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Abstract. We propose a bootstrap procedure for data that may exhibit cluster dependence

in two or more dimensions. We use insights from the theory of generalized U-statistics to an-

alyze the large-sample properties of statistics that are sample averages from the observations

pooled across clusters. The asymptotic distribution of these statistics may be non-standard

if observations are dependent but uncorrelated within clusters. We show that there exists

no procedure for estimating the limiting distribution of the sample mean under two-way

clustering that achieves uniform consistency. However, we propose one bootstrap procedure

that is adaptive and point-wise consistent for any fixed data-generating process (DGP), and

two alternative procedures that produce inference that is uniformly valid, but potentially

conservative. For pivotal statistics, either procedure also provides pointwise asymptotic re-

finements over the Gaussian approximation when the limiting distribution is normal. Special

cases and extensions discussed in the paper include U- and V-statistics, subgraph counts for

network data, and non-exhaustive samples of matched data.
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1. Introduction

We consider inference based on a random array (Yit) that is indexed by two dimensions,

where the indices i = 1, . . . , N (and t = 1, . . . , T , respectively) correspond to units (“clus-

ters”) that are sampled independently at random from an infinite population, but we allow

for otherwise unrestricted dependence within each row Yi· := (Yi1, . . . , YiT ), and within each

columnY·t := (Y1t, . . . , YNt). There are various contexts in which a researcher may encounter

data with cluster-dependence along multiple dimensions:

Example 1.1. Cluster-Dependence. Cross-sectional data may be organized among mul-

tiple dimensions, e.g. a worker simultaneously pertains to a certain geographic labor market,

industry, and occupation. Dependence within any of these groups may result e.g. from com-

mon economic shocks, or other group-level variables, see Moulton (1990). Cameron, Gelbach,
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and Miller (2011) give a more comprehensive account of settings in empirical practice for

which cluster-dependence may result from sampling or other design decisions.

Example 1.2. Static panels, Difference-in-differences. One interpretation of this

setup is a panel in which cross-sectional units are observed over time, and the outcome of

interest is subject both to common aggregate shocks that are serially independent and unit-

level heterogeneity.1 Two-way heterogeneity of this form is a characteristic feature of classical

difference-in-differences designs that aim to control for temporal shocks as well as unobserved

heterogeneity. Our framework does not restrict the number of distinct shocks, or how they

may interact in a generative model for the outcome variable Yit.

Example 1.3. Matched data. For matched samples between different groups of units

i = 1, . . . , N and t = 1, . . . , T , respectively, Yit measures an outcome at the level of the

match. This setup includes test scores for a random sample of students and teachers, or

wages (marginal product of labor) for a random sample of workers and firms. In such a

setting we often observe Yit only for a subset of the possible dyads (i, t) (non-exhaustively

matched samples). We discuss an adaptation of our bootstrap method to non-exhaustively

matched data in Appendix B.

There are settings in wich the number of dimensions along which an array (Yi1...iD) may

be dependent could be greater than two. Our main framework can also be extended to cases

in which the indices of the array pertain to the the same units in each dimension, that is the

array may consist of random variables Yi1...iD with id = 1, . . . , N for each d = 1, . . . , D. In

that case we refer to the data as D-adic (dyadic if D = 2).

Example 1.4. V- and U-statistics We can view V-statistics and U-statistics (see e.g. van

der Vaart (1998) for definitions and a summary of classical asymptotic results) as special

cases of our framework for D-adic data. For an i.i.d. random sample X1, . . . , XN , a V-

statistic of degree D with a symmetric kernel h(x1, . . . , xD) is defined as

V =
1

ND

∑

i1...iD

h(Xi1 , . . . , XiD)

which is equal to the D-fold sample average ȲN,D := 1
ND

∑

i1...iD
Yi1...iD for the observations

Yi1...iD := h(Xi1, . . . , XiD)

The kernel h(·) is called degenerate if E[h(x,X2, . . . , XD)] is constant. The asymptotic be-

havior of ȲN,D depends crucially on whether the kernel is degenerate, which is a feature of

1It may be possible to extend the general approach in this paper to allow for weak dependence in sampling
across the time dimension, but such an extension would complicate the exposition substantially and take the
focus away from the main ideas.
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the unknown distribution of Xi. The corresponding U-statistic is

U =

(

N

D

)−1
∑

i1<i2···<iD

h(Xi1 , . . . , XiD) =

(

N

D

)−1
∑

i1...iD

wi1...iDh(Xi1 , . . . , XiD)

where wi1...iD = 1l{i1 < i2 · · · < iD}. Hence U-statistics can be viewed as a special case of a

mean for a non-exhaustively matched sample.

Example 1.5. Network data. The general framework can be applied to subgraph counts

or graph (homomorphism) densities in networks. Suppose that for a network with N nodes

we observe the N × N adjacency matrix GN with entries Gij corresponding to indicators

whether that network includes a directed edge from i to j, where it is usually assumed that

Gii = 0 for all i (no self-links). Following the approach in Lovasz (2012), Bickel, Chen, and

Levina (2011), and Bhattacharya and Bickel (2015), we can regard GN as a sample from an

unlabeled infinite graph. For example to evaluate the extent of clustering/triadic closure in

the network, we can consider triad-level subgraph counts Tr :=
6

N(N−1)(N−2)

∑

i<j<k Yijk,r for

r = 2, 3 where Yijk,2 = GijGik and Yijk,3 = GijGikGjk, so that Yijk,3 = 0 whenever i, j, k are

not distinct, and Yijk,2 = 0 if i = j or i = k. With degree heterogeneity across nodes, entries

Yijk,r exhibit dependence across each dimension of the array. This problem is a special case

of the D-adic averages, which is discussed in the appendix.

Other prominent applications allowing for - not necessarily additive - dependence across

several dimensions from e-commerce, biogenetics, and crop science are cited in Owen (2007).

Our main results concern the problem of bootstrapping the distribution of the sample

average

ȲNT :=
1

NT

N
∑

i=1

T
∑

t=1

Yit

The bootstrap procedure we propose in this paper is adaptive to features of the joint dis-

tribution of the random array, and approximations are as N and T grow large at the same

rate. In particular, we aim to approximate the asymptotic distribution regardless whether,

or what type of cluster dependence is present. This is meant to reflect empirical practice,

where the researcher aims for conclusions to be robust with respect to cluster-dependence,

but without a presumption that such dependence is in fact present.

The leading case of bootstrapping the sample average already reflects the main new tech-

nical challenges arising from multi-way cluster-dependence. However, we also consider a

number of practically relevant extensions and generalizations. For one, the procedure can

be easily adapted for statistics that are asymptotically linear (i.e. that can be approximated

via influence functions), or differentiable functions of ȲNT . It is also conceptually straight-

forward to extend the procedure to settings with clustering long more than two dimensions,

or D-adic data where the random array corresponds to group-level outcomes for any subset
3



of D out of the full set of N units included in the sample. Another practically important

extension concerns the case in which the variable Yit is only observed for a subset of the pairs

{(i, t) : i = 1, . . . , N, t = 1, . . . , T} (non-exhaustively matched samples). For greater clarity,

the paper focusses on the leading case of cluster-dependence in two dimensions, and these

generalizations are discussed in Appendix B.

1.1. Problem Description. Generally speaking, we need to distinguish three scenarios

regarding the large-sample distribution of the mean: in the absence of cluster dependence,

elements of the array (Yit) are mutually independent, and under regularity conditions a CLT

at the (NT )−1/2 rate applies. When elements are correlated within clusters, the convergence

rate of the mean is determined by the number of relevant clusters instead. Finally, in non-

separable models of heterogeneity, elements within a cluster may be dependent even if they

are uncorrelated. In that last case - which is specific to clustering in two or more dimensions -

the asymptotic behavior of the sample mean is generally non-standard, and the conventional

estimator of its asymptotic variance is not consistent. To frame ideas, we next give two

stylized examples to illustrate the difference between these three cases.

Example 1.6. Additive Factor Model. To shape ideas, consider first the case where

clustering results from an additive model with cluster-level effects

Yit = µ+ αi + γt + εit

where µ is fixed and αi, γt, εit are zero-mean, i.i.d. random variables for i = 1, . . . , N and

t = 1, . . . , T with bounded second moments, and N = T . From a standard central limit

theorem we find that in the non-degenerate case with Var(αi) > 0 or Var(γt) > 0, the sample

distribution √
N(ȲNT − E[Yit])

d→ N(0,Var(αi) + Var(γt)),

whereas in the degenerate case of no clustering, Var(αi) = Var(γt) = 0,
√
NT (ȲNT − E[Yit])

d→ N(0,Var(εit))

where
d→ denotes convergence in distribution.

If the marginal distributions of these three factors were known, we could simulate from the

joint distribution of (Yit)i=1,...,Nt=1,...,T by sampling the individual components at random. A

bootstrap procedure would replace these unknown distributions with consistent estimates. If

the distribution of αi is not known, an intuitively appealing estimator of αi is

α̂i :=
1

T

T
∑

t=1

(Yit − ȲNT ) = αi +
1

T

T
∑

t=1

(εit − ε̄NT )
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where ε̄NT = 1
NT

∑N
i=1

∑T
t=1 εit. Similarly, we can estimate γ̂t := 1

N

∑N
i=1(Yit − ȲNT ) =

γt +
1
N

∑N
i=1(εit − ε̄NT ), and ε̂it := Yit − ȲNT − α̂i − γ̂t. We can then estimate the marginal

distributions of αi, γt, εit with the empirical distributions of α̂i, γ̂t, and ε̂it, respectively.

We could then form a bootstrap sample Y ∗
it := ȲNT + α∗

i + γ∗t + ε∗it by drawing from these

estimators for the marginal distributions of αi, γt, εit, and obtain Ȳ ∗
NT := 1

NT

∑N
i=1

∑T
t=1 Y

∗
it .

We can also verify that the conditional variances of the bootstrap distribution given the

sample,

1

N

N
∑

i=1

(

α̂i −
1

N

N
∑

j=1

α̂j

)

−
[

Var(αi) +
Var(εit)

T

]

p→ 0

1

T

T
∑

t=1

(

γ̂t −
1

N

T
∑

s=1

γ̂t

)

−
[

Var(γt) +
Var(εit)

N

]

p→ 0

Hence, in the non-degenerate case with Var(αi) > 0 or Var(γt) > 0, the bootstrap distribution
√
N(Ȳ ∗

NT − ȲNT )
d→ N(0,Var(αi) + Var(γt))

converges to the same limit as the sampling distribution, so that estimation error in α̂i

does not affect the asymptotic variance. However, in the degenerate case of no clustering,

Var(αi) = Var(γt) = 0, the bootstrap distribution
√
NT (Ȳ ∗

NT − ȲNT )
d→ N(0, 3Var(εit))

asymptotically over-estimates the variance of the sampling distribution, so that this naive

bootstrap procedure is inconsistent in the degenerate case.2

As the next example illustrates, the non-separable case has added complications from the

fact that αi, γt may interact. However, in either case the potential complications with the

bootstrap stem entirely from the degenerate case.

Example 1.7. Non-Gaussian Limit Distribution. For an example of non-separable

heterogeneity, let

Yit = αiγt + εit

where αi, γt, εit are independently distributed, with E[εit] = 0, Var(αi) = σ2
α, Var(γt) = σ2

γ,

and Var(εit) = σ2
ε .

2Adaptations of the nonparametric bootstrap combining i.i.d. draws of columns and rows of the array
(Yit)i=1,...,Nt=1,...,T have been found to have similar problems, see McCullagh (2000) and Owen (2007).
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If in addition, E[αi] = E[γt] = 0, a multivariate CLT and the continuous mapping theorem

imply

√
NTȲNT =

1√
NT

N
∑

i=1

T
∑

t=1

(αiγt + εit)

=

(

1√
N

N
∑

i=1

αi

)(

1√
T

T
∑

t=1

γt

)

+
1√
NT

N
∑

i=1

T
∑

t=1

εit

d→ σασγZ1Z2 + σεZ3

where Z1, Z2, Z3 are independent standard normal random variables. Since the product of two

independent normal random variables is not normally distributed,
√
NTȲNT is not asymp-

totically normal.3 Note also that if instead E[αi] 6= 0 or E[γt] 6= 0 the statistic remains

asymptotically normal at the slower
√
T (

√
N , respectively) rate.

Non-separable heterogeneity can therefore generate dependence in second or higher mo-

ments that may contribute to the limting distribution even in the absence of correlation

within clusters. Since the limiting distribution need not be Gaussian for these settings, plug-

in asymptotic inference based on the normal distribution is not valid. We show below that

this type of dependence in fact precludes uniformity in estimating the limiting distribution

of ȲNT . It can also be seen immediately from this example that this non-standard behavior

could not be generated by a model of clustering in a single dimension, but is distinctive of

the (less well-understood) case of cluster-dependence in two or more dimensions.

1.2. Contribution. This paper proposes an inference procedure that is adaptive to the

dependence structure, that is we aim to approximate the asymptotic distribution under

any form of cluster dependence. In our view this type of adaptivity is crucial for common

empirical practice, where the researcher aims for inference to be robust with respect to

cluster-dependence, but without a presumption that such dependence is in fact present.

Therefore a comprehensive analysis of the asymptotic distribution of the sample mean

with multi-way clustering is needed which pays particular attention to scenarios in which

observations may be uncorrelated within each cluster. To our knowledge this analysis is new

to the literature, and this paper is the first to point out that the limiting distribution for

the sample average may be nonstandard in these settings. We also find that the default

estimator for the asymptotic variance of the sample mean (a special case of the estimator

proposed by Cameron, Gelbach, and Miller (2011)) is inconsistent due to the within-cluster

correlation in second moments of Yit.

3Since Z1Z2 = 1
4 (Z1 + Z2)

2 − 1
4 (Z1 − Z2)

2, where Cov(Z1 + Z2, Z1 − Z2) = Var(Z1)−Var(Z2) = 0. Hence,

Z1Z2 = 1
2 (W1−W2), whereW1,W2 are independent chi-square random variables with one degree of freedom.
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In order to determine what types of adaptivity and uniformity we may hope to achieve, we

establish a novel impossibility result: we find that there can be no estimator of the asymptotic

distribution of the sample mean that is uniformly consistent, so any inference procedure

can only be uniformly valid asymptotically if it is conservative. This result includes as a

special case the problem of U- and V-statistics with kernel of unknown order of degeneracy.

Interestingly, all three findings do require dependence in two or more dimensions and have

no counterparts for the conventional case when observations are clustered in at most one

dimension. The problem can be thought of as inference where a relevant nuisance parameter

may be on, or close to, the boundary of the parameter space, resulting in a discontinuity

in the pointwise asymptotic limiting distribution (see Andrews (2000), Andrews (2001),

Andrews and Guggenberger (2009), and Andrews and Guggenberger (2010)). Our analysis

benefits from theoretical insights and techniques developed for that abstract problem.

We provide a comparison of the theoretical (large-sample) properties of our bootstrap

procedure to those of alternative inference methods, including Gaussian “plug-in” inference,

subsampling, and the “pigeonhole” bootstrap proposed by Owen (2007). We also provide

simulation evidence for the most relevant cases.

1.3. Relation to the Literature. The classical nonparametric bootstrap by Efron (1979)

(see also Hall (1992), and Horowitz (2000) for an exposition) can be adapted to data that is

cluster-dependent in one dimension in a straightforward manner. However with clustering

in multiple dimensions, the problem of resampling is fundamentally different from the case

of independent clusters, since the structure of the data no longer implies finite or weak

dependence across units. In fact, McCullagh (2000) showed that there exists no scheme

for resampling the raw data directly that is consistent for multi-way clustered data.4 Our

procedure combines features of the nonparametric bootstrap with those of the wild bootstrap

(Wu (1986) and Liu (1988)) to achieve (pointwise) consistency in each case, as well as

a conservative modification that results in uniformly valid asymptotic inference. We also

establish refinements for cases in which the limiting behavior of the statistic is standard.

We find that the problem of multi-way clustering has a natural connection to the theory

of U- and V-statistics. For U- and V-statistics, Bretagnolle (1983) and Arcones and Giné

(1992) proposed separate bootstrap procedures for the non-degenerate and degenerate case,

but neither procedure is adaptive.

4McCullagh (2000)’s argument goes as follows: there is no consistent estimator for the variance of the
sample mean that is a nonnegative quadratic function of the observations Yit. In particular the bootstrapped
variance from any resampling scheme that draws directly from the original values of the variable of interest
is a function of this type, and therefore such a bootstrap scheme cannot be consistent. We propose a hybrid
scheme that does not fall under his narrower definition of the bootstrap.
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Asymptotic standard errors with multi-way clustering have been proposed by Cameron,

Gelbach, and Miller (2011), and can be used for “plug-in” asymptotic inference in the Gauss-

ian limiting case - see also Cameron and Miller (2014) and Aronow, Samii, and Assenova

(2015) for the case of dyadic data. A more recent paper by MacKinnon, Ørregard Nielsen,

and Webb (2017) gives a condition on cluster sizes that is sufficient for asymptotic normality

and consistency of these standard errors, and propose a bootstrap method for that set-

ting. We show in the appendix that the “pigeonhole” bootstrap proposed by Owen (2007)

is asymptotically valid under non-trivial clustering in means, but conservative in the ab-

sence of clustering, and not guaranteed to achieve uniformity. A recent paper by Davezies,

D’Haultfœuille, and Guyonvarch (2018) derives asymptotic properties for the pigeonhole

bootstrap process for the non-degenerate case. Subsample bootstraps, including the method

by Bhattacharya and Bickel (2015) for network data, adapt quite naturally to features of the

data-generating process and are particularly attractive when evaluation of the statistic over

the full sample is computationally very costly. We show in the appendix that for two-way

cluster-dependent data subsampling is consistent pointwise, but not uniformly, and only at

a slower rate than bootstrap alternatives.

1.4. Notation and Overview. Throughout the paper, we use P to denote the joint dis-

tribution of the array (Yit)i,t, and denote drifting data-generating processes (DGP) indexed

by N, T with PNT . The bootstrap distribution for (Y ∗
it) given the realizations (Yit : i =

1, . . . , N ; t = 1, . . . , T ) is denoted P
∗
NT . We denote expected values under these respective

distributions using E,ENT , and E
∗
NT , respectively.

In the remainder of the paper, we first establish a representation for the array (Yit) which

is then used to motivate a bootstrap procedure. Formal results regarding consistency and

refinements for that bootstrap procedure are given in Section 4. We furthermore give several

generalizations of the main procedure and illustrate its performance using Monte Carlo sim-

ulations. Additional asymptotic results for Gaussian asymptotics, the pigeonhole bootstrap,

and subsampling are given in Appendix A.

2. Representation

We assume that the sample Yit for i = 1, . . . , N and t = 1, . . . , T is embedded into a row

and column (separately) exchangeable array: a separately exchangeable array is an infinite

array (Yit)i,t such that for any integers Ñ , T̃ and permutations π1 : {1, . . . , Ñ} → {1, . . . , Ñ}
and π2 : {1, . . . , T̃} → {1, . . . , T̃}, we have

Yπ1(i)π2(t)
d
= Yit,

where “
d
=” denotes equality in distribution.
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Separably exchangeable arrays can result from sampling from an infinite population of

“cross-sectional” and “temporal” units (“clusters”), where the underlying double indexed

array may be arbitrarily correlated, and we draw N “cross-sectional” units i = 1, . . . , N

and T “temporal” units t = 1, . . . , T independently at random. Since each row and each

column is drawn with the same probability, we can without loss of generality take the sample

(Yit : i = 1, . . . , N, t = 1, . . . , T ) to be the first N rows and T columns of an infinite array of

the form described above.

2.1. Exchangeable Representation. By Theorem 1.4 in Aldous (1981) any separately

exchangeable array can be represented as

Yit = f̃(µ, αi, γt, εit)

for some function f(·), where µ, α1, . . . , αN , γ1, . . . , γT and ε11, . . . , εNT are mutually inde-

pendent, uniformly distributed random variables.5 Similar representations are available to

arrays that are jointly or separately exchangeable in more than two dimensions, see Hoover

(1979) and Section 7 in Kallenberg (2005). We consider inference that is conditional on µ,

that is conditional on the empirical distribution of Yit, so that we can represent the array as

Yit = f(αi, γt, εit) (2.1)

where f(a, g, e) := f̃(µ, a, g, e) and the factors α1, . . . , αN , γ1, . . . , γT and ε11, . . . , εNT are

the same as before.

2.2. Projection. We next show that the array (Yit)i,t permits a decomposition of the form

Yit = b+ ai + gt + wit, E[wit|ai, gt] = 0

where ai and gt are mean-zero and mutually independent, so that the joint distribution of

Yit can then be described in terms of the respective marginal distributions of ai and gt, and

the conditional distribution of wit given ai, gt. Such a representation is immediate for the

leading example of the additive factor model in Example 1.6, and we now show that it is in

fact without loss of generality for arrays exhibiting dependence in two or more dimensions.

If the relevant conditional expectations are well-defined, we can represent Yit via the

projection expansion

Yit = E[Yit] + (E[Yit|αi]− E[Yit]) + (E[Yit|γt]− E[Yit])

+(E[Yit|αi, γt]− E[Yit|αi]− E[Yit|γt] + E[Yit]) + (Yit − E[Yit|αi, γt])
=: b+ ai + gt + vit + eit (2.2)

5To be precise, Aldous (1981)’s result implies that there exists an array Y ∗
it := f̃(µ, αi, γt, εit) such that

Y ∗
it

d
= Yit.
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where we define eit = Yit − E[Yit|αi, γt], ai := E[Yi1|αi] − E[Yi1], gt = E[Y1t|γt] − E[Y1t],

vit = E[Yit|αi, γt] − E[Yit|αi] − E[Yit|γt] + E[Yit], and b = E[Yit]. Since temporal and cross-

sectional units were drawn independently, a1, . . . , aN and g1, . . . , gT are independent of each

other. Also by construction, E[eit|ai, gt, vit] = 0 and E[vit|ai, gt] = 0. In particular, the terms

eit, (ai, gt), vit are uncorrelated.

Given this representation, we can rewrite the sample mean as

ȲNT = b+ āN + ḡT + v̄NT + ēNT

where āN := 1
N

∑N
i=1 ai, ḡT := 1

T

∑T
t=1 gt, v̄NT := 1

NT

∑T
t=1

∑N
i=1 vit, and ēNT := 1

NT

∑T
t=1

∑N
i=1 eit.

We also denote the unconditional variances of the projections with σ2
a := Var(ai), σ

2
g :=

Var(gt), σ
2
v := Var(vit), and σ2

e := Var(eit), respectively. We also let wit := vit + eit and

denote its variance by σ2
w = Var(wit).

Throughout the remainder of the paper, we are going to maintain the following conditions

on the distribution of the random array:

Assumption 2.1. (Integrability) (a) Let Yit = f(αi, γt, εit) where (αi)i, (γt)t, and (εit)i,t
are random arrays whose elements are i.i.d.. (b) The random variables ai/σa, gt/σg, vit/σv,

and eit/σe have bounded moments up to the order 4+δ for some δ > 0 whenever the respective

variances σ2
a, σ

2
g , σ

2
v , σ

2
e > 0 are non-zero. (c) We have σ2

a + σ2
g > 0 or σ2

v + σ2
e > 0.

2.3. Low-Rank Approximation. To understand the large sample properties of the sample

mean, it is instructive to interpret the row/column projection

v̄NT ≡ 1

NT

T
∑

t=1

N
∑

i=1

(E[Yit|αi, γt]− E[Yit|αi]− E[Yit|γt] + E[Yit]) =:
1

NT

T
∑

t=1

N
∑

i=1

v(αi, γt)

as a generalized (two-sample) U-statistic with a kernel v(α, γ) evaluated at the samples

α1, . . . , αN and γ1, . . . , γT , respectively.

The asymptotic behavior of degnerate and non-degenerate generalized U-statistics is well-

understood (see Serfling (1980) for a summary of classical results). The problem of char-

acterizing the distribution of ȲNT differs from that classical problem in two major aspect:

for one we also need to account for the presence of the projection error eit. Furthermore

the factors αi, γt are not observable data, but implicitly defined by Aldous’ (1981) construc-

tion. Nevertheless, these differences do not preclude us from applying general insights and

techniques for U-statistics to the present problem.

Specifically, we find that we can approximate the sample and bootstrap distributions of

the statistic by a function of sample averages of independent random variables. Define

v(α, γ) := E[Yit|αi = α, γt = γ]− E[Yit|αi = α]− E[Yit|γt = γ] + E[Yit]
10



Under Assumption 2.1, the integral operator

S(u)(g) =

∫

v(a, g)u(a)Fα(da)

and its adjoint

S∗(u)(a) =

∫

v(a, g)u(g)Fγ(dg)

are both compact, where Fα, Fγ are the marginal distributions corresponding to the joint

Fαγ of αi, γt, which are independent draws from the uniform distribution under the Aldous-

Hoover representation in (2.1).

Hence, the spectral representation theorem permits the low-rank approximation

v(α, γ) =

∞
∑

k=1

ckφk(α)ψk(γ) (2.3)

under the L2(Fαγ) norm on the space of smooth functions of (α, γ) ∈ [0, 1]2. Here, (ck)k≥1 is a

sequence of singular values with lim |ck| → 0, and (φk(·))k≥1 and (ψk(·))k≥1 are orthonormal

bases for L2([0, 1], Fα) and L2([0, 1], Fγ), respectively.

Moreover, by construction E[v(a, γt)] = E[v(αi, g)] = 0 for each a, g ∈ [0, 1], so that

without loss of generality we can take E[φk(αi)] = E[ψk(γt)] = 0 for each k = 1, 2, . . . . Since

the basis functions are orthnormal and αi and γt independent, it follows that for any K <∞
the covariance matrix of (φ1(αi), ψ1(γt), . . . , φK(αi), ψK(γt)) is the 2K-dimensional identity

matrix. However, (φ1(αi), . . . , φK(αi)) may be correlated with ai, and (ψ1(γt), . . . , ψK(γt))

may be correlated with gt. Specifically, for k = 1, 2, . . . we denote

σak := Cov(ai, φk(αi)) and σgk := Cov(gt, ψk(γt)).

Given this representation, we can write

1

NT

N
∑

i=1

T
∑

t=1

v(αi, γt) =
∞
∑

k=1

ck

(

1

N

N
∑

i=1

φk(αi)

)(

1

T

T
∑

t=1

ψk(γt)

)

so that the second-order projection term can also be represented as a function of countably

many sample averages of i.i.d., mean-zero random variables. The limiting distribution of

this term is not Gaussian, but can be represented as a linear combination of independent

chi-square random variables, see e.g. Serfling (1980). Distributions of this type are known

as Wiener (or Gaussian) chaos.

We find that point-wise consistency of the bootstrap does not require any additional

conditions on the conditional expectation function v(α, γ) beyond Assumption 2.1. For the

uniform consistency results which include the case in which the asymptotically non-Gaussian

component is of first order, we need to restrict the eigenfunctions and coefficients in the

spectral representation (2.3).

11



Assumption 2.2. The function v(α, γ) := E[Yit|αi = α, γt = γ]−E[Yit|αi = α]−E[Yit|γt =
γ] + E[Yit] admits a spectral representation

v(α, γ) =
∞
∑

k=1

ckφk(α)ψk(γ)

under the L2(Fαγ) norm, where (a) the singular values are uniformly bounded by a null

sequence c̄k → 0, that is ck ≤ c̄k for each k = 1, 2, . . . , and (b) The first three moments of

the eigenfunctions φk(αi) and ψk(γt) are bounded by a constant B > 0 for each k = 1, 2, . . . .

Imposing common bounds on moments and singular values restricts the set of joint distri-

butions F for the array to a uniformity class, where the sequence c := (c̄k)k≥0 controls the

magnitude of the error from a finite-dimensional approximation to v(α, γ), where we truncate

the expansion in (2.3) after a finite number of summands k = 1, . . . , K. Comparable high-

level conditions on spectral approximations are commonly used to define uniformity classes

in nonparameric estimation of operators, see e.g. Hall and Horowitz (2005) and Carrasco,

Florens, and Renault (2007).

3. Bootstrap Procedure

The previous discussion shows that the rate of convergence and the limiting distribution

of the sample mean ȲNT − E[Yit] depend crucially on the different scale parameters intro-

duced above. For example, if observations are independent across rows and columns, then√
NT (ȲNT −E[Yit])

d→ N(0, σ2
e). If N = T and within-cluster covariances are bounded away

from zero in at least one dimension, then
√
N(ȲNT −E[Yit])

d→ N(0, σ2
a + σ2

g). Our aim is to

obtain a bootstrap procedure that is adaptive for both degenerate and non-degenerate cases.

For the bootstrap procedure we can estimate the terms of the orthogonal projection in

(2.2) with their sample analogs

âi :=
1

T

T
∑

t=1

Yit − ȲNT , ĝt :=
1

N

N
∑

i=1

Yit − ȲNT , and ŵit := Yit − âi − ĝt − ȲNT

For the performance of the bootstrap it is crucial at what rate(s) estimators for the different

model components are consistent depending on the extent of clustering in the true DGP. Most

importantly, the variance of the projection terms âi and ĝt is σ
2
a + σ2

w/T and σ2
g + σ2

w/N ,

respectively, so that the “convolution error” depending on σ2
w dominates in the degenerate

case. In order to correct for that contribution of the row/column averages of wit we would

therefore want to shrink the scale of the distribution of âi, ĝt by the variance ratios

λa =
Tσ2

a

Tσ2
a + σ2

w

, and λg =
Nσ2

g

Nσ2
g + σ2

w
12



In the bootstrap procedure we replace the unknown variances with consistent estimators in

(3.1) to obtain alternative estimators for λa and λg.

To obtain the component variances, we let

ŝ2a :=
1

N − 1

n
∑

i=1

(âi − ȲNT )
2, ŝ2g :=

1

T − 1

T
∑

t=1

(ĝt − ȲNT )
2

ŝ2w :=
1

NT −N − T

N
∑

i=1

T
∑

t=1

(Yit − âi − ĝt − ȲNT )
2

and form the estimators

σ̂2
a = max

{

0, ŝ2a −
1

T
ŝ2w

}

, σ̂2
g = max

{

0, ŝ2g −
1

N
ŝ2w

}

, and σ̂2
w := ŝ2w (3.1)

We find in Lemma C.1 below that the variances σ2
a and σ

2
g cannot always be estimated at a

sufficiently fast rate. One of the versions of the bootstrap procedure proposed here therefore

uses a consistent pre-test for the presence of cluster dependence in the first moment. To that

end, we define the model selectors

D̂a(κ) := 1l{T σ̂2
a ≥ κ} and D̂g(κ) := 1l{Nσ̂2

g ≥ κ}

for any given value of κ ≥ 0. For appropriately chosen sequences κa, κg, we then let

λ̂a :=
D̂a(κa)T σ̂

2
a

D̂a(κa)T σ̂2
a + σ̂2

w

and λ̂g :=
D̂g(κg)Nσ̂

2
g

D̂g(κg)Nσ̂2
g + σ̂2

w

and estimate the asymptotic variance of the sample mean with

Ŝ2
NT,sel := D̂a(κa)T σ̂

2
a + D̂g(κg)Nσ̂

2
g + σ̂2

w (3.2)

In the appendix we compare this estimator to a “default” estimator for the asymptotic

variance without a pre-test, defined as

Ŝ2
NT,def := T ŝ2a +Nŝ2g − ŝ2w

Note that up to a degree of freedom correction, Ŝ2
NT,def is the variance estimator from

Cameron, Gelbach, and Miller (2011) for the special case of the sample mean.6

For the leading case of exhaustive sampling with cluster dependence in two dimensions,

we then propose the following resampling algorithm to estimate the sampling distribution:

6Pointwise consistent model selection when a parameter relevant for the asymptotic distribution is near or
at the boundary of the parameter space was first considered for the bootstrap by Andrews (2000). We also
show that allowing for the case in which v̄NT contributes to the limiting distribution, uniformly consistent
estimation of the limiting distribution is not possible, neither using the bootstrap nor any alternative method.

13



(a) For the bth bootstrap iteration, draw a∗i,b := âk∗
b
(i) and g∗t,b := ĝs∗

b
(t), where k∗b (i)

and s∗b(t) are i.i.d. draws from the discrete uniform distribution on the index sets

{1, . . . , N} and {1, . . . , T}, respectively.
(b) Generate w∗

it,b := ω1i,bω2t,bŵk∗
b
(i)s∗

b
(t), where ω1i,b, ω2t,b are i.i.d. random variables with

E[ω·] = 0,E[ω2
· ] = E[ω3

· ] = 1

(c) Generate a bootstrap samples of draws Y ∗
it,b = ȲNT +

√

λ̂aa
∗
i,b +

√

λ̂gg
∗
t,b + w∗

it,b and

obtain the bootstrapped statistic Ȳ ∗
NT,b :=

1
NT

∑N
i=1

∑T
t=1 Y

∗
it,b.

(d) We repeat this procedure to obtain a sample of B replications and approximate the

conditional distribution of Ȳ ∗
NT given the sample with the empirical distribution over

the bootstrap draws Ȳ ∗
NT,1, . . . , Ȳ

∗
NT,B.

For the pivotal bootstrap, the last step uses instead the empirical distribution of the studen-

tized bootstrap draws to approximate the distribution of
√
NT (Ȳ ∗

NT − ȲNT )/Ŝ
∗
NT,sel, where

Ŝ∗
NT,sel is the bootstrap analog of the variance estimator ŜNT,sel. For the simulation study in

this paper, we implement step (c) using the two-point specification proposed by Mammen

(1992) for the random variables ω1i,b, ω2t,b.

We distinguish two versions of this bootstrap procedure:

Definition 3.1. (Bootstrap Procedures)

• (BS-N) The bootstrap without model selection applies steps (a)-(d) where we set

κa = κg = 0,

• (BS-S) The bootstrap with model selection follows steps (a)-(d) where we set κa, κg

according to increasing sequences κg, κa → ∞ such that κa/T → 0 and κg/N → 0.

• (BS-C) The conservative bootstrap applies steps (a)-(d) where for increasing se-

quences κg, κa → ∞ such that κa/T → 0 and κg/N → 0, we set q̂a := max{T σ̂2
a, κa},

q̂g := max{Nσ̂2
g , κg}, and

λ̂a :=
q̂a

q̂a + σ̂2
w

q̂a
T σ̂2

a

, λ̂g :=
q̂g

q̂g + σ̂2
w

q̂g
Nσ̂2

g

We find below that the bootstrap with model selection is consistent pointwise in σ2
a, σ

2
g , σ

2
w,

and the bootstrap without model selection is uniformly consistent as long as the limiting

distribution is Gaussian. The conservative bootstrap is consistent in the nondegerate case

σ2
a + σ2

g > 0, but asymptotically conservative for the degenerate cases in a sense to be made

more precise below. It is the only procedure discussed in this paper that is guaranteed to

have uniform size control over the entire parameter space.

4. Theoretical Properties

In this section we establish large sample properties for this bootstrap procedure. The

limiting behavior of the sample mean ȲNT −E[Yit] is in part determined by the variances of
14



the components of the decomposition in (2.2). Since the rate of convergence of the sample

mean depends on the component variances, we define the adaptive rate rNT by

r−2
NT := N−1σ2

a + T−1σ2
g + (NT )−1σ2

w ≡ Var(ȲNT )

where the last equality follows since the components in the decomposition (2.2) are uncorre-

lated. We maintain throughout that either σ2
g + σ2

a > 0 or σ2
w > 0, and that N and T grow

at the same rate as we take limits.

We first give a summary of the asymptotic properties of the bootstrap and alternative

methods for estimating the asymptotic distribution, including Gaussian plug-in inference,

subsampling, and Owen (2007)’s Pigeonhole bootstrap. We then establish asymptotic re-

sults for the sampling distribution and the bootstrap. Asymptotic properties for the other

approaches are given in Appendix A.

4.1. Summary of Asymptotic Properties. The starting point of our analysis is a (novel)

impossibility result in Proposition 4.1, which establishes that it is in fact not possible to

achieve uniform consistency in estimating the asymptotic distribution of ȲNT , rather uniform

asymptotic validity can only be achieved by a conservative procedure.

The recommendation which inference procedure should be chosen therefore depends on

the desired robustness properties, and what assumptions the researcher is willing to make

regarding the underlying data generating process. We consider the following three alternative

criteria, which are not nested:

• (POINTW) Point-wise validity with respect the variance parameters, where we

allow for any of the components of σ2
a, σ

2
g , σ

2
v , σ

2
e to be either strictly positive or zero.

• (UNIF-1) Uniform validity regarding clustering in means, where any of the compo-

nents of σ2
a, σ

2
g , σ

2
v , σ

2
e may be strictly positive, zero, or drifting along sequences, but

rNTσ
2
v 9 0. That is, we only exclude the degenerate case in which there is no cluster

dependence in means, but cluster dependence in second moments does not vanish.

• (UNIF-2) Uniform validity, where we allow for any values, and drifting sequences

for the components σ2
a, σ

2
g , σ

2
v , σ

2
e .

In practice, cluster-robust methods are typically used in settings when the researcher

does not know whether the data exhibit any meaningful dependence along the dimensions

indexing the array (Yit)i,t, but wants to guard herself against that possibility. We posit

that UNIF-1 is a plausible interpretation of that idea of robustness: It only excludes the

possibility that E[Yit|αi, γt] is a random variable that has a non-degenerate distribution, but

whose conditional means given αi and γt happen to be close to constant.7 This scenario

is therefore non-generic once we allow for any type of cluster-dependence, and we find that

7More precisely, rNTσ
2
v 9 0 would require the variance of Var(E[Yit|αi, γt]) to be of a larger order of

magnitude than the variances of the conditional means given αi or γt alone, Var(E[Yit|αi]) and Var(E[Yit|γt])).
15



extending uniformity to include this non-generic scenario (as for the third criterion) comes at

the cost of a substantial power loss for the case in which observations are in fact independent

within each cluster.

For criterion POINTW, we show that point-wise consistency is achieved by subsampling

with model selection, the bootstrap with model selection and the pivotal bootstrap with

model selection, where the pivotal bootstrap with model selection achieves refinements in

the case of a Gaussian limiting distribution, and both bootstrap procedures are consistent at

faster respective rates than subsampling. The non-pivotal pigeonhole bootstrap is consistent

if σ2
a + σ2

g > 0, but conservative otherwise.

For criterion UNIF-1, uniform consistency is achieved by subsampling and the bootstrap

(pivotal or not) without model selection, where again the pivotal bootstrap dominates in

terms of convergence rates. Finally, under UNIF-2 only the conservative bootstrap is guar-

anteed to be asymptotically conservative, however at a steep price in terms of power for the

degenerate cases with rNT ≍
√
NT in which it over-estimates the asymptotic variance by a

factor growing at the rate κa
T

+ κg
N
. Proposition 4.1 implies that we cannot close this rate

gap without giving up uniformity.

A full summary of the asymptotic properties of the different methods is given in Table 4.1.

In addition to the different versions of the bootstrap introduced in Section 3, BS-N, BS-S,

and BS-C, we also consider the following methods

• (GAU) “Plug-in” Gaussian inference using a two-way clustering robust estimator

for the asymptotic variance of ȲNT ,

• (PGH) inference based on the Pigeonhole bootstrap estimate for the asymptotic

distribution of rNT ȲNT , and

• (SUB) inference based on the subsampling estimate for the asymptotic distribution

of rNT ȲNT .

The pivotal versions of the different resampling procedures concern inference based on es-

timates for the distribution of the studentized mean, tNT := (NT )1/2 Ŝ−1
NT,def ȲNT or tNT :=

(NT )1/2 Ŝ−1
NT,selȲNT , depending on which variance estimator is used.

To highlight some of our theoretical findings, we find that the “default” estimator from

Cameron, Gelbach, and Miller (2011) for the asymptotic variance, Ŝ2
NT,def , is only consis-

tent if rNTσ
2
v → 0, whereas the modified estimator Ŝ2

NT,sel is always pointwise consistent.

Gaussian “plug-in” inference with a consistent estimator for the asymptotic variance is only

consistent if rNTσ
2
v → 0, subsampling inference is valid pointwise, but not uniformly, and

is consistent only at a rate slower than any of the alternative procedures. The bootstrap

with model selection is asympotically valid pointwise, and the bootstrap without model se-

lection is uniformly valid as long as rNTσ
2
v → 0. The pigeonhole bootstrap is uniformly valid

asymptotically but conservative in the degenerate case, and in addition, its pivotal version
16



Method Pivotal Variance Asymptotic Validity Refinement
Estimator POINTW UNIF-1 UNIF-2

GAU - Ŝ2
NT,def No Yes No No

GAU - Ŝ2
NT,sel No No No No

BS-N No - No Yes No No

BS-N Yes Ŝ2
NT,def No Yes No Yes

BS-S No - Yes No No No

BS-S Yes Ŝ2
NT,sel Yes No No Yes

BS-C No - Cons. Cons. Cons. No

BS-C Yes Ŝ2
NT,sel Cons. Cons. Cons. (Yes)

PGH No - Cons. Cons. No No

PGH Yes Ŝ2
NT,def No Yes No Yes

PGH Yes Ŝ2
NT,sel Yes No No Yes

SUB No - Yes Yes No No

SUB Yes Ŝ2
NT,def No Yes No No

SUB Yes Ŝ2
NT,sel Yes No No No

Table 1. Summary of Estimation Approaches for the Asymptotic distribu-
tion of ȲNT , where “Cons.” stands for “conservative.”

achieves refinements in the case of a Gaussian limiting distribution. Subsampling is consis-

tent pointwise, but not uniformly, and approximates the asymptotic distribution at a rate no

faster than r
−2/3
NT , assuming that subsample sizes are chosen at the respective optimal rates

mN = O(N1/3), mT = O(T 1/3). That convergence rate is slower than the r−1
NT rate for the

point-wise bootstrap, or the r−2
NT rate for the cases for which the pivotal bootstrap yields a

refinement. We also illustrate this comparison of theoretical properties in a simulation study

in Section 5.

4.2. Asymptotic Distribution of ȲNT . We now characterize the asymptotic distribution

of the sample mean. To analyze which properties are uniform with respect to the joint

distribution of (Yit), we also need to consider limits along any drifting sequences for the

parameters σ2
a, σ

2
g , σ

2
e , σ

2
v and the covariances σak := Cov(ai, φk(αi)), σgk := Cov(gt, ψk(γt))

for k = 1, 2, . . . . We then parameterize the limiting distribution with the respective limits

of normalized sequences

qa,NT := r2NTN
−1σ2

a, qg,NT := r2NTT
−1σ2

g

qe,NT := r2NT (NT )
−1σ2

e qv,NT := r2NT (NT )
−1σ2

v (4.1)

qak,NT := r2NTN
−1σak qgk,NT := r2NTT

−1σgk

for k = 1, 2, . . . . We also let ̺NT := rNT (NT )
−1/2. From the definition of rNT , it follows that

the local parameters qa,NT , qg,NT , qe,NT , qv,NT ∈ [0, 1] and qa,NT + qg,NT + qe,NT + qv,N = 1.
17



We stack these sequences as the vector

qNT := (qa,NT , qg,NT , qe,NT , qv,NT , qa1,NT , qg1,NT , qa2,NT , qg2,NT , . . . , )

an element of the sequence space ℓ2. Similarly, we represent the singular values for the spec-

tral decomposition (2.3) for ENT [Yit|αi, γt] and E[Yit|αi, γt] with cNT := (c1,NT , c2,NT , . . . ) ∈
ℓ2 and c := (c1, c2, . . . ) ∈ ℓ2, respectively.

We can summarize asymptotic properties for the various procedures in terms of these

parameter sequences, where for convergent sequences qNT , cNT , ̺NT we denote the limits

qa := limN,T qa,NT , qg := limN,T qg,NT , qe := limN,T qe,NT , and qv := limN,T qv,NT . The limiting

distribution along such a sequence will therefore depend on the parameters q := limN,T qNT ,

c := limN,T cNT and ̺ := limN,T ̺NT .
8

For any fixed values of the local parameters q, c, and ̺ ∈ [0, 1] we define the law

L0(q, c, ̺) :=
(√

qeZ
e +

√
qaZ

a +
√
qgZ

g
)

+ ̺V

where Ze, Zφ
1 , Z

ψ
1 , Z

φ
2 , Z

ψ
2 , . . . are i.i.d. standard normal random variables,

V :=

∞
∑

k=1

ckZ
ψ
k Z

φ
k

with the coefficients ck potentially variying along the limiting sequence, and Za, Zg are

standard normal random variables with Cov(Za, Zφ
k ) = qak/

√
qa, Cov(Z

g, Zψ
k ) = qgk/

√
qg,

Cov(Za, Zg) = Cov(Za, Zψ
k ) = Cov(Zg, Zφ

k ) = 0 for all k = 1, 2, . . . .

We can now give the limit for the sampling distribution of ȲNT :

Theorem 4.1. (CLT for Sampling Distribution) Suppose that Assumption 2.1 holds.

Then (a) along any convergent sequence qNT → q and fixed c = (c1, c2, . . . ), we have

‖PNT (rNT (ȲNT − E[Yit]))−L0(q, c, ̺)‖∞ → 0

where ̺ := limN,T ̺NT and ‖ ·‖∞ denotes the Kolmogorov metric. (b) If in addition Assump-

tion 2.2 holds, then the conclusion of (a) also holds under drifting sequences cNT → c.

See the appendix for a proof. Note that convergence in part (a) is point-wise with respect

to the conditional mean function E[Yit|αi = α, γt = γ], whereas part (b) gives uniform

convergence within the class of distributions satisfying Assumption 2.2.

4.3. Estimability of the Asymptotic Distribution. The asymptotic properties of the

bootstrap depend crucially on our ability to estimate the variances of the individual projec-

tion components at respective rates that are fast enough to ensure convergence of λ̂a and

λ̂g to λa and λg, respectively. Lemma C.1 in the appendix establishes that the component

8We show that without loss of generality it is sufficient to focus on convergent parameter sequences in light
of arguments by Andrews and Guggenberger (2007a).
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variances σ2
a, σ

2
g , σ

2
w can be estimated consistently, but not always at a sufficiently fast rate

along certain parameter sequences. In particular, we establish the following impossibility

result:

Proposition 4.1. (Estimability of Asymptotic Distribution) The asymptotic distri-

bution of ȲNT cannot be estimated consistently uniformly over the entire parameter space,

using the bootstrap or any other method.

See the appendix for a proof. To illustrate the problem, we re-state the counterexample

underlying this impossibility result: consider the model Yit = αiγt, where αi, γt are mutually

independent, with i.i.d. factors αi ∼ N(0, 1), γt ∼ N(µg, 1). For this model, ai := E[Yit|αi] =
αiµg, gt := E[Yit|γt] = γtE[αi] ≡ 0, and vit = αi(γt−µg), so that σ2

a = µ2
g and σ

2
v = 1. Clearly,

µg cannot be estimated from the original data faster at a rate faster than T−1/2, which is the

fastest possible rate at which µγ could be estimated from observing γ1, . . . , γT directly. Hence,

no test can consistently distinguish the model µg = 0 resulting in an asymptotic variance

equal to σ2
v from a drifting sequence µ̃T,g := T−1/2mg which results in an asymptotic variance

equal to m2
g + σ2

v . It follows that we cannot estimate the asymptotic distribution of ȲNT

uniformly consistently, since its variance can’t be estimated consistently along this sequence.

4.4. Bootstrap Consistency. We now turn to the asymptotic properties for the bootstrap

described in Section 3, where we consider both a non-pivotal version, and a pivotal version

based on the studentized sample mean. Specifically, consider the estimator of the asymptotic

variance of the sample mean, ŜNT,sel defined in (3.2) and its bootstrap analog

Ŝ2∗
NT,sel := D̂a(κa)T σ̂

2∗
a + D̂g(κg)Nσ̂

2∗
g + σ̂2∗

w ,

where we hold the selectors D̂a(κa), D̂g(κg) fixed at their sample values, and κa, κg are chosen

according to whether the bootstrap is implemented with our without model selection.

The non-pivotal bootstrap approximates the distribution of the sample mean rNT (ȲNT −
E[Yit]) with the distribution of its bootstrap analog, rNT (Ȳ

∗
NT − ȲNT ). The pivotal bootstrap

approximates the distribution of the studentized sample mean (NT )1/2Ŝ−1
NT,sel(ȲNT −E[Yit])

with the distribution of its bootstrap analog, (NT )1/2(Ŝ∗
NT,sel)

−1(Ȳ ∗
NT − ȲNT ). Corollary C.1

in the appendix establishes that the estimator ŜNT,sel is pointwise consistent for sequences

of κa, κg increasing to infinity at a sufficiently slow rate, and its analog for κa = κg = 0

is uniformly consistent for qv = 0. Similarly, we can use Lemma C.1 in the appendix to

establish pointwise consistency of λ̂a and λ̂g for the bootstrap with model selection (and

uniform consistency given qv = 0 for the bootstrap without model selection).

Combining this with the sample CLT (Theorem 4.1) and a bootstrap CLT (Lemma C.2

in the appendix), we then obtain consistency results of the form

‖P∗
NT (rNT (Ȳ

∗
NT − ȲNT ))− PNT (rNT (ȲNT − E[Yit]))‖∞ a.s.→ 0 (4.2)
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and the its pivotal analog
∥

∥

∥

∥

∥

P
∗
NT

(

√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT,sel

)

− PNT

(

√
NT

ȲNT − E[Yit]

ŜNT,sel

)
∥

∥

∥

∥

∥

∞

a.s.→ 0 (4.3)

for the bootstrap procedures with and without model selection. The conservative bootstrap

generally overestimates the scale of the sampling distribution for the degenerate case, where

we obtain a convergence result of the form

‖P∗
NT (rNT (Ȳ

∗
NT − ȲNT ))−L0(q̄, c, ̺)‖∞ a.s.→ 0 (4.4)

and the pivotal version of the conservative bootstrap
∥

∥

∥

∥

∥

P
∗
NT

(

√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT,sel

)

− L0(q̄, c, ̺)

∥

∥

∥

∥

∥

∞

a.s.→ 0 (4.5)

Here, q̄ = (q̄a, q̄g, qe, qv, q̄a1, q̄g1, . . . ), and q̄a := max{κa/T, qa} and q̄g := max{κg/N, qg}, and
q̄ak = qak

√

q̄a/qa, q̄gk = qgk
√

q̄g/qg for k = 1, 2, . . . , which increase as N, T → ∞.

Theorem 4.2. (Bootstrap Consistency) Suppose that Assumption 2.1 holds. Then (a)

the bootstrap with model selection satisfies (4.2) and (4.3) pointwise for any fixed σ2
a, σ

2
g , σ

2
e , σ

2
v.

(b) The bootstrap without model selection satisfies satisfies (4.2) and (4.3) uniformly if

qv = 0. (c) The conservative bootstrap satisfies (4.4) and (4.5) uniformly over the entire

parameter space.

See the appendix for a proof. Relating these results to the three alternative criteria stated

at the beginning of this section, part (a) states that the bootstrap with model selection is

pointwise valid asymptotically, which corresponds to our first criterion. According to part

(b), the bootstrap without model selection is valid uniformly with respect to clustering in

means, but is inconsistent if qv > 0, so that it is asymptotically valid according to our second

criterion. The conservative bootstrap is uniformly valid without any qualifications, however

in degenerate cases (qe + qv > 0) the scale of the estimated asymptotic distribution diverges

at a rate κa/T + κg/N .9 Comparing the respective limits for the conservative bootstrap

and the sampling distribution (see Theorem 4.1), L0(q̄, c, ̺) is a mean-preserving spread of

L0(q, c, ̺), where both distributions are symmetric about zero. In particular, estimates of

percentiles from the conservative bootstrap are biased outwards (i.e. away from zero) in

those cases, so that commonly used one- or two-sided hypothesis tests or confidence sets

based on these estimated percentiles are asymptotically conservative.

Remark 4.1. U- and V-Statistics Note that these results also applies to generalized (two-

sample) U-statistics, which constitute a special case of our setup with σ2
e = 0. Specifically, the

impossibility result in Proposition 4.1 implies that if the order of degeneracy of the kernel is

9For the choice of κa, κg implemented for the simulation study, κa/T + κg/N ≍ log(T ) + log(N).
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unknown, it is not possible to estimate the distribution of a two-sample U-statistic uniformly

consistently. The bootstrap procedure in this paper is pointwise adaptive with respect to the

order of degeneracy of the kernel of the V-statistic. Analogous conclusions for standard

(one-sample) U- and V-statistics with a kernel function of order D, can be obtained using an

adaptation of our bootstrap procedure to D-adic data, see Appendix B below for a discussion.

4.5. Refinements. We next consider refinements in the approximation to the distribution

of the studentized mean. We find that the bootstrap approximation provides pointwise re-

finements for the case in which the limiting distribution for the studentized mean is Gaussian.

However, it is important to note that refinements can in general not be obtained for certain

special cases. For one, if the “Wiener chaos” term remains relevant in the limiting distri-

bution L(q, c), i.e. for qv > 0, the studentized mean is no longer asymptotically pivotal.

Rather the asymptotic distribution generally depends on relative weights of the Gaussian

component Z, and the spectral coefficients c defining the Wiener chaos component V . Hence

we cannot expect the bootstrap to provide refinements for this case.

Furthermore, elementary moment calculations reveal that

E[â3i ] = E[a3i ] +
2

T
E[aiw

2
it] +

1

T 2
E[w3

it]

where the cross-term E[aiw
2
it] is generally non-zero unless E[w2

it|ai] and ai are uncorrelated.

Hence under drifting sequences for the second and third moments of ai, the first term on the

right-hand side of that expression need not dominate in the limit, in which case the bootstrap

distribution does not match the third moment of ai under the sampling distribution. Hence,

we can in general not obtain a refinement along drifting sequences even when qv = 0 and the

limiting distribution is Gaussian.

Hence we restrict our attention to pointwise refinements for the case of a Gaussian limiting

distribution and can now state the following result:

Theorem 4.3. (Refinements) Suppose that Assumption 2.1 holds with δ > 2. Then, if

σ2
a + σ2

g > 0 or σ2
v = 0 we have

∥

∥

∥

∥

∥

P
∗
NT

(

√
NT

Ȳ ∗
NT − ȲNT

Ŝ∗
NT,sel

)

− PNT

(

√
NT

ȲNT − E[Yit]

ŜNT,sel

)
∥

∥

∥

∥

∥

∞

= OP (r
−2
NT )

for the bootstrap with or without model selection, where convergence is pointwise in the

distribution of the array (Yit)i=1,...,Nt=1,...,T . For the conservative bootstrap, the analogous

result holds only in the nondegenerate case, σ2
a + σ2

g > 0.

See the appendix for a proof. Our argument uses Mammen (1992)’s result based on mo-

ment expansions of the statistic rather than the more classical approach based on Edgeworth

expansions (see e.g. Liu (1988)). This allows us to include the case of a lattice distribution
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for the random variables ω1i, ω2t in the implementation of the Wild bootstrap, including the

two-point distribution described before.

5. Simulation Study

We now present simulation results to demonstrate the performance of the bootstrap pro-

cedure. We consider balanced and unbalanced designs with additively separable and nonsep-

arable cluster effects. Particular attention is given to the degenerate cases of uncorrelated

observations, and drifting sequences. We report simulation results for each of the estimation

approaches analyized in this paper, where we consider the following alternative implemen-

tations of the bootstrap:

• (REG) inference based on the asymptotic distribution of the mean, rNT ȲNT .

• (PIV) inference based on the asymptotic distribution of the studentized mean, where

we use tNT := (NT )1/2 Ŝ−1
NT,selȲNT for BS-N and PGH, and tNT := (NT )1/2 Ŝ−1

NT,selȲNT

for BS-S and BS-C.

• (SYM) symmetric inference based on the asymptotic distribution of the absolute

value of the studentized mean, |tNT |.

According to our theoretical results, each of these inference procedures is asymptotically

valid in the non-degenerate cases, while the pivotal and symmetric bootstrap (PIV and

SYM, respectively) provide refinements over their non-pivotal analogs (REG), subsampling,

or Gaussian asymptotic inference. It also follows from standard arguments (see e.g. Horowitz

(2000)) that theoretical refinements from SYM are of a higher order than those obtained for

PIV.

5.1. Additively Separable Designs. For the first set of results, we generate a two-way

clustered array according to the additively separable design

yit = σaαi + σgγt + σeεit

where γt, εit are i.i.d. standard normal. We generated αi = (ζi− µα)/τα for log ζi ∼ N(0, 1),

where µα = E[ζi], and τ
2
α = Var(αi) were obtained using analytic formulae for the moments

of the log-normal distribution. In particular, the distribution of αi is skewed to the right.

Our simulation designs vary the relative importance of the three factors through the choice

of σa, σg, σe. Design 1 (non-degenerate case) chooses σ2
a = 0.5, σ2

g = 0.1, and σ2
e = 0.2, Design

2 considers the drifting sequence σ2
a = 5/T , σ2

g = 1/N , and σ2
e = 0.2. Design 3 (degenerate

case) sets σ2
a = σ2

g = 0 and σ2
e = 0.2. For each design in this section, simulation results were

obtained from 10, 000 simulated samples with bootstrap distributions approximated using

2, 000 bootstrap draws.
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GAU BS-S BS-N BS-C PGH SUB

N T REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1

10 10 0.085 0.076 0.072 0.063 0.077 0.072 0.063 0.072 0.088 0.071 0.141
20 20 0.070 0.069 0.066 0.057 0.068 0.066 0.056 0.067 0.071 0.067 0.097
50 50 0.059 0.059 0.059 0.051 0.059 0.058 0.051 0.060 0.060 0.059 0.074

100 100 0.056 0.057 0.056 0.051 0.056 0.056 0.051 0.056 0.058 0.057 0.070

Design 2

10 10 0.085 0.060 0.063 0.062 0.051 0.073 0.070 0.025 0.033 0.059 0.105
20 20 0.081 0.071 0.067 0.068 0.058 0.061 0.060 0.029 0.026 0.056 0.081
50 50 0.081 0.077 0.074 0.073 0.056 0.054 0.054 0.025 0.020 0.056 0.077

100 100 0.069 0.067 0.065 0.065 0.050 0.048 0.049 0.021 0.017 0.049 0.065

Design 3

10 10 0.055 0.020 0.025 0.030 0.014 0.068 0.063 0.000 0.003 0.032 0.056
20 20 0.058 0.035 0.043 0.045 0.021 0.057 0.057 0.000 0.001 0.032 0.053
50 50 0.056 0.047 0.053 0.052 0.033 0.053 0.054 0.000 0.001 0.036 0.052

100 100 0.051 0.047 0.049 0.051 0.036 0.051 0.051 0.000 0.001 0.040 0.050

Table 2. Balanced separable case: false rejection rates for two-sided tests of
the null E[Yit] = 0 at the 5 percent significance level. Design 1: σ2

a = 0.5,
σ2
g = 0.1, σ2

e = 0.2; Design 2: σ2
a = 0.5/T, σ2

g = 0.1/N, σ2
e = 0.2; Design 3:

σ2
a = σ2

g = 0, σ2
e = 0.2.

Results for the balanced case are given in Tables 2 and 3 and largely support our theoretical

claims. In particular, for all procedures rejection rates approach the nominal 0.05 signifi-

cance level as N and T grow. In particular, the results are consistent with the bootstrap

without model selection being uniformly valid regarding clustering in means. For Design

1, the pivotal and symmetric versions of the different bootstrap procedures show marked

improvements over their standard versions or Gaussian asymptotic inference, which is con-

sistent with asymptotic refinements established in Theorem 4.3. The conservative bootstrap

is consistent in the non-degerate case, but conservative under the degenerate Designs 2 and

3. Also, the pigeonhole bootstrap is consistent in its pivotal version across all designs, but

the non-pivotal version is conservative in the degenerate case.

The improvements in coverage rates from asymptotic refinements are more pronounced

for one-sided than two-sided rejection rates in Table 3. We can see from the simulation

results that the respective biases in estimating percentiles in the lower and upper tails of the

distribution via GAU have opposite signs, so that these biases partially offset each other for

two-sided tests. Design 2 considers drifting sequences of DGPs for which Theorem 4.3 does

not predict refinements. For Design 3, our theoretical results do not imply refinements for

PIV or SYM since for that specification, yit = σεεit is i.i.d. Gaussian.
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GAU BS-S BS-N BS-C PGH SUBS GAU BS-S BS-N BS-C PGH SUB

REG PIV PIV PIV PIV REG REG PIV PIV PIV PIV REG

Design 1

10 10 0.103 0.082 0.081 0.082 0.079 0.140 0.034 0.039 0.037 0.038 0.038 0.053
20 20 0.088 0.067 0.066 0.068 0.067 0.114 0.033 0.044 0.044 0.044 0.045 0.035
50 50 0.074 0.057 0.058 0.058 0.057 0.094 0.036 0.049 0.049 0.049 0.048 0.030

100 100 0.066 0.054 0.054 0.054 0.053 0.086 0.040 0.051 0.051 0.051 0.051 0.032

Design 2

10 10 0.094 0.079 0.083 0.036 0.071 0.102 0.042 0.041 0.044 0.024 0.041 0.053
20 20 0.088 0.077 0.069 0.042 0.067 0.085 0.045 0.048 0.045 0.029 0.044 0.042
50 50 0.090 0.078 0.062 0.034 0.062 0.086 0.051 0.059 0.049 0.032 0.049 0.047

100 100 0.073 0.064 0.052 0.027 0.053 0.070 0.051 0.058 0.045 0.026 0.046 0.049

Design 3

10 10 0.050 0.036 0.051 0.001 0.035 0.050 0.050 0.039 0.052 0.001 0.035 0.052
20 20 0.057 0.047 0.050 0.001 0.036 0.050 0.054 0.048 0.051 0.000 0.036 0.049
50 50 0.052 0.050 0.049 0.000 0.038 0.050 0.056 0.052 0.053 0.000 0.041 0.054

100 100 0.053 0.050 0.052 0.000 0.043 0.051 0.050 0.049 0.051 0.000 0.041 0.050

Table 3. Balanced separable case: false rejection rates for one-sided tests of
the null E[Yit] ≤ 0 (left half of the panel) E[Yit] ≥ 0 (right half of the panel)
at the 5 percent significance level. Design 1: σ2

a = 0.5, σ2
g = 0.1, σ2

e = 0.2;

Design 2: σ2
a = 0.5/T, σ2

g = 0.1/N, σ2
e = 0.2; Design 3: σ2

a = σ2
g = 0, σ2

e = 0.2.

We also simulate the absolute error in rejection probabilities based on GAU, SUB, and

BS-S (pivotal and non-pivotal) at all percentiles for Design 1. Specifically, we estimate the

percentiles of the sampling distribution for each simulated sample using either method, and

simulate the frequency at which the t-statistic for the sample exceeds each percentile. Figure

1 reports the absolute difference between the simulated and nominal rejection frequencies.

We find that for all three methods, the absolute discrepancy between nominal and simulated

rejection rates decreases as N and T grow across all percentiles. The non-pivotal bootstrap

does not exhibit a clear improvement relative to plug-in asymptotic approximation, whereas

rejection rates based on the pivotal bootstrap for the studentized mean are consistently closer

to nominal levels. We report additional results for percentiles relevant for one- and two-sided

tests at commonly used significance levels in the appendix.

We next assess the importance of balance in the relative sizes of N and T , as well as

the relative importance of clustering in either dimension. In particular, we first consider

balanced designs T = N where we set σa = 0.5, σg = 0.1 and σe = 0.1. We then consider

unbalanced designs where we let N = 10, 20, 50, 100 vary while holding T = 20 fixed, see

Table 4 for simulation results. While the bootstrap is not asymptotically valid if T remains

fixed, results are broadly in line with those for the balanced case for the corresponding sample
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Figure 1. Balanced separable case: Absolute error in estimated c.d.f., plot-
ted against nominal percentiles. Plots are based on Design 1: σ2

a = 1, σ2
g =

0.2, σ2
e = 1.

size. Overall, these results are again consistent with theoretical predictions on asymptotic

validity and refinements.

5.2. Nonseparable Designs. Finally, we simulate a model with non-separable cluster ef-

fects, where we specify

yit = (αi + µα)(γt + µγ)− µαµγ + εit

for i.i.d. standard normal random variables αi, γt and εit. We consider one non-degenerate

design with µα = µγ = 1 (Design 1), and an alternative design with µα = µγ = 0 for which

yit is not clustered in means (Design 3), as well as a design with drifting sequences (Design

2), see Table 5 for simulation results. Since 2.5th and 97.5th percentiles the Wiener chaos

distribution resulting from this design differ only slightly from those of the standard normal,

we also report false rejection rates for tests at the 1 percent nominal level. For an easier

interpretation of the simulation results for non-Gaussian limits, we also report the theoretical

limits of coverage probabilities, N = ∞ and T = ∞, in a separate row.

The point-wise consistent procedures (bootstrap with model selection and subsampling)

should do well under Designs 1 and 3, where subsampling is consistent at a much slower
25



GAU BS-S BS-N BS-C PGH SUB

N T REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1

10 20 0.093 0.092 0.083 0.067 0.092 0.083 0.067 0.082 0.098 0.084 0.139
20 20 0.069 0.069 0.065 0.055 0.067 0.066 0.055 0.065 0.072 0.067 0.099
50 20 0.056 0.055 0.053 0.050 0.055 0.052 0.049 0.051 0.057 0.053 0.072

100 20 0.056 0.056 0.052 0.051 0.056 0.053 0.052 0.053 0.058 0.052 0.071

Design 2

10 20 0.057 0.026 0.035 0.038 0.016 0.060 0.058 0.000 0.002 0.032 0.051
20 20 0.059 0.035 0.044 0.045 0.022 0.059 0.057 0.000 0.002 0.032 0.052
50 20 0.058 0.041 0.048 0.049 0.027 0.055 0.055 0.000 0.001 0.034 0.052

100 20 0.057 0.042 0.049 0.049 0.028 0.054 0.053 0.000 0.001 0.037 0.051

Table 4. Unbalanced separable case: false rejection rates for two-sided tests
of the null E[Yit] = 0 at the 5 percent significance level. Design 1: σ2

a =
0.5, σ2

g = 0.1, σ2
e = 0.2; Design 2: σ2

a = σ2
g = 0, σ2

e = 0.2.

rate than the bootstrap. Since none of the inference procedures is uniformly consistent, we

should expect all of these to perform poorly under Design 2. However, given our theoretical

results the conservative bootstrap is the only procedure that is guaranteed to be conservative

across all designs.

We find that in the non-degenerate case µα 6= 0 or µγ 6= 0, the bootstrap produces

results that are comparable to the separable case. According to our theoretical results, all

procedures are asymptotically valid, whereas PIV and SYM should produce refinements,

which is consistent with the first set of simulation results.

For the degenerate case, µα = µγ = 0, theory predicts that Gaussian inference is not

asymptotically valid even when a consistent estimator of the asymptotic variance is used.

We find that indeed that for the plug-in asymptotic approximation based on the Gaussian

distribution rejection rates appear to converge to a value that is different from the nominal

level, and based on the theoretical properties, bias in rejection rates should be expected

to persist for arbitrarily large sample sizes. We do report simulated rejection rates for the

corresponding limiting distribution (rows with N = T = ∞) which show that for the simu-

lation designs considered here the asymptotic size distortions remain modest in magnitude,

but actual rejection rates are above nominal size even in the limit for tests at the 5 percent

and 1 percent level.

The bootstrap with model selection and subsampling are point-wise consistent (see De-

signs 1 and 3), but yield invalid inference under the drifting sequences in Design 2. The

conservative bootstrap is consistent in the non-degenerate case (Design 1), but conservative

under the other scenarios. Theoretical results do not indicate that the bootstrap without
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GAU BS-S BS-N BS-C PGH SUB

N T REG REG PIV SYM REG PIV SYM PIV REG PIV REG

Design 1 (tests at 5 percent nominal size)

10 10 0.102 0.065 0.057 0.045 0.032 0.027 0.023 0.022 0.085 0.006 0.178
20 20 0.063 0.058 0.046 0.043 0.040 0.034 0.030 0.028 0.070 0.009 0.106
50 50 0.056 0.056 0.050 0.049 0.048 0.044 0.043 0.037 0.059 0.024 0.075

100 100 0.053 0.053 0.050 0.049 0.051 0.048 0.046 0.043 0.055 0.039 0.062

∞ ∞ 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

Design 2 (tests at 5 percent nominal size)

10 10 0.105 0.040 0.044 0.025 0.004 0.004 0.004 0.003 0.018 0.001 0.110
20 20 0.100 0.055 0.056 0.051 0.002 0.002 0.002 0.001 0.011 0.000 0.089
50 50 0.103 0.068 0.069 0.067 0.002 0.002 0.001 0.001 0.007 0.000 0.083

100 100 0.111 0.082 0.083 0.083 0.001 0.001 0.001 0.001 0.006 0.000 0.089

Design 3 (tests at 5 percent nominal size)

10 10 0.077 0.023 0.025 0.013 0.001 0.001 0.000 0.000 0.006 0.000 0.070
20 20 0.062 0.028 0.029 0.026 0.000 0.000 0.000 0.000 0.004 0.000 0.047
50 50 0.060 0.037 0.038 0.037 0.000 0.000 0.000 0.000 0.002 0.000 0.044

100 100 0.064 0.044 0.045 0.045 0.000 0.000 0.000 0.000 0.002 0.000 0.047

∞ ∞ 0.065 0.050 0.050 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.050

Design 1 (tests at 1 percent nominal size)

10 10 0.051 0.017 0.015 0.005 0.005 0.039 0.002 0.003 0.031 0.000 0.095
20 20 0.016 0.011 0.009 0.006 0.007 0.012 0.004 0.004 0.021 0.000 0.032
50 50 0.010 0.011 0.009 0.007 0.009 0.008 0.007 0.007 0.014 0.002 0.014

100 100 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.012 0.004 0.008

∞ ∞ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

Design 2 (tests at 1 percent nominal size)

10 10 0.061 0.007 0.008 0.001 0.000 0.000 0.000 0.000 0.005 0.000 0.045
20 20 0.051 0.008 0.009 0.005 0.000 0.000 0.000 0.000 0.001 0.000 0.024
50 50 0.051 0.012 0.014 0.011 0.000 0.000 0.000 0.000 0.001 0.000 0.019

100 100 0.058 0.016 0.018 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.021

Design 3 (tests at 1 percent nominal size)

10 10 0.041 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.027
20 20 0.027 0.003 0.004 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.012
50 50 0.027 0.005 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.007

100 100 0.029 0.007 0.008 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.009

∞ ∞ 0.032 0.010 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.010

Table 5. Non-separable case: false rejection rates for two-sided tests of the
null E[Yit] = 0 at a nominal level of 1 percent. Design 1: σ2

a = 0.2, σ2
g =

0.2, σ2
e = 0.2, µa = 1, and µg = 0; Design 2: σ2

a = 0.2, σ2
g = 0.2, σ2

e = 0.2,

µa = 1/
√
T , and µg = 0; Design 3: σ2

a = 0.2, σ2
g = 0.2, σ2

e = 0 and µa = µg = 0.
The first two panels are for tests at a nominal level of 5 percent, the bottom
panel are at 1 percent.
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Figure 2. Nonseparable case: Absolute error in estimated c.d.f., plotted
against nominal percentiles. Plots are based on Design 2: σ2

a = 0.5, σ2
g =

0.5, σ2
e = 0.1 and µa = µg = 0.

model selection or the pigeonhole bootstrap should be necessarily conservative in the degen-

erate cases (Designs 2 and 3), but the simulation results nevertheless show that rejection

rates are essentially zero. Also, since the studentized mean is not asymptotically pivotal

under Designs 2 and 3, theory also does not predict refinements for the pivotal or symmetric

versions of either bootstrap procedure. This is reflected in the simulation results, showing

no systematic difference between the alternative implementations of each bootstrap.

As for the separable case, we also simulate the absolute error in rejection probabilities

based on the Gaussian, Subsampling, and bootstrap estimates with model selection (pivotal

and non-pivotal) at all percentiles for the degenerate case in Design 3, which are shown in

Figure 2. These results support the theoretical predictions that Gaussian plug-in inference

is inconsistent for the degenerate nonseparable case, and that subsampling is consistent

although at a slower rate than the bootstrap (pivotal or not) with model selection. Also, the

theory does not imply asymptotic refinements for the pivotal bootstrap in this setting, so we

should not expect the pivotal bootstrap to perform systematically better than its non-pivotal

version.
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Appendix A. Alternative Inference Procedures

This section gives asymptotic results for alternative methods of estimating the asymptotic distribution

of ȲNT , where we consider Gaussian inference using the robust variance estimator proposed by Cameron,
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Gelbach, and Miller (2011), Gaussian inference using the modified robust variance estimator ŜNT,sel intro-

duced in section 3, subsampling inference (Politis and Romano (1994), Politis, Romano, and Wolf (1999)),

and Owen (2007)’s pigeonhole bootstrap.

A.1. Gaussian Asymptotic Inference (GAU). We first discuss inference using an estimator of the

asymptotic variance together with quantiles of the Gaussian distribution. Specifically, we consider the two

different variance estimators Ŝ2
NT,def and Ŝ2

NT,def introduced in Section 3.

Corollary C.1 below shows that Ŝ2
NT,sel is pointwise consistent for the asymptotic variance. We now give

a counterexample to show that the default estimator Ŝ2
NT,def is not: Suppose that

Yit = αiγt, αi, γt
iid∼ N(0, 1)

Since αi and γt are independent and have zero mean, the convergence rate of the sample mean is r−2
NT =

(NT )−1. We can then verify that the asymptotic variance of the sample mean is

Var(
√
NTȲNT ) = Var

([

1√
N

N
∑

i=1

αi

][

1√
T

T
∑

t=1

γt

])

= Var(αi)Var(γt) = 1

Plugging the model into the expression for the variance estimator and rearranging terms we find that

T

N

N
∑

i=1

(ȲiT − ȲNT )
2 =

(

1√
T

T
∑

t=1

γt

)2

1

N

N
∑

i=1

(αi − ᾱN )2

N

T

T
∑

t=1

(ȲNt − ȲNT )
2 =

(

1√
N

N
∑

i=1

αi

)2

1

T

T
∑

t=1

(γt − γ̄T )
2

1

NT

N
∑

i=1

T
∑

t=1

(Yit − ȲNT )
2 =

1

NT

N
∑

i=1

T
∑

t=1

(

α2
i γ

2
t − ᾱ2

N γ̄
2
T

)

where ᾱN := 1
N

∑N
i=1 αi and γ̄T := 1

T

∑T
t=1 γt. Clearly, 1√

N

∑N
i=1 αi and 1√

T

∑T
t=1 γt converge to inde-

pendent standard normal random variables, 1
N

∑N
i=1(αi − ᾱN )2

p→ Var(αi) = 1, and 1
T

∑T
t=1 (γt − γ̄T )

2 p→
Var(γt) = 1. Hence, by Slutsky’s Lemma, it follows that

Ŝ2
NT,def − 1

d→ Y1 + Y2 − 2

where Y1, Y2 are independent draws from a chi-square distribution with one degree of freedom. In particular,

for this specific distribution of the array (Yit)i,t, the limiting distribution on the right-hand side has zero mean

and non-zero variance so that the default estimator of the asymptotic variance is unbiased but inconsistent.

However, using arguments parallel to the consistency proof for the modified estimator in Proposition 4.1,

the estimator ŜNT,def remains consistent if qv = 0.

Finally we turn to asymptotic validity of Gaussian inference using either variance estimator - from Theorem

4.1, the asymptotic distribution for the sample mean is
(√
qeZ

e +
√
qaZ

a +
√
qgZ

g
)

+̺V =
√
1− qvZ+̺V ,

where V is Wiener chaos governed by the spectral coefficients c and with unit variance, and Z is a random

variable with a standard normal marginal distribution. Given a consistent estimator of the asymptotic

variance, the Gaussian approximation assumes a limiting distribution Z + 0 · V . Since both Z and V have

zero mean and unit variance, there is no clear dominance relationship across all relevant percentiles and the

tails between the true limiting distribution and the Gaussian approximation when qv > 0. Hence for a given

testing problem, values of qv > 0 and spectral coefficients c, Gaussian inference may or may not control size

conservatively, depending on the nominal significance level and the specific distribution of Gassian chaos V .
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In contrast, when qv = 0, either variance estimator is consistent and Gaussian inference is asymptotically

valid. However, as in the standard case of i.i.d. data, Gaussian inference does not provide higher-order

refinements.

A.2. Subsampling (SUB). As an alternative to the bootstrap, the researcher may estimate the limiting

distribution of ȲNT using subsampling. Specifically, we consider the following procedure:

(a) We choose subsample sizes mN ,mT → ∞, where we assume throughout that mN/N,mT /T → 0.

(b) for the bth subsample, let j(1), . . . , j(mN ) and s(1), . . . , s(mT ) be drawn uniformly and indepen-

dently without replacement from {1, . . . , N} and {1, . . . , T }, respectively.
(c) We then let Y ◦

it,b := Yj(i)s(t),b for i = 1, . . . ,mN and t = 1, . . . ,mT , and form the bth subsample

mean Ȳ ◦
NT,b :=

1
mNmT

∑mN

i=1

∑mT

t=1 Y
◦
it,b.

For a pivotal version of subsampling, we use the variance estimator

(Ŝ◦
NT,b)

2 := D̂a(κa)T (σ̂
◦
a)

2 + D̂g(κg)T (σ̂
◦
g)

2 + (σ̂◦
w)

2

Here, the variance estimators σ̂◦
a, σ̂

◦
g , σ̂

◦
w are the subsample analogs of σ̂2

a, σ̂
2
g , σ̂

2
w, the selectors D̂a(κ), D̂g(κ)

based on the initial sample are as defined in Section 3, and κa, κg ≥ 0 are chosen according to whether

subsampling is implemented with or without model selection.

We can enumerate the possible subsamples of this type by b = 1, . . . , B◦
NT where B◦

NT :=
(

N
mN

)(

T
mT

)

and denote the conditional distribution of the normalized subsample mean given the sample (Yit : i =

1, . . . , N, t = 1, . . . , T ) with

P
◦
NT (r

◦
NT (Ȳ

◦
NT − ȲNT ) ≤ x) :=

1

B◦
NT

B◦

NT
∑

b=1

1l
{

r◦NT (Ȳ
◦
NT,b − ȲNT ) ≤ x

}

Here, we denote the rate for the subsample mean with

(r◦NT )
2 := m−1

N σ2
a +m−1

T σ2
g + (mNmT )

−1σ2
w

We can summarize our findings for this subsampling procedure in the following proposition:

Proposition A.1. (Subsampling) Suppose that Assumption 2.1 holds, mN ,mT → ∞, and mN

N , mT

T → 0.

Then

‖P◦
NT (r

◦
NT (Ȳ

◦
NT − ȲNT ))− PNT (rNT (ȲNT − E[Yit]))‖∞

p→ 0

pointwise. If in addition Assumption 2.2 holds, subsampling is consistent along drifting sequences if and only

if qv = 0 or (r◦NT )
2(m−1

N σ2
a +m−1

T σ2
g) → 0.

It is straightforward to establish consistency for pivotal versions of subsampling, where we can use Corol-

lary C.1 below to show pointwise consistency for subsampling using the subsampling analog of the variance

estimator with model selection, and uniform consistency regarding clustering in means (UNIF-1) without

model selection.

As in the i.i.d. case, the subsampling estimator for the limiting distribution converge at a slower rate than

the bootstrap, which depend on subsample sizes mN ,mT rather than N and T , respectively. Specifically,

noting that the leading terms of the decomposition of Ȳ ◦
NT − E[Yit] are i.i.d., we can adapt the argument in

Section 2.4 of Politis and Romano (1994) to establish that for the pivotal version of subsampling
∥

∥

∥

∥

∥

P
◦
NT

(

√
mNmT

(

Ȳ ◦
NT,b − ȲNT

Ŝ◦
NT,b

))

− PNT

(

√
NT

(

ȲNT − E[Yit]

ŜNT,sel

))∥

∥

∥

∥

∥

∞

= OP

(

(r◦NT )
−1 +

(

r◦NT
rNT

)2
)
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where r◦NT depends on the choice of the sequences mN ,mT . We can separately check for each case with

respect to the magnitudes of σ2
a, σ

2
g , σ

2
v , σ

2
e that mN ,mT can be chosen such that (r◦NT )

−1 +
(

r◦NT

rNT

)2

=

O
(

r
−2/3
NT

)

, but no faster rate can be achieved. This also gives the fastest possible rate at which subsampling

can approximate the asymptotic distribution. As with subsampling of i.i.d. data, this convergence rate is

the same for the pivotal as for the non-pivotal case. These findings for Gaussian asymptotic inference and

subsampling are summarized in Table 4.1 in the main text.

Proof of Proposition A.1: Define the local parameters

q◦a,NT := (r◦NT )
2m−1

N σ2
a, q◦g,NT := (r◦NT )

2m−1
T σ2

g

q◦e,NT := (r◦NT )
2(mNmT )

−1σ2
e q◦v,NT := (r◦NT )

2(mNmT )
−1σ2

v (A.1)

q◦ak,NT := (r◦NT )
2m−1

N σak q◦gk,NT := (r◦NT )
2m−1

T σgk

for k = 1, 2, . . . , and for given sequences mN ,mT we denote the limits with

q◦a := lim
N,T

qa,mNmT
, q◦g := lim

N,T
qg,mNmT

q◦e := lim
N,T

qe,mNmT
q◦v := lim

N,T
qv,mNmT

q◦ak := lim
N,T

qak,mNmT
, q◦gk := lim

N,T
qgk,mNmT

for k = 1, 2, . . . .

Let JNT (x) := P(rNT (ȲNT − E[Yit]) ≤ x) and J◦
NT (x) := P

◦
NT (r

◦
NT (Ȳ

◦
NT − E[Yit]) ≤ x) be the respective

unconditional c.d.f.s of the normalized sample mean and its subsample analog. We first check whether

JNT (x) and J
◦
NT (x) have the same limits under different assumptions on the variance components, and then

give necessary and sufficient conditions for consistency of the subsampling estimator for JNT (x).

For the bth subsample rows and columns are drawn uniformly and without replacement from {1, . . . , N}
and {1, . . . , T } respectively. Hence the array

(

Y ◦
it,b : i = 1, . . . ,mN ; t = 1, . . . ,mT

)

is a draw of sizemN×mT

from the same separately exchangeable array as the initial sample with second moments σ2
a, σ

2
g , σ

2
v , σ

2
e and

spectral coefficients c = (c1, c2, . . . ) for the sparse representation of E[Yit|αi, γt].
Hence, if we let q◦

NT := (q◦e,NT , q
◦
a,NT , q

◦
g,NT , q

◦
a1,NT , q

◦
a1,NT , q

◦
a2,NT , q

◦
g2,NT , . . . ), it follows from Theorem

4.1 that along any convergent sequence q◦
NT → q◦ = (q◦e , q

◦
a, q

◦
g , q

◦
a1, q

◦
g1, q

◦
a2, q

◦
g2, . . . ), we have

‖PNT (r◦NT (Ȳ ◦
mNmT ,b − E[Yit]))− L0(q

◦, c, ̺◦)‖∞ → 0

where ̺◦ := limNT r
◦
NT (NT )

−1/2. In particular, the respective limits of JNT (x) and J◦
NT (x) along such a

subsequence are continuous and coincide if and only if q◦ = q. Moreover, noting that the leading terms of

the decomposition of Ȳ ◦
NT − E[Yit] are i.i.d., we can adapt the main steps of the proof of Theorem 2.1 in

Politis and Romano (1994) to conclude that subsampling is consistent whenever JNT (x) and J◦
NT (x) have

same limits.

For pointwise properties of the subsampling estimator, that is whenever the variances σ2
a, σ

2
g , σ

2
v, σ

2
e are

held fixed, we need to distinguish only two cases: if qa + qg > 0 it follows that qv = qe = 0, so that

qa + qg = 1. By inspection we then also have q◦v = q◦e = 0 and q◦a + q◦g = 1. If qa + qg = 0, then we also

have q◦a + q◦g = 0. Since the subsample is a draw from the same separately exchangeable array as the initial

sample, it also follows that q◦e = qe and q
◦
v = qv, so that JNT (x) and J

◦
NT (x) have the same pointwise limits

when σ2
a, σ

2
g , σ

2
v , σ

2
e are fixed.

For drifting sequences, we can now distinguish several cases regarding the limit of the sampling distribu-

tion: If qv = 0 then q◦v = 0 and qa + qg + qe = q◦a + q◦g + q◦e = 1, so that the limiting distributions coincide.
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If qv > 0 and qa + qg > 0, then mN/N → 0 and mT /T → 0 implies that q◦a + q◦g = 1 and q◦v = 0 so that

subsampling is inconsistent along that sequence. Furthermore, for certain sequences mN ,mT we may also

have q◦a + q◦g > 0 and q◦v > 0 when qa + qg = 0 and qv > 0. Hence, JNT (x) and J◦
NT (x) do not converge

to the same limit whenever qv > 0 and q◦a + q◦g > 0, so that subsampling is not consistent under these se-

quences. Since there is no unambiguous dominance relationship in the respective percentiles of the standard

normal distribution and Wiener chaos, subsampling inference is also not guaranteed to be conservative unless

qv = q◦v �

A.3. Pigeonhole Bootstrap (PGH). We next consider Owen (2007)’s “pigeonhole” bootstrap for infer-

ence regarding E[Yit] under multi-way clustering. Large-sample results were provided by Owen (2007) for

the additively separable case, and by Davezies, D’Haultfœuille, and Guyonvarch (2018) for the asymptotic

distribution at the
√

min{N, T } rate. We give a result at the adaptive rNT rate that explicitly accounts for

the non-separable case as well. To simplify derivations, we consider a slight modification of the procedure

by Owen (2007), where instead of drawing units i ∈ {1, . . . , N} and t ∈ {1, . . . , T } with replacement, we

assign each “row” i and “column” t random resampling weights Mi and Mt that are drawn i.i.d. from a

fixed distribution.

Specifically, we consider the following procedure:

(a) For the bth bootstrap iteration generate random weights M1i,b for each i = 1, . . . , N (M2t,b, re-

spectively, for t = 1, . . . , T ) as i.i.d. draws from a binomial distribution with N trials and success

probability 1
N (T trials and success probability 1

T , respectively).

(b) We then form the bth boostrap mean

Ȳ ∗,PG
NT,b :=

1

N∗
b T

∗
b

N
∑

i=1

T
∑

t=1

M1i,bM2t,bYit

where N∗
b :=

∑N
i=1M1i,b and T

∗
b :=

∑T
t=1M2t,b.

For the pivotal bootstrap we can use the modified variance estimator with or without model selection.

Specifically, let

ŝ2,∗PGa :=
1

N∗
b

N
∑

i=1

M1i,b(Ȳ
∗,PG
iT,b − Ȳ ∗,PG

NT,b )
2, ŝ2,∗PGg := T ∗

b

T
∑

t=1

M2t,b(Ȳ
∗,PG
Nt − Ȳ ∗,PG

NT )2

ŝ2,∗PGw :=
1

N∗
b T

∗
b

N
∑

i=1

T
∑

t=1

M1i,bM2t,b(Y
∗,PG
it − Ȳ ∗,PG

NT )2

where we denote the row and column means Ȳ ∗,PG
iT,b := 1

T∗

b

∑T
t=1M2t,bYit and Ȳ ∗,PG

Nt := 1
N∗

b

∑N
i=1M1i,bYit.

We then form the variance estimator

Ŝ2,∗PG
sel,b := T ∗

b D̂a(κa)max

{

0, ŝ2,∗PGa − 1

T ∗
b

ŝ2,∗PGw

}

+N∗
b D̂g(κg)max

{

0, ŝ2,∗PGg − 1

N∗
b

ŝ2,∗PGw

}

+ ŝ2,∗PGw

where the selectors D̂a(κ), D̂g(κ) defined in Section 3 are evaluated for the initial sample and κa, κg are

chosen according to whether we use the variance estimator with or without model selection.

We denote the conditional law of Ȳ ∗,PG
NT given the sample (Yit)i,t with

P
∗,PG
NT (rNT (Ȳ

∗,PG
NT − ȲNT ) ≤ x) := PM1,M2

(

rNT (Ȳ
∗,PG
NT,b − ȲNT ) ≤ x

∣

∣

∣
Y11, . . . , YNT

)

This is a modification of Owen (2007)’s pigeonhole bootstrap with random sample size. We do not claim

any theoretical advantages for this modification. Rather we only introduce it to simplify the theoretical
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analysis and find that its asymptotic properties match those of the original procedure in the cases where

those properties have been derived previously. The simulation study in Section 5 implements the original

version proposed by Owen (2007), and results match the theoretical properties shown here for the modified

version.

Specifically, we find the following:

Proposition A.2. (Pigeonhole Bootstrap) Suppose that Assumptions 2.1 and 2.2 hold. Then if qv = 0,

the pigeonhole bootstrap

‖P∗,PG
NT (rNT (Ȳ

∗,PG
NT − ȲNT ))− PNT (rNT (ȲNT − E[Yit]))‖∞

p→ 0

uniformly, where P
PG
NT is the convolution of the sampling distribution for rNT (ȲNT − E[Yit]) with an inde-

pendent Gaussian random variable with variance 2(qe + qv).

In particular, the pigeonhole bootstrap is consistent in the non-degenerate case σ2
a+σ

2
g > 0 and asymptot-

ically conservative for the sampling distribution under bowl-shaped loss not only point-wise but uniformly as

long as qv = 0. On the other hand, the pigeonhole bootstrap is not guaranteed to converge to a deterministic

limit for qv > 0, and it furthermore over-estimates the contribution of the average 1
NT

∑N
i=1

∑T
t=1(vit + eit)

to the limiting distribution by a factor of three, which can result in a substantial reduction in power when

observations are uncorrelated or even fully independent within clusters. It is possible to show that a pivotal

version of the pigeonhole that uses the two-way clustering robust variance estimator without model selection

does not suffer from that power reduction in the degenerate case, but remains inconsistent when qv > 0. We

report simulation results for both versions of the pigeonhole bootstrap in Section 5.

One might also consider modifying the pigeonhole bootstrap using model selection along the lines of 3 in

order to improve its pointwise properties at the expense of losing uniformity for qv > 0. We find that in

contrast to the new bootstrap procedure proposed in this paper, plausible modifications of the pigeonhole

bootstrap along these lines still fail to achieve point-wise consistency.10

Proof of Proposition A.2: For the bth bootstrap replication, we can decompose the mean as

Ȳ ∗,PG
NT,b = ȲNT +

1

N∗
b

N
∑

i=1

T
∑

t=1

M1i,b[(ai − āN ) + (v̄iT − v̄NT )] +
1

T ∗
b

T
∑

t=1

M2t,b[(gt − ḡT ) + (v̄Nt − v̄NT )](A.2)

+
1

N∗
b T

∗
b

N
∑

i=1

T
∑

t=1

M1i,bM2t,b(eit − ēNT )

+

∞
∑

k=1

ck

(

1

N∗
b

N
∑

i=1

M1i,b

(

φk(αi)− φ̄kN
)

)(

1

T ∗
b

T
∑

t=1

M2t,b

(

ψk(γt)− ψ̄kT
)

)

where v̄iT := 1
T

∑T
t=1 vit, v̄Nt :=

1
N

∑N
i=1 vit, φ̄kN := 1

N

∑N
i=1 φk(αi), and ψ̄kT := 1

T

∑T
t=1 ψk(γk). We can

immediately verify that for the binomial distribution, E[Mi] = 1 and E[M2
1i] = E[M1i]

2+Var(M1i) = 2− 1
N .

Similarly, E[M2t] = 1 and E[M2
2t] = 2 − 1

T , where M11, . . . ,M1N and M21, . . . ,M2T are also independent.

10Specifically, if the consistent pre-test for clustering in means fails to reject the null of no dependence, a
modified bootstrap could either switch to a bootstrap that treats entries in each column or row as inde-
pendent, or subtract column- or row-means from observations to eliminate a spurious correlation. We find
that neither alternative is pointwise consistent, where the first proposal results in a Gaussian limit for the
bootstrap distribution even when qv > 0, and would therefore be inconsistent (and not necessarily conserva-
tive). The second alternative would replicate the distribution of the Wiener chaos component, but continue
to over-estimate the scale of the asymptotic distirbution in the degenerate case by 2σ2

e .
35



Hence, conditional on e11, . . . , eNT ,

VarNT

(

1√
NT

N
∑

i=1

T
∑

t=1

M1i,bM2t,beit

)

=
1

NT

N
∑

i=1

T
∑

t=1

(

E[M2
1i,b]E[M

2
2t,b]− E[M1i,b]

2
E[M2t,b]

2
)

e2it

=

(

3− 2(N + T )− 1

NT

)

1

NT

N
∑

i=1

T
∑

t=1

e2it =: (σ∗,PG
e,NT )

2

noting that Mi,b,Mt,b are independent. Similarly, conditional on α1, . . . , αN ,

VarNT

(

1√
N

N
∑

i=1

M1i,b

(

φk(αi)− φ̄kN
)

)

= (E[M2
1i]− E[M1i]

2)
1

N

N
∑

i=1

(

φk(αi)− φ̄kN
)2

=

(

1− 1

N

)

1

N

N
∑

i=1

(

φk(αi)− φ̄kN
)2

=: (σ∗,PG
φk,NT )

2

with analogous results for the variances and covariances among one-dimensional averages 1√
N

∑N
i=1M1i,b(ai+

v̄i),
1√
T

∑T
t=1M2t,b(gt + v̄t), and

1√
T

∑T
t=1M2t,b

(

ψk(γt)− ψ̄kT
)

.

Next, we let (σ∗,PG
a,NT )

2 := 1
NT−1

∑N
i=1

∑T
t=1(eit − ēNT )

2, (σ∗,PG
a,NT )

2 := 1
N−1

∑N
i=1(ai − āN )2, (σ∗,PG

g,NT )
2 :=

1
T−1

∑T
t=1(gt − ḡT )

2, be the empirical variances of the projection components. Similarly for k = 1, 2, . . . we

define the empirical variances (σ∗,PG
φk,NT )

2, (σ∗,PG
ψk,NT )

2 and covariances σ∗,PG
ak,NT , (σ

∗,PG
gk,NT ) with the basis functions

of the spectral representation of the conditional mean function. We can then characterize the pigeonhole

bootstrap distribution in terms of the local parameters q∗,PGs,NT := rNT (σ
∗,PG
s,NT )

2 for s = a, g, φ1, ψ1, a1, g1, . . . ,

and

q∗,PG
NT := (q∗,PGe,NT , q

∗,PG
a,NT , q

∗,PG
g,NT , q

∗,PG
φ1,NT , q

∗,PG
ψ1,NT , q

∗,PG
a1,NT , q

∗,PG
g1,NT , . . . )

We also define its population analog

qPGNT = (qPGe,NT , q
PG
a,NT , q

PG
g,NT , q

PG
φ1,NT , q

PG
ψ1,NT , q

PG
a1,NT , q

PG
g1,NT , . . . ),

where qPGs,NT = qs,NT for each s = a1, g1, . . . , qPGφk,NT = qPGψk,NT = 1 for each k = 1, 2, . . . , qPGa,NT = qa,NT +

qv,NT , qPGg,NT = qg,NT + qv,NT , and q
PG
e,NT = 3qe,NT .

If qv = 0, Lemma 3.1 together with a law of large numbers for the components corresponding to moments

of the basis functions φk(αi), ψk(γt) implies that for each K < ∞, ‖q∗,PG
NT,K − qPGNT,K‖ p→ 0 pointwise,

where q∗,PG
NT,K and qPGNT,K denote the subvectors consisting of the first 3 + 4K components of q∗,PG

NT and

qPGNT,K , respectively. In particular, for the pigeonhole bootstrap all relevant variance parameters converge in

probability to their corresponding population analogs, except for q∗,PGe,NT which converges to 3qe,NT instead.

Next, along any convergent sequence qPGNT → qPG we can apply a CLT to obtain a Gaussian joint

asymptotic distribution for any finite subset of the averages 1
N

∑N
i=1

∑T
t=1M1i,b(ai+ v̄i),

1
T

∑T
t=1M2t,b(gt+

v̄t),
1
NT

∑N
i=1

∑T
t=1M1i,bM2t,beit,

1
N

∑N
i=1M1i,b

(

φk(αi)− φ̄kN
)

and 1
T

∑T
t=1M2t,b

(

ψk(γt)− φ̄kT
)

for k =

1, 2, . . . . Also,
N∗

b

N ,
T∗

b

T

p→ 1 by a law of large numbers.

Following the truncation argument from the proof of Theorem 4.1, we can then conclude that along any

convergent sequences qNT → q,

‖P∗,PG
NT (rNT (Ȳ

∗,PG
NT,b − E[Yit]))− L0(q

PG, c, ̺)‖∞ → 0 (A.3)

where the simulation algorithm estimates the law P
∗,PG
NT consistently, and qPG coincides with q if and only

if qe + qv = 0.
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Since convergence also holds along drifting sequences, we can adapt an argument from the proof of The-

orem 1 in Andrews and Guggenberger (2010) to conclude that the asymptotic properties for the pigeonhole

bootstrap are in fact uniform, see the Proof for Theorem 4.2 for details �

Appendix B. Extensions

This section gives various extensions to the baseline case. We first show how to apply our results to

approximate joint distributions of means in several variables and when the statistic of interest is an estimator

that is defined by potentially nonlinear moment conditions. We also consider inference in regression models.

We furthermore consider non-exhaustively matched data, when not all of the N×T index pairs are observed,

and the case in which the (i, t) index pairs correspond to clusters of more than one unit. We finally consider

clustering across D rather than two dimensions, then problems in which data concerns outcomes at the level

of a dyad or larger subgroup out of a sample of N “fundamental” units. Sample averages of that type are

common in the analysis of network or matching data.

B.1. Multivariate Case. Another important extension concerns the case of the mean of a vector-valued

array (Yit), where Yit = (Y1it, . . . , YMit)
′ ∈ R

M , and the joint distribution of the components of Yit is left

unrestricted. This generalization is relevant for joint tests and estimators that are defined by a vector of

estimating equations described in the next subsection below.

For this case, we can consider a component-wise Aldous-Hoover representation of the array

Yit = f(µ,αi,γt, εit)

Here µ, αi,γt, εit ∈ R
M are i.i.d., but the individual components of the vectors αi, γt, and εit, respectively,

may be dependent in an arbitrary fashion.

We can then implement the bootstrap algorithm from the baseline case jointly in allM components of the

random vector Yit, where the projections âi, ĝt and ŵit are M -dimensional vectors whose components are

defined in analogy to the scalar case. The shrinkage parameters λ̂1, . . . , λ̂M are then computed component

by component as in the univariate case.

We denote the respective rates for the individual components with rNT = (r1NT , . . . , rMNT )
′, where

r2mNT := Var(ȲmNT ), the variance of the mth component of the sample average ȲNT . We also denote

slowest component of rNT with ̺NT := maxm=1,...,M |rmNT |. Then using the Cramér-Wold device, it follows

immediately from Theorem 4.2 that the bootstrap remains consistent for approximating the joint distribution

of diag(rNT )(ȲNT − E[Yit]) if the conditions of that theorem hold for each component m = 1, . . . ,M .

Similarly, a refinement at the ̺−2
NT rate is a straightforward extension of Theorem 4.3.

B.2. Bootstrapping Estimators. The bootstrap procedure developed for the distribution of the sample

mean ȲNT can be used to estimate the distribution of potentially nonlinear estimators. Specifically, suppose

that the estimand of interest is a parameter θ0 in some parameter space Θ ⊂ R
k which satisfies moment

conditions of the form

E[g(Yit; θ0)] = 0

for a known function g : Y × Θ → R
m. We can obtain a Z-estimator θ̂ for the parameter by solving m

estimating equations of the form

0 = ÂNT ĝNT (θ̂)
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where we define ĝNT (θ) := 1
NT

∑N
i=1

∑T
t=1 g(Yit; θ), and ÂNT is an k × m matrix which may depend on

quantities estimated from the data with probability limit ÂNT
p→ A0. If we denote the Jacobian of the pop-

ulation moment with G0 := ∇θE[g(Yit; θ0)], under regularity conditions we have from standard arguments11

that the estimator is asymptotically linear and satisfies the expansion

rNT (θ̂ − θ0) = − (A0G0)
−1 rNT ĝNT (θ0) + op(1)

where rNT is a rate such that the distribution of rNT ĝNT (θ0) is asymptotically tight.

Following the proposal by Kline and Santos (2012), we can obtain the bootstrap analog ĝ∗NT (θ̂) :=
1
NT

∑N
i=1 g

∗
it by resampling from the N × T ×m array with entries git := g(Yit; θ̂) using the (multivariate

version of the) algorithm from Section 3. We can then estimate the distribution of the estimator with

rNT (θ̂
∗ − θ̂) := −

(

ÂNT ĜNT

)−1

rNT ĝ
∗
NT (θ̂)

where ĜNT := 1
NT

∑N
i=1

∑T
t=1 ∇θg(Yit; θ̂). It is important to note that refinements are generally only

available if the estimating equations are linear in the parameter, so that the estimator can be represented as

a smooth function of sample moments.

An important special case are method of moments estimators that match model predictions as a function

of the unknown parameter π : Θ → R
M to the corresponding sample moments, 1

NT

∑N
i=1

∑T
t=1 g(Yit). In

that case, we can directly bootstrap the joint distribution of the sample moment functions via

ĝNT (θ) =
1

NT

N
∑

i=1

T
∑

t=1

g(Yit)− π(θ)

Note that the resulting estimating equations are linear in the sample moments by construction, so that

the bootstrap procedure immediately inherits the asymptotic properties from the bootstrap distribution for

vectors of sample means, including refinements.

B.3. Inference in Regression Models. In a regression model

yit = x′iβ1 + z′tβ2 + uit, E[uit|xi, zt] = 0

the researcher may be interested in inference conditional on the regressors xi, zt. In that case the assumption

that the error uit be separately exchangeable conditional on (xi, zt) is unreasonably strong, especially under

potential misspecification of the regression function. However if uit|xi, zt is a.s. continuously distributed,

the conditional integral transform

vit := Fu|x,z(uit|xi, zt)
follows a uniform distribution conditional on xi, zt and may be embedded into a separately exchangeable

array. This gives us the Aldous-Hoover representation

uit = F−1
u|x,z(vit|xi, zt) ≡ F−1

u|x,z(f̃(µ, αi, γt, εit)|xi, zt) ≡ fµ(αi, xi, γt, zt, εit)

where αi, γt, εit are i.i.d. conditional on xN := (x1, . . . , xN ) and zT := (z1, . . . , zT ). We can therefore

find an orthogonal decomposition of uit conditional on xN , zT that is analogous to that for Yit in the

unconditional case. Under the appropriate moment conditions for xi, zt we can then obtain the conditional

limiting distribution of rNT

NT

∑N
i=1

∑T
t=1(x

′
i, z

′
t)

′uit given xN , zT via a martingale CLT using an analogous

argument as in the proof of Theorem 4.1.

11See e.g. Newey and McFadden (1994)
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The corresponding bootstrap procedure holds xi, zt fixed for each bootstrap replication and resamples

residuals u∗it from an estimate of its conditional distribution. Specifically, we let ûit := Yit − x′iβ̂1 − z′tβ̂2,

âi :=
1

T

T
∑

t=1

ûit

ĝt :=
1

N

N
∑

i=1

ûit, and

ŵit := uit − âi − ĝt.

We also compute λ̂a :=
D̂a(κa)T σ̂

2
a

D̂a(κa)T σ̂2
a+σ̂

2
w

and λ̂g :=
D̂g(κg)Nσ̂

2
g

D̂g(κg)Nσ̂2
g+σ̂

2
w

for the bootstrap with or without model

selection, where σ̂2
a, σ̂

2
g , σ̂

2
w are defined in an analogous fashion as in Section 3. We then generate the bth

bootstrap sample according Y ∗
it := x′iβ̂1 + z′tβ̂2 + u∗it, where

u∗it :=

√

λ̂aωai,bâi +

√

λ̂gωgt,bĝt + ωai,bωgt,bŵit

where ωai,b, ωgt,b are i.i.d. random variables with zero mean, and second and third moments equal to unity.

A proof of asymptotic validity of this bootstrap procedure closely follows the argument the unconditional

case in Lemma C.2 and Theorem 4.2. The shrinkage strategy based on the unconditional variance ratios yields

asymptotically valid inference despite the fact that the conditional variance ratios TVar(ai|xi)/(TVar(ai|xi)+
Var(wit|xi)) and NVar(gt|zt)/(NVar(gt|zt) + Var(wit|zt)) need not be constant. Specifically, for sequences

under which Tσ2
a is bounded, TVar(ai|xi) must also be bounded with probability approaching 1. On the

other hand, if Tσ2
a → ∞, the ratio TVar(ai|xi)/(TVar(ai|xi) + Var(wit|xi)) → 1 with strictly positive

probability, so that the bootstrap procedure with λa = 1 yields a Gaussian limit with the correct asymptotic

variance. The analogous conclusions hold with respect to bounded and divergent sequences of Nσ2
g . Finally,

for unbounded sequences for Tσ2
a and Nσ2

g which do not converge to infinity, we can partition that sequence

into a divergent and one bounded subsequence along each of which the bootstrap is asymptotically valid.

In particular, the bootstrap with or without model selection inherit their pointwise (uniform given qv = 0,

respectively) consistency properties from the unconditional case.

B.4. Non-Exhaustively Matched Samples. We next consider the case in which Yit is observed only for

some, but not all index pairs (i, t). For example, units i = 1, . . . , N could be high school students, and

t = 1, . . . , T teachers, and we observe student i’s test score Yit after being taught by teacher t. The process

for assigning students and teachers to classrooms may be “blind” to student and teacher-level characteristics

αi or γt, or subject to sorting. E.g. a principal may assign a more talented teacher to a classroom of “weak”

students. Endogenous sorting raises additional major conceptual and practical issues for identification and

estimation, so for the remainder of this section we focus exclusively on the case of “exogenous” assignment,

in a sense to be made more precise in Assumption B.1 (b) below.

We can formalize such a sampling scheme by defining an N × T matrix W of indicator variables, where

Wit equals one if Yit is observed for the dyad (i, t), and zero otherwise. We then consider the sampling

distribution of

ȲNT,W :=
1

∑N
i=1

∑T
t=1Wit

N
∑

i=1

T
∑

t=1

WitYit

conditional on Wit. We also let

pi :=
1

T

T
∑

t=1

Wit, pt :=
1

N

N
∑

i=1

Wit, and p̄ :=
1

NT

N
∑

i=1

T
∑

t=1

Wit =
1

N

N
∑

i=1

pi =
1

T

T
∑

t=1

pt
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We then make the following assumptions:

Assumption B.1. (a) As N, T → ∞ sampling weights Wit are such that 1
N

∑N
i=1 (pi/p̄)

2 → τa < ∞ and
1
T

∑T
t=1 (pt/p̄)

2 → τg <∞. (b) The random array can be represented as Yit = f(αi, γt, εit) for some function

h(·), and random variables αi, γt, εit that are i.i.d. conditional on Wit.

Note that part (a) does not impose any restrictions on the density/sparseness of the sampling frame, but

the assumption of finite limits τa, τg amounts to a balance requirement on relative cluster sizes in either

dimension. In particular we allow for the case p̄ → 0, but rule out the existence of individual clusters that

dominate in size. Part(b) can be interpreted as a “no sorting” condition that is restrictive in many contexts

in which the observable (i, t) pairs are the result of matching or self-selection of economic agents. This

excludes cases with assortative matching on worker and firm productivity, or samples with students and

teachers that are matched according to ability.

Given Assumption B.1, we find from elementary variance calculations that

r−2
NT,W := Var(ȲNT,W ) (B.1)

=
1

NT p̄

(

T p̄σ2
a

[

1

N

N
∑

i=1

(

pi
p̄

)2
]

+Np̄σ2
g

[

1

T

T
∑

t=1

(

pt
p̄

)2
]

+ σ2
w

)

From this expression, we can see that clustering on αi and γt matters asymptotically if and only if Np̄σ2
g +

T p̄σ2
a converges to a strictly positive limit. Cluster-level variation dominates the limiting distribution if

Np̄σ2
g + T p̄σ2

a → ∞.

By Assumption B.1 (b), E[ȲNT,W |W] = E[Yit|Wit] = E[Yit] a.s., so that our analysis of the asymptotic

distribution will focus on the studentized mean rNT (ȲNT,W − E[Yit]).

We then consider the following bootstrap algorithm:

(a) Generate an exhaustively matched bootstrap sample Y ∗
it , i = 1, . . . , N , t = 1, . . . , T as in the baseline

case with

λ̂a :=

D̂a(κa)T p̄σ̂
2
a

[

1
N

∑N
i=1

(

pi
p̄

)2
]

D̂a(κa)T p̄σ̂2
a

[

1
N

∑N
i=1

(

pi
p̄

)2
]

+ p̄σ̂2
w

λ̂g :=

D̂g(κg)Np̄σ̂
2
g

[

1
T

∑T
t=1

(

pt
p̄

)2
]

D̂g(κg)Np̄σ̂2
g

[

1
T

∑T
t=1

(

pt
p̄

)2
]

+ p̄σ̂2
w

.

where κa, κg are chosen according to whether the bootstrap is implemented with or without model

selection. For the conservative bootstrap, λ̂a, λ̂g are constructed in analogy to the description in

Section 3.

(b) Keep the observations for which Wit = 1 and compute the bootstrapped mean

Ȳ ∗
NT,W :=

1
∑N

i=1

∑T
t=1Wit

N
∑

i=1

T
∑

t=1

WitY
∗
it

We can then show that under Assumptions 2.1 and B.1, the analogous conclusions to Theorems 4.2 and

4.3 hold for the modified bootstrap distribution:

Proposition B.1. (Bootstrap Consistency) Suppose that Assumptions 2.1 and B.1 hold. Then the

sampling distribution PNT (rNT (ȲNT,W −E[Yit])) and the bootstrap distribution P
∗
NT (rNT (Ȳ

∗
NT,W − ȲNT,W ))
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converge in probability to the same limit,

‖P∗
NT (rNT (ȲNT,W − E[Yit]))− PNT (rNT (Ȳ

∗
NT,W − ȲNT,W ))‖∞

p→ 0

where convergence is pointwise for the bootstrap with model selection. If qv = 0, convergence is uniform

for the bootstrap without model selection, for qv > 0 the bootstrap without selection is inconsistent. The

conservative bootstrap is consistent for the case qv + qe = 0, and conservative for the case qv + qe > 0.

See Appendix C for a proof. The only major complication arises if the second-order projection term
1

NTp̄2

∑N
i=1

∑T
t=1Witvit remains relevant in the limit. In that case, the terms 1

NTp̄

∑N
i=1

∑T
t=1Witφk(αi)ψk(γt)

of the sparse representation can in general no longer be represented in terms of separate sample averages of

φk(αi) and ψk(γt), respectively. Instead we use results on random quadratic forms by Götze and Tikhomirov

(1999) to reach the analogous conclusions. For the case of a sparse sample, p̄→ 0, Corollary 2 in Götze and

Tikhomirov (1999) furthermore implies the stronger conclusion of asymptotic normality of rNT (ȲNT −E[Yit])

even when qv > 0. Finally, a straightforward adaptation of the arguments in the proof of Theorem 4.3 estab-

lishes refinements to the estimated percentiles for the case of non-exhaustively matched samples whenever

qv = 0.

B.5. Unbalanced Cluster Sizes. Suppose that we observe Rit i.i.d. units in the intersection of clusters i

and t, denoted by Yitr , r = 1, . . . , Rit. We consider inference for the pooled average

ȲNT,R :=
1

∑N
i=1

∑T
t=1 Rit

N
∑

i=1

T
∑

t=1

Rit
∑

r=1

Yitr

We also define ri :=
1
T

∑T
t=1 Rit, rt :=

1
N

∑N
i=1Rit, and r̄ :=

1
NT

∑N
i=1

∑T
t=1Rit. Clearly, r̄ = 1

N

∑N
i=1 ri =

1
T

∑T
t=1 rt.

Note that for the case of equal-sized clusters, Rit = R, this problem is formally equivalent to clustering

in three dimensions i = 1, . . . , N , t = 1, . . . , T , and r = 1, . . . , R, where clustering in the third dimension is

trivial, and the Aldous-Hoover representation is of the form

Yitr = f(αi, γt, εitr)

where αi, γt, εitr are i.i.d. across all indices. Note that in the case of balanced cluster sizes, Rit = R for

all i, t, we can directly apply our results for the baseline case, where Yit :=
1
R

∑R
r=1 Yitr . The unbalanced

case in which Rit varies across i, t requires additional assumptions under which we can adapt our approach

for the case of non-exhaustively matched samples from the previous section. However, our results do not

assume that R grows large.

For our results we assume that cluster size is independent of cluster effects αi, γt, and that the imbalance

in cluster size is bounded:

Assumption B.2. (a) As N, T → ∞ sampling weights Rit are such that r̄ → ∞, 1
N

∑N
i=1 (ri/r̄)

2 → ̺a <∞
and 1

T

∑T
t=1 (rt/r̄)

2 → ̺g <∞. (b) The random array satisfies Yit = h(αi, γt, εit), where αi, γt, εit are i.i.d.

conditional on Rit.

Now let

âi :=
1

Trt

T
∑

t=1

Rit
∑

r=1

Yitr − ȲNT,R ĝt :=
1

Nrt

N
∑

i=1

Rit
∑

r=1

Yitr − ȲNT,R

v̂it :=
1

Rit

Rit
∑

r=1

Yitr − âi − ĝt + ȲNT,R êitr := Yitr − âi − ĝt − v̂it
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For our projection representation, v̂it estimates the second projection term E[Yitr |αi, γt], and êitr may remain

relevant for the limiting distribution as long as R does not grow too fast.

We then construct a bootstrap sample as follows:

(a) Generate a∗i := âk(i), g
∗
t := ĝs(t) for i = 1, . . . , N and t = 1, . . . , T where k(i) and s(t) drawn

independently and uniformly at random from the index sets {1, . . . , N} and {1, . . . , T }, respec-

tively, and v∗it := v̂k(i)s(t) and e∗itr := êk(i)s(t)q(r) for q(r) drawn independently and uniformly from

{1, . . . , Rk(i),s(t)}.
(b) Let ωi, ωt, ωr be i.i.d draws from a distribution with mean zero, unit variance, and third moments

equal to one for i = 1, . . . , N , t = 1, . . . , T , and r = 1, . . . , R.

(c) Generate an N × T ×R array of bootstrap draws

Y ∗
itr := ȲNT,R +

√

λ̂aa
∗
i +

√

λ̂gg
∗
t + ωiωt(

√

ˆ̺v∗it + ωre
∗
itr)

where ˆ̺ :=
r̄σ̂2

v

r̄σ̂2
v+σ̂

2
e
and

λ̂a :=
D̂a(κa)T r̄σ̂

2
a

[

1
N

∑N
i=1

(

ri
r̄

)2
]

D̂a(κa)T r̄σ̂2
a

[

1
N

∑N
i=1

(

ri
r̄

)2
]

+ r̄σ̂2
w

λ̂g :=
D̂g(κg)Nr̄σ̂

2
g

[

1
T

∑T
t=1

(

rt
r̄

)2
]

D̂g(κg)Nr̄σ̂2
g

[

1
T

∑T
t=1

(

rt
r̄

)2
]

+ r̄σ̂2
w

.

where κa, κg are chosen according to whether the bootstrap is implemented with or without model

selection. For the conservative bootstrap, λ̂a, λ̂g are again constructed in analogy to the description

in Section 3.

Under Assumptions 2.1 and B.2, the analogous conclusions to Theorems 4.2 and 4.3 regarding bootstrap

consistency and refinements hold for the modified bootstrap procedure after only minor modifications of the

arguments in Theorem B.1.

B.6. Clustering in D Dimensions. The bootstrap procedure can be immediately extended to the case

of an array (Yi1...iD : i1 = 1, . . . , N1, . . . , iD = 1, . . . , ND) that may exhibit clustering in D dimensions. As

in the benchmark case, we assume that the sampling units corresponding to the indices in each dimen-

sion are i.i.d. draws from a common distribution so that for the dth dimension the “sheets” of the

form
(

Yi1...id−1jid+1...iD : id′ = 1, . . . , Nd′, d
′ 6= d

)

are identically distributed for each j = 1, . . . , Nd and d =

1, . . . , D.

Such an array is separately exchangeable, and the main result by Hoover (1979) (see also Corollary 7.23

in Kallenberg (2005)) implies that it can be represented as

Yi1,...,iD = f(µ, α
(1)
1i1
, α

(1)
2i2
, . . . , α

(k)
d1...dki1...ik

, . . . , α
(D)
1...Di1...iD

)

for some function f(m, a
(1)
1 , a

(1)
2 . . . , α

(D)
1...D), where µ, α

(1)
1i1
, . . . , a

(D)
1...Di1...iD

are i.i.d. draws from the uniform

distribution for id = 1, . . . , Nd and d = 1, . . . , D. As in the leading case, we consider inference with respect

to the conditional mean of Yi1...iD given µ.

This case is therefore conceptually analogous to the two-dimensional case, but we need to keep track of

a larger number of terms in an orthogonal projection onto subsets of the D dimensions. For more compact

notation, we let N
(k)
d

:=
∏D
d=1Nd/

∏k
l=1Ndl for any k-variate multi-index d = (d1, . . . , dk). In particular,

N
(0)
() =

∏D
d=1Nd.
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We can then adapt the bootstrap procedure from section 3 in the following manner: For k = 0, 1, . . . , D

we then recursively define projections of the array on the k dimensions d1, . . . , dk,

â(0) :=
1

N
(0)
()

∑

i1,...,iD

Yi1...iD =: ȲN1...ND

and for any multi-indices d := (d1, . . . , dk) and i = (id1 , . . . , idk), let

â
(k)
di

:=
1

N
(k)
d

∑

id′ :d
′ /∈{d1,...,dk}

Yi1,...,iD −
k−1
∑

k′=0

∑

d′∈D(k′)

â
(k−1)
d′id′

1
...id′

k′

where D(k′) consists of the
(

k
k′

)

subsets of {d1, . . . , dk} of size k′. In particular, the projection residual

â
(D)
i1...iD

:= Yi1...iD −
D−1
∑

k=0

∑

d′∈D(k)

â
(k−1)
d′id′1

...id′
k

As in the two-dimensional case, we let σ̂2

a
(k)
d

be the respective bias-corrected empirical variances of these

components. In order to select the asymptotically relevant projection terms, for each multi-index d =

(d1, . . . , dk) we also define the selector D̂
a
(k)
d

(κ) := 1l

{

N
(k)
d
σ̂2

a
(k)
d

≥ κ

}

and sequences κ
a
(k)
d

that grow to

infinity at a slow rate in min{Nd1 , . . . , Ndk}.
For d ∈ {1, . . . , D}, we then draw a

(1)∗
d independently from the empirical distribution for â

(1)
d , and for

each k = 1, . . . , D − 1 and d1, . . . , dk ∈ {1, . . . , D} we let a
(k)∗
d1...dkid1 ...idk

:= â
(k)
d1...dkj∗1 (i1)...j

∗

k
(ik)

(

∏k
l=1 ωdlidl

)

for independent draws ωdid from the same distribution as in the baseline case. As before, j∗d(id) denotes the

index of the cross-sectional unit corresponding to the idth bootstrap draw for dimension d. We then form

Y ∗
i1...iD := ȲN1...ND

+

D
∑

k=1

∑

d′∈D(k)

√

λ̂d′ka
(k−1)∗
d′id′

1
...id′

k′

where for the bootstrap with and without model selection,

λ̂d′k :=

D̂
a
(k)
d

(κ
a
(k)
d

)N
(k)
d
σ̂2

a
(k)

d′

D̂
a
(k)
d

(κ
a
(k)
d

)N
(k)
d
σ̂2

a
(k)

d′

+ σ̂2

a
(D)
1...D

is defined in analogy to the two-dimensional case. In particular, for each d(k) we choose κ
a
(k)
d

according to

slowly increasing sequences for the bootstrap with model selection, and κ
a
(k)
d

= 0 for the bootstrap without

model selection. For the conservative bootstrap, we set

λ̂d′k :=
q̂
a
(k)
d

q̂
a
(k)
d

+ σ̂2

a
(D)
1...D

, where q̂
a
(k)
d

:= max

{

κ
a
(k)
d

, N
(k)
d
σ̂2

a
(k)

d′

}

We can then compute the bootstrapped mean Ȳ ∗
N1...ND

:= 1

N
(0)

()

∑

i1...iD
Y ∗
i1...iD

or its studentization for

the pivotal bootstrap.

Noting that the arguments behind Theorems 4.2 and 4.3 do not rely on the assumption that the random

array is two-dimensional, an extension of these results to the D-dimensional case requires only a few minor

notational changes.

B.7. Dyadic and D-adic Data. The results in this paper readily extend to the case of dyadic or network

data, where we observe aD-dimensional array (Yi1...iD : i1, . . . , iD = 1, . . . , N) whose distribution is invariant

to permutations π : {1, . . . , N} → {1, . . . , N}, that is Yi1...iD
d
= Yπ(i1)...π(iD). Using the terminology of
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Kallenberg (2005), such an array is jointly exchangeable and can be represented as

Yi1...iD = f(µ, α
(1)
i1
, α

(1)
i2
, . . . , α

(k)
i1...ik

, . . . , α
(D)
i1...iD

)

and µ, α
(1)
i1
, α

(1)
i2
, . . . , α

(D)
i1...iD

are i.i.d. uniform random variables for i1, . . . , iD ∈ {1, . . . , N} (see Hoover

(1979) or Theorem 7.22 in Kallenberg (2005)). Conditional on µ, we then consider the sampling distribution

of the “D-adic” mean

ȲN,D :=
1

ND

N
∑

i1,...,iD=1

Yi1...iD

for N units drawn at random from a larger population (with replacement) or distribution.12

Example B.1. Subgraph Counts. Suppose that the adjacency matrix with entries Gij ∈ {0, 1}N2

repre-

sents the subgraph among the set of nodes 1, . . . , N drawn at random from an infinite directed graph. Then

the sampling distribution for the density of network homomorphisms (adjacency-preserving maps, see Lo-

vasz (2012)) with respect to a network F among D distinct nodes can be approximated using this bootstrap

procedure in the following way: We can define an indicator Ri1...iD (F ) that equals 1 if there is an adjacency-

preserving map between F and the subnetwork among the nodes i1, . . . , iD. We can then re-sample from the

D-dimensional array with entries Yi1...,iD := Ri1...iD (F ) using the algorithm described above, where in step

(b) we draw N row identifiers with replacement at random and select columns and other dimensions of the

array corresponding to the same identifiers.

We can implement each of the three bootstrap procedures (with and without model selection and conser-

vative bootstrap) for D-adic arrays by following the algorithm as described in Sections 3 and B.6 except that

in step (b) we draw N row identifiers with replacement at random and select columns and other dimensions

of the array corresponding to the same identifiers. The proofs of Theorems 4.2 and 4.3 then go through

under analogous conditions as for the original case.

Appendix C. Proofs

Proof of Theorem 4.1. Recall that the projection in (2.2) was given in terms of the variables

eit = Yit − E[Yit|αi, γt], ai = E[Yit|αi]− E[Yit], gt = E[Yit|γt]− E[Yit]

and

vit = E[Yit|αi, γt]− E[Yit|αi]− E[Yit|γt] + E[Yit] =

∞
∑

k=1

ckψk(γt)φk(αi)

where we rewrite vit in terms of the low-rank representation in (2.3). Also let

ẐaN :=
rNT
N

N
∑

i=1

ai, ẐgT :=
rNT
T

T
∑

t=1

gt, and ẐeNT :=
rNT
NT

N
∑

i=1

T
∑

t=1

eit

and

ẐφNk :=
1√
N

N
∑

i=1

φk(αi), ẐψTk :=
1√
T

T
∑

t=1

ψk(γt)

for k = 1, 2, . . . . By independence of αi and γt, Ẑ
a
N and ẐgT are uncorrelated. Since αi and γt are independent,

ẐφNk and ẐψTk′ are uncorrelated for any pair k, k′. Also by orthogonality of the basis functions, ẐφNk and

12Note that the case in which we only include D-ads of D or fewer distinct indices in the average is nested
in this formulation, potentially after rescaling the mean by a bounded sequence.
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ẐφNk′ (Ẑ
ψ
Tk and ẐψTk′ , respectively) are uncorrelated for any k 6= k′. Finally by mean-independence of eit and

αi, γt, the pairwise covariance between ẐeNT and each component of ẐφNk, Ẑ
ψ
Tk, Ẑ

a
N , Ẑ

g
T are zero.

We can stack these sample moments

ẐNT,K :=
(

ẐeNT , Ẑ
a
N , Ẑ

g
T , Ẑ

φ
N1, Ẑ

ψ
T1, . . . , Ẑ

φ
NK , Ẑ

ψ
TK

)

.

Now, let the sigma-fields Fit := σ ({αj , γs, εjs : j = 1, . . . , i; s = 1, . . . , t}), and define the filtration Fs :=

Fis,s for each s = 1, 2, . . . , where is := [Ns/T ]. Then each component of ẐeNT,K is a martingale adapted to

FT , so that by a CLT for martingale difference sequences and the Cramér-Wold device,

ẐNT,K
d→ N(0, Q)

where Q is a (2K + 3) × (2K + 3) matrix whose first three diagonal entries are qe, qa, and qg, and the

remaining 2K diagonal entries are equal to 1. For k = 1, 2, . . . the entries of Q corresponding to covariances

between ai and φk(αi) equal qak, and the covariances between gt and ψk(γt) are equal to qgk. All other

off-diagonal entries of Q are zero.

Truncating the expansion (2.3) at K <∞, we define

rNT
(

ȲNT,K − E[Yit]
)

= ẐaN + ẐgT + ẐeNT + ̺NT

K
∑

k=1

ckẐ
φ
NkẐ

ψ
Tk

From the previous steps it then follows that

rNT (ȲNT,K − E[Yit,K ])
d→ √

qaZa +
√
qgZg +

√
qeZe + ̺VK

along each converging sequence, where

VK :=

K
∑

k=1

ckZ
ψ
k Z

φ
k

with the coefficients ck potentially variying along the limiting sequence, Zφ1 , Z
ψ
1 , . . . , Z

φ
K , Z

ψ
K are i.i.d. stan-

dard normal random variables, and Za, Zg are standard normal random variables with Cov(Za, Zφk ) =

qak/
√
qa, Cov(Z

g, Zψk ) = qgk/
√
qg, Cov(Z

a, Zg) = Cov(Za, Zψk ) = Cov(Zg, Zφk ) = 0 for all k = 1, 2, . . . .

Finally, notice that the approximation error with respect to the distribution of rNT (ȲNT −E[Yit]) from the

truncation at K < ∞ can be made arbitrarily small by choosing K sufficiently large, where the magnitude

of the approximation error can be controlled uniformly under Assumption 2.2, establishing claims (a) and

(b) �

In order to prove Theorem 4.2, we first establish rates of consistency for the estimators for the respective

variances of the projection components, σ̂2
a, σ̂

2
g , σ̂

2
w introduced in section 3.

Lemma C.1. Suppose Assumption 2.1 holds. Then (a)

σ̂2
a − σ2

a = OP

(

N−1/2
(

σa + T−1/2σe

)2

+ T−1σ2
v

)

σ̂2
g − σ2

g = OP

(

T−1/2
(

σg +N−1/2σe

)2

+N−1σ2
v

)

σ̂2
w − σ2

w = OP

(

(NT )−1/2σ2
e + (N−1/2 + T−1/2)σ2

v

)

(b) There exist no estimators for σ2
a, σ

2
g and σ2

w that converge at rates faster than those given in (a). Specif-

ically, σ2
a cannot be estimated at a rate faster than T−1 even when σ2

a = 0.
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This lemma implies in particular that the estimators σ̂2
a, σ̂

2
g and σ̂2

w are rate-optimal. Together with the

continuous mapping theorem, this Lemma implies directly that λ̂NT with model selection is pointwise con-

sistent. λ̂NT without model selection is uniformly consistent if qv = 0, and inconsistent if qv > 0.

Proof of Lemma C.1: For part (a), let ŝ2a := 1
N−1

∑N
i=1 â

2
i , ŝ

2
g :=

1
T−1

∑T
t=1 ĝ

2
t , and ŝ

2
w := 1

NT−N−T
∑M

i=1

∑T
t=1 ŵ

2
it

be the empirical variances of the projection terms âi, ĝt, ŵit. We can also verify that N
N−1VarNT (âi) =

σ2
a + σ2

w/T ,
T
T−1VarNT (ĝt) = σ2

g + σ2
w/N , and NT

NT−N−T VarNT (ŵit) = σ2
w.

Consider first the term ŝ2a: We can write

â2i =

(

ai +
1

T

T
∑

t=1

wit

)2

=

(

ai +
1

T

T
∑

t=1

eit

)2

+ 2

(

ai +
1

T

T
∑

t=1

eit

)

1

T

T
∑

t=1

vit +

(

1

T

T
∑

t=1

vit

)2

Hence we have that

ŝ2a −
(

σ2
a +

1

T
σ2
w

)

=
1

N

N
∑

i=1







(

ai +
1

T

T
∑

t=1

eit

)2

−
(

σ2
a +

1

T
σ2
e

)







+
1

N

N
∑

i=1

(

ai +
1

T

T
∑

t=1

eit

)

1

T

T
∑

t=1

vit +
1

N

N
∑

i=1







(

1

T

T
∑

t=1

vit

)2

− 1

T
σ2
v







=: A1 +A2 +A3

By independence of the rank variables αi, γt, εit in the Aldous-Hoover representation and a martingale CLT,

we have that

A1 = OP

(

N−1/2
(

σa + T−1/2σe

)2
)

as N → ∞. Next, consider the term A3: defining φ̃ik := φk(αi)− E[φk(αi)] we can write

1

N

n
∑

i=1

(

1

T

T
∑

t=1

vit

)2

=
1

N

N
∑

i=1

(

1

T

T
∑

t=1

∞
∑

k=1

ckφ̃ikψ̃tk

)2

=
1

N

N
∑

i=1

∑

k,k′

ckck′ φ̃ikφ̃ik′

(

T
∑

t=1

ψ̃tk

)(

T
∑

t=1

ψ̃tk′

)

=
∑

k,k′

ckck′

(

1

N

N
∑

i=1

φ̃ikφ̃ik′

)(

T
∑

t=1

ψ̃tk

)(

T
∑

t=1

ψ̃tk′

)

=:
1

T

∑

k,k′

(

1l{k = k′}+ 1√
N
Ẑ φ̃φ̃Nkk′

)

Ẑψ̃TkẐ
ψ̃
Tk′ (C.1)

Here, ẐφφNkk′ = 1√
N

∑N
i=1(φ̃ikφ̃ik′ − E[φ̃ikφ̃ik′ ]), where E[φ̃ikφ̃ik′ ] equals 1 if k = k′ and zero otherwise. In

particular, it follows that

A3 = OP
(

T−1σ2
v

)

as N and T grow large. By similar calculations, we find that

A2 =

∞
∑

k=1

ck

(

1

N

N
∑

i=1

(

ai +
1

T

T
∑

t=1

eit

)

φ̃ik

)(

1

T

T
∑

t=1

ψ̃tk

)

= OP

(

N−1/2(σa + T−1/2σe)T
−1/2σv

)
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noting that by construction E

[

aiφ̃ik

]

= 0 for each k = 1, 2, . . . . Aggregating the contributions of the

individual terms A1, A2, A3, we then obtain

ŝ2a −
(

σ2
a +

1

T
σ2
w

)

= OP

(

N−1/2
(

σa + T−1/2σe

)2

+ T−1σ2
v

)

Similarly, we find that

ŝ2g −
(

σ2
g +

1

N
σ2
w

)

= OP

(

T−1/2
(

σg +N−1/2σe

)

+N−1σ2
v

)

Next, note that

σ̂2
w =

1

NT

N
∑

i=1

T
∑

t=1

(v2it + 2viteit + e2it)

From calculations analogous to (C.1), we also find that

1

NT

N
∑

i=1

T
∑

t=1

v2it = Op

(

N−1/2 + T−1/2
)

Hence,

σ̂2
w − σ2

w = OP

(

(NT )−1/2σ2
e + (T−1/2 +N−1/2)σ2

v

)

The rates asserted in the Lemma then follow directly from the definitions of the variance estimators σ̂2
a :=

max
{

0, ŝ2a − 1
T ŝ

2
w

}

, σ̂2
g := max

{

0, ŝ2g − 1
N σ̂

2
w

}

.

For a proof of part (b), note first that it is sufficient to find a specific family of distributions under which

that rate cannot be improved upon. Specifically, consider the model

Yit = αiγt + εit

where αi, γt, εit are independent, αi ∼ N(µa, 1), γt ∼ N(µg, 1) for some µa, µg ≥ 0, and εit ∼ N(0, σ2
ε ).

To establish the rate for the contribution of terms depending on σ2
v to that bound, consider the case

σ2
ε = 0 and µa = 0. For this model, ai := E[Yit|αi] = αiµg and vit = αi(γt − µg), so that σ2

a = µ2
g and

σ2
v = 1. Clearly, µg cannot be estimated from the original data at a better rate than from directly observing

(αi)
N
i=1 and (γt)

T
t=1. Furthermore, since γ1, . . . , γT are i.i.d., there exists no consistent test for the problem

H0 : µg = 0 against H1 : µg = T−1/2mg for any arbitrary mg > 0. Since under H0, σ
2
a = 0, whereas under

H1, σ
2
a = T−1m2

g, there can be no estimator for σ2
a that is consistent at a rate faster than T−1σ2

v.

The respective contributions of terms depending on σ2
a, σ

2
g and σ2

e to the rate bound follow immediately

from standard arguments for the case of i.i.d. data, which can similarly be cast in terms of pairwise testing

problems between drifting DGP sequences. Finally, consistent estimation of σ2
a under all DGPs permitted

by our framework requires simultaneously solving these pairwise testing problems that gave us the respective

rate contributions depending on σ2
a, σ

2
g , σ

2
e and σ2

v. Hence an upper bound is given by the slowest of these

rates, which establishes the claim for the rate of consistent estimation of σ2
a. The respective upper bounds

on the rate for estimating σ2
g and σ2

w follow from analogous arguments �

From the previous result, it follows that the variance estimator Ŝ2
NT,sel is pointwise consistent:

Corollary C.1. (Consistency of Ŝ2
NT,sel) Suppose that Assumption 2.1 holds. Then for the variance

estimator with model selection
∣

∣

∣

∣

∣

r2NT Ŝ
2
NT,sel

NT
− 1

∣

∣

∣

∣

∣

p→ 0
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pointwise for any values of σ2
a, σ

2
g , σ

2
v, σ

2
e . For the variance estimator without model selection convergence is

uniform if qv = 0, but the estimator is inconsistent for qv > 0.

Noting that Var
(

rNT (ȲNT − E[Yit])
)

= 1, this corollary is an immediate consequence of the convergence

rates in Lemma C.1. In particular, if σ2
a = 0, Lemma C.1 (a) implies that T σ̂2

a = Op(1), so that for any

divergent sequence κa → ∞, T σ̂2
a < κa with probability approaching 1, in which case D̂a(κa) = 0. On the

other hand, if σ2
a > 0, then σ̂2

a = σ2
a+Op(N

−1/2). Hence for the estimator with model selection, D̂a(κa) = 1

for any sequence κa such that κa/T → 0. By the same reasoning, the selector D̂g(κg) = 0 with probability

approaching 1 if σ2
g = 0, and D̂g(κg) = 1 with probability approaching 1 if σ2

g > 0. The conclusions regarding

estimation without model convergence are immediate given Lemma C.1.

Proof of Proposition 4.1: Part (b) of Lemma C.1 implies that along sequences σ2
a, σ

2
g , σ

2
w with limT Tσ

2
a =

qa, limN σ
2
g = qg and limN,T σ

2
w = qv + qe. Therefore, the asymptotic variance of the sample mean

lim
N,T

Var
(√

NT (ȲNT − E[Yit])
)

= lim
N,T

(

Tσ2
a +Nσ2

g + σ2
w

)

= qa + qg + qv + qe

cannot be estimated consistently unless qv = 0 or qa = qg = 0. If the asymptotic variance cannot be

estimated consistently along a particular parameter sequence, it follows in particular that the asymptotic

distribution of ȲNT cannot be estimated uniformly consistently, establishing the claim �

In order to obtain the limit of the bootstrap distribution, we introduce some additional notation: for any

array (ξit), we let the operator E
∗
NT [ξit|αi] := 1

T

∑T
t=1 ξit denote the row-wise average for the T observations

in the ith row, E∗
NT [ξit|γt] := 1

N

∑N
i=1 ξit the column-wise average for the N observations in the tth column,

and E
∗
NT [ξit] :=

1
NT

∑N
i=1

∑T
t=1 ξit the pooled average over all NT observations. We also decompose ŵit =

v̂it + êit with

êit = eit − E
∗
NT [eit|αi]− E

∗
NT [eit|γt] + E

∗
NT [eit]

v̂it = v(αi, γt) =
∞
∑

k=1

ckψk(γt)φk(αi)

Given that notation we define the localized second moments of the projection terms,

q∗a,NT := r2NTN
−1

E
∗
NT [â

2
i ] = r2NT

1

N2

N
∑

i=1

â2i , q∗g,NT := r2NTT
−1

E
∗
NT [ĝ

2
t ] = rNT

1

T 2

T
∑

t=1

ĝ2t

q∗e,NT := r2NT (NT )
−1

E
∗
NT [ê

2
it], q∗v,NT := r2NT (NT )

−1
E
∗
NT [v̂

2
it]

q∗ak,NT := r2NTN
−1

E
∗
NT [âiφk(αi)], q∗gk,NT := r2NTT

−1
E
∗
NT [ĝtψk(γt)]

for k = 1, 2, . . . . We then also write

q∗
NT := (q∗e,NT , q

∗
a,NT , q

∗
g,NT , q

∗
a1,NT , q

∗
g1,NT , q

∗
a2,NT , . . . )

and cNT := (c1,NT , c2,NT , . . . ), where we take the sequences cNT and q∗
NT

to be elements of ℓ2.

We first consider convergence for a truncated version of the spectral representation for the sample mean

in (2.3) at some fixed integer K, 0 < K <∞,

Ȳ ∗
NT,K := E

∗
NT [Yit] +

√

λa
1

N

N
∑

i=1

âj(i) +
√

λg
1

T

T
∑

t=1

ĝs(t) +
1

NT

N
∑

i=1

T
∑

t=1

ω1iω2têj(i)s(t) (C.2)

+
1√
NT

K
∑

k=1

ck

[

1√
N

N
∑

i=1

ω1i

(

φk(αj(i))− E
∗
NT [φk(αj(i))]

)

][

1√
T

T
∑

t=1

ω2t

(

ψk(γs(t))− E
∗
NT [ψk(γs(t))]

)

]
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which is obtained by truncating the bootstrap analog of (2.3). This can be expressed in terms of the truncated

bootstrap process

Ẑ∗
K,NT := (Ẑe,∗NT , Ẑ

a,∗
N , Ẑg,∗T Ẑφ,∗N1 , Ẑ

ψ,∗
T1 , . . . , Ẑ

φ,∗
NK , Ẑ

ψ,∗
TK)′

where we let

Ẑa,∗NT :=
rNT
N

N
∑

i=1

âj(i), Ẑg,∗NT :=
rNT
T

T
∑

t=1

ĝs(t), Ẑe,∗NT :=
rNT
NT

N
∑

i=1

T
∑

t=1

ω1iω2têj(i)s(t)

and

Ẑφ,∗Nk :=
1√
N

N
∑

i=1

ω1i

(

φk(αj(i))− E
∗
NT [φk(αj(i))]

)

Ẑψ,∗Tk :=
1√
T

T
∑

t=1

ω2t

(

ψk(γs(t))− E
∗
NT [ψk(γs(t))]

)

for k = 1, . . . ,K.

To characterize the asymptotic distribution of Ȳ ∗
NT,K , we let c̃NT,K ∈ ℓ2 denote the truncated version of

the vector cNT = (c1,NT , c2,NT , . . . ) of spectral coefficients in (2.3), where the first K components of c̃NT,K

coincide with the first K components of cNT , and all remaining coordinates are set to zero. We also define

the distribution

L∗(c,q, ̺,λ) :=
√

λaqaZ
a +

√

λgqgZ
g + ̺

∞
∑

k=1

ckZ
φ
kZ

ψ
k +

√
qeZ

e

where λ := (λa, λg), Z
e, Zφ1 , Z

ψ
1 , Z

φ
2 , Z

ψ
2 , . . . are i.i.d. standard normal random variables, and Za, Zg are

random variables with a standard normal marginal distribution and covariances Cov(Za, Zφk ) = qak/
√
qa

and Cov(Zg, Zψk ) = qgk/
√
qg.

Lemma C.2. (Bootstrap CLT) Consider the bootstrap with shrinkage parameters λNT = (λa,NT , λg,NT )

and suppose that Assumption 2.1 holds. Then for any fixed K <∞ we have that

‖P∗
NT (rNT (Ȳ

∗
NT,K − ȲNT ))− L∗(c̃NT,K ,q

∗
NT , ̺,λNT )‖∞

p→ 0

Proof: By Assumption 2.1, the third conditional moments of âi, γ̂t, êit given (Yit : i = 1, . . . , N, t = 1, . . . , T )

are almost surely bounded, so that from the same argument as in the proof of Theorem 1 in Liu (1988), the

Berry-Eséen theorem together with the Cramér-Wold device implies a joint CLT for the bootstrap processes,
∥

∥

∥
P
∗
NT

(

Ẑ∗
K,NT

)

−N(0, Q∗
NT,K)

∥

∥

∥

∞
= oP (1)

conditional on (Yit)i=1,...,Nt=1,...,T almost surely. Here, Q∗
NT,K is a (2K + 3)× (2K + 3) matrix whose first

three diagonal entries are q∗e,NT , q
∗
a,NT , and q

∗
g,NT , and the remaining 2K diagonal entries converge almost

surely to 1. For k = 1, . . . ,K the entries of Q corresponding to covariances between âi and φk(αi) equal

q∗ak,NT , and the covariances between ĝt and ψk(γt) are equal to q∗gk,NT . All other off-diagonal entries of

Q∗
NT,K converge almost surely to zero.

Rewriting (C.2), we obtain

rNT (Ȳ
∗
NT,K − ȲNT ) := Ẑa,∗N + Ẑg,∗T + Ẑe,∗NT + ̺NT

K
∑

k=1

ckẐ
φ,∗
Nk Ẑ

ψ,∗
Tk

and it follows from the joint CLT and the continuous mapping theorem that

∥

∥P
∗
NT

(

Ȳ ∗
NT,K

)

− L∗(c̃NT,K ,q
∗
NT , ̺,λNT )

∥

∥

∞ = oP (1)
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establishing the claim �

Proof of Theorem 4.2. For bootstrap consistency it suffices to verify whether the limiting distributions

of the sampling distribution rNT (ȲNT −E[Yit]) and the limit of the bootstrap distribution rNT (Ȳ
∗
NT − ȲNT )

given the sample coincide. In what follows, we first consider the asymptotic distribution of the truncated

representation of the bootstrapped mean Ȳ ∗
NT,K defined in (C.2) and let c̃NT,K ∈ ℓ2 denote the truncated

version of the vector cNT = (c1,NT , c2,NT , . . . ) of spectral coefficients in (2.3), where the first K components

of c̃NT,K coincide with the first K components of cNT , and all remaining coordinates are set to zero.

For pointwise consistency of the bootstrap with model selection, note first that the local parameter with

both qa + qg > 0 and qv > 0 can only be achieved at drifting sequences, so that this case is irrelevant

for point-wise convergence. By Lemma C.1 (a), q∗
NT,K − qNT,K

p→ 0, and λ̂a, λ̂g are consistent for λa, λg

whenever either qa + qg = 0 or qv = 0, where convergence is pointwise. Hence together with the continuous

mapping theorem, Lemma C.2 implies that

∥

∥P
∗
NT (rNT (Ȳ

∗
NT,K − ȲNT ))− L∗(c̃NT,K ,q, ̺,λNT )

∥

∥

∞
p→ 0

We can then use standard approximation arguments to conclude that the distribution of the truncated

version Ȳ ∗
NT,K of the bootstrap mean can be made to approximate arbitrarily closely to that of Ȳ ∗

NT by

choosing K large enough, so that

∥

∥P
∗
NT (rNT (Ȳ

∗
NT − ȲNT ))− P

∗
NT (rNT (Ȳ

∗
NT,K − ȲNT ))

∥

∥

∞ = oP (1)

and

‖L∗(c̃NT,K ,q, ̺,λNT )− L∗(cNT ,q, ̺,λNT )‖∞ = oP (1)

Hence pointwise convergence for the bootstrap with model selection follows from Theorem 4.1 and Lemma

C.2 together with continuity of L∗(c̃NT,K ,q, ̺,λ) in q, and the triangle inequality. The analogous result for

the pivotal bootstrap follows from Corollary C.1 together with the continuous mapping theorem.

For uniform consistency of the bootstrap without model selection, we first consider convergent drifting

sequences qNT , cNT with limits q and c, respectively. We also let

q̄NT := (qe,NT , qa,NT + qe,NT + qv,NT , qg,NT + qe,NT + qv,NT , qa1,NT , qg1,NT , . . . ),

and denote the subvector consisting of the first 2K + 3 components of q̄NT with q̄NT,K . Lemma C.1 (a)

implies that q∗
NT,K − q̄NT,K converges in probability to zero for each K <∞, and λ̂a, λ̂g are consistent for

λa and λg along such a sequence whenever qv = 0. Convergence for the bootstrap without model selection

along the convergent sequence qNT then follows from the same arguments as for the pointwise case, noting

that under Assumption 2.2 (b), the approximation error in (2.3) from truncation atK <∞ can be controlled

uniformly under drifting sequences for cNT .

The conservative bootstrap is identical to the bootstrap with model selection except in the event D̂a(κa) =

0 or D̂g(κg) = 0. For D̂a(κa) = 0 we have by inspection that
√

λ̂a

Nκa

∑N
i=1 a

∗
i,b

d→ N(0, 1), and for D̂g(κg) = 0,

we have

√

λ̂g

Tκg

∑T
t=1 g

∗
t,b

d→ N(0, 1), whereas the other components of the bootstrap distribution coincide

with their analogs for the bootstrap with model selection.

This establishes the claims of the Theorem under any convergent sequences qNT , cNT . To conclude the

proof it remains to show that it is in fact sufficient for uniformity to consider convergent subsequences for

which the appropriately normalized parameters converge to proper limits. Here we can adapt an argument

from the proof of Theorem 1 in Andrews and Guggenberger (2010), noting that the limiting sequences for the
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truncated version spectral representation ȲNT,K and its bootstrap analog, Ȳ ∗
NT,K in the proofs of Theorem

4.1 and Lemma C.2 are both indexed by finite-dimensional subvectors of c and q. Since qa+qg+qv+qe = 1,

such a subvector of q can only take values in a compact set, and the norm ‖c̃NT,K‖2 ≤ ∑K
k=1 c̄

2
k < ∞ by

Assumption 2.2. Hence such a convergent subsequence for these subvectors can be extracted from (qNT , cNT )

by the Bolzano-Weierstrass theorem, and the truncation error can then be made arbitrarily small by choosing

K large enough. �

Proof of Theorem 4.3. We can establish the refinements of this bootstrap procedure by verifying the

conditions for part (ii) of the main theorem in chapter 5 of Mammen (1992).

First note that the third moment of âi under the sampling distribution is

E[â3i ] =

(

E[a3i ] +
2

T
E[aiw

2
it] +

1

T 2
E[w3

it]

)

(1 +O(1/N))

where we used the fact that wit is mean-independent of ai. By the assumptions of the theorem and a central

limit theorem, we then have

E
∗
NT [(a

∗
i,b)

3]− E[a3i ] =
1

N

N
∑

i=1

(â3i − E[a3i ]) = OP (N
−1/2).

Hence, for the processes

Ŵ a
N :=

1√
N

N
∑

i=1

ai and Ŵ a,∗
N :=

1√
N

N
∑

i=1

a∗i,b

we have that

E
∗
NT

[

(

Ŵ a,∗
N

)3
]

− E

[

(

Ŵ a
N

)3
]

= N−1/2
(

E
∗
NT [(a

∗
i )

3]− E[a3i ]
)

= OP (N
−1)

This amounts to establishing condition DIFFT (3, C) in Mammen (1992) for the process Ŵ a,∗
N . Verifying

the conditions DIFFS(2) and V AR(2) follows similar steps and is more standard. Note that by inspection

of the expression for E[â3i ], the conclusion does not hold in general under arbitrary drifting sequences for the

second and third moments of ai, wit. Using the same arguments, we can establish conditions DIFFT (3, C),

DIFFS(2), and V AR(2) for Ŵ
g,∗
T := 1√

T

∑T
t=1 g

∗
t,b at the respective rates in T .

For the analogous results for the component Ŵ e,∗
NT := 1√

NT

∑T
t=1 e

∗
it,b, note that by assumption E[ω3

i ] =

E[ω3
t ] = 1 and the draws are independent, so that that E[(ωiωt)

3] = 1. Hence, the third moment of e∗it under

the bootstrap distribution also converges in probability to the third moments of eit, φ
k(αi), ψ

k(γt) under the

sampling distribution, using standard arguments analogous to the previous case. In particular, conditions

DIFFT (3, C), DIFFS(2, C) and V AR(2) in Mammen (1992) hold for Ẑe,∗NT at the respective rates in NT .

Furthermore, convergence in each of finitely many components implies joint convergence of cumulants for all

three components. Since we only consider pointwise convergence for cases with qv > 0 the contribution of

the Wiener chaos component is asymptotically negligible.

By construction, Ŵ a
N and Ŵ g

T and their bootstrap versions Ŵ a,∗
N and Ŵ g,∗

T are independent. Also, the

components of Ŵ a
N , Ŵ

g
T , Ŵ

e
NT as well as their bootstrap analogs are asymptotically uncorrelated. For third

cumulants of weighted sums of ẐaN and ẐeNT we also need to consider the moments

E[âiŵ
2
it] = E[aiw

2
it](1 +O(1/N))
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where E∗
NT [a

∗
i (w

∗
it)

2]−E[âiŵ
2
it] = OP (N

−1/2) by an analogous argument as for the third moment of a∗i,b. By

similar arguments as for the third moments of ai and gt, for any weights s1, s2, s3 ≥ 0, we then have

E
∗
NT

[

(

s1Ŵ
a,∗
N + s2Ŵ

g,∗
T + s3Ŵ

e,∗
NT

)3
]

− E

[

(

s1Ŵ
a
N + s2Ŵ

g
T + s3Ŵ

e,∗
NT

)3
]

= OP (N
−1)

with the analogous conclusion for weighted sums of ẐgT and ẐeNT and their bootstrap analogs.

Since under qv = 0, λ̂a
p→ λa and λ̂g → λg pointwise for the bootstrap with or without model selection,

we can combine convergence of the cumulants of the joint distribution of the individual components to verify

that the conditions DIFFT (3, C), DIFFS(2), and V AR(2) also hold for the weighted sums with rates in

N if σa > 0 (T , respectively, if σg > 0), or NT if σa = σg = 0 and σe > 0, so that the conclusion follows

from the main theorem in chapter 5 of Mammen (1992). The analogous conclusions hold for the conservative

bootstrap only if qe + qv = 0 �

C.1. Proof of Proposition B.1: The main arguments from the Proof of Theorem 4.2 hold after a few

minor modifications of the arguments for the case qv = 0. The only major complication arises if the second-

order projection term 1
NTp̄2

∑N
i=1

∑T
t=1Witvit is of first order as we take limits. In that case, the terms

1
NTp̄

∑N
i=1

∑T
t=1Witφk(αi)ψk(γt) of the sparse representation can in general no longer be represented in

terms of separate sample averages of φk(αi) and ψk(γt), respectively.

We first consider the case of dyadic data, where the components of the second-order projection term takes

the form

Qk :=
1

N2p̄

N
∑

i=1

N
∑

j=1

Witφk(αi)φk(αj) =
1

N2p̄
φ′kWφk =

1

2N2p̄
φ′k(W +W ′)φk

for the vector φk := (φk(α1), . . . , φk(αN ))′. To characterize the limit distribution for N
√
pQk, let Zk ∼

N(0, IN ) and Q̃k := 1
2N2p̄Z

′
k(W +W ′)Zk. Conditions for convergence of N

√
pQk to N

√
pQ̃k were given by

Götze and Tikhomirov (1999), noting that the matrix W +W ′ is symmetric.

Now, by Assumption B.1 (a), we either have that supi=1,...,N pi → 0, or that limN p̄ > 0. Hence we only

need to distinguish two cases regarding the asymptotic behavior of pi. For the first case with supi=1,...,N pi →
0, Corollary 2 in Götze and Tikhomirov (1999) implies that

̺(N
√
pQk, N

√
pQ̃k) ≤ (E|φk(αi)|3)2 sup

i=1,...,N

√
pi

where ̺(X,Y ) := supx |FX(x)−FY (x)| for any two random variablesX,Y with respective c.d.f.s FX and FY .

Furthermore, in this case the asymptotic distribution of N
√
pQk is Gaussian. By an analogous argument,

we also find that the distribution of the bootstrap analog N
√
pQ∗

k converges to N
√
pQ̃k, so that bootstrap

consistency follows from the triangle inequality. For the second case with p̄ bounded away from zero, pi is

bounded away from zero by a constant for at least two distinct units in {1, . . . , N}. In that case, consistency

follows instead from Theorem 3 in Götze and Tikhomirov (1999).

An extension to multilinear forms for the case in which each dimension of the random array corresponds

to a different type of sampling unit can be obtained in a straightforward manner after stacking the random

variates φk(α1), . . . , φk(αN ), ψk(γ1), . . . , ψk(γT ) and considering the symmetric quadratic form corresponding

to the (N + T )× (N + T ) matrix A = 1
2 [0,W ;W ′0] �
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