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Abstract

We consider estimation of the cointegrating relation in the weak fractional cointegration
model, where the strength of the cointegrating relation (difference in memory parameters) is less
than one-half. A special case is the stationary fractional cointegration model, which has found
important application recently, especially in financial economics. Previous research on this model
has considered a semiparametric narrow-band least squares (NBLS) estimator in the frequency
domain, but in the stationary case its asymptotic distribution has been derived only under a
condition of non-coherence between regressors and errors at the zero frequency. We show that
in the absence of this condition, the NBLS estimator is asymptotically biased, and also that the
bias can be consistently estimated. Consequently, we introduce a fully modified NBLS estimator
which eliminates the bias, and indeed enjoys a faster rate of convergence than NBLS in general.
We also show that local Whittle estimation of the integration order of the errors can be conducted
consistently based on NBLS residuals, but the estimator has the same asymptotic distribution as
if the errors were observed only under the condition of non-coherence. Furthermore, compared
to much previous research, the development of the asymptotic distribution theory is based on a
different spectral density representation, which is relevant for multivariate fractionally integrated
processes, and the use of this representation is shown to result in lower asymptotic bias and
variance of the narrow-band estimators. We present simulation evidence and a series of empirical
illustrations to demonstrate the feasibility and empirical relevance of our methodology.
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semiparametric.
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1 Introduction
Recently, the concept of fractional cointegration has attracted increasing attention from both

theoretical and empirical researchers in economics and finance. In this theory, a p-vector time series
zt is said to be cointegrated if the elements of zt are integrated of order d, denoted I(d), but there
exists a linear combination that is I(d − δ) with δ > 0. Originally, the concept of cointegration
does not restrict d and δ to be integers, e.g. Granger (1981), but estimation methods have been
developed mostly for the so-called I(1)− I(0) cointegration, where it is assumed that d = δ = 1.

For a precise statement, a covariance stationary time series xt ∈ I (d), d < 1/2, if ∆dxt =
(1− L)d xt = vt, where vt ∈ I (0), i.e. has continuous spectral density that is bounded and bounded
away from zero at all frequencies. In this case, {xt} has spectral density

f (λ) ∼ gλ−2d as λ→ 0+, (1)

where g ∈ (0,∞) is a constant and the symbol “∼”means that the ratio of the left- and right-
hand sides tends to one in the limit. The parameter d determines the memory of the process: if
d ∈ (0, 1/2) the process is covariance stationary with long memory, but if d = 0 the process has
only weak dependence. For surveys see, e.g., Baillie (1996) and Robinson (2003).

We consider estimation of the single-equation cointegrating regression

yt = α+ β′xt + ut, t = 1, ..., T, (2)

where both the regressors and the errors have long memory, and can in fact be nonstationary
(d > 1/2), but the errors have less memory than the regressors, i.e. where xt ∈ I (dx) and ut ∈ I (du)
with dx > du ≥ 0. In particular, we consider the model with dx − du < 1/2 which is termed weak
fractional cointegration in Hualde & Robinson (2010).

To accommodate potential nonstationarity, we let γ ≥ 0 and consider1

∆γyt = α+ β′∆γxt + ∆γut, t = 1, ..., T. (3)

Now ∆γxt ∈ I(dx − γ) and ∆γut ∈ I (du − γ), and γ is any real number which transforms a
potentially nonstationary model (like (2)) into one with stationary regressors (so that dx−γ < 1/2),
where, additionally, the cointegrating error in the transformed model has nonnegative memory (so
that du − γ ≥ 0). The interpretation is that γ is a user-chosen number whose choice affects the
estimation procedure, and it is connected to the model (2) which generates the data only through
the two requirements 1/2 > dx − γ > du − γ ≥ 0. That way xt and possibly also ut may be
nonstationary.2 Different choices of γ lead to different estimators, but one choice in particular
leads to the best estimator in a GLS sense. This is γ = du which, given that we are under weak
cointegration, is always an appropriate choice in the sense that dx − γ < 1/2 and du − γ ≥ 0. Of
course, du is unknown, but a feasible version of the estimator with γ = du may be implemented by
replacing du with a suitable estimator, d̂u. Another interesting special case is γ = 0 in which case
we require dx < 1/2, termed stationary fractional cointegration by Robinson (1994).

After appropriate differencing our model is stationary, so a comparison with the standard time
series regression model with weakly dependent regressors is natural. It is well known that, in
the standard case, under a wide variety of regularity conditions, the ordinary least squares (OLS)
estimator of β in (2) is asymptotically normal, see e.g. Hannan (1979). The new complication is
that, as pointed out by Robinson (1994) and Robinson & Hidalgo (1997), when the regressors and
the errors both have long memory and are possibly non-orthogonal, the OLS estimator in (2) is in

1There is a slight abuse of notation in (3) since ∆γα is a constant which we also call α. However, because our
estimators are functions of the periodogram at non-zero frequencies only, this is irrelevant.

2When defining nonstationary fractionally integrated processes there is a choice of type I or type II variants. In
our model, either choice will lead to identical first order asymptotic results, see Robinson (2005). Therefore, we do
not consider this issue further, and below state our assumptions in terms of ∆γxt and ∆γut which are stationary.
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general no longer consistent. To deal with this issue, Robinson (1994) proposed a semiparametric
narrow-band least squares (NBLS) estimator in the frequency domain (as opposed to a fixed band
estimator as considered by e.g. Phillips (1991) in a cointegration context). The NBLS estimator
assumes only a multivariate version of (1), and essentially performs OLS on a degenerating band
of frequencies around the origin. The consistency of the estimator in the stationary case was
proved by Robinson (1994). Christensen & Nielsen (2006) showed that its asymptotic distribution
is normal when the collective memory of the regressors and the error term is less than 1/2, i.e. when
dx+du < 1/2, and under the condition that the regressors and the errors have zero coherence at the
origin. In contrast, Robinson & Marinucci (2003) consider several cases where the regressors are
nonstationary fractionally integrated and the limiting distributions for the NBLS estimator involve
fractional Brownian motion, and Chen & Hurvich (2003) add deterministic trends.

We follow a semiparametric approach characterized by assuming only a local model such as
(1) for the spectral density, and using a degenerating part of the periodogram around the origin
for estimation. This approach has the advantage of being invariant to short-term dynamics (and
mean terms since the zero frequency is usually left out). Specifically, a local Whittle estimator of
the memory parameter d based on maximization of a local Whittle approximation to the likelihood
using (1) has been developed by Künsch (1987) and Robinson (1995a). Of course, a fully parametric
estimator would be more effi cient, but is inconsistent if the parametric model is misspecified.

The methods described above are combined by Marinucci & Robinson (2001b) and Christensen
& Nielsen (2006), who suggest conducting a (stationary) fractional cointegration analysis in several
steps. First, the integration orders of the observed data are estimated by the local Whittle estimator.
Secondly, the NBLS estimator of the cointegrating vector is calculated, and finally the integration
order of the residuals is estimated assuming that the local Whittle approach is equally valid when
based on residuals. Hypothesis testing is then conducted on du as if ut were observed, and on β as
if du (which enters in the limiting distribution of the NBLS estimator) were known. Moreover, the
distribution theory for the NBLS estimator developed by Christensen & Nielsen (2006) assumes
that the long-run (zero frequency) coherence between the regressors and the errors is zero.

In this paper, we extend the stationary setting of Marinucci & Robinson (2001b) and Chris-
tensen & Nielsen (2006) to that of weak fractional cointegration. We develop the asymptotic
distribution theory based on a different spectral density representation, which is relevant for mul-
tivariate fractionally integrated processes, and the use of this representation is shown to result in
lower asymptotic bias and variance of the narrow-band estimators. We show that in the non-zero
coherence case a bias term appears in the mean of the asymptotic normal distribution of the NBLS
estimator. The bias term is proportional to the square-root of the bandwidth, with factor of pro-
portionality depending on the integration orders and the coherence at frequency zero. However,
we show that the bias can be estimated and hence removed by a fully modified type procedure in
the spirit of Phillips & Hansen (1990). The result is a fully modified NBLS (FMNBLS) estimator,
which has no asymptotic bias and the same asymptotic variance as the NBLS estimator. However,
the FMNBLS estimator will have a better rate of convergence in general, i.e. the same rate as the
NBLS estimator under non-coherence as in Christensen & Nielsen (2006).

We also consider inference on the integration order of the error term in the cointegrating relation,
and show that in the case of stationary errors it can be consistently estimated by the local Whittle
estimator based on the residuals from a NBLS regression. However, the local Whittle estimator
converges at a slower rate than if the errors were observed except if there is no long-run coherence
between regressors and errors. In the latter case the asymptotic distribution theory for the local
Whittle estimator is unaffected by the fact that the estimator is based on residuals.

Extensions of the well known fully modified least squares procedure of Phillips & Hansen (1990)
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to nonstationary fractional cointegration have been examined by Dolado & Marmol (1996), Kim
& Phillips (2001), and Davidson (2004) in parametric frameworks. An alternative fully modified
procedure for the I(1)−I(0)model was suggested by Marinucci & Robinson (2001a), who considered
the estimator of Phillips & Hansen (1990) based on NBLS residuals rather than OLS residuals.

However, the approach taken in the present paper is more direct. We derive an expression for the
asymptotic bias term, which depends on the integration orders of the regressors and the errors and
also on the coherence matrix at the zero frequency. We show that under appropriate conditions on
the bandwidth parameters the bias term can be estimated consistently, e.g., by running an auxiliary
NBLS regression, and this can be used to modify the initial NBLS estimator to eliminate the bias.

In a simulation study we document the finite sample feasibility of the proposed FMNBLS
estimator. The simulations demonstrate the superiority in terms of bias of FMNBLS relative to
NBLS in the presence of non-zero long-run coherence between the regressor and the error, which
comes at the cost of an increased finite sample variance. In terms of RMSE, FMNBLS also clearly
outperforms NBLS in most cases with non-zero long-run coherence.

To demonstrate the empirical relevance of our methodology, we include several brief empirical
illustrations. We first revisit the long-run unbiasedness question in the implied-realized volatility
relation. We then consider the relation between inflation rates of European Union countries, exem-
plified by the harmonized consumer price indexes of France and Spain. Lastly, we investigate the
relationship between the volatilities of the General Electric stock and two stock indexes.

The remainder of the paper is laid out as follows. Next, we describe NBLS estimation of (2)
and (3) and derive the relevant asymptotic distribution theory. We also discuss inference using
the local Whittle estimator of the integration order of the errors when the errors are not observed
and residuals are used instead. In Section 3 we consider the FMNBLS modification to the NBLS
estimator. Sections 4 and 5 present simulation evidence and empirical illustrations, respectively,
and Section 6 offers some concluding remarks. All proofs are gathered in the appendices.

2 Narrow-Band Least Squares Estimation
We begin with some remarks about the spectral representation of multivariate long memory

models. Suppose the spectral density of the covariance stationary process wt = (∆γx′t,∆
γut)

′ is

f (λ) ∼ Λ (λ)−1GΛ̄ (λ)−1 as λ→ 0+, (4)

where the bar denotes complex conjugation, Λ (λ) = diag(e−iπd1/2λd1 , ..., e−iπdp/2λdp), and G is a
real, symmetric, positive definite matrix. The spectral density representation (4) is motivated by
the multivariate stationary fractionally integrated model with da ∈ (−1/2, 1/2), a = 1, ..., p : (1− L)d1 0

. . .
0 (1− L)dp


 w1t − Ew1t

...
wpt − Ewpt

 =

[ v1t
...
vpt

]
, t = 1, ..., T, (5)

where vt = (v1t, ..., vpt)
′ is a covariance stationary process with spectral density matrix that is finite

and bounded away from zero (in the sense of positive definite matrices) at all frequencies, i.e. vt
is I(0). When vt is an ARMA model, wt is a multivariate fractional ARIMA model. This class
of models is very popular in both theoretical and applied time series analysis. Since (1 − eiλ)d =
λde−iπd/2(1 +O(λ)) as λ→ 0 the representation (4) follows by defining G = limλ→0 fv (λ).

A typical element of (4) is

fab (λ) ∼ Gabλ−da−dbeiπ(da−db)/2 as λ→ 0+, a, b = 1, ..., p,

where da and db appear in both in the power decay and in the phase shift. Note that fab (λ) differs
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from the simpler representation

hab (λ) ∼ Gabλ−da−db as λ→ 0+, a, b = 1, ..., p, (6)

applied by, e.g., Robinson (1995b) and Lobato & Robinson (1998) for inference on the integration
orders and by Robinson & Marinucci (2003) and Christensen & Nielsen (2006) in the context
of stationary fractional cointegration. The most important difference is that f (λ) has non-zero
complex part even at the origin unless da = d for all a = 1, ..., p, and neglecting the complex part
is a source of misspecification. For a detailed comparison of f (λ) and h (λ), see Shimotsu (2007)
and Robinson (2008) who derive multivariate local Whittle estimators based on (4).

We remark here that the assumptions of Christensen & Nielsen (2006) (and hence also those of,
e.g., Lobato & Robinson (1998) and Lobato (1999)) and much subsequent research, unfortunately,
appear incompatible. The reason is that the real-valued cross-spectral density (6) imposed in their
Assumption A implies that cross-autocorrelations are symmetric with respect to time, which implies
a two-sided moving average with equal lead and lag weights and not a one-sided moving average as
imposed in their Assumption B. The assumptions of Christensen & Nielsen (2006) (and subsequent
research on narrow-band estimation of stationary fractional cointegration) can be made compatible,
however, in light of their condition that Gap = Gpa = 0, by assuming that the integration orders of
the regressors are all equal, i.e. that da = dx for a = 1, . . . , p− 1 and dx > dp. In that special case,
the representations (4) and (6) are equivalent and their results correct.

To consider frequency domain least squares inference on β in the cointegrating relation (2) or
the pre-differenced regression (3), we define the cross-periodogram matrix between the observed
vectors {∆γqt, t = 1, . . . , T} and {∆γrt, t = 1, . . . , T},

Iqr (γ, λ) =
1

2πT

T∑
t=1

T∑
s=1

(∆γqt)(∆
γrs)

′e−i(t−s)λ. (7)

We then form the discretely averaged co-periodogram

F̂qr (γ, k, l) =
2π

T

l∑
j=k

Re (Iqr (γ, λj)) , 0 ≤ k ≤ l ≤ T − 1, (8)

for λj = 2πj/T . By setting k ≥ 1 and thus excluding the zero frequency, the estimator becomes
invariant to non-zero means, i.e. invariant to α in (2) and (3).

With F̂ defined in (8) we consider the frequency domain least squares estimator

β̂m(γ) = F̂−1
xx (γ, 1,m) F̂xy (γ, 1,m) (9)

of β in the regression (3). Notice that, by this definition, β̂T−1(0) is algebraically identical to the
usual OLS estimator of β in (2) with allowance for a non-zero mean. On the other hand, if

1

m
+
m

T
→ 0 as T →∞, (10)

then β̂m(γ) is a NBLS estimator using only a degenerating band of frequencies near the origin. We
need m to tend to infinity to gather information, but we also need to remain in a neighborhood of
zero where we have assumed knowledge about the spectral density, so m/T must tend to zero.

When γ = 0, the NBLS estimator β̂m(0) in (9) is the estimator defined by Robinson (1994). On
the other hand, with γ = du, β̂m(du) is a GLS-type estimator similar to the one discussed in Nielsen
(2005), who also shows that the latter in fact also corresponds to a local Whittle quasi-maximum
likelihood estimator of β. Of course β̂m(du) is infeasible, but a feasible version will be discussed in
the next section.

To prove our main results we assume, with obvious implications for ∆γyt, the following con-
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ditions on wt = (∆γx′t,∆
γut)

′ and the bandwidth parameter. Here and throughout, the memory
parameters da, db, and dp are used to refer to wat, wbt, and wpt, respectively. I.e., the memory
parameters da, a = 1, . . . , p, belong to the transformed regression (3) and are related to the original
memory parameters dx,a, du, and the pre-differencing parameter γ by da = dx,a−γ, a = 1, . . . , p−1,
and dp = du − γ.

Assumption 1 The spectral density matrix of wt given in (4) with typical element fab (λ), the
cross-spectral density between wat and wbt, satisfies

|fab (λ)−Gabλ−da−dbei(π−λ)(da−db)/2| = O(λφ−da−db) as λ→ 0+, a, b = 1, ..., p, (11)

for some φ ∈ (0, 2]. The matrix G is positive definite.

Assumption 2 The memory parameters satisfy 0 ≤ da < 1/2 for a = 1, ..., p, da + dp < 1/2 for
a = 1, ..., p− 1, and min1≤a≤p−1 da − dp = min1≤a≤p−1 dx,a − du = δmin > 0.

Assumption 3 wt is a linear process, wt = µ +
∑∞

j=0Ajεt−j, with square summable coeffi cient

matrices,
∑∞

j=0 ‖Aj‖
2 < ∞. The innovations εt satisfy E (εt| Ft−1) = 0, E (εtε

′
t| Ft−1) = Ip,

E (εt ⊗ εtε′t| Ft−1) = µ3, and E (εtε
′
t ⊗ εtε′t| Ft−1) = µ4, almost surely, where µ3 and µ4 are non-

stochastic, finite, and do not depend on t, and Ft = σ ({εs, s ≤ t}).

Assumption 4 Let Aa (λ) denote the a’th row of A (λ) =
∑∞

j=0Aje
ijλ. Then, as λ→ 0+,

∂Aa (λ)

∂λ
= O(λ−1||Aa (λ) ||), a = 1, ..., p.

Assumption 5 The bandwidth parameter m0 = m0 (T ) satisfies

1

m0
+
m

1+2 min(1,φ)
0

T 2 min(1,φ)
→ 0 as T →∞.

Our assumptions are a multivariate generalization of those in Robinson (1994, 1995a), see also
Lobato (1999) and Christensen & Nielsen (2006). Since our assumptions are semiparametric in
nature they naturally differ from those employed by e.g. Robinson & Hidalgo (1997) in their para-
metric setup, and are at least in some respects weaker than standard parametric assumptions. In
particular, we avoid standard assumptions (from stationary time series regression) of independence
or uncorrelatedness between xt and ut as well as complete and correct specification of f (λ).

The first part of Assumption 1 specializes (4) by imposing smoothness conditions on the spectral
density matrix of wt commonly employed in the literature. They are satisfied with φ = 2 if, for
instance, wt is a vector fractional ARIMA process. The more precise approximation offered by
Assumption 1 relative to (4) reflects the approximation (1 − eiλ)d = |2 sin (λ/2) |de−i(π−λ)d/2 =
λde−i(π−λ)d/2(1 +O(λ2)) as λ→ 0, see Shimotsu (2007). The positive definiteness condition on G
is a no multicollinearity or no cointegration condition within the components of xt, which is typical
in single-equation cointegration models and in regression models.

The single-equation cointegrating regression model (2) is similar to the usual cointegrating
regression model in the I(1) − I(0) case, and the nature of the regression setup is subject to the
same advantages and disadvantages. Two important issues, given a set of more than two variables,
are to justify the single-equation regression and to justify the choice of the left-hand side variable.
For the latter issue, it is likely that economic theory can be used as guidance and in any case
this should be done on a case-by-case basis. For the former issue, since cointegration among the
regressors is ruled out by Assumption 1 (as is standard in cointegrating regression models), in
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practice one would have to establish that only one cointegrating relationship exists among the
given set of variables. This could be done, e.g., by the approach of Robinson & Yajima (2002) as
in the empirical application in Section 5.3 below.

Much of the previous literature on semiparametric frequency domain inference in the fractional
cointegration model distinguish (either explicitly or implicitly) between cases of coherence and
non-coherence between the regressors and the error process at the zero frequency, e.g. Robinson
& Marinucci (2003), Christensen & Nielsen (2006), and Robinson (2008). In the present notation
this condition is Gap = Gpa = 0, for a = 1, ..., p − 1. Indeed, in the stationary case, asymptotic
distribution theory for the NBLS estimator is only available in the case with non-coherence at
the zero frequency, see Christensen & Nielsen (2006). Our assumptions avoid the non-coherence
condition and thus allow correlation between the errors and regressors at any frequency.

The conditions on da translate into conditions on γ given dx,a and du. In particular, γ satisfies
1

2
( max
1≤a≤p−1

dx,a + du − 1/2) < γ ≤ du. (12)

For instance, we find that γ = 0 is permitted only in the stationary case when also dx,a + du <
1/2, a = 1, . . . , p− 1. In the important GLS case with γ = du, Assumption 2 reduces to

0 < δmin = min
1≤a≤p−1

dx,a − du ≤ max
1≤a≤p−1

dx,a − du < 1/2, (13)

which is exactly the weak fractional cointegration assumption such that the condition da+dp < 1/2
is redundant in that case because dp = 0.

In view of the results from, e.g., Fox & Taqqu (1986, Prop. 1) and Lobato & Robinson (1996),
showing that quadratic forms of long memory processes with square-summable autocovariances
(2d < 1/2) are asymptotically Gaussian, we assume that da + dp < 1/2 in Assumption 2. The
last condition of Assumption 2 is the essential assumption of cointegration, with δmin denoting the
strength of the cointegrating relation.

Assumptions 3 and 4 follow Robinson (1995a) and Lobato (1999) in imposing a linear structure
on wt with square summable coeffi cients and martingale difference innovations with finite fourth
moments. The assumption of constant conditional variance for the innovations could presumably
be relaxed by assuming boundedness of higher moments as in Robinson & Henry (1999). Under
Assumption 3 we can write the spectral density matrix of wt as

f (λ) =
1

2π
A (λ)A∗ (λ) , (14)

where the asterisk denotes transposed complex conjugation. Assumption 4 is a smoothness condi-
tion imposing differentiability of the spectral density near the origin, analogous to those imposed
on the spectral density at any frequency in parametric frameworks, see e.g. Fox & Taqqu (1986).
The condition is satisfied, e.g., by fractional ARIMA models.

The statements of Assumptions 1 and 4 are made in the frequency domain whereas the state-
ment of Assumption 3 is in the time domain, which follows the tradition in the literature on
semiparametric estimation in long memory models. Clearly, the assumptions are closely related,
and in particular the matrix G in Assumption 1 is a function of the lag weights {Aj , j ≥ 0} from
Assumption 3. The connection between the representations (4) and (6) (or Assumption 1) and
the lag weights in the linear process (Assumption 3) is explored in Theorems 1 and 2 of Robinson
(2008). In particular, it is shown there that our Assumptions 1 and 3 are compatible.3

Finally, Assumption 5 restricts the expansion rate of the bandwidth parameter m0 = m0 (T ).
The bandwidth is required to tend to infinity for consistency, but at a slower rate than T to remain

3Note that we could alternatively write our Assumptions 1-4 in terms of the model (5) and the errors vt, as in e.g.
Shimotsu & Phillips (2005).
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in a neighborhood of the origin, where we have assumed some knowledge of the form of the spectral
density. When φ is high, (11) is a better approximation to (14) as λ → 0+, and hence (by the
second term of Assumption 5) a higher expansion rate of the bandwidth can be chosen. The weakest
constraint is implied by φ ≥ 1, in which case the condition is m0 = o(T 2/3). A slightly weaker
bandwidth condition was employed by Christensen & Nielsen (2006) due to their assumption of
real-valued spectral density at the origin.

We next derive the distribution of the NBLS estimator in the fractional cointegration model
(2)-(3). This generalizes the consistency (with rates) result of Robinson & Marinucci (2003) (when
γ = 0) and the asymptotic normality results of Nielsen (2005) and Christensen & Nielsen (2006)
(who assumed non-coherence at the origin and a different spectral density model).

Theorem 1 Let Assumptions 1-5 be satisfied. Then the NBLS estimator β̂m0
(γ) in (9) satisfies

√
m0

(
λdum0

Λ−1
m0

(β̂m0
(γ)− β)−K(γ)−1H(γ)

)
D→ N

(
0,K(γ)−1J(γ)K(γ)−1

)
as T →∞, (15)

where Λm = diag(λ
dx,1
m , ..., λ

dx,p−1
m ) and, for a, b = 1, ..., p − 1, K(γ) = (Kab(γ)), H(γ) = (Ha(γ)),

and J(γ) = (Jab(γ)) are given by

Kab(γ) = Gab
1−dx,a−dx,b+2γ cos

(
π
2 (dx,a − dx,b)

)
,

Ha(γ) =
Gap

1−dx,a−du+2γ cos
(
π
2 (dx,a − du)

)
,

Jab(γ) =
GapGbp

2(1−dx,a−dx,b−2du+4γ)
cos
(
π
2 (dx,a + dx,b − 2du)

)
+

GabGpp
2(1−dx,a−dx,b−2du+4γ)

cos
(
π
2 (dx,a − dx,b)

)
.

Proof. See Appendix A.1.
Theorem 1 refines the results of Nielsen (2005) and Christensen & Nielsen (2006) in three ways:

first, our result uses the representation (4) of the multivariate spectral density, secondly we allow
for non-zero coherence at the origin, and thirdly we generalize the result to the weak fractional
cointegration model. The cosine terms in the asymptotic distribution are a result of using the
representation (4) rather than the simpler (6), in which case these terms would not be present. In
the absence of any coherence between the regressors and the errors at the origin, the distribution
theory follows from the above results by setting Gap = Gpa = 0 for a = 1, ..., p− 1. Also note that
the theorem presents a simple and closed form expression for the asymptotic bias termK(γ)−1H(γ).
In the next section we show that K(γ)−1H(γ) can be estimated consistently with a suffi cient rate
such that the bias can be removed and a centered distribution can be obtained.

To illustrate the distribution theory and the developments leading to the below FMNBLS esti-
mator, we consider briefly an illustrative example. Consider the two-variable stationary case, i.e.
the regression (2) or (3) with only one regressor. Denote the integration orders dx and du and the
spectral density matrix at the origin G = (Gab) with a, b = x, u. In this case (15) reduces to

√
m0(λdu−dxm0

(β̂m0
(γ)− β)− η(γ))

D→ N
(
0, ω(γ)2

)
, (16)

where the asymptotic bias and variance terms are given by

η(γ) =
Gxu
Gxx

(1− 2dx + 2γ)

(1− dx − du + 2γ)
cos
(π

2
(dx − du)

)
,

ω(γ)2 =
(1− 2dx + 2γ)2

2 (1− 2dx − 2du + 4γ)

(
Guu
Gxx

+
G2
ux

G2
xx

cos (π (dx − du))

)
.

Note that, if the spectral representation (6) were used instead of (4), the cosine terms in both
η(γ) and ω(γ) would be replaced by unity, their upper bound. The increased variance obtained
using (6) when the true model is (4) is a consequence of the misspecification of the spectral density
at the origin since the non-zero complex part in (4) is ignored in (6). Hence, using the correct
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representation (4) results in a distribution theory that is more precise, both in terms of bias and
variance, as shown in Theorem 1.

Both the bias η(γ) and the variance ω(γ)2 depend on γ, and it is easily verified that η(γ) is
increasing in γ whereas ω(γ)2 is decreasing in γ for γ ∈ [0, du]. Thus, as expected, the minimum
variance is attained for the GLS estimator. The fact that the bias is increasing in γ will be
inconsequential since our FMNBLS estimator eliminates the bias term.

In addition to the bias, the absence of the zero coherence condition results in an additive variance
inflation of

(1− 2dx + 2γ)2

2 (1− 2dx − 2du + 4γ)

G2
ux

G2
xx

cos (π (dx − du)) ≥ 0.

However, consistency of the estimator is not affected by the presence of non-zero coherence between
the regressors and the errors at the zero frequency, and the rate result established by Robinson
(1994) and Robinson & Marinucci (2003) (for γ = 0) is, in fact, sharp in this case as conjectured
by Robinson & Marinucci (2003). This is easily seen from (16), where

β̂m0
(γ)− β =

λdx−dum0√
m0

ω(γ)Z + λdx−dum0
η(γ) + oP (m

−1/2
0 λdx−dum0

),

for Z ∼ N (0, 1). The consistency and rate of β̂m0
(γ) follows immediately, and in particular,

λdu−dxm0
(β̂m0

(γ) − β)
P→ η(γ). That is, when normalized as in Robinson (1994) and Robinson &

Marinucci (2003), the NBLS estimator converges to a degenerate distribution (a constant) in the
case of non-zero coherence between the regressors and the errors at the origin. However, in the
absence of coherence between the regressors and the errors at the origin and normalized by an
additional

√
m0, the NBLS estimator has an asymptotic normal distribution.

To estimate the asymptotic bias term η(γ) and to feasibly implement the GLS version of the
FMNBLS estimator β̂m0

(du) we would need an estimate of the memory parameter du of the error
term. To that end, we next consider the local Whittle estimator d̂u based on NBLS residuals with
γ = 0. We will give the results for the stationary case where du < dx,a < 1/2. Similar results have
been derived by, e.g., Velasco (2003) for nonstationary fractional cointegration.

Thus, suppose du is estimated by

d̂u = arg min
d∈∆

R̂ (d) , (17)

R̂ (d) = log Ĝ (d)− 2d

m1

m1∑
j=1

log λj , Ĝ (d) =
1

m1

m1∑
j=1

λ2d
j Iûû (0, λj) ,

where ∆ = [0,∆2] , 0 < ∆2 < 1/2, is the parameter space and

Iûû (γ, λj) = Iuu (γ, λj) + (β − β̂m(γ))′Re (Ixx (γ, λj)) (β − β̂m(γ)) + 2(β − β̂m(γ))′Re (Ixu (γ, λj))
(18)

is the periodogram of the differenced residual series ∆γ ût = ∆γyt − β̂m(γ)′∆γxt = ∆γut + (β −
β̂m(γ))′∆γxt. The lower bound of the parameter space reflects prior information that du ≥ 0, which
seems reasonable from a practical/empirical point of view. This condition could be relaxed at the
cost of a longer proof of the following theorem.

We introduce the following condition on the expansion rate of the bandwidth parameter m1 =
m1 (T ) used for the local Whittle estimator of du :

(log T )4 (logm1)

(
m0

m1

)δmin
+
m1+2φ

1 (logm1)2

T 2φ
→ 0 as T →∞, (19)

where m0 is the bandwidth parameter for β̂ from Assumption 5 and φ is the smoothness parameter
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from Assumption 1. The first part of (19) is essentially satisfied if m1 diverges to infinity at a faster
rate than m0. The second part is the standard assumption on the bandwidth parameter for local
Whittle estimation, e.g. Robinson (1995a).

Theorem 2 Let Assumptions 1 and 3-5 be satisfied with γ = 0 and suppose d̂u is given by (17)
using bandwidth m1 satisfying (19) and based on residuals ût = yt − β̂m0

(0)′xt, where β̂m0
(0) is

the NBLS estimator (9). Suppose du belongs to the interior of ∆ and du < min1≤a≤p−1 dx,a ≤
max1≤a≤p−1 dx,a < 1/2. Then, as T →∞,

d̂u − du = OP

(
(logm1) (m0/m1)δmin

)
P→ 0. (20)

If, in addition, Gap = Gpa = 0 for a = 1, . . . , p− 1 and (m0/m1)2δmin
√
m1/m0 → 0, then

√
m1(d̂u − du)

D→ N (0, 1/4) as T →∞.

Proof. See Appendix A.2.
The second part of Theorem 2 shows that, in the absence of long-run coherence between re-

gressors and errors and under an additional (weak) restriction on the bandwidth, the local Whittle
estimator of the integration order of the errors is unaffected by the fact that it is based on NBLS
residuals. In the general case the local Whittle estimator remains consistent, although it converges
at a slower rate. Moreover, the result in Theorem 2 shows that in fact the three step procedure
employed by Marinucci & Robinson (2001b) and Christensen & Nielsen (2006) is valid only when
there is no long-run coherence, as assumed in Christensen & Nielsen (2006). That is, in their setup
inference on du may be conducted based on our distributional result in Theorem 2 and is equiv-
alent to disregarding the fact that the estimator is based on residuals, as long as the bandwidth
parameter is chosen according to our assumptions.

To conclude this section we make the following assumption regarding estimation of du.

Assumption 6 The memory parameter du of the error term is estimated semiparametrically based
on NBLS residuals ût = yt − β̂m0

(0)′xt and using bandwidth parameter m1 satisfying (19). The
resulting estimator d̂u satisfies (20).

By Theorem 2 it follows that Assumption 6 is satisfied when du < min1≤a≤p−1 dx,a ≤ max1≤a≤p−1 dx,a <
1/2. Similar results for the nonstationary case are provided by, e.g., Velasco (2003).

3 Fully Modified NBLS Estimation
We next consider estimation of the bias in NBLS from Theorem 1, i.e. estimation ofK(γ)−1H(γ).

From the definitions of K(γ) and H(γ) in Theorem 1 and its proof, we can equivalently write

K(γ) = λ−1
m ΛmFxx (γ, λm) Λm, H(γ) = λ

dp−1
m ΛmFxu (γ, λm) , (21)

where Fqr (γ, λ) =
∫ λ

0 Re (fqr (γ, θ)) dθ and fqr (γ, θ) is the cross-spectral density between ∆γqt
and ∆γrt. Thus, K(γ) is the (scaled) integrated co-spectrum of ∆γxt and H(γ) is the (scaled)
integrated co-spectrum between ∆γxt and ∆γut. By rewriting K(γ) and H(γ) in this way, the bias
term K(γ)−1H(γ) is recognized to be the (scaled) population equivalent to the coeffi cient estimator
in a regression of the errors from (3) on the regressors. This mimics the corresponding well-known
result from ordinary least squares when the errors and regressors are correlated. However, in our
weak fractional cointegration setup the bias term can be estimated and hence eliminated.

It follows that a natural estimator of the bias can be based on

Γm2(γ) = F̂−1
xx (γ, 1,m2) F̂xu (γ, 1,m2) ,
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using bandwidth parameter m2 = m2 (T ). However, the estimator Γm2(γ) is infeasible since the
errors ut are unobserved. Instead, the residuals from an initial NBLS regression, ût, may be used.
Defining F̂xû (γ, l,m) = 2π

T

∑m
j=l Re(Ixû(γ, λj)) and noting that F̂xû (γ, 1,m0) = 0 from the first

order condition for β̂m0
(γ), yields the feasible estimator

Γ̂m2(γ) = F̂−1
xx (γ,m0 + 1,m2) F̂xû (γ,m0 + 1,m2) . (22)

Thus, estimation of K(γ)−1H(γ) can be based on simply calculating the coeffi cient estimator in
an auxiliary NBLS regression of the (differenced) residuals from the initial NBLS regression on the
same set of regressors, ∆γxt, i.e. on NBLS estimation of the auxiliary regression

∆γ ût = κ+ Γ′∆γxt + ∆γvt, t = 1, ..., T. (23)

The discussion of the representations (4), (6), and (11) suggest that

F̃qr(γ, k, l) =
2π

T

l∑
j=k

Re(eiλj(dq−dr)/2Iqr (γ, λj)), 0 ≤ k ≤ l ≤ T − 1,

should more precisely approximate the integrated co-spectrum Fqr (γ, λ), c.f. Assumption 1. Thus
we also consider the estimator

Γ̃m2(γ) = F̃−1
xx (γ,m0 + 1,m2) F̃xû (γ,m0 + 1,m2) . (24)

For the estimation of the bias term we need the following condition on the bandwidth m2.

Assumption 7 The bandwidth parameter m2 = m2 (T ) satisfies
m0

m2
+
m2

T
→ 0 as T →∞,

where m0 is the bandwidth from Assumption 5.

The first term in Assumption 7 ensures that (22) is based on an increasing number of peri-
odogram ordinates, m2 −m0. The second term ensures that estimation is conducted in a neigh-
borhood of the origin, which is suffi cient for consistent NBLS estimation. We can now state the
following result regarding the estimation of the NBLS bias term.

Theorem 3 Let Assumptions 1-5 and 7 be satisfied and assume that Γ̂m2(γ) in (22) and Γ̃m2(γ)
in (24) are based on residuals ût = yt− β̂m0

(γ)′xt, where β̂m0
(γ) is the NBLS estimator (9). Then,

as T →∞,

λdum2
Λ−1
m2

Γ̂m2(γ)−K(γ)−1H(γ) = OP

((
m0

m2

)δmin
+m

−1/2
0 (log T )−1 +

(m2

T

)min(1,φ)
)

P→ 0,

λdum2
Λ−1
m2

Γ̃m2(γ)−K(γ)−1H(γ) = OP

((
m0

m2

)δmin
+m

−1/2
0 (log T )−1 +

(m2

T

)φ) P→ 0.

Proof. See Appendix A.3.
This result implies that λdum2

Λ−1
m2

Γ̂m2(γ) and λdum2
Λ−1
m2

Γ̃m2(γ) based on residuals are both consis-
tent estimators of K(γ)−1H(γ). The theorem also implies, in conjunction with Theorem 2, that
the bias λ−dum0

Λm0K(γ)−1H(γ) of the NBLS estimator in Theorem 1 can be consistently estimated.
It is even possible, based on Theorems 2 and 3, to obtain a rate result for the bias estimator, which
we shall apply in the derivation of the fully modified estimator.

The FMNBLS estimator is based on a new bandwidth parameter m3 = m3 (T ). In particular,

β̃m3
(γ) = β̂m3

(γ)− λ−d̂um3
Λ̂m3λ

d̂u
m2

Λ̂−1
m2

Γ̃m2(γ), (25)
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where Λ̂m = diag(λ
d̂x,1
m , . . . , λ

d̂x,p−1
m ). That is, the fully modified estimator β̃m3

(γ) is simply the
NBLS estimator β̂m3

(γ) corrected for the asymptotic bias. All the estimators of the integration
orders are based on the bandwidth m1. The bias correction term Γ̃m2(γ) is estimated using band-
width m2 for (24) and bandwidth m0 is needed to obtain the residuals upon which both (24)
and d̂u are based. We could also have used Γ̂m2(γ) in (25), but Theorem 3 shows that Γ̃m2(γ)
converges at a faster rate than Γ̂m2(γ). Note that in Theorem 3 the estimator of K(γ)−1H(γ) is
based on periodograms integrated over λm0+1, . . . , λm2 and therefore truncates the first m0 Fourier
frequencies, which may introduce variance inflation in finite samples. For example, Hurvich, Deo
& Brodsky (1998) report Monte Carlo variance inflation from trimming the lowest frequencies in
log-periodogram regression, even though theoretically trimming the lowest frequencies has no detri-
mental effect. However, as noted above, we cannot use the lowest m0 frequencies due to the first
order condition for the initial NBLS estimator. This differs from the fully modified estimator in
Phillips & Hansen (1990), which uses the frequencies closest to the origin to estimate the bias term.

For the bandwidth m3 = m3 (T ) of the FMNBLS estimator, we need the following condition.

Assumption 8 The bandwidth parameter m3 = m3 (T ) satisfies

1

m3
+
m

1+2 min(1,φ)
3

T 2 min(1,φ)
+m3

(
m0

m2

)2δmin

+m3

(m2

T

)2φ
+(log T )−2 m3

m0
+(log T )2 (logm1)2m3

(
m0

m1

)2δmin

→ 0

as T →∞, where m0, m1, and m2 are the bandwidth parameters from Assumptions 5-7, and φ is
the smoothness parameter from Assumption 1.

The condition on m3 is in some ways complicated and in others quite mild and simple. The first
two terms state that m3 has to satisfy the NBLS assumption for the bandwidth, c.f. Assumption
5. At the same time, m3 must diverge to infinity at a rate no faster than that of m0 (fifth term on
the left-hand side) and at a slower rate than m1 and m2 (sixth and third terms on the left-hand
side). Note that if m1 and m2 diverge to infinity at much faster rates than m0 and the cointegrating
strength, δmin, is large, Assumption 8 is less restrictive. In fact, Assumption 8 is simple and easily
satisfied because it is always feasible to choose m3 = m0, in which case there is no need to obtain a
new NBLS estimator upon which to base the FMNBLS estimator (25). In that case the condition
simplifies significantly, and in particular the relevant assumption then becomes

m1+2δmin
0

m2δmin
2

+m0

(m2

T

)2φ
+ (log T )2 (logm1)2m

1+2δmin
0

m2δmin
1

→ 0 as T →∞, (26)

in addition to Assumptions 5-7 already placed on m0, m1, and m2. To illustrate the restriction
placed on the bandwidths by (26), suppose φ ≥ 1 and that we are in the empirically relevant (see
Section 5 below) situation δmin = 0.4. Then choosing m0 = m3 = T 0.3 is feasible if at the same
time m1 = T 0.675+ψ1 and m2 = T 0.675+ψ2 for any ψ1 > 0 and ψ2 ∈ (0, 0.175). On the other
hand, if m1 = m2 = T 0.8 then choosing m0 = m3 = T 32/90−ψ0 for any ψ0 > 0 is feasible which
is only slightly restrictive in light of Assumption 5 on m0. Also note that it is in fact feasible in
some cases to choose m2 to diverge faster than T 0.8, which is even faster than the rate allowed for
asymptotically normal NBLS estimation, c.f. Assumption 5.

In any case, the rate of convergence of β̃m3
(γ) in the following theorem is mostly affected by the

cointegration strength δmin and not so much by the choice of m0 = m3. For example, if δmin = 0.4
and m0 = m3 = T 0.3, the rate of convergence of β̃m3

(γ) in (27) is T 0.43 which is close to the usual√
T -convergence in spite of the low bandwidth rate for m3. In general, when m0 = m3 = T ζ , the

rate of convergence of β̃m3
(γ) is T ζ(0.5−δmin)+δmin . Therefore, for any ζ, when δmin → 1/2 the rate

of convergence of β̃m3
(γ) approaches

√
T , which is the best rate attainable for fully parametric
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estimators based on complete and correct specification of the spectral density at all frequencies.

Theorem 4 Let Assumptions 1-7 as well as either Assumption 8 or (26) be satisfied and let β̃m3
(γ)

be the FMNBLS estimator (25). Then
√
m3λ

du
m3

Λ−1
m3

(β̃m3
(γ)− β)

D→ N
(
0,K(γ)−1J(γ)K(γ)−1

)
as T →∞, (27)

where K(γ) and J(γ) are defined in Theorem 1.

Proof. See Appendix A.4.
Finally, we prove in the next theorem that a feasible version of the GLS-version of the FMNBLS

estimator can be implemented in the weak fractional cointegration model using an estimate of the
memory of the error term, e.g. from Theorem 2. That is, we show that β̃m3

(d̂u) has the same
asymptotic distribution as β̃m3

(du), as long as d̂u satisfies Assumption 6.

Theorem 5 Let Assumptions 1, 3-7, as well as either Assumption 8 or (26) be satisfied, let β̃m3
(γ)

be the FMNBLS estimator (25), and suppose the memory parameters satisfy (13). Then
√
m3λ

du
m3

Λ−1
m3

(β̃m3
(d̂u)− β)

D→ N
(
0,K(du)−1J(du)K(du)−1

)
as T →∞, (28)

where K(du) and J(du) are defined in Theorem 1.

Proof. See Appendix A.5.
The results in Theorems 4 and 5 demonstrate that it is possible to obtain an asymptotically

unbiased estimator of the cointegration vector in the weak fractional cointegration model (2), where
the memory parameters satisfy (13); even in the presence of long-run coherence. The feasible esti-
mator β̃m3

(d̂u) in Theorem 5 has the minimum variance among the estimators β̃m3
(γ) in Theorem

4 for γ ∈ [0, du], c.f. the discussion following Theorem 1 in Section 2 above.
In the stationary case, Theorems 4 and 5 prove that it is possible to consistently estimate

(with a centered asymptotic distribution) the relation between stationary time series even when
the regressors and the errors are correlated at any frequency. A necessary condition is that the
time series in question are fractionally cointegrated. Results similar to Theorems 4 and 5 are
obtained by Hualde & Robinson (2010) who derive the asymptotic distribution theory for a related
inverse spectral density weighted estimator, see also Nielsen (2005). In a different setup, Robinson
(2008) developed joint multiple local Whittle (MLW) estimation of the memory parameters, the
cointegration coeffi cient, and a phase parameter in a bivariate stationary fractionally cointegrated
system. The MLW estimator of β also has a centered asymptotic distribution and converges at
the same rate as our FMNBLS estimator. The multivariate method enjoys the usual advantages
of a systems approach, but being based on numerical optimization of a multiparameter objective
function it is computationally more demanding than our regression approach and the objective
function may have multiple local optima. Finite sample performance of the MLW estimator of β
and our FMNBLS estimator is compared in Section 4.

Compared to the NBLS estimator of Theorem 1, the fully modified estimator incurs no as-
ymptotic variance inflation, only bias correction. Indeed, the FMNBLS estimator enjoys a faster
rate of convergence than the NBLS estimator in the general case with non-zero coherence between
the regressors and the errors at the origin. In particular, in the notation of the example following
Theorem 1, the asymptotic mean squared error of the two estimators are related as

AMSE(β̂m3
(γ)) = m3λ

2du−2dx
m3

E(β̂m3
(γ)− β)2 = ω(γ)2 +m3η(γ)2 = AMSE(β̃m3

(γ)) +m3η(γ)2.

Thus, FMNBLS with the asymptotic distribution theory of Theorems 4 and 5 constitutes a much
more useful inferential tool for the weak fractional cointegration model than the NBLS estimator,
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which is commonly used in previous work and applied especially in financial economics. Further-
more, Theorem 5 shows that the FMNBLS estimator is in fact applicable in the more general weak
fractional cointegration model, and not just in the stationary cointegration case.

Consistent estimation of the parameters appearing in the variance of the limiting distribution
in (27) can be based on Theorem 2 in conjunction with the estimator

Ĝab (β(γ), d) =
1

m2

m2∑
j=1

Re
(
λ
dx,a+dx,b−2γ
j ei(λj−π)(dx,a−dx,b)/2Iab (λj)

)
,

where d = (dx,1, ..., dx,p−1, du) and Iab(λj) is the (a, b)’th element of Iww(λj) = Iww(0, λj); the
periodogram matrix of wt = (∆γx′t,∆

γut)
′. Note that β enters in Iab(γ, λj) if a = p and/or b = p.

Specifically, if d̃u is the local Whittle estimator of du based on ũt and Ĩ(d̃u, λj) is the periodogram
matrix of (∆d̃uxt,∆

d̃u ũt), where ũt denotes FMNBLS residuals ũt = yt − β̃m3
(d̂u)′xt, we have

Ĝab(β̃m3
(d̂u), d̃) =

1

m2

m2∑
j=1

Re

(
λ
d̂x,a+d̂x,b−2d̃u
j ei(λj−π)(d̂x,a−d̂x,b)/2Ĩab(d̃u, λj)

)
P→ Gab

as T → ∞. The proof of this statement is omitted since it follows as in Propositions 2 and 3 of
Robinson & Yajima (2002) by noting that β̃a,m3

(d̂u)− βa = OP (m
−1/2
3 λ

dx,a−du
m3 ).4

4 Simulation Evidence
In this section we investigate the finite sample behavior of the GLS-versio5n of the FMNBLS

estimator β̃m3
(d̂u) introduced in Theorem 5 above and compare with the performance of the NBLS

estimator β̂m3
(0) and the MLW estimator of Robinson (2008).5 We consider the following three

two-dimensional generating mechanisms for xt and ut in the cointegrating relation (2),

Model A : xt = (1− L)−dx ε1t, ut = (1− L)−du ε2t,

Model B : xt = (1− L)−dx v1t, ut = (1− L)−du ε2t, v1t = a1v1,t−1 + ε1t,

Model C : xt = (1− L)−dx ε1t, ut = (1− L)−du v2t, v2t = a2v2,t−1 + ε2t,

where εt = [ε1t, ε2t]
′ is independently and identically N(0,Ω) distributed with

Ω =

[
ξ ρξ1/2

ρξ1/2 1

]
.

Thus, ξ = var (ε1t) /var (ε2t) is the signal-to-noise ratio and ρ = corr(ε1t, ε2t) is the contempora-
neous correlation between the innovations ε1t and ε2t.

Based on the pair (xt, ut) we generate yt from (2) with α = 0 and β = 1. For all the simulations
we generate the data with (dx, du) = (0.4, 0) which is close to what is expected in many practical
situations concerning e.g. financial volatility series. This choice is made to facilitate comparison
with the MLW estimator, and is also supported by the empirical applications below where we find
estimates very close to these values in almost all cases. Unreported simulations reveal that the bias
in NBLS is more severe when the integration orders are closer, e.g. (dx, du) = (0.3, 0.1), which also
reduces the effectiveness of the bias correction procedure. However, the bias reduction in FMNBLS
relative to NBLS remains noteworthy in that case, and for larger sample sizes the bias reduction
works as well as with (dx, du) = (0.4, 0).

Models A, B, and C satisfy all the assumptions of the model, and are increasing in complexity

4Also note that, as in Theorem 2, local Whittle estimation of the integration order of the errors based on FMNBLS
residuals is consistent and, if m0 = m3, then d̃u−du = OP (m

−1/2
0 (logm1) (m0/m1)

δmin), which converges faster than
when based on NBLS residuals.

5We thank the editor and an anonymous referee for suggesting the comparison with the MLW estimator.
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with Model A having no short-run dynamics whereas Models B and C include short-run dynam-
ics. Model B adds short-run dynamics to the regressor and thus disturbs the signal due to the
contamination of the low frequencies of xt from the higher frequencies which are dominated by the
short-run dynamics. In Model C short-run dynamics is present in ut instead of xt. Note that

G =

[
ξ(1− a1)−2 ρξ1/2(1− a1)−1(1− a2)−1

ρξ1/2(1− a1)−1(1− a2)−1 (1− a2)−2

]
(29)

such that when ρ 6= 0 the G matrix is not diagonal and the distribution theory for NBLS from
Christensen & Nielsen (2006) no longer applies, see Theorem 1. However, the NBLS estimator is
still consistent when ρ 6= 0. On the other hand, FMNBLS should be able to handle the presence of
the long-run endogeneity that is due to ρ 6= 0, as shown in Theorems 4 and 5 above.

We also consider the three-dimensional generating mechanism

Model D: x1t = (1− L)−dx,1 ε1t, x2t = (1− L)−dx,2 ε2t, ut = (1− L)−du ε3t,

where yt is generated by (2) with α = 1 and β = [1, 0]′, du = 0, and εt = [ε1t, ε2t, ε3t]
′ is indepen-

dently and identically N(0,Ω) distributed with

Ω =

[
2 0 −0.75
0 2 −0.75

−0.75 −0.75 1

]
.

Note that in Model D the cointegrating regression (2) is yt = x1t + ut, i.e., x1t ∈ I(dx,1), x2t ∈
I(dx,2), ut ∈ I(0), and yt ∈ I(dx,1). Hence, this is a three-dimensional model where the integration
orders of the regressors are not necessarily the same, but all assumptions are satisfied because one
of the regressors is not included in the DGP for yt; in particular there is no cointegration among
the regressors. The model illustrates a situation where one of the included regressor variables is in
fact not part of the cointegrating regression, and demonstrates how the estimation of the associated
coeffi cient (with true value equal to zero) depends on the parameters of the model, in particular on
the memory parameters, bandwidth parameters, and sample size.

For each model we use 10, 000 replications for sample sizes T = 128 and T = 512, which are close
to what is found in practical applications, see also the following section, although many applications
in finance will have much larger sample sizes. The bandwidth parameters chosen for the simulation
study are mi = bTψic, i = 0, 1, 2, 3, where ψ0 ∈ {0.4, 0.5}, ψ1 ∈ {0.6, 0.7}, ψ2 = 0.8, ψ3 = ψ0, and
bxc denotes the largest integer less than or equal to x.

Tables 1-3 present the Monte Carlo bias and root mean squared error (RMSE) results for Models
A-C. As expected from (15) and (29), we find that changing the sign of the contemporaneous
correlation ρ only causes the bias to change sign but does not change the size of the bias or RMSE,
so we only report results for ρ ≤ 0. For comparison, we also report the corresponding results
for the MLW estimator of Robinson (2008) with bandwidth m1 and using the NBLS, dx, and
du estimates also applied in FMNBLS as starting values, see Robinson (2008, Remark 3). For
the MLW estimator the phase parameter is set as (dx − du)π/2, i.e., fractional integration, and
the MLW objective function is optimized over the three-dimensional parameter (β, dx, du) by the
BFGS algorithm and terminated when the convergence criterion ε = 10−6 is satisfied or after 100
iterations.6

Table 1 presents the results for Model A. A general finding is that increasing the signal-to-noise
ratio ξ from 1 to 2, reduces the bias of NBLS and also improves the bias-reducing ability of the
FMNBLS procedure. This is due to the fact that the contemporaneous covariance between ε1t and

6 In the case of non-convergence after 100 iterations the replication in question was not included in the calculation
of bias and RMSE for the MLW estimator. Increasing the number of iterations required before termination of the
numerical optimization substantially worsens the results for the MLW estimator.
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Table 1: Simulation Results for Model A
ρ = −0.75 ρ = 0

Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW
ξ m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: T = 128
1 bT 0.4c bT 0.6c -0.248 0.267 -0.053 0.160 0.212 0.943 -0.000 0.136 -0.001 0.211 0.004 0.927

bT 0.7c -0.056 0.156 0.195 0.772 -0.000 0.205 -0.006 0.576
bT 0.5c bT 0.6c -0.296 0.309 -0.030 0.146 0.185 1.118 0.001 0.114 0.003 0.198 0.007 0.925

bT 0.7c -0.032 0.145 0.193 0.810 0.002 0.193 0.001 0.349

2 bT 0.4c bT 0.6c -0.175 0.188 -0.037 0.114 0.157 0.692 0.001 0.097 0.002 0.151 -0.001 0.715
bT 0.7c -0.040 0.111 0.137 0.587 0.001 0.147 0.000 0.384

bT 0.5c bT 0.6c -0.209 0.218 -0.021 0.103 0.141 0.727 0.001 0.081 0.001 0.139 -0.002 0.514
bT 0.7c -0.023 0.102 0.136 0.579 0.001 0.136 0.004 0.527

Panel B: T = 512
1 bT 0.4c bT 0.6c -0.169 0.176 -0.022 0.072 0.059 0.258 0.000 0.064 0.000 0.092 0.000 0.208

bT 0.7c -0.024 0.071 0.045 0.137 0.001 0.091 0.001 0.072
bT 0.5c bT 0.6c -0.203 0.208 0.003 0.066 0.058 0.231 0.000 0.057 0.001 0.090 -0.002 0.154

bT 0.7c 0.000 0.066 0.045 0.124 0.001 0.089 0.001 0.072

2 bT 0.4c bT 0.6c -0.120 0.125 -0.016 0.051 0.036 0.149 -0.000 0.047 -0.000 0.067 -0.001 0.101
bT 0.7c -0.017 0.051 0.030 0.086 -0.000 0.066 -0.001 0.051

bT 0.5c bT 0.6c -0.144 0.147 0.002 0.047 0.036 0.148 -0.000 0.040 -0.001 0.063 -0.001 0.103
bT 0.7c -0.000 0.047 0.030 0.086 -0.001 0.063 -0.001 0.051

Note: The simulations are based on 10,000 replications under the empirically relevant scenario (dx, du) = (0.4, 0),
with bandwidths m2 = bT 0.8c and m3 = m0.

ε2t is reduced when ξ increases from 1 to 2. Furthermore, estimating K(γ)−1H(γ) in (15) when it
is in fact zero because ρ = 0 inflates the variance (and hence the RMSE) of FMNBLS relative to
that of NBLS, but the fully modified procedure still yields unbiased estimates of β. For ρ = −0.75
(and ρ = 0.75), the FMNBLS procedure bias-corrects NBLS although this comes at the expense
of an increase in the finite sample standard error of up to 50%. However, the RMSE of FMNBLS
in that case is (much) lower than that of NBLS. For the larger sample size, T = 512, FMNBLS
yields almost unbiased estimates for all bandwidths with RMSEs much smaller than those of NBLS,
except when ρ = 0. Even though the bias of NBLS increases (and becomes fairly large) for larger
m0, the fully modified procedure is still able to correct this, and indeed the bias of FMNBLS is
smaller when m0 (= m3) is larger. Since there is no short-run dynamics, the choice of m1 appears
less important. The MLW estimator performs quite poorly compared to both NBLS and FMNBLS,
especially for T = 128. Interestingly, the sign of the bias of MLW is opposite that of NBLS.

Table 2 presents the simulation results for Model B with autoregressive coeffi cients a1 = −1/2
or a1 = 1/2.7 Now, (4) is a worse approximation to (14) when moving only a short distance away
from the origin, due to the contamination from higher frequencies (short-run dynamics), and we
therefore expect the bias of NBLS (and possibly also of FMNBLS) to be larger than for the case
of no short-run dynamics. Interestingly, for Model B it appears that the biases and RMSEs of
NBLS and FMNBLS are lower than for Model A when a1 = 1/2 and higher than for Model A
when a1 = −1/2. In Model B the MLW estimator is sometimes equal to or better than FMNBLS
in terms of RMSE in some cases with m1 = bT 0.7c. In general, though, it does not perform as well
as FMNBLS, and in some cases it even has convergence problems marked by asterisks in the table.

Next, we turn to Model C. Table 3 presents the simulation results, which are quite different for
a2 = −1/2 and a2 = 1/2. Compared to the results of Model A, the NBLS estimator is actually
less biased in this setup when a2 = −1/2. This suggests that negative autocorrelation in ut offsets
some of the bias in the NBLS estimator introduced by contemporaneous covariance between xt and

7For Models B and C we report the simulation results for ξ = 2 only. The results for ξ = 1 are qualitatively
similar, see also Table 1.
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Table 2: Simulation Results for Model B

ρ = −0.75 ρ = 0
Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW

a1 m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: T = 128
−1/2 bT 0.4c bT 0.6c -0.271 0.291 -0.134 0.211 0.297 1.345∗ -0.000 0.143 -0.001 0.225 0.008 1.066

bT 0.7c -0.124 0.204 0.342 1.528∗ -0.000 0.226 0.001 0.765
bT 0.5c bT 0.6c -0.328 0.342 -0.188 0.246 0.243 1.203∗ 0.001 0.120 0.002 0.205 0.019 1.131

bT 0.7c -0.178 0.241 0.333 1.546∗ 0.002 0.206 0.008 0.855

1/2 bT 0.4c bT 0.6c -0.078 0.086 -0.017 0.053 -0.007 0.144 0.000 0.050 0.001 0.071 0.002 0.181
bT 0.7c -0.027 0.054 -0.027 0.058 0.000 0.065 -0.000 0.050

bT 0.5c bT 0.6c -0.089 0.095 0.037 0.066 -0.006 0.127 0.000 0.043 0.001 0.072 0.000 0.145
bT 0.7c 0.024 0.054 -0.027 0.058 0.000 0.066 -0.000 0.050

Panel B: T = 512
−1/2 bT 0.4c bT 0.6c -0.182 0.190 -0.039 0.083 0.090 0.354 0.000 0.068 0.000 0.098 -0.001 0.224

bT 0.7c -0.034 0.080 0.086 0.235 0.001 0.099 0.001 0.080
bT 0.5c bT 0.6c -0.221 0.227 -0.035 0.079 0.092 0.376 0.000 0.060 0.001 0.094 -0.001 0.206

bT 0.7c -0.030 0.078 0.086 0.235 0.001 0.095 0.001 0.080

1/2 bT 0.4c bT 0.6c -0.057 0.059 -0.016 0.028 -0.005 0.032 -0.000 0.023 -0.000 0.033 0.000 0.030
bT 0.7c -0.023 0.032 -0.019 0.028 -0.000 0.030 -0.000 0.021

bT 0.5c bT 0.6c -0.066 0.068 0.003 0.024 -0.005 0.032 -0.000 0.020 -0.000 0.032 0.000 0.030
bT 0.7c -0.006 0.023 -0.019 0.028 -0.000 0.030 -0.000 0.021

Note: The simulations are based on 10,000 replications under the empirically relevant scenario (dx, du) = (0.4, 0),
with bandwidths m2 = bT 0.8c and m3 = m0. An asterisk indicates that MLW did not converge for 5-10% of the
replications.

ut, see (29). Consequently, the FMNBLS procedure works very well and generally yields almost
unbiased estimates and also large reductions in RMSEs when a2 = −1/2. When a2 = 1/2, Model
C results in extremely large biases for NBLS. For the small sample size the NBLS biases when
ρ = −0.75 range from 0.37 to 0.43 in absolute value, and for the large sample size the biases are
still about two-thirds of the bias for the smaller sample size. For the small sample size, this yields
an imprecise estimate of K(γ)−1H(γ), and as a result FMNBLS is still biased, although the fully
modified procedure generally still manages to reduce the bias quite considerably and has a smaller
RMSE than NBLS. For T = 512 FMNBLS has low bias and the RMSE is again (much) smaller than
that of NBLS. The performance of MLW is similar to that in Table 2 with convergence problems
for the small sample size when a2 = 1/2, and performance equal to or better than that of FMNBLS
only when a2 = −1/2 and at the same time m1 = bT 0.7c and T = 512.

Finally, we turn to Model D with two regressors with memory parameters (dx,1, dx,2). In this
case, as in Model A, the bandwidth m1 has no significant effect since there is no short-run dy-
namics. Increasing the bandwidth m0 appears to worsen the results for NBLS but improve those
for FMNBLS, both in terms of bias and RMSE. The most interesting aspect of Model D is the
comparison across different values of (dx,1, dx,2). In this respect we find for both NBLS and FMN-
BLS that bias and RMSE are higher for the coeffi cient on the variable with the lowest memory
parameter. This finding is in line with theory and with unreported simulations of Models A-C with
(dx, du) = (0.3, 0.1). The results appear symmetric with respect to the variable that is included in
the cointegrating regression (x1t) and that which is excluded (x2t).

Overall, the simulations clearly demonstrate the superiority (in terms of both bias and RMSE)
of the fully modified estimator relative to NBLS in the presence of non-zero long-run coherence
between the regressor and the error. In all models, the bias-reduction of FMNBLS relative to
NBLS is considerable, and for the larger sample size the bias practically disappears. The cost of
this bias correction is an increase in the finite sample standard deviation of approximately 30-50%
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Table 3: Simulation Results for Model C

ρ = −0.75 ρ = 0
Bandwidths NBLS FMNBLS MLW NBLS FMNBLS MLW

a2 m0 m1 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Panel A: T = 128
−1/2 bT 0.4c bT 0.6c -0.113 0.122 -0.003 0.072 0.055 0.349 -0.000 0.064 -0.000 0.100 0.005 0.451

bT 0.7c -0.010 0.069 0.012 0.145 -0.000 0.093 0.001 0.106
bT 0.5c bT 0.6c -0.133 0.139 0.036 0.070 0.047 0.337 0.000 0.055 0.001 0.097 0.001 0.325

bT 0.7c 0.032 0.074 0.012 0.154 0.001 0.091 0.002 0.142

1/2 bT 0.4c bT 0.6c -0.369 0.394 -0.293 0.384 0.198 1.928∗∗ 0.002 0.187 0.002 0.339 -0.048 2.479∗

bT 0.7c -0.289 0.393 0.005 1.911∗∗ 0.000 0.366 -0.001 1.951∗

bT 0.5c bT 0.6c -0.430 0.446 -0.421 0.477 0.076 1.865∗∗ 0.001 0.152 0.001 0.281 -0.005 1.539
bT 0.7c -0.443 0.503 0.093 1.717∗∗ -0.001 0.302 -0.001 1.958∗

Panel B: T = 512
−1/2 bT 0.4c bT 0.6c -0.079 0.082 -0.009 0.034 0.016 0.085 0.000 0.030 0.000 0.044 -0.001 0.109

bT 0.7c -0.012 0.034 0.003 0.040 0.000 0.042 0.000 0.032
bT 0.5c bT 0.6c -0.093 0.096 0.007 0.032 0.016 0.085 0.000 0.027 0.000 0.043 -0.000 0.064

bT 0.7c 0.005 0.032 0.003 0.040 0.000 0.042 0.000 0.032

1/2 bT 0.4c bT 0.6c -0.249 0.258 -0.123 0.158 0.239 0.794 -0.000 0.093 -0.000 0.139 -0.005 0.376
bT 0.7c -0.108 0.150 0.389 1.282 0.000 0.152 0.002 0.528

bT 0.5c bT 0.6c -0.301 0.308 -0.177 0.204 0.231 0.735 -0.001 0.080 -0.001 0.128 -0.004 0.279
bT 0.7c -0.183 0.212 0.360 1.056 -0.002 0.139 -0.005 0.502

Note: The simulations are based on 10,000 replications under the empirically relevant scenario (dx, du) = (0.4, 0),
with bandwidths m2 = bT 0.8c and m3 = m0. One and two asterisks indicate that MLW did not converge for 5-10%
of the replications and 10-25% of the replications, respectively.

for the models considered here. However, the results indicate that this is more than off-set by
the large bias reduction when ρ 6= 0 thus yielding reductions in the RMSE. The simulations also
suggest that the GLS-version of the FMNBLS estimator is superior to the MLW estimator in many
circumstances. This could possibly be due to the extra flexibility of the FMNBLS estimator from
using separate bandwidths for estimation of the cointegration vector, the integration orders, and
the asymptotic bias term.

5 Empirical Illustrations
We apply NBLS and FMNBLS to three different empirically relevant examples.8

5.1 The Implied-Realized Volatility Relation
Recent contributions by, e.g., Comte & Renault (1998), Bandi & Perron (2006), Christensen &

Nielsen (2006), and Berger, Chaboud & Hjalmarsson (2009) including empirical evidence, have
pointed towards viewing the predictive regression between implied volatility (IV) and realized
volatility (RV) as one of stationary fractional cointegration. However, the possible existence of
a volatility risk premium that is correlated with IV can bias the NBLS estimator in a regression of
RV on IV, which ultimately can lead to a wrongful rejection of the long-run unbiasedness hypothe-
sis, see Bandi & Perron (2006). Furthermore, the existence of an unobserved risk premium can also
imply a negative intercept in the regression, and thus long-run unbiasedness is typically upheld if
the cointegrating coeffi cient is β = 1 regardless of the presence of the intercept.

We sample S&P500 index options (SPX) data from the Berkeley options data base covering the
period January 1988 through December 1995 and calculate T = 412 weekly Black-Scholes implied
volatilities and the corresponding S&P500 realized volatilities, see Christensen & Nielsen (2006) for

8Henry & Zaffaroni (2003) survey empirical applications of fractional integration and long memory in macroeco-
nomics and financial economics.
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Table 4: Simulation Results for Model D
Bandwidths NBLS FMNBLS

(d1, d2) m0 m1 Bias1 Bias2 RMSE1 RMSE2 Bias1 Bias2 RMSE1 RMSE2
Panel A: T = 128
(0.25, 0.40) bT 0.4c bT 0.6c -0.207 -0.125 0.235 0.146 -0.118 -0.034 0.220 0.117

bT 0.7c -0.118 -0.034 0.216 0.115
bT 0.5c bT 0.6c -0.233 -0.149 0.248 0.162 -0.126 -0.020 0.199 0.105

bT 0.7c -0.127 -0.021 0.197 0.104

(0.40, 0.25) bT 0.4c bT 0.6c -0.124 -0.211 0.145 0.238 -0.033 -0.126 0.116 0.221
bT 0.7c -0.032 -0.125 0.113 0.217

bT 0.5c bT 0.6c -0.147 -0.235 0.160 0.250 -0.016 -0.132 0.105 0.204
bT 0.7c -0.017 -0.132 0.103 0.201

(0.40, 0.40) bT 0.4c bT 0.6c -0.127 -0.127 0.152 0.152 -0.036 -0.034 0.127 0.126
bT 0.7c -0.037 -0.036 0.124 0.125

bT 0.5c bT 0.6c -0.151 -0.150 0.166 0.166 -0.021 -0.020 0.114 0.115
bT 0.7c -0.022 -0.021 0.112 0.113

Panel B: T = 512
(0.25, 0.40) bT 0.4c bT 0.6c -0.165 -0.085 0.176 0.092 -0.081 -0.015 0.122 0.051

bT 0.7c -0.082 -0.015 0.121 0.050
bT 0.5c bT 0.6c -0.187 -0.102 0.193 0.107 -0.087 -0.001 0.118 0.047

bT 0.7c -0.088 -0.002 0.118 0.047

(0.40, 0.25) bT 0.4c bT 0.6c -0.086 -0.165 0.093 0.176 -0.015 -0.081 0.053 0.123
bT 0.7c -0.015 -0.081 0.052 0.122

bT 0.5c bT 0.6c -0.103 -0.187 0.108 0.193 -0.002 -0.087 0.048 0.119
bT 0.7c -0.003 -0.087 0.048 0.118

(0.40, 0.40) bT 0.4c bT 0.6c -0.087 -0.086 0.095 0.095 -0.016 -0.015 0.057 0.057
bT 0.7c -0.016 -0.015 0.056 0.056

bT 0.5c bT 0.6c -0.103 -0.103 0.109 0.109 -0.002 -0.002 0.052 0.052
bT 0.7c -0.003 -0.003 0.051 0.052

Note: The simulations are based on 10,000 replications with d3 = 0 and bandwidths m2 = bT 0.8c and m3 = m0.

details. In particular, Christensen & Nielsen (2006) find that the log-volatilities are stationary, with
insignificantly different long memory estimates, and that NBLS regression yields a cointegrating
coeffi cient β ranging from 0.84 to 0.89 for different bandwidth choices.

Panel A of Table 5 shows the memory estimates for the two log-volatility series. As found by
Christensen & Nielsen (2006), the series are stationary (d < 1/2) and exhibit long memory.

In Panel B of the table we show estimates (with asymptotic standard errors in parentheses) of
the (stationary) fractional cointegration relation between the two log-volatility series, IV and RV,
for a variety of bandwidth parameters: m0 = m3 ∈ {bT 0.4c, bT 0.5c}, m1 ∈ {bT 0.6c, bT 0.7c, bT 0.8c},
andm2 = bT 0.8c. The NBLS estimates are of course in line with the results of Christensen & Nielsen
(2006), with the parameter of interest, β, estimated to be 0.81−0.84. For m0 = bT 0.5c,m1 = bT 0.8c
it is significantly less than unity when applying the asymptotic distribution theory in Theorem 1.
Note that in two cases d̂x + d̂u ≥ 1/2 so that Theorem 1 does not apply to the NBLS estimator
and the asymptotic standard error is denoted by (−). The FMNBLS procedure corrects for the
possible correlation between the regressor and the error term; those estimates are displayed in
the final columns. We obtain point estimates of β that are now above unity, but insignificantly
different from unity except when m1 = bT 0.6c. Thus, our estimates generally tend to support the
long-run unbiasedness hypothesis, β = 1. Finally, we notice that with m1 = bT 0.8c both the NBLS
and FMNBLS estimates support an I(d) − I(0) relation with d around 0.35 − 0.4, although, c.f.
Theorem 2, the usual asymptotic distribution may not apply for d̂u and d̃u (d̂u denotes the estimate
based on NBLS residuals ût and d̃u denotes the estimate based on FMNBLS residuals ũt).
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Table 5: Implied-Realized Volatility Application
Panel A: Long Memory Estimates, d̂

Realized volatility Implied volatility

Bandwidth yt = lnσRV,t xt = lnσIV,t

m1 = bT 0.6c 0.4476
(0.0822)

0.4527
(0.0822)

m1 = bT 0.7c 0.4162
(0.0606)

0.3503
(0.0606)

m1 = bT 0.8c 0.4180
(0.0449)

0.2801
(0.0449)

Panel B: Cointegration Analysis

NBLS FMNBLS

Bandwidths α̂m3(0) β̂m3
(0) d̂u α̃m3(d̂u) β̃m3

(d̂u) d̃u

m0 = bT 0.4c,m1 = bT 0.6c −0.9403 0.8364
(−)

0.1046
(0.0822)

−0.0390 1.2792
(0.1305)

0.1778
(0.0822)

m0 = bT 0.4c,m1 = bT 0.7c −0.9403 0.8364
(0.1325)

0.0987
(0.0606)

0.0289 1.3126
(0.1746)

0.1341
(0.0606)

m0 = bT 0.4c,m1 = bT 0.8c −0.9403 0.8364
(0.1227)

0.0718
(0.0449)

−0.2893 1.1562
(0.1554)

0.0616
(0.0449)

m0 = bT 0.5c,m1 = bT 0.6c −0.9990 0.8076
(−)

0.1145
(0.0822)

−0.2018 1.1992
(0.0976)

0.1525
(0.0822)

m0 = bT 0.5c,m1 = bT 0.7c −0.9990 0.8076
(0.1242)

0.1079
(0.0606)

−0.1359 1.2316
(0.1317)

0.1181
(0.0606)

m0 = bT 0.5c,m1 = bT 0.8c −0.9990 0.8076
(0.1044)

0.0805
(0.0449)

−0.3470 1.1279
(0.1264)

0.0582
(0.0449)

Note: Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson (1995a).

Numbers in parentheses are asymptotic standard errors using
√
m1(d̂− d)

D→ N(0, 1/4). Panel B reports NBLS and
FMNBLS estimates with m2 = bT 0.8c and m3 = m0. The asymptotic standard errors for the NBLS and FMNBLS
estimates are based on (15) and (27), respectively. Standard errors for d̂u and d̃u are based on the same asymptotic
distribution as d̂, and should be used with caution, see Theorem 2.

5.2 Inflation Rate Harmonization in the European Union
We also examine consumer price indexes of France and Spain. Methods for calculating the

consumer price index vary across different countries, which makes international comparison more
diffi cult, and because of this we use the harmonized index for consumer prices (HICP) developed
within the European Union based on a coordinated methodology.

Since the differentials between the inflation rates of individual member countries of the European
Union are constrained, we expect that there exists a stable relationship between the inflation rates.
Furthermore, based on evidence of long memory in inflation rates in Doornik & Ooms (2004) we
expect that relationship to be one of stationary fractional cointegration. We calculate T = 159
monthly inflation rates based on the HICP of France and Spain. This data was obtained from
Eurostat and covers the period January 1992 through April 2005.

Panel A of Table 6 shows that the memory estimates decrease as the bandwidth increases. This
may be due to an added noise perturbation or, more likely, due to the distinct seasonal patterns
in inflation series; possibly reflecting seasonal long memory, see Doornik & Ooms (2004). Instead
of filtering this out by ad hoc procedures, we focus on the results for the lowest bandwidth, m1 =
bT 0.5c, which should be less sensitive to contamination from higher (e.g. seasonal) frequencies. For
this bandwidth, the memory estimates for both inflation rates imply that the series are stationary.

Panel B of Table 6 again supports the notion of I(d) − I(0) cointegration with d around 0.35.
Here, the FMNBLS estimates are much higher than the NBLS estimates. In particular, the FMN-
BLS estimates of the cointegration coeffi cient are significantly higher than unity at the 1% level in
both cases, implying that the long-run rate of inflation in Spain is higher than that in France (by
over 80% according to the point estimates). In addition, the estimates of d for the residuals are
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Table 6: Inflation Rate Harmonization Application
Panel A: Long Memory Estimates, d̂

Spain France

Bandwidth yt = πS,t xt = πF,t

m1 = bT 0.5c 0.4007
(0.1443)

0.3048
(0.1443)

m1 = bT 0.6c 0.0990
(0.1118)

−0.0690
(0.1118)

m1 = bT 0.7c −0.1847
(0.0857)

−0.1377
(0.0857)

Panel B: Cointegration Analysis

NBLS FMNBLS

Bandwidths α̂m3(0) β̂m3
(0) d̂u α̃m3(d̂u) β̃m3

(d̂u) d̃u

m0 = bT 0.3c,m1 = bT 0.5c 0.0011 1.1395
(0.3139)

0.0852
(0.1443)

0.0001 1.8619
(0.2797)

0.0100
(0.1443)

m0 = bT 0.4c,m1 = bT 0.5c 0.0012 1.0577
(0.2965)

0.1048
(0.1443)

0.0011 1.8272
(0.2470)

0.0099
(0.1443)

Note: Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson (1995a).

Numbers in parentheses are asymptotic standard errors using
√
m1(d̂− d)

D→ N(0, 1/4). Panel B reports NBLS and
FMNBLS estimates with m2 = bT 0.8c and m3 = m0. The asymptotic standard errors for the NBLS and FMNBLS
estimates are based on (15) and (27), respectively. Standard errors for d̂u and d̃u are based on the same asymptotic
distribution as d̂, and should be used with caution, see Theorem 2.

lower for FMNBLS than for NBLS although all appear insignificantly different from zero (again,
the usual asymptotic distribution may not apply, see Theorem 2).

5.3 Realized Volatility Relations
Finally, we analyze the relation between the realized volatility of the General Electric (GE)

stock and those of the Dow Jones Industrial Average (DJIA) and NASDAQ 100 indexes. I.e., there
are three variables in this application. The realized volatilities are monthly and are constructed
based on daily returns calculated as the difference in log-open and log-close prices. The sample
covers January 1990 to December 2008, i.e. T = 228.

Panel A of Table 7 shows that the memory estimates of the three realized volatilities are very
similar and stable across bandwidths with point estimates around 0.4, except for the middle band-
width where point estimates are higher and suggest nonstationarity. A test of the hypothesis that
all memory parameters are equal, see Robinson & Yajima (2002, section 3), is insignificant at con-
ventional levels for all bandwidth choices in the table. In Panel B of Table 7 we present cointegration
rank statistics from Robinson & Yajima (2002) using bandwidth m0 for rank statistics and m1 to
estimate memory parameters. In the remainder of the table we ignore bandwidth m1 = bT 0.7c to be
able to apply their results. In particular, using the notation of Robinson & Yajima (2002, section
3), Panel B presents the eigenvalues of the correlation-type matrix P , and the value of the model
determination function L(u) using v(T ) = m−0.4

0 . The rank can be determined by arg minL(u),
which suggests that the rank is one. Thus, we conclude that a regression approach is appropriate
in this multivariate system.

In Panel C we report estimates of the stationary fractional cointegration relation between the
realized volatilities of GE and the DJIA and NASDAQ indexes. Clearly the volatility of GE
should be related to the broader market volatility, so it seems reasonable to assume that the
volatility of GE enters in the cointegrating regression with a non-zero coeffi cient. Moreover, we are
interested in analyzing how the volatility of GE depends on the volatilities of the two indexes, so we
choose yt to be the realized volatility of GE. From the results, it appears that the NBLS estimator
underestimates the slope coeffi cient on DJIA (x1t) in the cointegrating relation. Both the NBLS
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Table 7: Realized Volatility Relations Application
Panel A: Long Memory Estimates, d̂

GE Dow Jones NASDAQ

Bandwidth yt = σ2GE,t x1t = σ2DJ,t x2t = σ2ND,t

m1 = bT 0.6c 0.4350
(0.1000)

0.3526
(0.1000)

0.4383
(0.1000)

m1 = bT 0.7c 0.5041
(0.0762)

0.4080
(0.0762)

0.5980
(0.0762)

m1 = bT 0.8c 0.3958
(0.0585)

0.4277
(0.0585)

0.4026
(0.0585)

Panel B: Cointegration Rank Analysis

Eigenvalues of P L(u)

Bandwidths 1 2 3 u = 0 u = 1 u = 2

m0 = bT 0.4c,m1 = bT 0.6c 2.3523 0.5889 0.0588 −1.6942 −2.0706 −1.9170

m0 = bT 0.4c,m1 = bT 0.8c 2.3522 0.5889 0.0588 −1.6942 −2.0706 −1.9170

m0 = bT 0.5c,m1 = bT 0.6c 2.4420 0.4764 0.0816 −1.9561 −2.2224 −2.0940

m0 = bT 0.5c,m1 = bT 0.8c 2.4419 0.4764 0.0816 −1.9561 −2.2224 −2.0940

Panel C: Cointegration Regression Analysis

NBLS FMNBLS

Bandwidths α̂m3(0) β̂m3
(0) d̂u α̃m3(d̂u) β̃m3

(d̂u) d̃u

m0 = bT 0.4c,m1 = bT 0.6c 0.0001 1.6478
(0.1321)

0.1825
(0.0211)

0.0192
(0.1000)

−0.0003 1.8591
(0.1327)

0.1828
(0.0182)

−0.0004
(0.1000)

m0 = bT 0.4c,m1 = bT 0.8c 0.0001 1.6478
(0.1318)

0.1825
(0.0332)

0.0409
(0.0585)

−0.0002 1.8349
(0.1281)

0.1837
(0.0348)

0.0561
(0.0585)

m0 = bT 0.5c,m1 = bT 0.6c 0.0003 1.4828
(0.1203)

0.2061
(0.0257)

0.0362
(0.1000)

−0.0001 1.6043
(0.1134)

0.2311
(0.0166)

−0.0023
(0.1000)

m0 = bT 0.5c,m1 = bT 0.8c 0.0003 1.4828
(0.1188)

0.2061
(0.0300)

0.0402
(0.0585)

−0.0001 1.5824
(0.1069)

0.2344
(0.0296)

0.0442
(0.0585)

Note: Panel A reports local Whittle estimates of the fractional integration orders as described in Robinson (1995a).

Numbers in parentheses are asymptotic standard errors using
√
m1(d̂ − d)

D→ N(0, 1/4). Panel B reports rank
statistics from Robinson & Yajima (2002) and Panel C reports NBLS and FMNBLS estimates with m2 = bT 0.8c
and m3 = m0. The asymptotic standard errors for the NBLS and FMNBLS estimates are based on (15) and (27),
respectively. Standard errors for d̂u and d̃u are based on the same asymptotic distribution as d̂, and should be used
with caution, see Theorem 2.

and the FMNBLS results indicate that the volatility of GE most strongly follows that of the DJIA.

6 Concluding Remarks
We have considered estimation of the cointegration vector under weak fractional cointegration.

A special case is the stationary fractional cointegration model which has found important applica-
tion recently, especially in financial economics. Previous research has considered Robinson’s (1994)
semiparametric frequency domain narrow-band least squares (NBLS) estimator, for which a con-
dition of non-coherence between regressors and errors at the zero frequency has sometimes been
imposed, e.g. Christensen & Nielsen (2006). We have shown that in the absence of such condition,
NBLS suffers from asymptotic bias although it remains consistent as proven by Robinson (1994).
We also showed that the bias can be consistently estimated, and consequently we introduced a
fully modified NBLS (FMNBLS) estimator which eliminates the bias but has the same asymptotic
variance as NBLS. Indeed, FMNBLS enjoys a faster rate of convergence than NBLS in general.

We also conducted a simulation study of the proposed FMNBLS estimator, which clearly demon-
strated the superiority with respect to bias of the fully modified estimator relative to NBLS in the
presence of non-zero long-run coherence between regressors and errors. Although this comes at
the cost of increased finite sample variance, FMNBLS is superior in terms of RMSE in simulations
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with long-run coherence between regressors and errors. The simulations also indicate that the
bias correction method works well in the presence of short-run dynamics in regressors and errors.
The empirical relevance of our methodology was demonstrated through a series of brief empirical
illustrations, all of which support the notion of a stationary fractional cointegration relation.

Appendix A: Proof of Theorems
A.1 Proof of Theorem 1

First write
√
m0λ

du
m0

Λ−1
m0

(β̂m0
(γ)− β) asΛm0λ

−1−2γ
m0

2π

T

m0∑
j=1

Re (Ixx (γ, λj)) Λm0

−1

Λm0λ
du−1−2γ
m0

√
m0

2π

T

m0∑
j=1

Re (Ixu (γ, λj)) .

Let Iab(λj) denote the (a, b)’th element of Iww(0, λj); the periodogram matrix of wt = (∆γx′t,∆
γut)

′.
Then the (a, b)’th element of Λm0λ

−1−2γ
m0

2π
T

∑m0
j=1 Re (Ixx (γ, λj)) Λm0 is λ

da+db−1
m0

2π
T

∑m0
j=1 Re (Iab (λj)),

which converges in probability to Kab(γ) by Lemma 6(c). Note that G, and thus the leading
(p− 1)× (p− 1) submatrix of G and therefore K(γ), is invertible by Assumption 1.

For the second term we show that

√
m0

Λm0λ
du−1−2γ
m0

2π

T

m0∑
j=1

Re (Ixu (γ, λj))−H(γ)

 D→ N (0, J(γ)) .

By the Cramer-Wold device, for any (p− 1)-vector η, we need to examine

η′
√
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(
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=
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=
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√
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T
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j=1
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∗
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)
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+
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√
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λda+dp−1
m0

2π

T

m0∑
j=1

Re (fap (λj))−Ha(γ)

 , (32)

where Iεε (0, λj) is the periodogram matrix of εt from Assumption 3.

By Lemma 6(a) it follows that (30) is OP (m
−1/6
0 (logm0)2/3 +m

−1/2
0 (logm0) + T−1/4), and by

Lemma 6(b) that (32) is O(m
min(1,φ)+1/2
0 T−min(1,φ)). Thus, both are oP (1) by Assumption 5.

Eq. (31) is
p−1∑
a=1

ηa
√
m0λ

da+dp−1
m0

2π
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m0∑
j=1

Re

(
Aa (λj)

1
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t=1

εtε
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t − Ip

)
A∗p (λj)

)
(33)

+

p−1∑
a=1

ηa
√
m0λ

da+dp−1
m0

2π
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m0∑
j=1

Re

Aa (λj)
1

2πT

T∑
t=1

∑
s 6=t

εtε
′
se
−i(t−s)λjA∗p (λj)

 . (34)

Note that D = T−1
∑T

t=1 εtε
′
t − Ip satisfies ||D|| = OP (T−1/2) since εtε′t − Ip is a martingale
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difference sequence with finite second moments. Then, by the Cauchy-Schwarz inequality,

(33) = OP

 max
1≤a≤p−1

m
−1/2
0 ‖D‖λda+dp

m0

m0∑
j=1
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 ,

where the second equality follows since ||Aa (λ) || = O(
√
faa (λ)). Thus (33) is OP (λ

1/2
m0 ).

Next, the term inside the parenthesis in eq. (34) can be rewritten as

1

2πT
Aa (λj)

(
T∑
t=2

t−1∑
s=1

εtε
′
se
−i(t−s)λj +

T−1∑
t=1

T∑
s=t+1

εtε
′
se
−i(t−s)λj

)
A∗p (λj)

=
1

2πT
Aa (λj)

T∑
t=2

t−1∑
s=1

(
εtε
′
se
−i(t−s)λj + εsε

′
te
i(t−s)λj

)
A∗p (λj) ,

so that
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where
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and we have defined ωj =
∑p−1

a=1 ηaλ
da+dp
m0 A′a (λj) Āp (λj). By defining the triangular array (subscript

T is omitted for brevity) z1 = 0 and zt = ε′t
∑t−1

s=1 ct−sεs, t = 2, ..., T , we can apply the martingale
difference central limit theorem of Brown (1971) and Hall & Heyde (1980, chp. 3.2) if

T∑
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E
(
z2
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P→ 0, (35)
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t=1

E
(
z4
t

)
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since zt is a martingale difference array with respect to the filtration (Ft)t∈Z, Ft = σ ({εs, s ≤ t}).
We first show (35). The first term on the left-hand side is
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By slight modification of Lemma 4 of Nielsen (2005) the second term on the right-hand side of (37)
is oP (1). Following the method of Robinson (1995a), we need to show that the mean of the first
term on the right-hand side of (37) is asymptotically equal to

∑p−1
a=1

∑p−1
b=1 ηaηbJab(γ). Thus,

T∑
t=2

t−1∑
s=1

E tr
(
c′t−sct−sεsε

′
s

)
=

T∑
t=2

t−1∑
s=1

tr
(
c′t−sct−s

)
=

T∑
t=2

t−1∑
s=1

m0∑
j=1

1

4π2T 2m0
tr
(
θ′jθj

)
(38)

+
T∑
t=2

t−1∑
s=1

m0∑
j=1

∑
k 6=j

1

4π2T 2m0
tr
(
θ′jθk

)
. (39)

Note that, from standard trigonometric identities, see also Lemma 3 of Shimotsu (2007),∑T−1
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It is thus easily seen that (39) is of smaller order than (38), so we focus on (38) for which
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The last two terms cancel and the sum of the first two terms can be written as
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where the second term is of smaller order by the trigonometric relations above. Using that
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×
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where the equalities follow from (14) and the trigonometric identities above. Approximating the
sum over j by an integral, applying Assumptions 1, 2, and that cos(x) = (eix + e−ix)/2, this equals

1

4

p−1∑
a=1

p−1∑
b=1

ηaηb
1

1− da − db − 2dp

×
(
GapGbp(e

iπ(da+db−2dp)/2 + e−iπ(da+db−2dp)/2) +GabGpp(e
iπ(da−db)/2 + e−iπ(da−db)/2)

)
+ o (1)

=
1

2

p−1∑
a=1

p−1∑
b=1

ηaηb
1

1− da − db − 2dp
(GapGbp cos (π (da + db − 2dp) /2) +GabGpp cos (π (da − db) /2)) + o (1)

=

p−1∑
a=1

p−1∑
b=1

ηaηbJab(γ) + o (1) .

Finally, to show (36),
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for some constant C > 0 by Assumption 3. Using the arguments of Lemma 4 of Nielsen (2005),
this expression can be bounded by O(T (

∑T
t=1 ||c2

t ||)2) = O(T−1), which completes the proof.

A.2 Proof of Theorem 2
First we show that (log T ) (d̂u − du)

P→ 0. Since γ = 0 it holds that wt = (x′t, ut)
′ such that

dx,a = da and du = dp. Rewriting equations (A.1)-(A.4), (A.24), (A.25), and (A.30) from the proof
of Theorem 3 of Robinson (1997) it suffi ces to show that

m
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measures the impact of using the periodogram of residuals (from NBLS with γ = 0) instead of that
of the errors. Our assumption du ≥ 0 allows a simplification of conditions (40)-(43) compared to
their counterparts in Robinson (1997), and could be relaxed at the expense of a longer proof.

From our Theorem 1 and Robinson & Marinucci (2003, Theorem 3.1) it holds that β̂a,m0
(0)−

βa = OP (λ
dx,a−du
m0 ) when du < min1≤a≤p−1 dx,a ≤ max1≤a≤p−1 dx,a < 1/2. Using that result along

with Assumption 1, (18), and the proof of Theorem 2 of Robinson (1995b), hj satisfies

|hj | = OP ((j/m0)−δmin + (j/m0)−2δmin). (45)

Applying (45) and the fact that
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which is used without special reference in what follows, it is easy to show that
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,

and similarly (41) and (42) are both OP ((log T )2(logm1)(m0/m1)δmin). Using the fact that % ∼
m1/e (e = 2.71 . . .) as T →∞, the left-hand side of (43) is bounded, for large T , by
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)2(∆1−du)

|hj |+
1

m1

m1∑
j=1

|hj | ,

which is negligible by (40) and (42).
Thus, we have shown (log T )-consistency of d̂u and proceed to prove the rate and asymptotic

distribution results. With probability approaching one as T →∞, d̂u satisfies

0 =
∂R̂(d̂u)

∂d
=
∂R̂(du)

∂d
+
∂2R̂(d̄u)

∂d2
(d̂u − du),

where |d̄u − du| ≤ |d̂u − du|. Following Robinson (1995a, pp. 1641-1644) we have that
∂2R̂(d)

∂d2
=

4(G̃0,û (d) G̃2,û (d)− G̃1,û (d)2)

G̃0,û (d)2 =
4(F̃0,û (d) F̃2,û (d)− F̃1,û (d)2)

F̃0,û (d)2 ,

where

G̃k,q (d) =
1

m1

m1∑
j=1

(log λj)
k λ2d

j Iqq (0, λj) and F̃k,q (d) =
1

m1

m1∑
j=1

(log j)k λ2d
j Iqq (0, λj) .

If we show that

sup
d∈∆∩Nζ

∣∣∣∣∣G̃0,û (d)− G̃0,u (d)

Ḡ (d)

∣∣∣∣∣ = oP ((logm1)−10), (47)∣∣∣F̃k,û (du)− F̃k,u (du)
∣∣∣ P→ 0, k = 0, 1, 2, (48)

with Ḡ (d) = Gpp
1
m1

∑m1
j=1 λ

2(d−du)
j and Nζ = {d : |du − d| < ζ} for 0 < ζ < 1/2, then

∂2R̂(d̄u)

∂d2

P→ 4. (49)

Note that, following Andrews & Sun (2004, p. 600), in our eq. (47) we use (logm1)−10 rather than
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(logm1)−6 as in Robinson’s (1995a) eq. (4.6). By (4.7) in Robinson (1995a), (47) follows if

(logm1)10
m1∑
j=1

(
j

m1

)1−2τ

j−2

∣∣∣∣∣
j∑

k=1

hk

∣∣∣∣∣ P→ 0 for some τ > 0,

which holds by (41) and (42) above. The left-hand side of (48) is bounded by∣∣∣∣∣∣Gppm1

m1∑
j=1

(log j)k hj

∣∣∣∣∣∣ ≤ Gpp (logm1)k

m1

m1∑
j=1

|hj | = OP

(
(logm1)k+1

(
m0

m1

)δmin)
by the same arguments as applied to (42) above. This proves (49).

Having established (49) it follows that

√
m1(d̂u − du) = (4 + oP (1))−1√m1

∂R̂(du)

∂d
, (50)

and the first statement of the theorem will follow below by examining the right-hand side of (50).
In order to prove the second statement of the theorem we have to show that

√
m1

∣∣∣∣∂Rû (du)

∂d
− ∂Ru (du)

∂d

∣∣∣∣ P→ 0, (51)

where

∂Rq (d)

∂d
= 2

G̃1,q (d)

G̃0,q (d)
− 2

m1

m1∑
j=1

log λj = 2
H̃q (d)

G̃0,q (d)
,

H̃q (d) =
1

m1

m1∑
j=1

νjλ
2d
j Iqq (0, λj) ,

and νj = log j −m−1
1

∑m1
j=1 log j. Now we write the left-hand side of (51) as

2
√
m1

∣∣∣∣∣H̃û (du)− H̃u (du)

G̃0,û (du)
− H̃u (du)

G̃0,u (du)

(G̃0,û (du)− G̃0,u (du))

G̃0,û (du)

∣∣∣∣∣
≤ 2

√
m1

∣∣∣G̃0,û (du)
∣∣∣−1 ∣∣∣H̃û (du)− H̃u (du)

∣∣∣ (52)

+2
√
m1

∣∣∣G̃0,û (du)
∣∣∣−1 ∣∣∣G̃0,û (du)− G̃0,u (du)

∣∣∣ ∣∣∣∣∣ H̃u (du)

G̃0,u (du)

∣∣∣∣∣ . (53)

To show that (53) is oP (1) note that H̃u(du)

G̃0,u(du)
= 1

2
∂Ru(du)

∂d , i.e. the score for the estimation prob-

lem with observed series, such that
∣∣∣ H̃u(du)

G̃0,u(du)

∣∣∣ = OP (m
−1/2
1 ) as in Robinson (1995a, p. 1644).

Furthermore, based on the previous results we get∣∣∣G̃0,û (du)− G̃0,u (du)
∣∣∣ ≤ 1

m1

m1∑
j=1

∣∣∣λ2du
j (Iûû (0, λj)− Iuu (0, λj))

∣∣∣ ≤ |Gpp|
m1

m1∑
j=1

|hj | = OP

(
(m0/m1)δmin

)
,

which is oP (1) by Assumption 6. Since G̃0,û (du) = Gpp + oP (1) by (48) with k = 0 and Robinson

(1995a), we have established that (53) = OP

(
(m0/m1)δmin

)
= oP (1). It also follows that (52) is

of the same order as
√
m1|H̃û (du)− H̃u (du) | which is equal to

Gpp√
m1

∣∣∣∣∣∣
m1∑
j=1

νjhj

∣∣∣∣∣∣ = OP

(logm1)
√
m1

m1∑
j=1

|hj |

 = OP

(
(logm1)

√
m1 (m0/m1)δmin

)
.
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Hence, (51) is OP ((logm1)
√
m1 (m0/m1)δmin) in general. By (50) it then follows that

√
m1(d̂u −

du) = OP ((logm1)
√
m1 (m0/m1)δmin) which proves the first statement of the theorem.

To prove the second statement of the theorem, we need to show that in fact
√
m1|H̃û (du) −

H̃u (du) | P→ 0 if Gap = Gpa = 0 for a = 1, . . . , p− 1. Thus,
√
m1|H̃û (du)− H̃u (du) | is equal to

Gpp√
m1

∣∣∣∣∣∣
m1∑
j=1

νjhj

∣∣∣∣∣∣
≤ Gpp√

m1

∣∣∣∣∣∣
m1∑
j=1

νjλ
2du
j

(
(β − β̂m0

(0))′Re (Ixx (0, λj)) (β − β̂m0
(0))/2 + (β − β̂m0

(0))′Re (Ixu (0, λj))
)∣∣∣∣∣∣

≤ Gpp
2
√
m1

∣∣∣∣∣∣
m1∑
j=1

νjλ
2du
j

p−1∑
a=1

p−1∑
b=1

(βa − β̂a,m0
(0))(βb − β̂b,m0

(0)) Re (Iab (λj))

∣∣∣∣∣∣ (54)

+
Gpp√
m1

∣∣∣∣∣∣
m1∑
j=1

νjλ
2du
j

p−1∑
a=1

(βa − β̂a,m0
(0)) Re (Iap (λj))

∣∣∣∣∣∣ . (55)

First, using summation by parts,
m1∑
j=1

νjλ
2du
j Re (Iap (λj)) = νm1

m1∑
j=1

λ2du
j Re (Iap (λj))−

m1−1∑
j=1

(νj+1 − νj)
j∑

k=1

λ2du
k Re (Iap (λk)) ,

and for νj we know that νm1 = O(1) and |νj+1 − νj | = O(j−1) uniformly in j (by a mean value
expansion). In the present case with Gap = Gpa = 0 for a = 1, . . . , p − 1 we know from Theorem

1 that β̂a,m0
(0) − βa = OP (m

−1/2
0 λ

dx,a−du
m0 ). This implies, in conjunction with Lemma 6(c) with

Gap = Gpa = 0 for a = 1, . . . , p− 1, that (55) is

OP

(
1
√
m1

p−1∑
a=1

λ
dx,a−du
m0√
m0

λ
du−dx,a
m1

(
m

1+min(1,φ)
1 T−min(1,φ) +m

1/2
1 (logm1)

))

+OP

 1
√
m1

p−1∑
a=1

λ
dx,a−du
m0√
m0

m1−1∑
j=1

j−1λ
du−dx,a
j

(
j1+min(1,φ)T−min(1,φ) + j1/2(log j)

)
= OP

(
1
√
m0

(
m0

m1

)δmin (
m

1/2+min(1,φ)
1 T−min(1,φ) + (logm1)

))
,

which is negligible by Assumption 6. Similarly, we get that (54) is also negligible since

OP

(
√
m1

p−1∑
a=1

p−1∑
b=1

λ
dx,a+dx,b−2du
m0

m0
λ

2du−dx,a−dx,b
m1

)
= OP

((
m0

m1

)2δmin √m1

m0

)
.

A.3 Proof of Theorem 3
To derive the asymptotic order of λdum2

Λ−1
m2

Γ̂m2(γ)−K(γ)−1H(γ), first write λdum2
Λ−1
m2

Γ̂m2(γ) asλ−2γ
m2

Λm2

1

m2 −m0

m2∑
j=m0+1

Re (Ixx (γ, λj)) Λm2

−1

λdu−2γ
m2

Λm2

1

m2 −m0

m2∑
j=m0+1

Re(Ixû (γ, λj)).
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We then show that

λ−2γ
m2

Λm2

1

m2 −m0

m2∑
j=m0+1

Re (Ixx (γ, λj)) Λm2 −K(γ) = OP (l(m0,m2)) , (56)

Λm2λ
du−2γ
m2

1

m2 −m0

m2∑
j=m0+1

Re(Ixû (γ, λj))−H(γ) = OP (l(m0,m2) + (m0/m2)δmin), (57)

where

l(m0,m2) =
(m2

T

)min(1,φ)
+m

−1/2
2 (logm2)+

(
m0

m2

)1−2(max1≤a≤p−1 dx,a−γ)((m0

T

)min(1,φ)
+m

−1/2
0 (logm0)

)
,

which is suffi cient to prove the desired result since

K(γ)−1 (1 +OP (l(m0,m2)))−1H(γ)(1 +OP (l(m0,m2) + (m0/m2)δmin))

= K(γ)−1H(γ) (1 +OP (l(m0,m2))) (1 +OP (l(m0,m2) + (m0/m2)δmin))

= K(γ)−1H(γ)(1 +OP (l(m0,m2) + (m0/m2)δmin))

and sincemax1≤a≤p−1 dx,a−γ < 1/2 implies (m0/m2)1−2(max1≤a≤p−1 dx,a−γ) (logm0) = O((log T )−1).
The (a, b)’th element of the left-hand side of (56) is

λda+db
m2

m2 −m0

m2∑
j=m0+1

Re (Iab (λj))−Kab(γ)

=
1

m2 −m0

λda+db
m2

m2∑
j=1

Re (Iab (λj))−Kab(γ)

− 1

m2 −m0

λda+db
m2

m0∑
j=1

Re (Iab (λj))−Kab(γ)


= OP

(
(m2/T )min(1,φ) +m

−1/2
2 (logm2)

)
+OP

(
(m0/m2)1−da−db((m0/T )min(1,φ) +m

−1/2
0 (logm0))

)
by application of Lemma 6(c).

To prove (57) we write the a’th element of the left-hand side as

λ
da+dp
m2

m2 −m0

m2∑
j=m0+1

Re(Îap (λj))−Ha(γ) =
λ
da+dp
m2

m2 −m0

m2∑
j=m0+1

Re(Îap (λj)− Iap (λj)) (58)

+
λ
da+dp
m2

m2 −m0

m2∑
j=m0+1

Re (Iap (λj))−Ha(γ), (59)

where Îap (λj) is the cross-periodogram between wat and ŵpt = ∆γ ût. Since Îap (λj) = Iap (λj) +∑p−1
b=1 Iab(λj)(βb− β̂b,m0

(γ)), eq. (58) depends on βb− β̂b,m0
(γ) which is OP (λ

dx,b−du
m0 ) = OP (λ

db−dp
m0 )

by Theorem 1. Thus,

(58) =

p−1∑
b=1

(βb − β̂b,m0
(γ))

λ
da+dp
m2

m2 −m0

m2∑
j=m0+1

Re (Iab (λj))

= OP

(
p−1∑
b=1

λ
da+dp
m2 λ

db−dp
m0 λ−da−dbm2

)
= OP

((
m0

m2

)δmin)
.

Lastly, the term (59) is OP (l(m0,m2)) by the same argument as for (56).
The same proof can be applied for Γ̃m2 , although Lemma 6(c) must be modified as

λda+db−c−1
r

∫ λr

0
Re
(
eiλ(da−db)/2λcfab (λ)

)
dλ
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= λda+db−c−1
r

∫ λr

0
Gabλ

c−da−db Re(eiπ(da−db)/2)
(

1 +O
(
λφ
))

dλ

= λda+db−c−1
r

∫ λr

0
Gabλ

c−da−db cos (π (da − db) /2) (1 +O(λφ))dλ

=
(1− da − db)

(1 + c− da − db)
Kab(γ)(1 +O(λφr )).

A.4 Proof of Theorem 4
The result follows by application of the previous theorems. From (25) and (27),
√
m3λ

du
m3

Λ−1
m3

(β̃m3
(γ)− β) =

√
m3λ

du
m3

Λ−1
m3

(β̂m3
(γ)− λ−d̂um3

Λ̂m3λ
d̂u
m2

Λ̂−1
m2

Γ̃m2(γ)− β)

=
√
m3λ

du
m3

Λ−1
m3

(β̂m3
(γ)− β)

−√m3λ
du
m2

Λ−1
m2

Γ̃m2(γ)(1 +OP ((log T ) (logm1)(m0/m1)δmin))

=
√
m3λ

du
m3

Λ−1
m3

(β̂m3
(γ)− β)−√m3λ

du
m2

Λ−1
m2

Γ̃m2(γ) + oP (1) , (60)

where the third equality is by Assumption 8 (or (26) if m3 = m0) and the second follows from

λ
d̂x,a−dx,a
m3 = 1 +OP ((log T )m

−1/2
1 ), a = 1, ..., p− 1, (61)

λd̂u−dum2
= 1 +OP ((log T ) (logm1)(m0/m1)δmin), (62)

which are consequences of Robinson (1995a) and Theorem 2 above. From Theorem 3 it follows that

√
m3λ

du
m2

Λ−1
m2

Γ̃m2(γ) =
√
m3K(γ)−1H(γ) +

√
m3OP

((
m0

m2

)δmin
+m

−1/2
0 (log T )−1 +

(m2

T

)φ)
=
√
m3K(γ)−1H(γ) + oP (1)

by Assumption 8 (or (26) if m3 = m0). The desired result now follows from Theorem 1.

A.5 Proof of Theorem 5
We need to show that

√
m3λ

du
m3

Λ−1
m3

(β̃m3
(d̂u)− β̃m3

(du)) = oP (1), which from (60) follows if
√
m3λ

du
m3

Λ−1
m3

(β̂m3
(d̂u)− β̂m3

(du)) = oP (1), (63)
√
m3λ

du
m2

Λ−1
m2

(Γ̃m2(d̂u)− Γ̃m2(du)) = oP (1). (64)

First note that by the mean value theorem,

Iqr(d̂u, λ) = Iqr(du, λ) + (d̂u − du)
∂

∂d
Iqr(d̄u, λ),

where ∂
∂dIqr(d̄u, λ) = ∂

∂dIqr(d, λ)|d=d̄u and d̄u is an intermediate value satisfying |d̄u−du| ≤ |d̂u−du|.
Setting θ = d̄u − du we have that

∂

∂d
Iqr(d̄u, λ) =

1

2πT

T∑
t=1

T∑
s=1

(log(1− L)∆θ∆duqt)(∆
θ∆durs)

′e−i(t−s)λ,

see also Shimotsu & Phillips (2005, p. 1912). Adapting the last displayed equation on p. 1914 of
Shimotsu & Phillips (2005) to our notation, using their eq. (59), and the fact that their function
JT (eiλj ) = O(log T ), we find that uniformly for θ ∈M = {θ : |θ| ≤ (log T )−4} it holds that

1

m3

m3∑
j=1

∣∣∣∣Re

(
∂

∂d
Iqr(d̄u, λj)

)∣∣∣∣ = OP

(log T )

m3

m3∑
j=1

|Re (Iqr(du, λj))|

 .

It follows that, uniformly for θ ∈M , Λm3λ
−1−2du
m3

2π
T

∑m3
j=1 Re(Ixx(d̂u, λj)− Ixx(du, λj))Λm0 has
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(a, b)’th element

λ
dx,a+dx,b−2du
m3 OP (|d̂u − du|)OP

(log T )

m3

m3∑
j=1

Re(λ
−dx,a−dx,b+2du
j )

 = OP

(
|d̂u − du|(log T )

)
and Λm3λ

du−1−2du
m3

√
m3

2π
T

∑m3
j=1 Re(Ixu(d̂u, λj)− Ixu(du, λj)) has a’th element

λ
dx,a−du
m3 OP (|d̂u − du|)OP

(log T )
√
m3

m3∑
j=1

Re(λ
−dx,a+du
j )

 = OP

(√
m3|d̂u − du|(log T )

)
.

Both terms are negligible by Assumptions 6 and 8, and thus (63) holds uniformly for θ ∈M .
Similarly, uniformly for θ ∈M , λ−2du

m2
Λm2

1
m2−m0

∑m2
j=m0+1 Re(Ixx(d̂u, λj)− Ixx(du, λj))Λm2 has

(a, b)’th element

λ
dx,a+dx,b−2du
m2 OP (|d̂u − du|)OP

 (log T )

m2 −m0

m2∑
j=m0+1

Re(λ
−dx,a−dx,b+2du
j )

 = OP

(
|d̂u − du|(log T )

)
and

Λm2λ
du−2du
m2

1

m2 −m0

m2∑
j=m0+1

Re(Ixû(d̂u, λj)− Ixû(du, λj))

= Λm2λ
−du
m2

1

m2 −m0

m2∑
j=m0+1

Re(Ixu(d̂u, λj)− Ixu(du, λj))

+Λm2λ
−du
m2

1

m2 −m0

m2∑
j=m0+1

Re(Ixx(d̂u, λj)− Ixx(du, λj))(β − β̂m0
(d̂u))

has a’th element

λ
dx,a−du
m2 OP (|d̂u − du|)OP

 (log T )

m2 −m0

m2∑
j=m0+1

Re(λ
−dx,a+du
j )


+λ

dx,a−du
m2 OP (|d̂u − du|)OP

 (log T )

m2 −m0

m2∑
j=m0+1

p−1∑
b=1

Re(λ
−dx,a−dx,b+2du
j λ

dx,b−du
m0 )


= OP

(
|d̂u − du|(log T )

)
+OP

(
|d̂u − du|(log T ) (m0/m2)δmin

)
,

and again both are negligible by Assumptions 6 and 7, which proves (64) uniformly for θ ∈M .
From Theorem 2 it holds that θ ∈ M with probability tending to one. Therefore the above

results also hold with probability tending to one, which proves the result.

Appendix B: Technical Lemma
Lemma 6 Under Assumptions 1-4, as T →∞, for 1 ≤ r ≤ m and 0 ≤ c ≤ da + db,

(a) max
a,b

λda+db−c
r

r∑
j=1

Re
(
λcj [Iab (λj)−Aa (λj) Iεε (0, λj)A

∗
b (λj)]

)
= OP (r1/3(log r)2/3 + (log r) + r1/2T−1/4),
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(b) max
a,b

λda+db−c
r

r∑
j=1

Re

(
λcjfab (λj)− λc−da−dbr

(1− da − db)
(1 + c− da − db)

Kab(γ)

)
= OP

(
r1+min(1,φ)T−min(1,φ)

)
,

(c) max
a,b

λda+db−c
r

r∑
j=1

Re

(
λcjIab (λj)− λc−da−dbr

(1− da − db)
(1 + c− da − db)

Kab(γ)

)
= OP

(
r1+min(1,φ)T−min(1,φ) + r1/2(log r)

)
,

where Iεε (0, λj) is the periodogram matrix of εt from Assumption 3 and Iab(λj) is the (a, b)’th
element of Iww(0, λj); the periodogram matrix of wt = (∆γx′t,∆

γut)
′.

Proof. Decompose the terms inside the real operator as

H1j = λcj [Iab (λj)−Aa (λj) Iεε (0, λj)A
∗
b (λj)],

H2j = λcj [Aa (λj) Iεε (0, λj)A
∗
b (λj)− fab (λj)],

H3j = λcjfab (λj)− λc−da−dbr

(1− da − db)
(1 + c− da − db)

Kab(γ).

The proof of Lemma 1(b) in Shimotsu (2007) applies also to our terms H1j and H2j which shows
that (a) holds and that maxa,b |

∑r
j=1H2j | = OP (r1/2(log r)). For H3j we use Assumptions 1 and

2 and the fact that Re(eiλz) = 1 +O(λ2), Im(eiλz) = O(λ) as λ→ 0 for any z ∈ R, which imply
Re(ei(π−λ)(da−db)/2) = Re(eiπ(da−db)/2) Re(e−iλ(da−db)/2)− Im(eiπ(da−db)/2) Im(e−iλ(da−db)/2)

= cos(π (da − db) /2)(1 +O(λ2))− sin(π (da − db) /2)O(λ),

such that

λda+db−c
r r−1

r∑
j=1

Re
(
λcjfab (λj)

)
= λda+db−c−1

r

∫ λr

0
Re (λcfab (λ)) dλ+RT

= λda+db−c−1
r

∫ λr

0
Gabλ

c−da−db Re(ei(π−λ)(da−db)/2)
(

1 +O
(
λφ
))

dλ+RT

= λda+db−c−1
r

∫ λr

0
Gabλ

c−da−db cos (π (da − db) /2) (1 +O(λmin(1,φ)))dλ+RT

=
(1− da − db)

(1 + c− da − db)
Kab(γ)(1 +O(λmin(1,φ)

r )) +RT .

The approximation error RT is O(T c−da−db−1 (log r)) uniformly in r.
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