the BooksCorpus by

Zhu et al. (2015) (800 million words). A notable improvement over previous models is BERT’s

bidirectional architecture in place of a unidirectional architecture which enables it to capture

context from both the left and right of each token, better modeling the context surround-

ing the token. Soon after BERT was published by Google AI’s team, Facebook AI published

RoBERTa, developed by Liu et al. (2019). The authors found BERT to be undertrained and

the choice of hyperparameters4 have large impacts of performance. RoBERTa improved the

design of BERT through better training data and hyperparameter optimization which led to a

new state-of-the-art for many NLP tasks.

1Tokens are subsets of the original string, typically being individual words, subwords, characters, punctuation,
etc.

2Parallelization enables computations to run in parallel on different cores, as opposed to computing serially
on a single core. This speedup is particularly pronounced with the use of Graphical Processing Units.

3Bidirectional refers to the model’s ability to simultaneously read previous tokens (right to left) and forward
tokens (left to right).

4Hyperparameters dictate the network structure and training process. Unlike ordinary model parameters,
they are chosen by the practitioner rather than estimated.
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Although BERT and RoBERTa established a high standard in NLP, newer models have since

been introduced which rival their performance on various tasks. Yang et al. (2020) at Google

AI Brain Team developed XLNet which incorporates autoregressive language modeling while

enabling bidirectional contexts, an extension to BERT and the Transformer model. XLNet

overcomes a notable limitation of BERT, which is that its MLM method ignores dependencies

between masks. XLNet highlights that the relation between masks is important, and corrupt-

ing words through masks loses those relations. The autoregressive nature of XLNet does not

suffer from this limitation, and XLNet outperforms BERT on various NLP tasks.

Finally, Clark et al. (2020) introduce ELECTRA which differs from BERT primarily in its

masking method. Instead of entirely masking tokens, ELECTRA instead corrupts randomized

tokens with generated alternatives. In other words, the tokens are not hidden, but rather re-

placed. Next, ELECTRA uses a discriminative model5 to predict whether each token is either

part of the original text or generated in its pre-training. A notable advantage of ELECTRA is

its computational efficiency, achieving substantially lower training times over the other meth-

ods.

To summarize, each of the four NLP text models discussed are state-of-the-art and perform

exceptionally well on a variety of tasks, including sentiment analysis. The four models will be

used to predict central bank speech sentiment and construct regressors that will be implemented

into VIX forecasts.

5Discriminative models predict conditional probabilities to form a decision rule, in this case whether or not
a token was generated. Conditional probabilities are often modeled using Logistic Regression, among other
methods.
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2 Data

This paper combines multiple data sources to perform sentiment analysis and VIX forecasting.

Central bank speech data is described in subsection 2.1, data used to train the sentiment text

models is covered in subsection 2.2, and the core financial and macroeconomic variables used

in forecasts are highlighted in subsection 2.3. Replication instructions using these data sources

and full source code are provided in section 8.

2.1 Central Bank Speech Data

The speech text data is provided by Johnson et al. (2018) and publicly available for download

at https://osf.io/p3yr6/. The data consists of nearly 14,000 text files, each containing the

text transcript of a speech delivered by a central banker with a daily time dimension. That

is, the text files do not contain any labelled sentiment predictions. Only speeches that were

delivered by a central banker at the Federal Reserve are kept in order to focus solely on US

monetary policy. The speeches span a total of 21 years between 19/12/1996 until 28/02/2018.

The complete list of Federal Reserve speakers included in the dataset is presented in Table 1.

In order to preserve the time series structure, a small number of speeches were dropped at

random when there were more than 1 speech delivered on a single day, totalling 4% of the

dataset being removed. The result is a dataset of 1189 speeches.

9

https://osf.io/p3yr6/


Table 1: List of Federal Reserve Speakers

Speaker Position Title Speech Count

Alan Greenspan Chairman 179
Ben Bernanke Chairman 231
Janet Yellen Chairman 67
Jerome Powell Chairman 43
Alice Rivlin Vice Chairman 7
Ernest Patrikis Vice Chairman 3
Daniel Tarullo Board of Governors 69
Edward Gramlich Board of Governors 13
Edward Kelley Jr Board of Governors 13
Elizabeth Duke Board of Governors 40
Frederic Mishkin Board of Governors 23
Jeremy Stein Board of Governors 11
Kevin Warsh Board of Governors 13
Lael Brainard Board of Governors 24
Laurence Meyer Board of Governors 41
Mark Olson Board of Governors 22
Randall Kroszner Board of Governors 38
Robert Ferguson Jr Board of Governors 74
Sarah Bloom Raskin Board of Governors 10
Susan Schmidt Bies Board of Governors 47
Charles Plosser President and CEO 28
Thomas Hoenig President and CEO 9
Timothy Geithner President and CEO 26
William Dudley President and CEO 91
Narayana Kocherlakota President 14
William McDonough President 19
Brian Sack Executive Vice President 3
James McAndrews Executive Vice President 7
Joseph Tracy Executive Vice President 3
Simon Potter Executive Vice President 21

Total 1189

The distribution of the 1189 speeches across time is displayed in Figure 2. There is a marked

increase in the number of speeches starting in 2004. Mean speech count per year post-2004

was approximately 50% higher than in the pre-2004 period. In addition, the years 1996 and

2018 contain a relatively small number of speeches due to these being the start and end dates

of the dataset. These attributes of the data are not expected to have important implications

for their use in forecasting.
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Figure 2: Number of Speeches by Year (1996-2018)

2.2 The Stanford Sentiment Treebank v2

Due to the lack of sentiment labels in the speech data, sentiment analysis must be performed

to predict sentiment of every central banker’s speeches. This requires the use of NLP text

models which must first be trained on alternative text data that contains labelled sentiment.

Developed by Socher et al. (2013), the Stanford Sentiment Treebank v2 [SST-2] is a highly

influential and commonly used dataset in sentiment analysis. The core advantage of SST-2 is

its large sample size (n = 215, 154 phrases) and manually labelled sentiment, providing text

models a much higher degree of predictive accuracy through better hyperparameter tuning.

All NLP algorithms considered in this paper are tuned using SST-2.
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2.3 Financial and Macroeconomic Data

Daily financial and macroeconomic data were retrieved online. Yahoo Finance was accessed to

download the VIX index [Yahoo Finance (2021a)] and SPY [Yahoo Finance (2021b)]. The SPY

is a live fund tracking the S&P 500, and the retrieved data includes both the dividend-adjusted

SPY level and volume. The Federal Reserve Bank of St. Louis was accessed to retried the

the 10-year US treasury yield [Federal Reserve Bank of St. Louis (2021a)], the 3-month US

treasury yield [Federal Reserve Bank of St. Louis (2021b)], crude oil prices [Federal Reserve

Bank of St. Louis (2021c)], and Moody’s 10-year Baa minus treasury credit spread [Federal

Reserve Bank of St. Louis (2021d)]. Some financial and macroeconomic variables have a small

number of missing observations which were imputed using the previous day’s value. The sum-

mary statistics for each of these economic variables are presented in Table 2. The term spread

was calculated by substracting the 3-month treasury from the 10-year treasury. Each of these

variables are tested for stationarity using the Augmented Dickey-Fuller [ADF] test. The raw

VIX, its log-transformation, and the volume strongly reject the null hypothesis of a unit root.

On the other hand, the term spread, credit spread, and WTI oil price fail to reject the null

which indicates that they are nonstationary over the sample. These variables will be trans-

formed in subsection 4.2 before inclusion in econometric models.
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Table 2: Economic Variables - Summary Statistics

Variable Min Max Median Mean St. Dev. Skewness Kurtosis ADF Test

VIX 9.14 80.86 18.98 20.37 8.37 1.93 6.61 0.01

log(V IX) 2.21 4.39 2.94 2.94 0.36 .47 0.16 0.01

Volume (000’) 201 871026 69912 98714 101581 1.96 5.82 0.01

Term Spread (%) -0.95 3.85 1.78 1.73 1.12 -0.17 -0.87 0.60

Credit Spread (%) 1.4 6.16 2.53 2.54 0.78 1.5 4.31 0.28

WTI Oil (USD) 10.82 145.31 50.54 55.49 29.55 0.42 -0.88 0.55

Figure 3 displays the raw (untransformed) VIX index over the sample period of 1996-2018. It

has distinct behaviour around times of financial stress. For instance, it spiked during the 1997

Asian Financial Crisis, Long-Term Capital Management dissolution in 1998, the 2000 Tech

Crash, 9/11, 2008 Great Financial Crisis, and 2011 Debt Ceiling Crisis. In this analysis, I will

follow Lehrer et al. (2021) and Fernandes et al. (2014) and use the log transformation of the

VIX, in part to contain some of its excessive skewness and kurtosis.

Figure 3: Untransformed VIX (1996-2018)

13



3 Sentiment Analysis Methodology

3.1 Text Pre-Processing

The text files require pre-processing before being fed into NLP algorithms. First, all text files

begin with a short summary of the speaker and additional context about the speech. Since this

is not part of the speaker’s speech, it is systematically removed from all speeches. Additionally,

a small number of tokens related to text formatting, which are not part of the speech, are

embedded within the text. This requires more precision to remove; a random subset of text

files were manually inspected to determine a common pattern across speeches to optimize

their removal. The tokens were removed recursively to further eliminate contamination of the

underlying speech. The remaining tokens are then passed to each NLP algorithm described in

the next section.

3.2 NLP Text Model Sentiment Predictions

The collection of NLP text models considered in this paper is denoted by Q = {BERT,

RoBERTa, XLNet, ELECTRA}. Raw text is first tokenized to map raw strings into dis-

tinct tokens which are identified by numerical labels. Breaking down each string increases

the ability of NLP methods to capture linguistic context, particularly to capture the relation

between words and punctuation. Since the NLP methods differ in their tokenization processes,

every model q ∈ Q is tokenized separately. Importantly, only the first 3156 space-separated

words of a given speech are fed to the tokenizers. All tokens following the first 315 words are

unused. This approach is due to a limitation of the Transformers which are only able to take on

a maximum of 512 tokens as input. A choice of 315 space-separated word count ensures each

6As a robustness check, other choices were also considered and do not meaningfully change the results. These
include 200, 250, and 315 space-separated words at the start and end of each speech.
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tokenizer will always result in no more than 512 tokens in the speech data. The limited input

size is primarily due to the use of self-attention in text modeling, which requires O(n2) for both

time and space complexities. Although this 315 space-separated word limitation simplifies the

process of sentiment analysis, it likely reduces the precision of sentiment measures. However,

the precision loss may not be large when considering that sentiment is unlikely to swing by

large magnitudes throughout a speech.

Next, the tokenized text is fed as inputs into each NLP model q using the Transformers library

developed by Hugging Face (2021). The library is open source and has a wide selection of pre-

trained NLP models which will be superscripted with q. The text models are pre-trained on

the SST-2 dataset discussed in subsection 2.2. Each NLP model q outputs a binary sentiment

sqt ∈ {positive, negative} with an associated confidence score aqt ∈ [0, 1]. The confidence score

measures how probable the model is at predicting binary sentiment correctly. Furthermore,

speeches and their associated text model output are ordered by the date that they were deliv-

ered, forming a time series. Subscript t denotes the time at which the speech was delivered.

That is, the timing of a given speech and its associate computed sentiment may be used to

forecast future implied volatility.

3.3 Constructing Sentiment Measurements from Text Model Output

Given the central banker speech text corpus, the goal is to get a measure of sentiment of each

central banker’s speech at time t to be used as a forecasting regressor in forecasting volatility

at t + h. For modeling purposes, it is useful to define sentiment in [0, 1], where 1 represents

the most extreme positive sentiment and 0 the most extreme negative sentiment. The four

estimated sentiment values are labeled x̃qt for each model q ∈ Q. Although the intention is

to measure sentiment x̃qt as a real number in [0, 1], x̃qt is not the direct output of the NLP
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algorithms. I map the NLP text model outputs (sqt , a
q
t ) into [0, 1] to provide a more intuitive

interpretation of text sentiment. x̃qt (s
q
t , a

q
t ) is mapped as follows:

x̃qt (s
q
t , p

q
t ) ≡


aqt if sqt = Positive

(1− aqt ) if sqt = Negative

That is, I use the confidence scores to approximate a continuous measure of sentiment. Some

caution is warranted with regards to the interpretation of x̃qt (s
q
t , a

q
t ). Although the intention

is to to quantify the strength of sentiment in [0, 1], the computed measure x̃qt (s
q
t , a

q
t ) differs

slightly from the intended interpretation. sqt is a binary measure of sentiment – either positive

or negative. aqt is a scoring measure of the binary sentiment, indicating confidence in the

binary output sqt . My mapping is motivated by the observation that text with very strong

positive or negative sentiment should be predicted more confidently than text with weaker

(or ambiguous) sentiment. Therefore, this approach should be treated as an approximation

to predicted sentiment rather than its definition. Sentiment is ideally defined on a continuum

because a binary measure will fail to distinguish between different strengths of sentiment. Put

differently, there may be information that is lost if sentiment were instead modelled as being

binary. It is not feasible to quantify how well x̃qt (s
q
t , a

q
t ) measures the true underlying sentiment

due to the latter being unobservable. In section 4, the predicted sentiment values x̃qt (s
q
t , a

q
t )

for each of the four models are used to construct sentiment regressors which are used in VIX

forecasting models.

The summary statistics for x̃qt are given in Table 3. Both BERT and XLNet have the largest

dispersion in sentiment predictions and have relatively small absolute skewness and kurtosis

relative to the other two methods. In fact, ELECTRA has notably large positive skewness
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relative to the other three methods. In addition, BERT and XLNet predict less positive average

sentiment values. Due to their larger variation in predicted sentiment, BERT and XLNet may

better capture differences in sentiment.

Table 3: Sentiment Measurements - Summary Statistics

Variable Min Max Median Mean St. Dev. Skewness Kurtosis

x̃BERT
t 0.00 0.99 0.97 0.71 0.40 -0.93 -0.97

x̃RoBERTa
t 0.00 0.99 0.97 0.86 0.23 -1.99 3.11

x̃XLNet
t 0.00 0.99 0.89 0.71 0.33 -0.71 -0.92

x̃ELECTRA
t 0.00 0.99 0.99 0.91 0.24 8.10 -3.09

Furthermore, the correlation between each sentiment measures are shown in Table 4. Each

correlation is between 0.39 and 0.71, indicating a reasonably moderate-high level of consistency

between NLP models.

Table 4: Measured Sentiment Correlation Matrix

x̃BERT
t x̃RoBERTa

t x̃XLNet
t x̃ELECTRA

t

x̃BERT
t 1
x̃RoBERTa
t 0.63 1
x̃XLNet
t 0.57 0.62 1
x̃ELECTRA
t 0.47 0.71 0.39 1

Note: The correlation coefficient between sentiment measured by each
NLP text model is estimated across the whole sample of 1189 public
speeches.

4 Forecasting Framework

This section describes five forecasting models under consideration and is organized as follows.

The HAR and HARX are first described in subsection 4.1 and subsection 4.2 respectively, and

treated as baseline models. Next, subsection 4.3 describes a simple method to implement a

single measure [SM] of averaged sentiment in a HARX context. An IV approach to dealing with

measurement error is proposed in subsection 4.4 and implemented in subsection 4.5. A second
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alternative measurement error strategy using factor analysis is outlined in subsection 4.6 and

implemented in subsection 4.7. Finally, a test for predictive ability is described in subsection 4.8

which is used to compare empirical forecasts in section 5.

4.1 HAR

In a similar fashion to Lehrer et al. (2021) and Fernandes et al. (2014), I use the HAR model

outlined by Corsi (2009) to forecast log(V IXt), denoted yt. The HAR has become one of

the more commonly used VIX forecasting models due to its simplicity and strong forecasting

performance. Additionally, the HAR can easily be extended by adding covariates. For example,

economic variables and sentiment measures will be implemented additively in later sections.

The specification for the h-step forecasting model using the same lag index vector as Lehrer

et al. (2021) of l = (1, 5, 22) is given by:

y
(k)
t = β0 + β1y

(1)
t + β5y

(5)
t + β22y

(22)
t + εHAR

t+h

= β0 +
∑
k∈l

βky
(k)
t + εHAR

t+h

(1)

where y
(k)
t is the arthimetic mean of the logged VIX for all observations between time t−k+ 1

and t, defined as:

y
(k)
t ≡ 1

k

k∑
j=1

yt−j+1 (2)

This base HAR model will serve as the benchmark model in this paper. The additive volatil-

ity components y
(k)
t for each k ∈ l originate from Corsi (2009) who discusses the motivation

for its structure. The HAR specification attempts to capture the behaviour of different mar-

ket participants in a simple additive cascade model. Measuring mean implied volatility over

1, 5, and 22 days captures the impact of short-term, medium-term, and long-term traders
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who typically rebalance their investment portfolios approximately daily, weekly, and monthly,

respectively. Therefore, incorporating these three y
(k)
t components can exploit the different

trading behaviour of these three types of traders on the VIX.

4.2 HARX

The HARX, a variation of the base HAR model, is also considered. It includes the same

covariates from the base HAR model with additional financial and macroeconomic variables as

regressors. Inspired by Lehrer et al. (2021), Fernandes et al. (2014), and Ahoniemi (2008), I use

a variety of covariates: the k-day compounded total return of the S&P 500 for each k ∈ l, the

log-differenced S&P 500 volume which captures the rate of change in trading volume, the k-day

compounded total return of crude oil (WTI) for each k ∈ l, the first differenced term spread

between the 10-year treasury and the 3-month treasury, and the first differenced credit spread

between Moody’s 10-year Baa corporate and the 10-year treasury. Furthermore, Fernandes

et al. (2014) raise a potentially valid concern about endogeneity, in particular between VIX

and volume since both are determined by the same unobserved information set. The authors

instrument their financial and macroeconomic variables (excluding return variables) with their

past lags and do not find any meaningful differences in the results. Due the authors finding

this issue to be fairly minor, I do not further consider potential endogeneity in these economic

variables. Moreover, each transformed variable is tested for unit root with the ADF test, and

all tests strongly reject the null of a unit root at the 0.001 level of signifiance.

Let zt be the vector containing all financial and macroeconomic variables. The HARX is

therefore the base HAR with zt added as a regressor:

yt+h = β0 +
∑
k∈l

βky
(k)
t + β>z zt + εHARX

t+h (3)
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4.3 HARX-SM

The HARX-SM incorporates a single measure [SM] of sentiment (which inherently contains

measurement error) in addition to the covariates in the HARX. In the spirit of capturing trader

heterogeneity, predicted sentiment is averaged over k ∈ l days. The motivation for averaging

sentiment is similar to the motivation for the HAR itself, proposed by Corsi (2009). Short-

term, medium-term, and long-term investors are trading at different time horizons. Therefore,

averaging sentiment across a daily, weekly, and monthly time lengths may capture the influence

of policymaker sentiment at each of these horizons. The average sentiment over the past k

trading days for NLP model q will be labelled x̃
q,(k)
t and defined as

x̃
q,(k)
t ≡ 1

k

k∑
j=1

x̃qt−j+1 (4)

However, averaging values of x̃qt poses a problem: speeches are not delivered on every day in

the sample. Out of 5,449 total trading days, only 1,189 have a US central banker delivering a

speech. Since x̃qt is defined over [0, 1] on days during which a speech takes place, it must also be

assigned a value in R when a speech does not take place. For instance, a default arbitrary value

of x̃qt = 0 is assigned for all t with no speeches. Although the average x̃
q,(k)
t can now be defined,

it fails to distinguish between trading days on which there is no speech and days where there

is a speech whose sentiment is highly negative (i.e. x̃qt ≈ 0). The ideal would be to have the

sentiment regressor activate only when a speech is given, and 0 otherwise. Therefore, I propose

a regressor that (1) distinguishes between positive and negative values of measured sentiment

and (2) averages sentiment over the past k trading days. This regressor will be denoted as

x̃
q,(k)
t,s which measures model q’s sentiment averaged over the past k days for sentiment s. More
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precisely,

x̃
q,(k)
t,s ≡



1
k

∑k
j=1 x̃

q
t−j+1 if 1

k

∑k
j=1 x̃

q
t−j+1 ≥ 0.5 and s = positive

(1− 1
k

∑k
j=1 x̃

q
t−j+1) if 1

k

∑k
j=1 x̃

q
t−j+1 < 0.5 and s = negative

0 otherwise

Although the sentiment regressor x̃
q,(k)
t,s is defined for any q ∈ Q, I showcase the HARX-SM

using sentiment derived from BERT labelled x̃
BERT,(k)
t,s . That is, I consider the case where

q =BERT and sentiment measured by BERT is included in the model. This example is simply

for the sake of clarity, three additional SM variants are performed using the same methodology

with the other NLP models. Moreover, all four SM variants are tested in section 5 to ensure

robustness against different sentiment measurements.

The BERT variant of the HARX-SM will be labelled the HARX-SM-BERT, which is a combi-

nation of the HARX and the mean speech sentiment x̃
BERT,(k)
t,s measured by BERT, for each

s ∈ S and every k ∈ l:

yt+h = β0 +
∑
k∈l

βky
(k)
t + β>z zt +

∑
s∈S

∑
k∈l

γBERT,(k)
s x̃

BERT,(k)
t,s + εSM,BERT

t+h (5)

Despite large recent advances in NLP, state-of-the-art NLP models are imperfect at extracting

sentiment from text due to the inherent complex structure of natural language. In other words,

both the sentiment x̃qt and its k-day average are measured with error. We should expect the

HARX-SM to underperform relative to an alternative model absent of measurement error.

Therefore, I propose the HARX-IV and HARX-FA, two additional models which implement

different methods to deal with measurement error in sentiment.
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4.4 Method 1: IV Approach to Addressing Measurement Error

The motivation behind the HARX-IV is to increase precision in the sentiment measures, leading

to more accurate VIX forecasts. Before detailing the HARX-IV, I first explain a simple IV

approach to dealing with measurement error in predicted sentiment.

Let xt ∈ [0, 1] define the true sentiment of the policymaker speech delivered at time t. The goal

is to predict xt with a consistent estimator to reduce the influence of measurement error in

forecasts. The sentiment prediction x̃qt using some NLP model q ∈ Q at time t has measurement

error uqt where it is assumed that |uqt | > 0, E[uqt ] = 0 and cov(uqt , u
p
t ) = 0 ∀p 6= q. This last

zero covariance condition is further discussed at the end of this section due to its importance

in establishing the exclusion restriction. Assuming an additive prediction error, the sentiment

prediction x̃qt for a single NLP model q is expressed as:

x̃qt = xt + uqt (6)

Because x̃qt 6= xt, introducing x̃qt as a regressor in a forecasting model will result in OLS being

biased and inconsistent. If cov(x̃pt , x̃
q
t ) 6= 0 and cov(x̃pt , et) = 0 ∀p 6= q, parameter estimation

under IV will become consistent thereby improving estimation as T → ∞. To illustrate,

suppose a true underlying data-generating process [DGP] for yt:

yt = β0 + β>z zt + βxxt + et (7)
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with some unspecified vector of non-sentiment regressors zt. Because xt is unobserved, it must

be replaced by one of the predicted sentiments x̃qt for some model q

yt = β0 + β>z zt + βxx̃
q
t + (et − βxuqt )︸ ︷︷ ︸

wt

(8)

Since cov(x̃qt , wt) 6= 0, OLS yields a biased and inconsistent estimate for β̃1 with probability

limit

plim
T→∞

β̃x = plim
T→∞

T−1cov(yt, x̃
q
t )

T−1var(x̃qt )
= βx

(
var(xt)

var(uqt ) + var(xt)

)
< βx (9)

That is, the probability limit depends on the signal-to-noise ratio. As NLP models continue

to evolve and improve going forward, the noise should decline over time relative to the signal.

Bias and inconsistency will remain, however, so long as sentiment is measured with non-zero

noise.

For the sake of clarity, I focus the remainder of this section on instrumenting sentiment derived

from BERT: x̃BERT
t . However, any of the four NLP text model sentiments can be implemented

using the same methodology. I use x̃pt for all p ∈ Q, p 6= BERT as instruments. That is, all

NLP models other than BERT are used to instrument for sentiment predicted by BERT. Using

a total of 4 NLP text models, this means 3 instruments are used in the first-stage. Moreover,

the standard relevance condition and exclusion restriction must be satisfied and are discussed

in the remainder of this section.

The relevance condition requires that for all p 6= BERT ,

cov(x̃BERT
t , x̃pt ) 6= 0 (10)
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Table 4 previously demonstrated the correlation matrix between each of the measured sentiment

values. Since every NLP model is predicting sentiment after pre-training over the same SST-

2 dataset, they are all measuring the same underlying sentiment xt engrained in the SST-2

sentiment labels. Therefore, it is expected that each measure is positively correlated with

the others. Importantly, each sentiment measure has an estimated correlation with BERT

somewhere between 0.47 and 0.63. This suggests that the relevance condition likely holds,

although it will be further tested in first-stage results. The reduced-form for x̃BERT
t can

additionally be established:

x̃BERT
t = π0 +

∑
p∈Q

p 6=BERT

πqx̃
p
t + π>z zt + error (11)

The first-stage regression output of (11) is provided in Table 5. Some moderate multicollinear-

ity may be present due to the sentiment variables being correlated with one another, but

coefficients on sentiment variables remain strongly significant regardless. In addition, the joint

significance of the three sentiment instruments is strongly established using an effective F -test

following Stock and Yogo (2002), with an F -stat of 328 against a threshold of 22.3. Notably,

45% of the variation in BERT-derived sentiment is captured by the first-stage7. The OLS fitted

values from (11) will be denoted x̂BERT
t , which will be used to construct sentiment regressors

in subsection 4.5 when forecasting the VIX.

7As a robustness check, the other non-BERT sentiment measurements are also separately treated as dependent
variables, but their output is omitted from Table 5. The three other first-stage regressions yield similarly strong
first-stage relevance.
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Table 5: First-stage regression output of (11)

RoBERTa 0.72***
(0.03)

XLNet 0.35***
(0.03)

ELECTRA 0.11***
(0.05)

All Instruments F = 328
p = 0.00

All Controls F = 1.75
p = 0.11

R2 0.45

Note: Each first-stage regression includes all
economic variables zt as controls plus a con-
stant. Moreover, trading days with no delivered
speeches are dropped resulting in 1176 degrees
of freedom. Standard errors in parentheses are
computed using the Newey-West heteroskedas-
ticity and autocorrelation consistent covariance
matrix proposed by Newey and West (1987).
p < 0.01 ***; p < 0.05 **; p < 0.1 *

Moreover, the exclusion restriction requires:

cov(x̃pt , et) = 0 ∀p 6= BERT (12)

In other words, the predicted sentiment for each model p 6= BERT must have zero covariance

with the error in the DGP. This assumption is, however, difficult to test due to low power, and

must instead be justified. Because the true sentiment being measured is determined by the

labelled sentiment in SST-2, the deviations from the true value must be due to differences in

the NLP method rather than systematic differences in true sentiment. That is, the differences

observed between text model sentiment output is due to model differences, not differences in

training data. Therefore, the exclusion restriction implies cov(upt , u
q
t ) = 0 ∀p 6= q. Although

difficult to test, it is plausible that the errors are not strongly related due to the high complex-

ity of neural networks which include millions of parameters. In addition, each NLP model’s
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systematic inaccuracies and limitations are different from one another, implying the resulting

errors are plausibly unrelated (or only weakly related). It is still possible for a IV approach to

mitigate some portion of the endogeneity associated with sentiment measurement even if there

is a weak level of correlation between the errors.

4.5 HARX-IV

The HARX-IV forecasting model makes use of the first-stage results to address endogeneity

in sentiment regressors. Instead of using a single measure of sentiment x̃qt as measured by

HARX-SM, HARX-IV incorporates first-stage fitted values denoted as x̂qt in subsection 4.4.

Although the previous section outlined the methodology for computing first-stage fitted values

for q = BERT, any model q ∈ Q can be used as fitted values. If x̂qt measures true sentiment xt

more accurately than x̃qt , then HARX-IV may increase predictive ability more than HARX-SM

relative to the base HAR. With the same justification proposed in the HARX-SM, the fitted

values are averaged over each k ∈ l to capture heterogeneity in traders. For some NLP model

q, the k-day mean fitted sentiment is given by:

x̂
q,(k)
t ≡ 1

k

k∑
j=1

x̂qt−j+1 (13)

Similar to the HARX-SM, the k-day mean fitted values are separated by positive versus negative

sentiment. The motivation is identical to that outlined in subsection 4.3. The k-day mean
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defined over each s ∈ S is given by

x̂
q,(k)
t,s ≡



1
k

∑k
j=1 x̂

q
t−j+1 if 1

k

∑k
j=1 x̂

q
t−j+1 ≥ 0.5 and s = Positive

(1− 1
k

∑k
j=1 x̂

q
t−j+1) if 1

k

∑k
j=1 x̂

q
t−j+1 < 0.5 and s = Negative

0 otherwise

(14)

The remainder of this section reconsiders the example of q = BERT with x̂
BERT,(k)
t,s as sentiment

regressors. That is, the HARX-IV-BERT uses BERT-derived sentiment as a dependent variable

in the first-stage, and the resulting fitted values are used to compute x̂
BERT,(k)
t,s . The HARX-

IV-BERT model is therefore the HARX with added x̂
BERT,(k)
t,s across each s ∈ S and every

k ∈ l:

yt+h = β0 +
∑
k∈l

βky
(k)
t + β>z zt +

∑
s∈S

∑
k∈l

γBERT,(k)
s x̂

BERT,(k)
t,s + εIV,BERT

t+h (15)

Similar to the HARX-SM, the HARX-IV has three additional variants depending on the choice

of first stage method q ∈ Q. These are used as robustness checks when displaying the empirical

results in section 5, and labelled HARX-IV-q when using first-stage fitted values from model

q.

It should be emphasized the main difference between the HARX-SM-BERT in (5) and the

HARX-IV-BERT in (15): model (5) uses x̃BERT
t,s which is the averaged predicted sentiment

from BERT alone with uncorrected measurement error. This is in contrast to model (15)

which uses x̂BERT
t,s , averaged fitted sentiment from the first stage regression using BERT as the

dependent variable. Although similar in principle, the version with more accurate sentiment

measurement could result in better forecast performance, assuming policymaker sentiment is
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useful in VIX forecasts.

4.6 Method 2: Factor Analysis Approach to Addressing Measurement Error

A second approach to dealing with measurement error is through factor analysis. The latent

sentiment can be estimated through a linear combination of measured sentiment values by

dissecting variation that is common versus unique between each measure. Given sentiment

data X with mean µ organized as:

X = µ+ ΛF + error (16)

where Λ is a matrix of factor loadings (one of which is normalized to 1) and F is a vector of

latent factors. Its covariance matrix Σ can be decomposed into a linear combination between

its common variation Λ̂Λ̂> and remaining (unique) variation Ψ̂ which is orthogonal to Λ̂Λ̂>:

Σ = ΛΛ> + Ψ (17)

The unknown vector of common factors F can be estimated using both the estimated factor

loading Λ̂ and the estimated covariance matrix Σ̂:

F̂ = Λ̂>Σ̂−1
(
X− µ

)
(18)

The elements of F̂ , labeled f̂t, are used as estimates of the factor scores ft. Because there are

four measures of sentiment and one true underlying sentiment, only one factor is estimated.

The HARX-FA model is outlined outlined in subsection 4.7 where the factor scores are used

as sentiment measurements using the same methodology as the other sentiment-based models.
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4.7 HARX-FA

The HARX-FA integrates factor analysis scores in place of sentiment measures. Similar to the

previous sentiment-based models, the HARX-FA averages these scores over k ∈ l trading days:

f̂
(k)
t ≡ 1

k

k∑
j=1

f̂t−j+1 (19)

The averaged sentiment measures f̂
(k)
t for k ∈ l are, once again, separated by sentiment s ∈ S:

f̂
(k)
t,s ≡



1
k

∑k
j=1 f̂t−j+1 if 1

k

∑k
j=1 f̂t−j+1 ≥ 0.5 and s = Positive

(1− 1
k

∑k
j=1 f̂t−j+1) if 1

k

∑k
j=1 f̂t−j+1 < 0.5 and s = Negative

0 otherwise

(20)

The HARX-FA is very similar to the HARX-IV, only differing by the corrected sentiment

measure. The sentiment f̂
(k)
t,s as predicted by factor analysis is added to the HARX, yielding

the following model:

yt+h = β0 +
∑
k∈l

βky
(k)
t + β>z zt +

∑
s∈S

∑
k∈l

γ(k)s f̂
(k)
t,s + εFA

t+h (21)

In essence, all three sentiment-based models are similar in concept. Although the HARX-IV

and HARX-FA might be theoretical improvements over the HARX-SM, performance differences

can only be settled empirically. Furthermore, the performance between the sentiment-based

models should first be compared with the base HAR and HARX to test whether central bank

speech sentiment adds information to VIX forecasts.
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4.8 Diebold-Mariano [DM] Test for Predictive Ability

Although simple out-of-sample forecast measurements are effective in avoiding potential prob-

lems such as overfitting and data-mining results, it is useful to define a statistical test to

formally compare forecasts between models. Testing forecast differences through a probabilis-

tic lens may additionally be more effective at capturing distribution of forecast outcomes in

the DGP. Diebold and Mariano (1995) outline a statistical test for testing predictive ability

between two forecasts for any h ≥ 1. The hypothesis being tested for two sets of forecast errors

is:

H0 : Both forecasts yield equal predictive accuracy

H1 : Not H0

In essence, H0 is equivalent to E[g(ε1t) − g(ε2t)] = 0 where d = g(ε1t) − g(ε2t) is the loss-

differential. The DM test is gauging whether two sets of forecast errors, ε1t and ε2t, have a

difference, evaluated through a function g, that is statistically significantly different from zero.

Although the test is flexible towards many choices of functions g, this paper considers the

absolute and squared functions, both common choices by practitioners when conducting the

DM test. The mean loss differential is therefore:

d̄ = T−1
T∑
t=1

[g(ε1t) + g(ε2t)] (22)

The DM test is principally an asymptotic z-test for the null that d̄ is zero. A consistent estimate

of the variance of d̄ is given by:

var(d̄) =
[
γ̂(0) + 2

h−1∑
j=1

γ̂(j)
]
/T (23)
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where γ̂(j) = T−1
∑T

t=j+1[dt − d̄][dt−|j| − d̄] is the autocovariance function. Under H0, the

test statistic for an h-step forecast is simply d̄ divided by the root of its variance, yielding an

asymptotic standard normal distribution:

DM =
d̄√[

γ̂(0) + 2
∑h−1

j=1 γ̂(j)
]
/T

∼ N (0, 1) (24)

The DM test is useful because it allows for the comparison of predictive ability between differ-

ent forecasts without requiring stringent (and potentially unrealistic) assumptions. Moreover,

the test is robust to serial correlation, contemporaneous correlation, non-Gaussian distribu-

tions, and non-zero error means. The only required assumption is that the loss-differential is

covariance stationary which will be tested before conducting inference about H0. The test is

therefore flexible in its potential applications.

5 Empirical Results

The parameters for the HAR, HARX, HARX-SM, HARX-IV and HARX-FA models are first

estimated by OLS using data outlined in section 2 and associated regression output is pro-

vided in Table 6. The non-BERT variants of the SM and IV models are omitted for space

considerations, but their parameter estimates are not strikingly different from BERT.
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Table 6: Forecasting Model Regression Output

Model HAR HARX SM-BERT IV-BERT FA

Cons. 0.0312*** 0.0304*** 0.0318*** 0.0312*** 0.0308***
(0.0072) (0.0071) (0.0080) (0.0080) (0.0072)

y
(1)
t

0.8898*** 0.9071*** 0.9065*** 0.9067*** 0.9060***

(0.0175) (0.0246) (0.0245) (0.0245) (0.0246)

y
(5)
t

0.0523** 0.0400 0.0411 0.0403 0.0406

(0.0224) (0.0281) (0.0281) (0.0280) (0.0281)

y
(22)
t

0.0471*** 0.0423*** 0.0416*** 0.0414*** 0.0424***

(0.0116) (0.0137) (0.0137)) (0.0136) (0.0135)

x̃
BERT,(1)
t,positive

-0.0068

(0.0027)

x̃
BERT,(5)
t,positive

0.0010

(0.0023)

x̃
BERT,(22)
t,positive

-0.0003

(0.0042)

x̃
BERT,(1)
t,negative

-0.0068*

(0.0027)

x̃
BERT,(5)
t,negative

-0.0000

(0.0031)

x̃
BERT,(22)
t,negative

0.0010

(0.0051)

x̂
BERT,(1)
t,positive

-0.0052*

(0.0029)

x̂
BERT,(5)
t,positive

-0.0005

(0.0025)

x̂
BERT,(22)
t,positive

-0.0017

(0.0051)

x̂
BERT,(1)
t,negative

-0.0048

(0.0065)

x̂
BERT,(5)
t,negative

0.0051

(0.0048)

x̂
BERT,(22)
t,negative

0.0009

(0.0069)

f̂
(1)
t,positive

-0.0122**

0.0048

f̂
(5)
t,positive

0.0030

(0.0038)

f̂
(22)
t,positive

0.0065

(0.0054)

f̂
(1)
t,negative

-0.0009

(0.0016)

f̂
(5)
t,negative

0.0013

(0.0012)

f̂
(22)
t,negative

0.0002

(0.0016)

Econ Variables F = 0.73 F = 0.77 F = 0.77 F = 0.73
p = 0.68 p = 0.63 p = 0.63 p = 0.68

Degrees of Freedom 5445 5436 5430 5430 5430

R2 0.9670 0.9670 0.9671 0.9671 0.9671

Note: Standard errors in parentheses are computed using the Newey-West heteroskedasticity and au-
tocorrelation consistent covariance matrix proposed by Newey and West (1987).
p < 0.01 ***; p < 0.05 **; p < 0.1 *
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There are four variants for both the HARX-SM and HARX-IV models, separated by their

different sentiment regressors derived from each NLP model q ∈ Q and denoted by HARX-SM-q

and HARX-IV-q respectively. To clarify, each variant of the HARX-SM-q uses a single measure

of sentiment derived by NLP model q while the HARX-IV-q uses first-stage fitted sentiment

measured by NLP model q with the remaining three sentiment measures as instruments. In

addition, a fifth variant with equal-weighted [EW] sentiment measures is considered for both

the SM and IV models. This fifth variant simply takes an equal weighting of each sentiment

measurement across the four NLP models which are separated by each s ∈ S and averaged

over k ∈ l days. Performance of every model is gauged through both out-of-sample forecast

accuracy and through the DM test for one- (daily), five- (weekly), and twenty-two- (monthly)

step forecasts. For space considerations, only the first two letters of each NLP method q are

displayed. This is clarified in Table 7 where each abbreviation is shown.

Table 7: Model Abbreviations

NLP method Abbreviation

BERT BE
RoBERTa RO
XLNet XL
ELECTRA EL

Equal-Weight EW

The out-of-sample forecast accuracy based on four simple diagnostics. First, the Mean Forecast

Error [MFE] measures average differences between actual values (yt) and forecasts(ŷt):

MFE =
1

T

T∑
t=1

(
yt − ŷt

)
(25)

Since positive and negative errors tend to offset each other, the MFE is not intended to gauge

forecast accuracy. Instead, it measures bias in out-of-sample forecasts – either systematically
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above or below the true values. Forecast accuracy is instead computed through the remaining

three diagnostics. The Mean Square Error [MSE] and Mean Absolute Error [MAE] measure

average square and absolute differences in errors, defined as

MSE =
1

T

T∑
t=1

(
yt − ŷt

)2
(26)

MAE =
1

T

T∑
t=1

∣∣∣yt − ŷt∣∣∣ (27)

Finally, the Mean Absolute Percent Error [MAPE] is the average absolute deviation between

forecasts and actual values, measured in percent units:

MAPE =
100

T

T∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣ (28)

Table 8 displays the four out-of-sample diagnostics for every model over each h = 1, 5, 22 fore-

cast horizons. The MFE is virtually zero for all models which implies little forecast bias. For

all forecast horizons, MFE falls in absolute terms under the sentiment-based models relative to

both the HAR and HARX. The HAR minimzes the MSE across all horizons, including against

the non-sentiment HARX model. The MAE and MAPE tell a slightly different story. A number

of sentiment-based models outperform based on MAE and MAPE, but not all. For instance,

the SM-BE outperforms the HAR and HARX across all horizons based on the MAPE. Some

additional variants increase out-of-sample accuracy under both the MAE and MAPE depend-

ing on the forecast horizon. Moreover, there is no noticeable difference or pattern between

the SM and IV models. The FA method achieves marginal outperformance over the HAR and

HARX over medium- and long-term horizons under the MAPE.

However, it should be highlighted that the performance differences in out-of-sample accuracy
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is fairly small in magnitude across all models. Overall, these results are not surprising and ap-

pear to be consistent with Fernandes et al. (2014) who finds similar out-of-sample performance

measured across a different set of HAR-based models. The researchers additionally mention

that the VIX’s highly persistent nature implies that the base HAR is particularly well-suited

in forecasting implied volatility, suggesting outperformance to be a challenge.
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Table 8: Out of sample VIX Forecasts

MFE MSE MAE MAPE

One-Step Ahead
HAR 0.002 68 0.00488 0.049 35 1.719 27
HARX 0.002 66 0.004 90 0.049 37 1.719 93
SM-BE 0.002 57 0.004 90 0.049 33 1.718 28
SM-RO 0.002 62 0.004 89 0.049 36 1.719 67
SM-XL 0.002 62 0.004 90 0.049 39 1.720 62
SM-EL 0.002 66 0.004 90 0.049 35 1.719 19
SM-EW 0.002 64 0.004 90 0.049 35 1.719 22
IV-BE 0.002 64 0.004 89 0.049 35 1.719 17
IV-RO 0.002 57 0.004 90 0.049 37 1.719 95
IV-XL 0.00255 0.004 89 0.04932 1.71831
IV-EL 0.00255 0.004 90 0.049 37 1.720 01
IV-EW 0.002 60 0.004 89 0.049 34 1.718 97
FA 0.002 57 0.004 90 0.049 36 1.719 63

Five-Steps Ahead
HAR 0.011 80 0.01771 0.097 64 3.413 86
HARX 0.011 17 0.017 75 0.097 49 3.406 80
SM-BE 0.010 26 0.017 76 0.097 40 3.403 35
SM-RO 0.010 58 0.017 77 0.097 51 3.407 66
SM-XL 0.010 81 0.017 78 0.097 56 3.409 48
SM-EL 0.010 38 0.017 75 0.09743 3.405 27
SM-EW 0.010 60 0.017 77 0.09743 3.405 32
IV-BE 0.010 80 0.017 76 0.097 48 3.407 49
IV-RO 0.010 29 0.017 77 0.097 49 3.407 11
IV-XL 0.010 34 0.017 76 0.09743 3.40483
IV-EL 0.01018 0.017 76 0.097 44 3.405 00
IV-EW 0.010 54 0.017 77 0.097 46 3.406 28
FA 0.010 66 0.017 76 0.097 60 3.412 01

Twenty-Two-Steps Ahead
HAR 0.039 59 0.04778 0.16630 5.830 24
HARX 0.037 35 0.048 60 0.167 07 5.835 32
SM-BE 0.035 21 0.048 72 0.166 80 5.822 82
SM-RO 0.035 97 0.048 89 0.167 38 5.843 16
SM-XL 0.036 19 0.049 49 0.168 01 5.868 32
SM-EL 0.035 62 0.048 60 0.166 54 5.81730
SM-EW 0.036 02 0.048 98 0.167 40 5.844 99
IV-BE 0.035 74 0.049 28 0.167 74 5.854 87
IV-RO 0.035 51 0.048 79 0.167 01 5.831 05
IV-XL 0.035 60 0.049 08 0.167 32 5.840 19
IV-EL 0.035 19 0.048 78 0.166 86 5.825 38
IV-EW 0.035 61 0.049 08 0.167 45 5.844 80
FA 0.03488 0.049 00 0.166 91 5.826 41

Note: The table displays out-of-sample forecast diagnostics assessed through
cross-validation. A rolling window starting with the first 30% of the sample is
used to estimate the parameters in each model and predict yt+h. The MFE,
MSE, MAE, and MAPE are computed using the h-step out-of-sample fore-
casts. The best performing model for every diagnostic is underlined in each
panel.

The DM test is considered to be the primary formal test in this paper to gauge predictive ability

between forecasts. The test, as outlined in subsection 4.8, crucially depends on stationarity
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of every loss-differential being tested. The loss-differential for each pair of forecast errors are

tested with the ADF test and the unit root null hypothesis is strongly rejected for all pairs at

the 1% level of significance.

Table 9 highlights the p-values in the DM test using the MSE as a loss function. First, I

cannot reject the null that the HARX and HAR achieve the same predictive ability for short-

and long-term forecasts, although the HARX does marginally reject the DM null hypothesis

over a medium-term horizons at the 10% level of significance. Each of the three sentiment-

based models (SM, IV, FA) either strongly or marginally reject the null against the HAR for

one day forecasts. Over one- and twenty-two day horizons, all of the sentiment-based models

achieve marginally significant outperformance against the HAR with the exception of the SM-

XL and SM-BE which are wholly insignificant. None of the sentiment-based models are found

to outperform the HARX regardless of the forecast horizon.

Although mostly consitent with the MSE table, the DM test using the MAE does find a few

different results. Table 10 displays the p-values for the MAE version of the DM test. The

HARX and every sentiment-based model outperforms the HAR with p-values very close to

zero over one- and five-step forecasts. All models are much less conclusive over twenty-two day

forecasts, however. Sentiment-based models additionally outperform the HARX with fairly

high confidence over one-step forecasts. This is not true, however, over five- and twenty-two-

step horizons which are entirely insignificant.

Although the results of the DM test do vary between the MAE and MSE, a few conclusions

are consistent between both tables. First, sentiment-based models significantly outperform

the HAR over short- and medium-term forecasts. Long-term forecasts are less clear, with the

MSE variant of the DM test finding marginal significance across a few models, while the MAE
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variant finds only the IV-RO forecasts marginally significant against the HAR. Furthermore,

all sentiment-based models significantly outperform the HARX over one-step horizons under

the MAE except for the SM-RO. This result does not hold under the MSE where no model

significantly outperforms against the HARX. Another important result is that the FA model

yields largely similar results compared to the SM and IV. That is, its significance largely follows

that of the SM and IV variants.

Table 9: Diebold-Mariano Test for MSE

HAR HARX SM-BE SM-RO SM-XL SM-EL SM-EW IV-BE IV-RO IV-XL IV-EL IV-EW

One Step Ahead
HARX 0.207
SM-BE 0.071* 0.178
SM-RO 0.048** 0.142 0.592
SM-XL 0.108 0.323 0.403 0.254
SM-EL 0.078* 0.246 0.928 0.400 0.534
SM-EW 0.083* 0.246 0.674 0.304 0.472 0.782
IV-BE 0.084* 0.249 0.807 0.248 0.509 0.864 0.867
IV-RO 0.076* 0.238 0.971 0.423 0.461 0.847 0.700 0.787
IV-XL 0.068* 0.204 0.987 0.366 0.388 0.877 0.552 0.524 0.940
IV-EL 0.045** 0.159 0.691 0.748 0.295 0.491 0.382 0.392 0.532 0.548
IV-EW 0.068* 0.211 0.953 0.306 0.394 0.786 0.515 0.403 0.859 0.889 0.501
FA 0.065* 0.167 0.839 0.662 0.407 0.801 0.613 0.651 0.842 0.853 0.795 0.900

Five Steps Ahead
HARX 0.051
SM-BE 0.022** 0.220
SM-RO 0.030** 0.223 0.568
SM-XL 0.030** 0.243 0.955 0.630
SM-EL 0.035** 0.212 0.441 0.586 0.494
SM-EW 0.034** 0.248 0.676 0.703 0.732 0.467
IV-BE 0.031** 0.209 0.467 0.728 0.496 0.878 0.454
IV-RO 0.037** 0.227 0.470 0.590 0.491 0.952 0.488 0.912
IV-XL 0.021** 0.187 0.385 0.679 0.506 0.958 0.481 0.879 0.986
IV-EL 0.022** 0.140 0.310 0.302 0.327 0.616 0.305 0.615 0.571 0.701
IV-EW 0.028** 0.190 0.356 0.404 0.404 0.827 0.294 0.420 0.782 0.631 0.825
FA 0.044** 0.241 0.604 0.886 0.624 0.894 0.742 0.971 0.921 0.925 0.698 0.800

Twenty-Two Steps Ahead
HARX 0.192
SM-BE 0.107 0.278
SM-RO 0.095* 0.247 0.975
SM-XL 0.078* 0.311 0.570 0.656
SM-EL 0.047** 0.120 0.388 0.083 0.253
SM-EW 0.091* 0.283 0.983 0.982 0.524 0.244
IV-BE 0.079* 0.324 0.519 0.599 0.845 0.226 0.494
IV-RO 0.061* 0.137 0.301 0.104 0.260 0.561 0.212 0.245
IV-XL 0.078* 0.270 0.659 0.772 0.625 0.257 0.654 0.446 0.255
IV-EL 0.082* 0.227 0.684 0.601 0.487 0.483 0.664 0.429 0.358 0.516
IV-EW 0.081* 0.267 0.842 0.863 0.576 0.209 0.753 0.481 0.209 0.688 0.532
FA 0.064* 0.297 0.543 0.536 0.779 0.202 0.516 0.815 0.235 0.560 0.408 0.521

Note: Table displays the DM test p-values for the null hypothesis that the row and column forecasts yield
identical predictive ability using the MSE loss function.
p < 0.01 ***; p < 0.05 **; p < 0.1 *
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Table 10: Diebold-Mariano Test for MAE

HAR HARX SM-BE SM-RO SM-XL SM-EL SM-EW IV-BE IV-RO IV-XL IV-EL IV-EW

One Step Ahead
SM-BE 0.000*** 0.007***
SM-RO 0.002*** 0.138 0.473
SM-XL 0.000*** 0.037** 0.083* 0.777
SM-EL 0.000*** 0.049** 0.390 0.947 0.614
SM-EW 0.000*** 0.020** 0.291 0.795 0.207 0.786
IV-BE 0.000*** 0.033** 0.318 0.881 0.445 0.933 0.768
IV-RO 0.000*** 0.043** 0.425 0.858 0.463 0.762 0.907 0.941
IV-XL 0.000*** 0.040** 0.400 0.776 0.432 0.818 0.986 0.765 0.927
IV-EL 0.001*** 0.091* 0.507 0.834 0.648 0.925 0.904 0.981 0.972 0.912
IV-EW 0.000*** 0.042** 0.474 0.708 0.432 0.754 0.983 0.685 0.885 0.954 0.864
FA 0.000*** 0.033** 0.615 0.713 0.418 0.729 0.816 0.704 0.797 0.812 0.797 0.839

Five Steps Ahead
HARX 0.008
SM-BE 0.007*** 0.447
SM-RO 0.009*** 0.445 0.788
SM-XL 0.006*** 0.345 0.808 0.958
SM-EL 0.008*** 0.293 0.469 0.438 0.600
SM-EW 0.004*** 0.244 0.343 0.588 0.556 0.788
IV-BE 0.016** 0.548 0.874 0.919 0.982 0.545 0.556
IV-RO 0.007*** 0.284 0.462 0.473 0.578 0.936 0.812 0.580
IV-XL 0.020** 0.628 0.974 0.830 0.905 0.550 0.553 0.851 0.556
IV-EL 0.016** 0.430 0.653 0.678 0.753 0.867 0.956 0.712 0.904 0.667
IV-EW 0.016** 0.469 0.694 0.778 0.833 0.739 0.885 0.506 0.763 0.457 0.871
FA 0.033** 0.819 0.804 0.673 0.691 0.457 0.496 0.721 0.486 0.813 0.573 0.619

Twenty-Two Steps Ahead
HARX 0.217
SM-BE 0.224 0.477
SM-RO 0.237 0.517 0.875
SM-XL 0.165 0.419 0.854 0.988
SM-EL 0.120 0.268 0.482 0.132 0.410
SM-EW 0.199 0.443 0.862 0.643 0.739 0.362
IV-BE 0.154 0.378 0.913 0.933 0.838 0.419 0.795
IV-RO 0.080 0.190 0.258 0.032 0.260 0.404 0.138 0.263
IV-XL 0.159 0.374 0.878 0.736 0.639 0.451 0.952 0.680 0.246
IV-EL 0.161 0.366 0.745 0.578 0.655 0.547 0.831 0.673 0.286 0.792
IV-EW 0.164 0.382 0.779 0.500 0.623 0.415 0.824 0.656 0.181 0.759 0.883
FA 0.136 0.331 0.846 0.955 0.922 0.378 0.744 0.848 0.260 0.702 0.662 0.660

Note: Table displays the DM test p-values for the null hypothesis that the row and column forecasts yield
identical predictive ability using the MAE loss function.
p < 0.01 ***; p < 0.05 **; p < 0.1 *

6 Discussion

In short, the evidence presented in this paper suggests that sentiment measured from Federal

Reserve speeches can be useful in implied volatility forecasts, although the magnitude of per-

formance differences in how researchers incorporate sentiment is not large. All sentiment-based

models find some success in outperforming the HAR over shorter forecast horizons under both

the DM test and out-of-sample accuracy. In addition, policymaker sentiment is more effective
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over shorter forecast horizons and becomes less effective as the horizons expands. Sentiment-

based models also find some limited outperformance against the HARX, although this result

does depend on the choice of test diagnostic. Overall, sentiment-based models appear some-

what more effective when using MAE for both out-of-sample accuracy and under the DM test.

Squaring the errors does erode a portion of the outperformance, however. Moreover, the FA

and IV methods to address measurement error yield similar results to the single sentiment

measures. The equal-weight variants of the HARX-SM and HARX-IV do not appear to be

meaningful improvements across any test or diagnostic.

Practitioners may find the results presented in this apper useful for a few reasons. The use of

policymaker sentiment can reduce VIX forecast error, particularly when performing nowcasts

and short-term forecasts. For instance, institutions sensitive to market risks and volatility may

benefit from more precise short-term VIX modeling. In addition, the two measurement error

approaches may be useful as data becomes more widely available, especially due to the reliance

on asymptotic theory in the IV and FA approaches.

The methodology used in this paper does face a variety of limitations, however. Avenues for

future research are proposed for each limitation. First, the definition of measured sentiment is

based on confidence scores rather than binary positive/negative algorithm output. Since this is

a mere approximation to sentiment, it would be beneficial if future NLP methods could more

effectively predict sentiment on a continuum rather than being binary. Additionally, restrict-

ing sentiment to one dimension – positive versus negative – may be inferior to a more varied

set of possible values. Some NLP methods do exist for multidimensional sentiment, but they

typically involve smaller training sample sizes and have less model development. Sentiment

itself, whether measured in one or multiple dimensions, may also have different impacts on
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financial markets depending on the type of policymaker communication under consideration.

For example, a speech discussing general macroeconomic research may have different impacts

on financial markets compared to an alternative speech announcing new policy changes. Con-

ditioning on the type of speech is likely important, and implementing a topic model to address

this issue may be an effective approach.

Moreover, only the first 315 space-separated words of a given speech are used to generalize the

sentiment of the entire speech. This is due to the self-attention mechanism of Transformers-

based models requiring O(n2) time and memory complexities. Beltagy et al. (2020) propose

the longformer, a new self-attention mechanism with time and memory complexities of O(n).

The linear scaling allows it to take a much larger number of tokens with minimal computational

power, even for files with thousands of tokens. Implementing the longformer could therefore

allow for a large token input which would effectively increase precision of sentiment measure-

ment.

Finally, more research is needed in a sentiment analysis context to further test the IV and FA

approaches for reducing measurement error, both against each other and against models using

single measures of sentiment. Both approaches may additionally require a larger sample size to

detect small forecast improvements, largely because sentiment variables themselves are usually

not the most critical variables in econometric models. The type of sentiment may be relevant

as well, and performing additional tests on consumer and investor sentiment might yield more

pronounced results.
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7 Conclusion

This paper uses four NLP text models to predict sentiment of 1189 central bank policymaker

speeches. These are used to construct sentiment regressors implemented in VIX forecasting

models with a sample of 5449 trading days. A total of five predictive models were built,

all based on the HAR proposed by Corsi (2009), three of which are sentiment-based. The

first sentiment implementation method is to include a single measure of sentiment, while the

other two attempt to correct measurement error through instrumental variable and factor

analysis approaches. All sentiment-based models average sentiment over different time lengths

to capture trader heterogeneity.

I establish a few notable results based on both out-of-sample forecast accuracy and the DM test

for predictive ability which can be summarized as follows. The joint inclusion of policymaker

sentiment with financial and macroeconomic variables in the HAR model significantly improves

predictive ability across short- and medium-term forecast horizons through the DM test. Some

variants of the sentiment-based models additionally find outperformance in out-of-sample tests,

although the magnitude of the differences are mostly small. Depending on the chosen test

diagnostic, sentiment-based models can sometimes outperform the HARX under the MAE.

Moreover, sentiment is most effective over the shortest time horizon and becomes less effective

as the horizon expands. In short, these findings suggest that policymaker sentiment may be

useful for nowcasts and short-term forecasts, although the potential performance gains are not

large.

In addition, the IV approach to reduce measurement error in predicted sentiment achieves a

strong first-stage (F = 328 for instrument joint significance test and R2 = 0.45) – a result which
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may be useful for future sentiment measurement error research. With this application, there

is no optimal strategy to address measurement error in sentiment variables and neither the IV

nor the FA methods achieve significant outperformance against the single sentiment measure

models. Future research should extend this investigation to other economic applications where

sentiment measured from text data is utilized as an explanatory variable.
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8 Replication

The full Python and R source code are on my GitHub: https://github.com/nvanhell/MA-

Research-Project. A base directory should be defined where both the Python script and

R code are to be placed. All folder paths described in this section are relative to the base

directory. Details to fully replicate this project are given in two parts, one for the NLP text

modeling and another for the forecasting.

First, NLP text models from Hugging Face (2021) were used to construct sentiment mea-

surements in Python. The text data was downloaded from Johnson et al. (2018) at https://

osf.io/p3yr6/. The raw txt files should be placed in the following relative path: /source/txt/.

The text manual that is included in the download should be placed in /source/ – it contains

important metadata about each speech. After executing the Python script, a csv file will

be generated in /data files generated/generated speech sentiment.csv which contain predicted

sentiment for each speech and for every NLP text model. This file will form the basis of the

forecasting section. The Python file will take about half a day to run (depending on CPU)

without parallelization due to the high computational cost of the NLP algorithms and text

pre-processing.

Second, the forecasting section requires additional datasources from the Federal Reserve Bank

of St. Louis and Yahoo Finance. These are described in subsection 2.3 and which in-

cludes sources for each data file. Sources should be individually downloaded and placed in

a /source/volatility folder relative to the base directory. The file names should be edited to

match those in the R file. All output used in this paper will be generated after executing the

R file.
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