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1. Introduction

Recently, there has been considerable research into the effect of background risk on

risk-taking behavior. It is natural to think that additional background risk will increase

local risk aversion. For example, one might expect that households which are relatively

exposed to uninsurable labor income risk will hold relatively conservative investment port-

folios.

The effect of background risk depends on preferences and the form that risk takes.

Pratt and Zeckhauser (1987), Kimball (1993), and Gollier and Pratt (1996) discussed this

effect by analyzing behavior when an independent, zero-mean background risk is added to a

decision problem. Kimball characterized the necessary and sufficient conditions for this ad-

dition to reduce risk-taking as ‘standard risk aversion’ while Gollier and Pratt characterized

them under more general circumstances as ‘risk vulnerability.’ von Neumann-Morgenstern

utility functions with constant relative risk aversion (CRRA) satisfy these conditions. That

finding is of interest because CRRA utility is widely used in macroeconomics and finance

because of its homogeneity properties.

This paper studies the classic Merton-Samuelson-Hakansson problem of saving and

portfolio allocation. In this model there are no frictions so the portfolio choices depend

solely on preferences and returns. As in utility-based portfolio models there is a range

of risky investments available. As in studies of precautionary saving, there is uninsurable

labor income risk. We describe a numerical method – dynamic programming (DP) by

the generalized method of moments (GMM) – for measuring the effect on portfolios of

adding independent, background income risk. Measuring this effect is of interest as a test

of models of saving and investment. Uninsurable income risk differs across households and

perhaps also across countries, and savings rates and portfolio shares may reflect this. Some

confidence in these predictions is needed in order to predict the welfare effects of insurance

schemes and international financial integration, for example.

While measuring the scale of this effect is interesting, there also is a second reason for

interest in numerical examples. Adding an independent, zero-mean background risk may

not be the most natural way to think of increased background risk. One alternative is a
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change with first-degree stochastic dominance, for example in the form of an additional

noise which is never positive. A second alternative is a change with second-degree stochastic

dominance, for example in the form of a mean-preserving spread. Eeckhoudt, Gollier, and

Schlesinger (1996) showed that, with these characterizations of additional background risk,

CRRA is not sufficient for an increase in local risk aversion. In other words, added income

risk will not necessarily reduce portfolio risk-taking. Thus, numerical examples also can

be used (though they may or may not be necessary, pending further theory) to find the

sign, and not just the scale, of the effect of income risk on portfolios.

Several applied studies have examined background risk. Elmendorf and Kimball (1991)

used a two-period model to predict the effect on portfolios of income taxes which reduce

income risk. Guiso, Jappelli, and Terlizzese (1996) studied data from a survey of Italian

households. They found that the larger the household’s uninsurable income risk the less

its demand for risky assets. In subsequent research, Guiso and Jappelli (1998) also found

that purchases of health and casualty insurance were higher for households with greater

self-reported uncertainty in earnings. They interpreted these results as consistent with

decreasing prudence, but they did not relate the scale of the effect to a utility function.

Haliassos and Bertaut (1995) examined the U.S. Survey of Consumer Finances and found

some evidence that income risk reduced the likelihood that a household held stocks.

Recently Bertaut and Haliassos (1997), Heaton and Lucas (1997), Koo (1999), and

Viceira (1999) also have studied dynamic portfolio problems with income risk, although

with different environments and methods than we adopt. Our economic findings are com-

plementary to theirs. In addition, we develop a solution method which allows statistical

inference about the effect of background risk, without parametrizing income and returns

processes. We demonstrate this method in simulations and also with historical data.

Section 2 outlines the budgeting problem which we study, and briefly reviews related

research on precautionary saving and on portfolio allocation. Section 3 describes the

solution method. Section 4 provides numerical results under a range of information sets.

We find results which are consistent with theory in that (a) increasing income risk reduces

consumption, and (b) increasing return risk reduces consumption (for relative risk aversion
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greater than one) and tilts portfolios away from risky assets. Moreover, (c) increasing

income risk tilts portfolios away from risky assets. However, this effect of background risk

on the portfolio is smaller than the effect on consumption and may be difficult to detect

statistically. Section 5 contains Monte Carlo evidence and a simple empirical application

using historical returns. Section 6 lists conclusions and some possible extensions.

2. Decision-theoretic problem and analytical results

We begin with the economic problem, in which an agent has wealth at and savings in

period t of at − ct, where ct is consumption. A proportion ωt of savings is held in an asset

with gross return R1 and a proportion 1 − ωt is held in an asset with gross return R2t. In

our examples R1 will be a constant, riskless return.

The agent also receives a stochastic income stream {yt}∞
t=0 which follows an exogenous

process:

yt = yptynt, (1)

where ypt is a permanent component and ynt is a transitory component. The permanent

component follows a logarithmic random walk with drift:

ln ypt = g + ln ypt−1 + εpt, (2)

with εpt ∼ NID(0, σ2
p). The transitory component is

ln ynt = −σ2
n

2
+ εnt, (3)

where εnt ∼ NID(0, σ2
n) and is independent of εpt. Using the properties of the log-normal

density, E[yn] = 1 and V ar[yn] = exp(σ2
n) − 1.

This process restricts labor income to be positive, and allows us to study both tem-

porary and permanent shocks. In addition, this description has been used in studies of

saving by Carroll (1997) and Carroll and Samwick (1997) who carefully discussed its cali-

bration to U.S. data. We follow their calibration, to allow comparison with the literature

on precautionary saving. The covariance between R2 and y is zero, so there is no hedg-

ing problem and the stream of stochastic income cannot be replicated by trading in the

available securities.
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The agent is infinitely-lived, with discount factor β and constant relative risk aversion

(CRRA) subutility. She chooses a path for consumption {ct}∞
t=0 and portfolio weights

{ωt}∞
t=0 to maximize

E0

∞∑
t=0

βt c1−α
t

1 − α
, (4)

subject to the evolution of wealth,

at+1 = [ωtR1 + (1 − ωt)R2t+1] · (at − ct) + yt+1 (5)

with a0 given. The vector of exogenous state variables {yt, R2t} is Markov. If there is no

labor income and no persistence in returns then the state vector reduces to at.

The case without labor income was solved by Samuelson (1969) and Merton (1969).

The optimal consumption policy involves consuming a constant fraction of wealth:

ct = λ0at. (6)

The marginal propensity to consume, λ0, is decreasing in β, as more patient planners save

more, decreasing in the variance of R2 when α > 1, and decreasing in risk aversion α.

With log utility (α = 1), the marginal propensity to consume out of wealth is λ0 = 1 − β.

Furthermore, the share of savings invested in the safe asset is of the form:

ωt = δ0, (7)

a constant which is independent of at and β if y = 0.

One of our goals is to compare the effect of income risk on the portfolio with its ef-

fect on the savings decision. Analytical solutions for multi-period precautionary savings

problems are available only in the special case of constant absolute risk aversion (CARA),

as described by Caballero (1990), or used by Kimball and Mankiw (1989). Svensson and

Werner (1993) showed that an analytical solution to the joint problem of precautionary sav-

ing and portfolio allocation requires CARA utility. But decreasing absolute risk aversion

(DARA) in the Arrow-Pratt sense is necessary for standard risk aversion or risk vulnera-

bility, so adopting CARA here would rule out an effect of background income risk on the

portfolio.
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The case with constant relative risk aversion is of interest here because this utility

function displays standard risk aversion. Furthermore, CRRA utility is widely used in

macroeconomics where its homogeneity properties are consistent with balanced growth.

Isoelastic utility rules out negative consumption. It also implies that high values of wealth

are associated with flatter consumption paths, a feature which matches life-cycle evidence

(see Blanchard and Mankiw (1988)). Recent studies of precautionary saving under CRRA

utility include those of Zeldes (1989), Hubbard, Skinner, and Zeldes (1995), Normandin

(1994), and Carroll and Samwick (1997). While these studies examine empirical issues

beyond the scope of this paper, each involves a non-stochastic return on a single asset.

It is well-known that rate-of-return risk also may affect saving. Levhari and Srinivasan

(1969) showed that, with CRRA utility, increased interest-rate variance leads to increased

consumption with relative risk aversion less than one and increased saving with relative

risk aversion greater than one. Analytical results are available for the portfolio problem

with CRRA utility but these results cannot accommodate undiversifiable labor income risk

(see Adler and Detemple (1988), Bodie, Merton, and Samuelson (1992), and Stulz (1984)).

An intermediate case, with constant labor income, was solved by Hakansson (1970)

and Merton (1971). Denote the present value of labor income, calculated at the riskless

interest rate, by Py. The optimal consumption and investment policies now are of the

form:
ct = λ0(at + Py)

ωt = δ0 + δ1

(Py

at

)
.

(8)

The share of savings invested in the safe asset now is a linear function of the ratio of

income to wealth. Merton (1969) and Hakansson (1970) also showed that the transver-

sality condition is satisfied and that wealth remains non-negative in their problems. In

turn, Dybvig and Huang (1988) showed that nonnegative wealth precludes arbitrage and

rules out doubling strategies, for example. Their result also applies when labor income is

stochastic, so when we construct wealth series we check for nonnegative wealth directly

rather than imposing a boundary (transversality) condition in the solution algorithm.

Several recent studies have examined the joint precautionary saving/portfolio alloca-
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tion problem. Bertaut and Haliassos (1997) studied a model with finite lives, in which a

lifetime is divided into three twenty-year periods. Their model includes a portfolio prob-

lem and risky income which is calibrated to the U.S. Survey of Consumer Finances for

1992. They solved the model numerically under CRRA utility, and found that portfolio

risk-taking increases when the variance of persistent income shocks falls. They also found

that the variance of temporary income shocks has little effect on the portfolio. Like this

study, their research focused on the model without frictions such as short-sales constraints

or transactions costs. However, we study the infinite-horizon model, and present a solution

method which does not require us to parametrize the income and return processes. The

infinite-horizon case is widely used in portfolio and asset-pricing theory, and also has the

advantage that analytical solutions are known for special cases. Those cases provide a test

of the solution method and initial conditions for other cases.

Koo (1999), Viceira (1999), and Heaton and Lucas (1997) all analyzed dynamic port-

folio problems with partly unhedgeable income risk. Koo examined the effect of liquidity

constraints, while Viceira examined the effect of a retirement horizon and also studied the

hedging problem. These two studies reach one of the same conclusions that we do: in-

come risk has a relatively small effect on optimal portfolios. Heaton and Lucas considered

an environment in which there are transaction costs and short-sale constraints. In their

examples the portfolio is entirely invested in stocks, a stance which is unaffected by an

increase in income risk.

When labor income is stochastic, there is no analytical solution for the optimal con-

sumption and portfolio behavior. However, Viceira (1999) derived the optimal policies in

the log-linearized version of the model. They are of the form:

ct = λ0a
λ1
t yλ2

t

ωt = δ0.
(9)

We adopt this approximation, but find the log-linear decision-rule coefficients

{λ0, λ1, λ2, δ0} numerically. While more flexible shape-preserving approximations could be

studied, this one is parsimonious, which should aid identification.
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This functional form nests the analytical solution (6)-(7) for the case with zero labor

income. Perturbing the environment around analytically tractable cases is a standard first

step in numerical analysis, as described for example by Judd (1997). In addition, this

form also draws on recent theoretical results characterizing the optimal decision rules.

Carroll and Kimball (1996) proved that consumption is a concave function of wealth when

labor income is risky, and the parameter λ1 is included to measure this effect. Duffie,

Fleming, Soner, and Zariphopolou (1997) and Koo (1998) studied a continuous-time version

of the problem, in which y follows a geometric Brownian motion, the continuous-time

version of the process used here. Koo (1999) studied the discrete-time version of the same

problem, and the existence, uniqueness, and characterization of optimal policies. Wealth

is non-negative in all our numerical examples, a feature which is equivalent to the liquidity

constraint in Koo’s study. Thus his results on the existence of optimal policies apply

here directly. These studies also show that the decision rule coefficients can be written as

functions of the ratio of income to wealth. For example, if a becomes large relative to y

then the solution approaches the Merton case. In the environment studied here, we were

unable to identify effects of the income-wealth ratio on the optimal portfolio, and so we

report results for the simple portfolio rule (9).

There also is significant research which generalizes the description of returns in the

multi-period portfolio problem. Analytical expressions for portfolio weights are available

only with log utility or a constant investment opportunities set. A variety of studies

examine discrete distributions for returns and construct portfolios numerically. Campbell

and Viceira (1999) provided some more general results in environments with persistence

in returns, using an analytical approximation to describe optimal portfolios. Kim and

Omberg (1996) described behavior when risk premiums are persistent. Brandt (1999)

estimated portfolio shares from conditional Euler equations, and thus avoided parametric

decision rules by conditioning the investment strategy on the current state. He smoothed

across states to estimate the optimal rules given empirical return processes.

Our method also can accommodate various preferences and time-varying conditional

returns, though returns are iid in our simulations. We estimate behavior from Euler
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equations, but we include undiversifiable income risk. We wish to study the effect of

bearing uninsurable income risk on willingness to bear rate-of-return risk. In addition,

we wish to learn whether standard tools of statistical inference can detect the effect of

background risk. The next section outlines a simple numerical method for answering these

questions.

3. DP by GMM

Several special cases of the budgeting problem without income risk can be solved

analytically, for example by the guess-and-verify method. Sargent (1987, pages 31-35)

gave two discrete-time examples. Our algorithm is the natural extension of the guess-and-

verify method to cases which must be approximated. We guess a form (such as equations

(9)) for the approximate decision rules, substitute that guess into the Euler equations,

and estimate the decision-rule coefficients by GMM, whether in simulated or historical

data. This procedure inherits several appealing features of GMM. For example, it allows

us to attach standard errors to decision-rule coefficients, and it does not require complete

knowledge of the laws of motion of income and returns. The method also does not impose

certainty equivalence, and so it is appropriate for problems of precautionary saving and

portfolio allocation. It is very simple to program, requiring only an econometric software

package. Smith and Zin (1997) applied the method to historical U.S. business cycles, and

so avoided parametric modeling of technology shocks.

Euler-equation orthogonality conditions are used directly as a design criterion, and

so this is a projection method as described by Judd (1992), which here is made semi-

parametric. We seek a vector of decision rules which give consumption ct and the invest-

ment share of the riskless asset ωt as functions of the state. The algorithm begins with

the Euler equations:

EtβRit+1c
−α
t+1 − c−α

t = 0 (10)

for i = 1, 2.

We next approximate the decision rules. To explain the algorithm we use a simple,
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linear guess:
ct = λ0at

ωt = δ0

(11)

where λ0 and δ0 are scalars. Combining the guess with the law of motion for wealth (5)

gives:

at+1 = (1 − λ0)at · [δ0R1 + (1 − δ0)R2t+1] + yt+1. (12)

Using this result and our guess we then replace ct and ct+1 in the Euler equations (10) to

define the approximate Euler equation residuals:

ηit+1 = βRit+1

[
λ0

(
(1 − λ0)at · [δ0R1 + (1 − δ0)R2t+1] + yt+1

)]−α

− [
λ0at

]−α (13)

for i = 1, 2. Equation (10) holds at an optimum, so the approximation is selected with the

same principle:

E[ηit+1|zt] = 0, (14)

where zt is a vector of instruments. Equations (14) define an operator from the decision-

rule function space to the Euler equation residuals. We seek a zero of this operator, which

is an example of computing an implicit function (see Judd, 1998 chapter 6).

In guessing the form for the decision rules, we assume that agents use the correct state

vector. For example, income is Markov and returns have no persistence in the simulations

in this paper, and the lag length in the guess reflects this information. In applications,

longer lag lengths could be included to test for longer memory in the state. However,

agents do not know the parametric law of motion for income or returns. For that reason,

the information set includes labor income yt but not its decomposition into permanent and

temporary components.

The expectations in equations (14) are calculated in three different ways in the next

section. First, we simulate sequences of returns and incomes, R2t and yt, from a normal

random number generator, and use GMM to find the decision-rule parameters which most

closely satisfy the Euler equations. The expectations are replaced by simulated sample

means. The residual function consists of the fitted Euler equation errors. Finally, we

project the residual function on zt = ι, a vector of ones. Hence we are requiring that
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the average error be zero in each Euler equation. The algorithm then minimizes the

sum of two squared sample means, so that the two decision-rule coefficients are found by

just-identified GMM. The GMM criterion function is minimized using the Nelder-Mead

simplex routine from Press et al (1992). Notice that, if the information set includes at and

yt, then the conditional expectations can be calculated simply by using the densities of

the exogenous state variables R2t+1 and yt+1, because no endogenous variables dated t+1

appear in equations (13). Such conditional calculations save the time involved in looping

over equation (5) to construct {at}.

Marcet (1988) and Smith (1991) pioneered the use of econometric methods to solve

dynamic macroeconomic models. Like those authors, we parametrize the decision rules to

incorporate the theoretical restrictions (such as concavity) that are available in this prob-

lem. Although simulation is typically less accurate and slower than numerical integration,

we adopt it because we wish to study a method which can be used in historical data. There

we cannot choose data points, and we may wish to avoid assuming that returns are drawn

from a specific probability density function. Hence, although the pseudo-random numbers

are normally distributed, in this case the algorithm is not told that. Thus the solution

method is a projection method with one hand tied behind its back, or is semi-parametric.

Second, we again estimate the decision-rule parameters by GMM, but this time we

recursively construct the endogenous state variable at. This step slows the computations

but provides additional instruments such as lagged consumption or wealth, and so allows

over-identification. This information set simulates the instruments zt which are available

in applications, and so serves as a precursor to the application in section 5.

Third, we next give the algorithm information about the densities of income and

returns. Instead of replacing the expectations (14) by their simulated sample means,

we evaluate the integrals by numerical integration. Since R2 and the income shocks εp

and εn are Gaussian, Gauss-Hermite quadrature is the natural choice as an integration

method. The integration uses standard nodes and weights as tabulated by Krylov (1962)

for example. This third exercise serves as an accuracy check, for it gives population

measures of the effect of income risk on the portfolio, given parameter values, the assumed

10



normality, and the approximation to the decision rules.

4. Information and numerical results

The environment in the numerical examples begins with the standard portfolio prob-

lem without labor income. The solution to this problem involves a linear consumption

function (6) and a constant portfolio share (7). This environment provides a behavioral

benchmark, an accuracy test of the solution method, and starting values for later experi-

ments.

The mean returns are taken from Table 8.1 of Campbell, Lo, and MacKinlay (1997),

which is based on the real return on six-month commercial paper (R1) and the log real

return on the S&P 500 index (R2) in long spans of annual data. The variance of the risky

return is greater than in their table, so as to give a positive portfolio share for the riskless

asset. The alternative to adopting this unrealistically high value of σR2 would be to find

an unrealistically large, negative value for δ0, implying that households borrow to invest

in stocks. This is simply the quantity dual of the equity premium puzzle.

Table 1 gives the estimated consumption and portfolio rules. The first two columns

give α, the coefficient of relative risk aversion, and σR2 , the standard deviation of the

risky return. The middle columns give estimates of the marginal propensity to consume

out of wealth, λ̂0, and of the share of assets invested in the safe asset, δ̂0, along with

their standard errors. Both decision-rule coefficients are quoted as percentages. The final

columns give the J-test of the overidentifying restrictions, with its p-value.

The top panel of Table 1 conditions on the current value of wealth, so that with two

Euler equations the two parameters are just identified. The middle panel loops to construct

wealth endogenously. The resulting additional instruments, in the form of lagged Euler-

equation residuals, allow a test of overidentification. The bottom panel gives the results

of Gauss-Hermite quadrature. The sample size is 10, 000. Seeds are held constant across

parametrizations. At T = 10, 000, sampling variability remains in the estimates, and GMM

standard errors are given in brackets.

Each aspect of Table 1 conforms to theory. For a given risk aversion, the share of the
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portfolio invested in the riskless asset rises as the variance of the risky return rises. For

a given structure of returns, the marginal propensity to consume falls and the share of

wealth held in the riskless asset rises as risk aversion rises. With log utility, the marginal

propensity to consume is independent of the structure of returns and equal to 1−β. When

α exceeds one, however, an increase in the variance of the risky return reduces the marginal

propensity to consume, even though the portfolio share allocated to that investment also

falls. In the top panel, the algorithm also yielded the same coefficients whatever the

constant value of wealth.

Table 1 provides two accuracy tests in addition to conforming with analytical results.

In the central panel of Table 1, the instruments consist of a constant term and a lag of

each Euler equation residual. With six moment conditions the two decision-rule coefficients

are overidentified. The last column contains the J-test statistic, which is asymptotically

distributed as χ2(4). In each case, the J-test does not reject at conventional significance

levels. The standard errors do not change from the first to the second panel because in

this environment the decision-rule form is known analytically, and the exogenous state

variables have no persistence. Thus the added instruments do not add to the precision

of the estimates. This result will not hold when DP by GMM is used with approximate

decision rules.

The second accuracy test is provided by the comparison with numerical integration, in

the bottom panel. Like other simulation methods, DP by GMM is inefficient as an exper-

imental method. But the comparison of panels in Table 1 shows that it is quite accurate,

for the estimates are virtually identical to those found by Gauss-Hermite quadrature.

Next, Table 2 introduces risky labor income, following the geometric random walk (1)-

(3) with temporary and permanent shocks. The parameter values for the income process

are the same as those of Viceira (1999) and very similar to those of Carroll (1997), who

discussed their calibration to U.S. panel data from the PSID. The drift term g is set so

that income growth averages 3 percent per year. Permanent shocks to labor income have

a standard deviation, σp, of 15 percent per year, while temporary shocks have a standard

deviation, σn, of 10 percent per year. Baseline parameters are given at the top of the table,
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and the associated decision rules are given in the first row. Later rows vary the parameters

relative to the baseline list. Decision-rule coefficients again are quoted as percentages.

The solution method is DP by GMM with endogenous wealth, as in the central panel

of Table 1. The idea is that the top panel of Table 1 gives the investigator too little

information – by fixing the value of wealth and conditioning on current income – while the

bottom panel gives too much, in the form of knowledge of the distribution of returns.

Recursively constructing wealth again introduces instruments which now can add to

precision, given the persistence in the exogenous state variable y. Again the J-test of the

overidentifying restrictions serves as an accuracy test. None of the test statistics leads to

a rejection at the 5 percent level, except in the final row where income is deterministic.

In that case, we know that the functional form (9) for the consumption rule is wrong:

Hakansson (1970) and Merton (1971) showed that consumption is linear in wealth (as in

equation (8)) in the portfolio problem with a deterministic income stream. This line in

Table 2 shows that the GMM diagnostics have some power, in that they reject when the

approximation is poor, while Table 1 showed that they did not reject when the functional

form was correct. These findings add to our confidence in the results elsewhere in Table

2. Thus the functional form and numerical optimization seem to allow a study of the two-

risks problem. As we perturbed the environment by adding income risk, we also tried to

identify effects of the income-wealth ratio on the optimal portfolio but were not successful.

Thus we report results for the simple linear rules in equation (9).

The coefficients in the consumption rule once again satisfy theory. The consumption

function is shifted down by increases in risk aversion (rows 2 and 3). With log utility, the

consumption function is insignificantly affected by changes in the variance of returns (rows

4 and 5). Decreases in income risk, whether in the temporary (rows 6 and 7) or permanent

(rows 8 and 9) component of income, lead to significant decreases in consumption tilting

(λ̂0 rises and λ̂1 falls), consistent with precautionary saving. Finally, λ̂1 is less than 100

percent throughout the table and its standard error generally is small. Thus consumption

is a concave function of wealth, consistent with the result of Carroll and Kimball (1996).

The portfolio behavior also is consistent with theory. The share of wealth held in
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the safe asset rises as risk aversion rises (rows 2 and 3). These changes are large and

significant, given the standard errors. Increases in the variance of the risky return also

lead to increases in the share held in the safe asset (rows 4 and 5), but these changes are

smaller and have large standard errors. Finally, decreases in income risk (rows 6 to 10) lead

to riskier investment behavior, as one would predict from risk vulnerability or standard

risk aversion. However, these effects on the portfolio are difficult to measure precisely and

sometimes are insignificant. The effect of a given change in income risk is easier to detect

in the consumption rule than in the portfolio decision.

These large-sample results suggest that models of precautionary saving may mis-

predict if they ignore the endogenous effect of income risk on the portfolio rate of return.

Similarly, the predicted effects on the savings rate and on the portfolio strategy of a

change in rate-of-return risk may be sensitive to the scale of income risk. While the effects

of income risk on the portfolio can be difficult to measure precisely – because the portfolio

share has a large estimated standard error – the same can be said of the traditional effects

of rate-of-return risk.

5. Monte Carlo evidence and historical application

We next present a simple application, which uses GMM to estimate optimal consump-

tion rules and portfolio shares. The application shows that the method can be implemented

easily with historical returns.

We consider annual U.S. returns data from 1934 to 1998, so that T = 65. This

frequency is chosen because the parameters of the income process are calibrated from

annual PSID data. For comparability with section 4, R1 is set at a constant value of

1.02. The {R2t} series is defined as R1 plus the value-weighted return on the NYSE and

AMEX including dividends (from CRSP, label vwretd) minus the three-month T-bill rate

(from FRED at the Federal Reserve Bank of St.Louis, label tb3ms). Inflation cancels with

this definition of R2, so this can be viewed as R1 plus a real excess return. This series

is converted from monthly to annual frequency as a geometric average. It has a mean of

1.095, a standard deviation of 0.182, and a first-order autocorrelation of 0.13. This return
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thus has minimal persistence at annual frequency, which again mimics the environment in

section 4. For that reason, R2t is not included in the state vector.

The historical return series is combined with a simulated income series, as if the PSID

had begun in 1934. This approach is taken because there is no annual series on labor income

for this time period. In addition, the use of a simulated series ensures independence from

returns, so that there is no hedging problem. Estimates are averaged over 1000 replications

to minimize simulation sampling error.

Table 3 contains the results. The top panel examines the sampling variability in the

estimated decision rules using Monte Carlo methods. Here we use the baseline parametriza-

tion of table 2 (with both income and returns simulated), but now with 1000 draws over

65 observations. The first goal of the simulations is to see whether standard tools of in-

ference are reliable. We thus calculate the average standard error across replications and

compare it to the Monte Carlo, cross-replication standard error. The second goal is to

see what economic inferences can be drawn at these sample sizes. The point estimates of

the decision-rule coefficients are consistent with theory, in that consumption is concave in

wealth. The average value of the J-test statistic is 5.66, which does not lead to a rejection

of the over-identifying restrictions at the 5 percent significance level.

The two sets of brackets below the average coefficient estimates contain, first, the

average GMM standard error and, second, the Monte Carlo, cross-replication standard

error. The Monte Carlo standard errors are less than half the asymptotic GMM ones, so

that using the latter would underestimate the precision. This discrepancy between the

two methods of calculating standard errors naturally declines with the sample size, but

it remains large even at larger sample sizes such as 200 or 500. We draw the lesson that

repeated simulation should be used to find standard errors in applications that involve

some simulated state variables.

In the simulation in the top panel of Table 3, even the Monte Carlo standard errors are

large relative to the coefficients, so that none of the coefficients is statistically significant.

However, the decision rules are estimated with much more precision in the historical data.

The next panel of Table 3 summarizes results using the historical sequence of 65 equity
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premiums, with a constant riskless interest rate. Using the Monte Carlo standard errors

for inference, estimation of the baseline model yields two significant coefficients, λ̂1 and

δ̂0.

At the baseline parameter values, with α = 1, the optimal policy is to borrow heavily

at the riskless rate so as to invest 217 percent of wealth in the stock market (with a

standard error of 18 percent). This large short position in the riskless asset arises because

the application uses historical equity returns, which are less variable than the equity returns

in the simulations.

The next two rows of Table 3 show that one can detect the effects of changes in α,

the coefficient of relative risk aversion. For example, higher values of risk aversion lead to

portfolios which are tilted significantly towards the safe asset, as one would expect. When

α = 5, 166 percent of wealth is invested in equities, with a standard error of 16 percent.

However, the average J-test rejects the over-identifying restrictions for large values of α.

Although the tendency of the J-test to over-reject in small samples is well-known this

tendency probably cannot explain such large test statistics.

In contrast, the effects of changes in the variance of shocks to labor income, whether

temporary or permanent, cannot be detected at this sample size. Here changes in the

consumption function and in the portfolio share are both insignificant. Drawing historical

inferences about the effect of background risk at this sample size would require additional

information, for example by studying panel data or by assuming that households know the

parameters of the income and returns processes.

This application has a small number of observations because it is set up to match the

earlier examples, calibrated to annual data from the PSID. Even so, several features of the

decision rules – and of their changes in response to changed parameters – are statistically

significant. The same method could be applied to portfolio problems with higher frequency

data.

6. Conclusion

Modeling responses to income and investment risk jointly is potentially important for
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a variety of economic questions. For example, changes in tax policies or social security

which reduce income risk are predicted to reduce savings rates by standard models of

precautionary saving. But the effect on growth of a decline in saving may be offset by

a portfolio shift towards investments with higher expected returns. Similarly, the welfare

gains from international portfolio diversification depend on the response of portfolios, which

in turn depends on background income risk.

The method in this paper provides a way to examine the scale of the interaction

between risks that has been studied in recent theoretical papers. It is designed to be

useful in applied work, for it does not require knowledge of the distributions of income and

return shocks, provided these satisfy the weak requirements of GMM estimation. We have

studied two risks in an infinite-horizon problem of saving and portfolio choice. So far, our

research suggests that the effect of background risk on portfolios is smaller than the effect

on savings rates and may be difficult to detect empirically.

The combination of GMM and simple decision rules studied here stands up to several

accuracy tests. First, given the form of decision rules, GMM and quadrature (which

exploits the distributions of returns and income) yield very similar results. Second, the

decision rules pass the J-test in simulations and in a number of the historical applications.

Third, the results reproduce analytical results: with log utility and no income risk, the

marginal propensity to consume is 1 − β; with log utility the savings rate is independent

of rate-of-return risk. Fourth, this combination also is consistent with known, qualitative

properties of this decision-theory problem. In addition to the effect of income risk on

the portfolio, for example, income risk affects the savings rate, return risk affects the

portfolio (and also the savings rate if α > 1), and risk aversion affects the savings rate and

the portfolio. Also, consumption is a concave function of wealth when both income and

rate-of-return risks are present.

Possible extensions to this work include continuing to examine more flexible approx-

imations to the decision rules, allowing for cross-correlation in exogenous state variables,

and calculating expected utility. Ultimately we hope to study the extent to which cross-

country differences in income risk can account for cross-country differences in savings
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rates and portfolios. To do so would require a general equilibrium environment, beyond

the decision-theoretic problem studied here.
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TABLE 1: Portfolio Problem

β = 0.95 a1 = 100

R1 = 1.02 R2t = 1.06 + σR2εRt εRt ∼ IIN(0, 1)

ct = λ0at ωt = δ0

α σR2 λ̂0 (se) δ̂0 (se) J(4) (p)

DP by GMM
zt = {ι}

T = 10, 000 at = 100

1 0.30 5.00 (0.00) 55.11 (3.29) — —
1 0.45 5.00 (0.00) 79.86 (2.24) — —

3 0.30 3.18 (0.03) 84.79 (1.15) — —
3 0.45 3.07 (0.02) 93.24 (0.76) — —

5 0.30 2.72 (0.02) 90.86 (0.69) — —
5 0.45 2.64 (0.01) 95.94 (0.46) — —

DP by GMM
zt = {ι η1t η2t}

T = 10, 000 Endogenous wealth

1 0.30 5.00 (0.00) 55.09 (3.29)
1 0.45 5.00 (0.00) 79.83 (2.24)

3 0.30 3.18 (0.03) 84.79 (1.15) 1.29 (0.86)
3 0.45 3.07 (0.02) 93.23 (0.76) 1.33 (0.86)

5 0.30 2.72 (0.02) 90.86 (0.69) 1.28 (0.86)
5 0.45 2.64 (0.01) 95.93 (0.46) 1.30 (0.86)

Gauss-Hermite Quadrature

1 0.30 5.00 55.49 — —
1 0.45 5.00 80.01 — —

3 0.30 3.17 84.96 — —
3 0.45 3.07 93.24 — —

5 0.30 2.71 90.94
5 0.45 2.63 95.97

Notes: λ0 is the marginal propensity to consume out of wealth and δ0 is the share of savings invested in the
riskless asset; both are quoted as percentages. Brackets contain standard errors.
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TABLE 2: Effects of Income Risk

β = 0.95 a1 = 100 T = 10, 000

R1 = 1.02 R2t = 1.06 + σR2εRt εRt ∼ IIN(0, 1)

yt = yptynt ln ypt = g + ln ypt−1 + εpt ln ynt = −σ2
n

2
+ εnt

g = log 1.03 − 0.5(σ2
p + 2σ2

n) εpt ∼ IIN(0, σ2
p) εnt ∼ IIN(0, σ2

n)

ct = λ0a
λ1
t yλ2

t ωt = δ0

Instruments: 1, η1t, η2t

Baseline parameters: α = 1, σR2 = 0.30, σn = 0.1, σp = 0.15

λ̂0 (se) λ̂1 (se) λ̂2 (se) δ̂0 (se) J(2) (p)

Baseline 139.31(2.09) 89.31 (0.71) 7.44 (0.58) -2.24 (6.48) 3.37 (.19)

α = 3 123.55(38.15) 82.63 (8.44) -2.54 (39.83) 67.60 (2.38) 4.16 (.12)

α = 5 83.01 (7.66) 82.88 (2.39) -33.72 (8.53) 84.95 (4.47) 2.12 (.35)

σR2 = 0.4 137.71(2.99) 89.70 (0.89) 8.11 (0.63) 16.86 (7.48) 3.67 (.16)

σR2 = 0.5 134.63(3.84) 90.39 (1.10) 7.96 (0.82) 25.75 (9.55) 4.64 (.10)

σn = 0.05 149.87(3.28) 87.26 (0.74) 11.33 (0.55) -15.43 (5.32) 4.03 (.13)

σn = 0.0 152.85(5.47) 86.75 (1.07) 12.07 (0.82) -17.35 (8.76) 5.87 (.05)

σp = 0.10 150.37(2.76) 87.11 (0.66) 11.28 (0.43) -12.96 (6.22) 5.48 (.06)

σp = 0.05 156.87(3.69) 85.83 (0.76) 12.91 (0.55) -15.28 (5.51) 6.09 (.05)

σp, σn = 0.0 159.76(16.63) 85.33 (2.97) 13.97 (2.47) -21.99 (36.41) 22.84 (.00)

Notes: λ0, λ1, and λ2 are the parameters of the consumption function while δ0 is the share of savings invested
in the riskless asset; all are quoted as percentages. Brackets contain standard errors.
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TABLE 3: Monte Carlo Evidence and Application

β = 0.95 a1 = 100 T = 65

yt = yptynt ln ypt = g + ln ypt−1 + εpt ln ynt = −σ2
n

2
+ εnt

g = log 1.03 − 0.5(σ2
p + 2σ2

n) εpt ∼ IIN(0, σ2
p) εnt ∼ IIN(0, σ2

n)

ct = λ0a
λ1
t yλ2

t ωt = δ0

Instruments: 1, η1t, η2t

Baseline parameters: α = 1, σn = 0.1, σp = 0.15

λ̂0 λ̂1 λ̂2 δ̂0 J(2) (p)

R1 = 1.02 R2t = 1.06 + σR2εRt σR2 = 0.30 εRt ∼ IIN(0, 1)

Baseline 45.50 76.31 11.04 34.16 5.66 (.06)
(182.46) (187.41) (57.19) (173.08)
(51.52) (33.95) (31.67) (75.92)

R1 = 1.02 R2t = R1 + V WRET − TBILL (1934 − 1998)

Baseline 3.97 100.43 4.29 -117.22 5.10 (.08)
(35.03) (83.62) (182.04) (119.25)
(14.76) (14.21) (30.61) (18.26)

α = 3 149.35 46.65 -0.28 -75.94 17.99 (.00)
(660.85) (77.48) (93.25) (242.24)
(43.17) (4.03) (5.13) (12.60)

α = 5 333.28 30.54 -0.14 -66.48 17.05 (.00)
(970.40) (55.28) (38.15) (265.88)
(80.08) (3.59) (4.19) (16.28)

σn = 0.05 4.42 100.08 3.54 -116.90 4.17 (.12)
(36.27) (93.24) (251.84) (130.13)
(8.37) (14.81) (40.41) (19.17)

σn = 0.0 4.60 101.68 0.66 -116.05 4.68 (.10)
(32.13) (98.99) (287.89) (136.48)
(7.93) (14.33) (42.66) (18.44)

σp = 0.10 3.51 99.65 5.75 -117.90 6.57 (.04)
(39.66) (78.41) (199.76) (113.72)
(27.71) (13.96) (34.28) (18.12)
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σp = 0.05 5.09 99.50 5.18 -117.88 8.60 (.01)
(24.74) (73.36) (209.30) (108.51)
(8.12) (13.37) (37.63) (17.28)

Notes: The number of replications is 1000. The first standard error in brackets is the cross-replication average
of the GMM standard errors. The second standard error is the Monte Carlo one. J is the average of the J-test
statistics. Brackets contain its asymptotic p-value.
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