
Queen's Economics Department Working Paper No. 1422

Resolving Failed Banks: Uncertainty, Multiple Bidding &
Auction Design

Jason Allen
Bank of Canada

Robert Clark
Queen's University

Brent R. Hickman
Olin Business School, University of Washington

Eric Richert
Princeton University

Department of Economics
Queen's University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

7-2022



RESOLVING FAILED BANKS: UNCERTAINTY, MULTIPLE BIDDING &

AUCTION DESIGN

JASON ALLENA, ROBERT CLARKB , BRENT HICKMANC , ERIC RICHERTD

Abstract. The FDIC resolves insolvent banks using a scoring auction. Although the basic
structure of the scoring rule is known to bidders, they are uncertain about how the FDIC
makes trade-offs between the different components. Uncertainty over the scoring rule mo-
tivates bidders to submit multiple bids for the same failed bank. To evaluate the effects of
uncertainty and multiple bidding for FDIC costs we develop a methodology for analyzing
multidimensional bidding environments where the auctioneer’s scoring weights are unknown
to bidders, ex-ante. We estimate private valuations for banks that failed during the great
financial crisis and compute counter-factual experiments in which scoring uncertainty is
eliminated. Our findings imply a substantial within-sample reduction in FDIC resolution
costs of between 29.8% ($8.2Billion) and 44.6% ($12.3Billion). These savings can reduce
policy-driven banking sector distortions, since FDIC resolution costs must be covered either
through special levies on banks or through loans from the US Treasury.
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1. Introduction

In response to the global financial crisis, regulators have taken steps to increase financial

stability by developing more effective resolution processes in cases of bank failure. In the

U.S., bank failures are the purview of the Federal Deposit Insurance Corporation (FDIC). The

most common resolution method is a Purchase & Assumption (P&A) transaction, in which

the FDIC auctions off failing institutions (i.e., their physical assets, investment portfolios,

and customer deposit accounts) to healthy banks. Unlike auctions for consumption goods,

these are analogous to procurement, since the FDIC (the auctioneer) pays the winning bank

(the bidder) its bid for the service of taking over the failed bank, which includes assuming

its depositor liabilities. Thus, these transactions typically result in a net cash transfer from

the FDIC to the acquiring institution, and auctions are used as a value-discovery mechanism

among healthy banks, to minimize resolution costs.

During the global financial crisis the volume of failures was so elevated that the FDIC’s

Deposit Insurance Fund lost nearly $90 billion (Davison and Carreon (2010)). Faced with

losses, the FDIC must either increase insurance premiums to healthy banks, levy special

assessments, and/or borrow from the U.S. Treasury. These actions can introduce distortions

into the banking system and impact lending at times when distortionary measures are par-

ticularly unwelcome. Furthermore, auction outcomes impact local market power for banking

services, since a failed bank’s market share is transferred to the winner.

This paper examines incentives induced by the FDIC’s resolution mechanism in order

to determine its implications for costs and local market structure. The current resolution

process has several key features. First, the FDIC permits multidimensional bidding: healthy

banks submit bids consisting of a continuous component—a dollar value for the assets and

liabilities of the failed bank—and four discrete P&A contract components. For example, a

bank can specify that its bid includes a “loss-sharing” provision whereby the FDIC shares in

future losses of the failed bank’s investment portfolio. A scoring auction is then used to rank

multi-dimensional bids in order to determine a winner.

A second feature is uncertainty about the FDIC’s scoring rule in each auction.1 Since the

passage of the FDIC Improvement Act (FDICIA) in 1991, the FDIC is required to select the

least-cost bid, so long as it is superior to its cost of directly reimbursing depositors. Although

the basic structure of the scoring rule is known to bidders, they are uncertain about how the

FDIC makes trade-offs between the different components of bids because they are unaware

of the FDIC’s operational constraints. For example, bidding banks do not know the state

1Conversations with regulators and with banking industry insiders confirmed that there is indeed ex-ante
uncertainty over the exact weights in the FDIC’s scoring rule, from the perspective of acquiring banks.
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of FDIC internal opportunity costs, stemming from its backlog of “loss-share” commitments

for previous P&A transactions. Moreover, different contract configurations affect internal

administrative expenses borne by the FDIC. Thus, bidders view each discrete component in

a P&A bid as implying a distribution of possible costs.

Finally, uncertainty over the FDIC’s scoring rule motivates bidders to submit multiple

bids for the same failed bank. Since they do not know precisely how each component will

affect FDIC resolution costs, healthy banks can (and often do) submit multiple bids to hedge

against randomness in the allocation rule. While bidders face various sources of uncertainty,

the multiple bidding incentive is born of scoring-rule uncertainty in particular.

The cost implications of scoring-rule uncertainty are ambiguous due to various ways in

which it influences incentives. For high-valuation bidders, the auction appears more compet-

itive than it otherwise would: with a known scoring rule they would likely win, but scoring

uncertainty perturbs win probability in favor of lower-valuation rivals. We call this the noise

effect, and it spurs more aggressive bidding among high-value bidders. Multiple bidding gen-

erates two other conflicting incentives. First, a multiplicity of bids per rival makes an auction

appear more competitive, leading to a reduction in bid shading; we label this the competition

effect. Second, multiple bidding implies a substitution effect where increased shading occurs

as bidders internalize the business stealing effect of their bids on their own other bids.

In order to evaluate the implications of the FDIC’s P&A mechanism and the relative

importances of noise, competition and substitution effects, we develop a methodology for

analyzing multidimensional bidding environments where the auctioneer’s scoring weights are

unknown to bidders, ex-ante. The closest paper to ours is Krasnokutskaya et al. (2018).2 Like

us, they allow for scoring-rule uncertainty, but in their setting the non-price components of

bids are exogenous and bidders may bid only once. In our context, bidders make endogenous

choices over all components of the bid without knowing the FDIC’s cost perception for each

one. Healthy banks in FDIC auctions are also allowed to submit multiple bids; this introduces

additional complexity as they optimize over different portfolios of bids and bid levels.

We develop a structural model of bidding to recover healthy banks’ valuations for failing

banks under different P&A agreements. We note that unique configurations of the discrete

components plus the dollar portion of the bid can together be thought of as a “package.”

We draw on the combinatorial auctions literature and employ a modeling approach similar

to Cantillon and Pesendorfer (2006), who extend methods by Guerre et al. (2000, GPV) to

2Greve (2011) models a multidimensional auction where agents compete in price and quality and the weights
placed by the auctioneer on quality are unknown. Previous work on scoring auctions with known scoring
weights includes Che (1993), Branco (1997), Asker and Cantillon (2008), Asker and Cantillon (2010), Athey
and Levin (2001), Bajari et al. (2014), Bajari and Lewis (2011), and Takahashi (2018).
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the case of package auctions for multiple bus routes being simultaneously auctioned off. Our

setting is similar except that there can be only one winner, and there is randomness in the

allocation rule. We contribute methodologically by establishing identification and estimation

when the scoring rule is unknown and bidders can place multiple bids. We also shed new light

on central market-design concerns in combinatorial auctions with a novel exploration of bid

portfolio choice and two primary bidding incentives: competition and substitution effects.

Healthy banks each have an idiosyncratic valuation for taking over the failed bank on

an as-is basis. Our assumption of private values lends tractability to the model, but it is

based on the idea that acquiring banks are primarily concerned with how absorbing the

failed bank will contribute to their individual business models, rather than being focused on

re-sale. Idiosyncratic values are a reasonable viewpoint to the extent that (i) the size and

composition of the failed bank’s assets (e.g., business vs. consumer loans) complement a

bidder’s current portfolio, (ii) the size and composition of the failed bank’s depositor base

will affect a bidder’s local market share for banking services and credit, and (iii) the failed

bank’s physical locations complement bidders’ own existing branch networks.

Given its as-is P&A valuation, a bidder computes package-specific values using adjustments

for including each of the four possible discrete contract components, and can submit one or

more P&A bids. Although the bidding model is complex, we are able to establish some key

equilibrium predictions that have bearing on FDIC resolution costs. Scoring-rule uncertainty

creates incentives for bidders to submit multiple bids; when the weights of the scoring rule are

known ex-ante, this incentive is absent. The remaining question is whether multiple bidding

is good or bad for resolution costs; this is an empirical question that depends on which of

the noise, competition, or substitution effects dominate.

We use bid optimality conditions to link observed bids with the unobserved package-specific

private values, but to do so we need an estimate of the win probability. This is complicated

in our setting for four reasons: (i) uncertainty over the scoring rule, (ii) multiple bidding and

substitution effects, (iii) bidders are uncertain about the number of rivals, and (iv) bidders

selectively enter auctions rather than being randomly assigned to them. To overcome the first

of these complications, we directly estimate the scoring rule in a preliminary step. For the

other three we adapt a re-sampling estimation approach proposed by Hortaçsu and McAdams

(2010) to simulate win probabilities under the stochastic process for the scoring rule, while

controlling for selective bidder entry on a rich set of auction-specific observables.

Using FDIC data we estimate private valuations for failed banks and compute counterfac-

tual experiments on the link between scoring-rule uncertainty and auction outcomes. We
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estimate a substantial reduction in FDIC resolution costs of 29.8% or more under two sce-

narios where it eliminates scoring uncertainty, either by announcing the scoring weights prior

to bidding, or by constraining potential acquirers to bid only on the single most popular

package. For context, this amounts to a savings of at least $8.2Billion during our sample

period, or at least 45% of the benefit from attracting an additional bidder to the auction (see

Bullow and Klemperer (1996)). We compute two other counterfactual equilibria, where the

FDIC eliminates scoring uncertainty by constraining potential acquirers to bid only on the

second or third most popular packages. These two scenarios produce less advantageous cost

predictions than the first two, due to the fact that these options are less valuable to bidders.

This results in a strong endogenous shift toward bids less favorable to the auctioneer.

We also execute a series of bidding-incentive decompositions to explain these results. We

show that the competition and noise effects work in the auctioneer’s favor, while substitution

works in the opposite direction and on average dominates the other two channels. Since scor-

ing uncertainty is not detrimental to costs in every auction—i.e., sometimes substitution does

not dominate—we also explore a targeted counterfactual scenario that employs a predictive

model to assign each auction to different treatment status, based on failed bank observables.

From a market-design standpoint, our findings show how offering bidders choices (takeover

contract options in our case) can strongly benefit the auctioneer by effectively inducing shifts

in the private value distribution. At the same time, scoring uncertainty can also produce

endogenous strategic responses by bidders that are strong enough to wipe out these benefits.

We investigate potential market-concentration effects by comparing sets of winners under

the status-quo and counterfactual auction formats. This tells us whether uncertainty acts as

an implicit subsidy for certain types of acquirers; the concern being that alternate auction for-

mats may increase local market power. We find that removing uncertainty leads to a similar

set of winners on most observable dimensions, except that they are, on average, smaller and

geographically closer to the failed bank. However, counterfactual local market concentration

rises only very slightly under the more cost-effective auction formats we propose.

Our analysis produces insights on bidding incentives and auction design that are relevant

beyond FDIC auctions. First, the competition and substitution effects we study are fixtures

of general combinatorial auctions where multiple bidding is also prevalent. Second, financial

institutions frequently sell distressed assets such as credit and mortgage debt via auctions

with multidimensional bidding and scoring uncertainty (Federal Trade Commission (2013)).

Sellers use scoring rules to evaluate multi-dimensional bids, and they often score a buyer’s

reputation as a debt-collector. Internal seller opportunity costs and preferences over buyer
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reputation give rise to scoring uncertainty. In North America, bidders in private distressed as-

set auctions often have the option to include partial acquisition and profit-sharing provisions

in a given P&A bid. As of this writing, a centralized European market for non-performing

loans is in planning.3 Third, large-scale asset purchases by central banks (known as quan-

titative easing) also have parallels to the auctions we study. There, bidders make offers to

sell the central bank different bonds and the central bank uses a proprietary scoring-rule

to evaluate these offers (Sack (2011)). The Federal Reserve does not announce its scoring

weights because doing so would create negative repercussions for the secondary bond market.

Our study is related to an extensive literature on bank failures, mostly focused on the

Savings and Loan crisis of the 1980s and early 1990s (e.g., James and Wier (1987), James

(1991), and Cochran et al. (1995)), but increasingly centered on the more recent set of

failures following the global financial crisis (e.g., Granja (2013), Kang et al. (2015), Igan

et al. (2017), Granja et al. (2017), and Vij (2018)). Our work contributes by explicitly

modeling, estimating, and evaluating the P&A auction process, and by decomposing private

valuations of acquiring banks to shed new light on acquisition incentives.

2. Institutional details

Our focus is on the great financial crisis, during which 510 troubled banks failed between

2007 and 2014. Troubled banks are defined by the FDIC as being critically undercapitalized

or having assets less than obligations (see Shibut (2017)). The combined assets of failed

banks during the crisis were over $700 billion, and FDIC losses totalled $90 billion.4 The

current rules governing resolution of failing banks were established in 1991 with the passage

of the FDIC Improvement Act. Previously, the FDIC was able to employ discretion when

selling/liquidating failing banks, but today there is greater transparency and it is required to

resolve bank failures at the lowest cost possible. To summarize the FDIC resolution process

(see FDIC (2014)), a troubled bank’s regulator first informs the FDIC of pending failure.

The FDIC then determines the liquidation value of the bank, generates a list of potential

acquirers who will be invited to bid (373 on average), and decides on the set of assets that

will be included when each of the discrete components is activated. A subset of invitees sign

a non-disclosure agreement to look at what is being offered (200 on average) and typically 5

to 6 conduct due diligence. Finally, some of those who have chosen to conduct due diligence

then submit one or more bids.5

3See https://strapi-images-nplmwebsite.s3.eu-central-1.amazonaws.com/3370e415331b4236afaf0ca496f4e751.pdf.
4Earlier crises also featured a large number of failures. For instance, during the S&L crisis of the 1980s and
1990s, nearly 1,300 financial institutions failed. Figure OS.3 (Online Supplement) plots the number and size
of bank failures going back to 1980.
5The number of solicitations and those who consider purchasing the failed bank are taken from (Heitz 2022).

https://strapi-images-nplmwebsite.s3.eu-central-1.amazonaws.com/3370e415331b4236afaf0ca496f4e751.pdf


6 RESOLVING FAILED BANKS: UNCERTAINTY, MULTIPLE BIDDING & AUCTION DESIGN

To construct the list of potential buyers, the FDIC considers well-capitalized banks and

subjects them to a size constraint that depends on geographic proximity to the failed bank.

Due diligence is conducted either in person or through the FDIC’s secured virtual data room

(VDR), which provides detailed financial and legal information regarding the failed institu-

tion’s loans, deposits, general ledger, and operations. The FDIC also computes an estimate

of the secondary-market cash value of all failed-bank assets, and reports this information

to prospective acquirers. Potential bidders do their own due diligence and view research

conducted by the FDIC. Participants do not observe who else has been invited to the VDR.

Based on this we assume that the FDIC and potential bidders have equal information about

the assets of the failed institution. The FDIC and potential bidders compute idiosyncratic

valuations of the assets. These differ across individuals due to portfolio complimentarities,

business lines, market timing, and heterogeneous abilities to manage asset recovery. The

FDIC’s reservation cost represents a liquidation value; although liquidation is not the norm,

it occurs if the FDIC estimates it to be less costly than any of the options presented at the

auction. Liquidation involves paying off insured depositors up to the current insured amount

(deposit payout) and disposing of assets (See Appendix D.9 for the CDF of liquidation values).

Each auction is for all insured deposits, and, in practice, for most uninsured deposits. Oc-

casionally some uninsured deposits are excluded from the transaction. For instance, brokered

deposits are sometimes excluded. Stockholders are wiped out. In most cases general creditors

realize little or no recovery out of the proceeds of the sale.

2.1. The least-cost Resolution Rule. The method for calculating resolution cost is com-

mon knowledge (see Cowan and Salotti (2015) and FDIC Resolutions Handbook). First, the

FDIC calculates transaction equity, or the difference between asset book value and liabilities.

Then asset discounts, deposit premiums, and receivership expenses are added:

Cost = Takeover Bid+ Expenses = Transaction Equity + Asset Discount−Deposit Premium+ Expenses. (1)

To illustrate the cost rule, consider a simple example where a failed bank has $1,000,000

of deposits and has issued $500K worth of outstanding loans, but due to unforeseen circum-

stances their book value is now only $250K. The bank has $500K of cash remaining in its

vault, meaning that its total assets amount to $750K and total liabilities (i.e., obligations to

depositors) amount to $1,000,000. Consider an as-is P&A agreement. Transaction Equity,

the difference between book value of assets and liabilities, is $250K and must be paid out

by the FDIC in order to make the acquiring bank whole. Suppose the acquiring bank bids

to assume the failed bank’s loans at an asset discount of $120K below book value; i.e., it

requests an additional cash infusion from the FDIC beyond Transaction Equity. Suppose

further that the acquiring bank bids a Deposit Premium of $100K to absorb the failed bank’s

https://www.fdic.gov/bank/historical/reshandbook/


RESOLVING FAILED BANKS: UNCERTAINTY, MULTIPLE BIDDING & AUCTION DESIGN 7

depositor base, and that the FDIC’s internal administrative Expenses total $25K. Therefore,

FDIC costs in this example are Cost= $250K+$120K−$100K+$25K = $295K, and the

capital transfer from the FDIC to the acquiring bank totals $250K+$120K−$100K=$270K.

2.2. Bidding. Bids by healthy banks determine the values of the four terms on the right-

hand side of equation (1). They first specify a continuous dollar amount for combined assets

and liabilities of the failed bank; this directly determines the Asset Discount and Deposit

Premium terms. Bids also specify four discrete components of the P&A agreement: (i) loss

share (LS), (ii) nonconforming (NC), (iii) partial-bank (PB), and (iv) value appreciation

instrument (VAI), discussed in detail below. These influence the Transaction Equity and

Expenses terms in (1). In the model we treat each discrete component as a binary choice by

bidders, and we motivate this choice below. For example, from the perspective of a bidding

bank, inclusion of a LS provision is binary because the bidder merely chooses whether to

stipulate it as part of a given takeover bid, or not. However, how each discrete contract

provision is valued may vary widely depending on degree of solvency of the bidder and/or

failed bank, portfolio and/or geographic complementarities between them, and other factors.

Loss sharing: LS agreements have terms specified by the FDIC to insure bidders against

future losses on specific asset classes. In its Resolutions Handbook, the FDIC lists the following

reasons for favoring LS: it lowers risk for the acquiring institution, it reduces the FDIC’s need

for immediate funding, and assets remain in the private sector. The cost to the acquiring

bank is increased oversight and reporting. Terms of LS agreements are specified by the FDIC:

it usually takes on 80% of losses up to a threshold, after which the split is 95%/5%, though

it has been known to vary the LS terms on occasion (see Online Supplement D.9, Figure

OS.5). Bidding banks typically choose only whether to include the specified LS terms in a

P&A bid or not. While these terms are not strictly binding, the modal bid is exactly at the

FDIC’s proposed coverage levels, and the vast majority of bids are tightly packed around

these levels: the mean absolute percentage deviation from the FDIC’s LS coverage levels is

only 0.64%. In our sample, 68% of bids include LS, and these won 65% of the time.

Partial bank: In a PB agreement bidders acquire only certain assets (but all deposits by

default). In its marketing strategy, the FDIC specifies the set of excluded assets within the

PB option prior to bidding. A PB bid typically excludes riskier assets such as non-performing

loans, development and construction loans, land, and owned real estate (ORE). According to

the FDIC’s Resolutions Handbook, PB is a strictly binary option for bidding banks; they can

only choose to include it or not. Excluded assets are liquidated by the FDIC after the auction.

Figure OS.5 (Online Supplement D.9) is a histogram of the fraction of assets acquired in a

winning PB bid. There is substantial variation, though a PB bid won only 11% of the time.

https://www.fdic.gov/bank/historical/reshandbook/
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Value appreciation instrument: A VAI is a warrant that grants the FDIC the right

to purchase an amount of common stock at a fixed price, or to receive cash representing the

appreciation of the buyer’s stock above the exercise price. This allows the FDIC to take

advantage of the stock-price increase that typically follows the announcement of an FDIC-

assisted acquisition (James and Wier (1987)). The FDIC specifies the exercise price and

expiration date, and it stipulates that the VAI quantity is pegged to the financial value of

the loss-sharing option it offered (Barragate et al. (2011)). The bidder’s only remaining

choice is whether or not to include a VAI provision in a given bid. The VAI option was

stipulated in 7% of all bids in the sample, including 6% of winning bids.

Nonconforming: The FDIC requires P&A terms to be fixed prior to resolution, but a

NC bid may specify modifications to the criteria set out in the FDIC’s marketing strategy.

Because of the obligation to resolve at the least cost, these bids must nevertheless be con-

sidered (if they can be priced). NC bids usually involve discrete adjustments to P&A terms

offered by the FDIC, but for simplicity and tractability we model NC as a binary choice.

For a random sample of 20 auctions where complete NC information was available, 79% of

all such bids proposed exclusion of asset classes that differed from the FDIC’s offered PB

option. Moreover, for the vast majority of these, all NC bids within the same auction in

our sample exclude the same asset classes. Other (less common) examples of discrete NC

adjustments includ lifting of constraints on asset resale and/or branch network alterations.

Overall, 27.5% of bids in our sample were NC, and these won 20% of the time.

2.2.1. Packages. Table 1 shows how different packages vary by popularity among bidders,

implied resolution costs to the FDIC, and empirical win frequencies. Twelve out of sixteen

packages are observed with positive frequency, and by far the most common active component

is loss sharing. As-is P&A proposals account for 15.6% of all bids. By offering options,

the FDIC hopes to attract bids from banks that might not otherwise be interested/able to

compete, such as a bidder with a high value for the deposit franchise but who is reluctant

to acquire assets that contribute risk to its portfolio. With the PB option, it can exclude

some riskier assets. The three most costly packages for the FDIC are, in descending order, a

contract with NC, LS, and VAI provisions, a PB-only contract, and one with NC, LS, and PB.

A joint Wald test rejects equality of mean costs under different packages (p-value< 10−16).

2.3. Bidders’ Resolution Cost Uncertainty. The LS, NC, PB, and VAI components

affect the Transaction Equity and Expenses terms in equation (1). In our example from

Section 2.1, a bid with LS specifying that the FDIC will take on 80% of future losses on

50% of assets, implies that its expected Transaction Equity may increase by up to $100K

(=0.8×0.5×$250K) in the future. The FDIC’s backlog of pending LS commitments shifts
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Table 1. Frequencies of Different Packages & Associated Costs (2009–2013)

FDIC Costs
Package Percent of All Bids (winner only)

NC LS PB VAI All MB No MB Mean SD % winning

No Yes No No 42.79 38.05 56.66 23.9 8.9 49.4
No No No No 15.60 16.49 13.00 20.8 10.6 20.5
Yes Yes No No 12.69 14.16 8.36 26.5 10.6 8.4
Yes No No No 8.51 10.99 1.24 22 6.6 5.6
No No Yes No 3.86 2.22 8.67 35.6 8.7 5.3

Yes No Yes No 2.76 3.07 1.86 – – 0.0
Yes Yes No Yes 2.76 3.38 0.93 35.8 13.3 2.5

No Yes Yes No 4.96 5.07 4.64 28 10.4 1.9
No Yes No Yes 3.62 3.91 2.79 23.4 8.4 1.9
Yes Yes Yes No 0.95 0.74 1.55 30.3 9.6 1.0
Yes No No Yes 0.55 0.74 0.00 22.4 0 0.3
No Yes Yes Yes 0.55 0.63 0.31 22.7 12.2 1.5
No No No Yes 0.24 0.32 0.00 13.6 14.6 0.6
Yes Yes Yes Yes 0.16 0.21 0.00 42 0 0.3

Ranked package frequencies in all 322 auctions, in auctions with multiple bidding (MB), and without (No MB). The mean
and st.dev. of FDIC costs are reported as a percentage of failed bank assets. The last column reports the percentage of
auctions that are won with each package. Two packages—(No,No,Yes,Yes) and (Yes,No,Yes,Yes)—were never bid on in our data.

its level of total exposure over time and thus determines its opportunity cost of accepting

new LS contracts in the current auction. This internal state of operational constraints is

known only to the FDIC, so from the perspective of bidders there is a distribution of possible

costs associated with proposing LS as part of a P&A bid. Similar logic applies to the other

discrete components. A second source of scoring uncertainty is administrative overhead: the

discrete components induce complexity in the P&A contract, altering time requirements by

FDIC lawyers and accountants. This implies further uncertainty since bidders are unaware

of the FDIC’s human resource constraints. Table 1 (last 3 columns) shows that there is

substantial variation in FDIC costs both across and within packages. Thus, we model the

FDIC’s behavior as a scoring auction where the scoring weights represent trade-offs between

the continuous dollar component and the four discrete components of a P&A bid, but where

the precise values of the weights are unknown to bidders ex-ante.

3. Data

We study bank failures from 2009 to 2013 using data from the FDIC website. Our sample

period begins when the FDIC began making bid data available, and it ends in 2013 because

of a diminished number of failures around then. The total number of auctions during our

sample period is 439. After removing auctions with no bidders (26), or with linked bidding

(86) or loan pools (5), the full sample in our empirical analysis includes 322 auctions.6

6Loan pools allow healthy banks to bid on arbitrary groups of loans. Linked auctions involve different
banks with the same closing date and state, and where the FDIC allows bidders to express preference
complementarities. Both cases introduce a (standard) combinatorial element and complicate the analysis.
Sample selection may be induced by omitting linked auctions if banks that happen to fail in the same period
and state as another bank failure are systematically different, but there is no statistical difference between
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For each auction the FDIC website publishes the ex-post resolution cost (from the winning

P&A bid) and a detailed summary of bids, including the cash component and each of the

discrete components (see Online Supplement E for an example of a bid summary page.) Bid

summaries report the winning bid, the cover bid (i.e., the most competitive bid submitted by

someone other than the winner), and the identities of the winner and cover bidder. They also

report all other bids submitted, and the losing-bid submitter list, which contains identities of

all bidders who submitted at least one losing bid (including the winner and/or cover bidder,

if they had non-singleton bid portfolios). One challenge is that bid summaries do not specify

the bidder identity associated with bids other than the winning and cover bids. In the next

subsection we discuss how we handle this missing data problem.

3.1. Bidder-Bid Matching. For 193 auctions (henceforth, the restricted sample) we can

positively match all bids to a unique bidder identity.7 For the remaining auctions in the

sample, we adopt an unsupervised assignment algorithm to match bidder identities to bids.8

The simple idea behind it is that each bid submitted by imust have non-trivial win probability

against i’s own other bids, conditional on the distribution of FDIC scoring weights on the

four discrete components.9,10 For example, a bidder would not submit two bids on the same

package, as one would surely lose. Moreover, suppose the FDIC is known to have a strong

preference against awarding P&A contracts with a LS provision (i.e., it assigns large negative

weights to the LS switch, on average). In that case, the same bidder could not have submitted

one bid bi1 for an as-is P&A contract, and another bid bi2 requesting an even larger capital

our main sample (322) and failed banks in linked auctions (86) on eight dimensions: total assets, total
deposits, insured deposits, %loans in commercial real estate and/or single-family residential, %core deposits,
return on assets, tier 1 capital ratio, or book value of equity. There are two small but statistically significant
differences: failed banks in linked auctions had lower %loans to consumers (1.2% vs 1.5%), and lower %loans
in commercial & industrial (5.8% vs 8%).
7This is possible whenever any of the following are true: (I) the auction has one bidder (112 auctions); or an
auction has 2 bidders and either (II) they both submit a single bid (42 auctions), or (III) only one submits
multiple bids (15 auctions), or (IV ) both bidders submit two bids but one of the third/fourth placed bids is
on the same package as either the winner or cover bid (2 auctions); or finally, if there are 3 bidders and either
(V ) each submits one bid (18 auctions), or (V I) one submits many bids but the winner and cover bidder
submit only one bid each (4 auctions). There are other possibilities for a 3-bidder auction to be included;
the above cover observed instances in the data. A 2-bidder auction will not be in the restricted sample if,
for example, both bidders submit at least 2 bids and bids dominated by the cover bid include packages other
than either the winning bid or the cover bid. Auctions with 4+ bidders are never in the restricted sample.
8We use the term “unsupervised” in the computer-science sense, meaning our algorithm does not use a
training dataset with known outcomes. However, it does incorporate known bidder-bid match information
and structure from a model of optimal bidding to resolve ambiguous matches.
9Assuming that bidder i chooses to include in its portfolio only bids that win against its other bids with
non-trivial probability is equivalent to assuming there is some (potentially small) fixed cost ζ of submitting
each bid. In that case, if a hypothetical bid wins with small enough probability (or never) against i’s optimal
bid on some package k, then i will choose to omit the dominated bid from its bid portfolio. This idea is
incorporated into estimation of the empirical model as well (see Section 5.3).
10Note also that scoring rule estimation does not require bidder identity information (see Section 5.1).
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transfer from the FDIC on a P&A contract with a LS provision only. This would imply

i’s own other bid bi1 beats out bi2 with near certainty, since the two differ only by the LS

provision and the proposed capital transfer under bi2 is worse from the FDIC’s perspective.

3.1.1. Name Matching Algorithm Sketch. For 129 out of 322 auctions in our sample, there

are some bids for which the identity of the submitter is partially ambiguous. Within the jth

auction, the algorithm (see Appendix D.3 for full details) is seeded with known bidder-bid

match information described above. Conditional on this information, it computes the set Aj

of all possible unique assignments of bids to bidders within the losing-bid submitter list (with

each member of the list being assigned at least one bid). The algorithm then applies two key

feasibility constraints to compute a set A′
j of candidate assignments where either (i) at least

one bidder is assigned two different bids on the same package k, or (ii) at least one bidder is

assigned two bids (on different packages) where one beats the other with probability (1−ψ)

or more, ψ>0 (we chose ψ= 0.05). The within-portfolio win probabilities in constraint (ii)

are not equilibrium objects, but rather, represent how often one of a bidder’s bids beats out

its own other bids, given scoring shock variation. The set A′
j now contains all bidder-bid

assignments that violate the feasibility constraints, and its relative complement, Aj \A′
j, is

called the feasible set for auction j. For notational convenience, we define the overall feasible

set as A\A′ ≡ A1\A′
1 ×· · ·×AJ\A′

J . Finally, the algorithm resolves residual match ambiguity

by imposing a uniform prior on A\A′, and selecting an assignment at random.

3.1.2. Algorithm Properties, Performance, and Robustness Checks. In order to better under-

stand the properties of the algorithm, one can think of it as performing two separate (though

related) tasks: grouping bids together into portfolios, and matching portfolios to bidders.

As for the first task, the precision of the algorithm is aided by aspects of the raw data.

If multiple bidding were maximally frequent and bids were uniformly spread across all 16

packages, the algorithm would lean heavily on its random component, whereas if multiple

bidding were less frequent and a small set of packages were bid on, the feasibility constraints

are more informative. Fortunately, within the FDIC dataset bidders submit an average of

1.5 bids each and the four most popular packages (out of 16) account for 80% of all bids.

Still, as a robustness check we ran a test of the performance of the algorithm within the

restricted dataset, where all bidder-bid match information is ex-ante known. In four waves

of the test we successively drop elements of the known match information that seeds the

algorithm, and then we run the algorithm many times over to see how well it is able to

replicate the empirical frequencies of bid portfolios observed in the original dataset. Table

OS.1 in Online Appendix D.3 displays results of the test, which confirm that the algorithm

does well at appropriately grouping bids into portfolios. Notably, in the final wave of the
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test we drop all bidder-bid-match seed information—forcing the algorithm to lean solely

on feasibility constraints to group bids into portfolios—but it still does remarkably well at

replicating the empirical frequencies of bid portfolios in the data.11 Moreover, within the

full sample we ran the name matching algorithm on 129 auctions that do not belong to the

restricted sample; among these, 22 (17%) have a singleton feasible set, 53 (41%) have feasible

sets with cardinality |Aj \A′
j|< 5, and and 65 auctions (50%) have |Aj \A′

j| ≤ 10.12 These

numbers illustrate how informative feasibility constraints (i) and (ii) are.

We now turn to an evaluation of the second task the algorithm performs, replicating cor-

relations between bid portfolios and bidder covariates. One can think of a given run of the

algorithm as producing a single random draw from the (uniform) distribution of the set of

feasible match assignments A\A′. Accordingly, during model estimation we integrate over

the distribution of residual match uncertainty in order to prevent our estimates from be-

ing driven by assignment error (see Section 5.4). Still, our assumption of a uniform prior

on the feasible set plays a potentially important role.13 Alternatively, one might imagine

a non-uniform sampling of bidder-bid assignments from A\A′, where bidders with certain

covariates are more or less likely to submit certain portfolios of bids, relative to the uniform

prior scenario. In order to probe for this possibility, we estimate an alternative weighting

scheme based on correlations between bidder covariates W ij and the propensity to submit

bids on each of the 16 individual packages. These correlations can be used to derive an

alternate (possibly non-uniform) weighting of bidder-bid matches in the set A\A′. We find

that the alternate weighting scheme (and results derived from it) is close to our more simple

uniform prior on the feasible set (see Online Appendix D.3 and Section 5.4).

3.2. Summary statistics. Table 2 presents summary statistics. We incorporate quarterly

bank balance-sheet information (FDIC’s Statistics on Depository Institutions (SDI) dataset),

and location information from the FDIC’s annual summary of deposits (SOD). Our balance-

sheet and physical-distance measures were constructed as in Granja et al. (2017).

There is substantial heterogeneity in failed bank size, with the 10th and 90th percentiles of

total asset book value differing by a factor of 20.7. On average, failed banks are relatively

small and healthy bidding banks are larger. Failed banks had more exposure to the real

11To further illustrate this point, consider an equivalent greedy (i.e., myopic) version of the algorithm where
bids are iteratively assigned to bidder identities, one at a time. The greedy version of the algorithm imple-
mented on our FDIC data set would imply that 76% of all bids in the full sample are non-randomly matched
to bidder identities based on prior match information and/or the feasibility constraints.
12Cardinality |Aj\A′

j |—number of unique feasible bidder-bid assignments—depends on the number of bidders
and bids, the configuration of packages bid on, and the dollar values of bids.
13Note that the algorithm uses known seed information (e.g., winning and cover bids), and constraints (i)
and (ii) in order to derive the feasible set. Therefore, assuming a uniform prior on the elements of Aj \A′

j

does not imply purely random assignment of bids into portfolios or of portfolios to bidders.
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estate market (especially commercial), and their Tier 1 capital ratio, a standardized index of

financial solvency, is close to 1, in contrast to bidding banks for whom the average is above

15. The average return on assets for failed banks is negative, while bidders have healthy,

positive ROAs. The mean and standard deviation for pairwise physical distance between a

failed bank and a bidding bank are 191 miles and 257 miles, respectively.

In all, 359 healthy banks bid in at least one auction, generating 814 unique bidder-failure

pairs and 1,269 bids. The mean bidder participated in 2.4 auctions.14 Thus, unlike in pro-

curement or securities auctions where the same bidders frequently return, most healthy banks

participate in only a few FDIC auctions. There are an average of 3.96 bids per auction, and

2.6 bidders; even in single-bidder auctions there is often multiple bidding. We observe up

to 8 bids in auctions with 3 bidders or fewer. The FDIC’s mean resolution cost is $134.3

million per failure. We also calculate the average change in market concentration for deposits

(post-resolution merger) across markets where the failed bank is active. Increases in market

concentration vary widely and average 6% at the county level and 11.5% at the zip-code

level, suggesting a possible role for auction design in shaping local market structure.

4. Model

Here we develop a model to facilitate structural inference. For comparability across failed

bank auctions of different sizes, moving forward we express all continuous bids and resolution

costs as percentages of failed-bank total asset book value. A combination of discrete com-

ponent inclusions plus a bid’s continuous portion can be thought of as a “package,” but in

contrast to standard combinatorial auctions, there can only be one winner in each auction,

which simplifies the combinatorial problem. Bidders are subject to scoring uncertainty that

randomly shifts the auctioneer’s allocation rule from auction to auction.

Failed bank j has traits Zj =(Zj1, . . . , ZjKz
), and healthy bidding banks have traits Wij =

(Wij1, . . . ,WijKw
), where i=1, . . . , Nj indexes bidders participating in auction j.

Assumption 1. Total participation, Nj, and rival traits, Wj, j 6= i, are unobserved to

bidder i prior to bidding, but for all Zj the conditional distributions of bidder participation

N ∼ πN(n|Zj) and rival traits W ∼ FW (w|Zj) are common knowledge, the former has

bounded raw moments E[N t|Zj]<∞ for all t∈N, and the latter is absolutely continuous.15,16

14The largest bidding banks (top 10%) participated somewhat more frequently (3.9 auctions on average), but
the probability of winning a given auction does not depend on size. See discussion of Table C.1, specification
(2), Appendix C, where the data fail to reject a joint restriction of all size terms (p-value=0.56).
15We assume throughout that auction traits Zj govern bidder selection by numbers and types. While
the number of bidders N and their types are unconditionally correlated (through their relation to auction
covariates), we assume that, conditional on Zj , the number of bidders is independent of bidder types.
16For example, if N has bounded support, or if its moment generating function exists (as in the Poisson
case), then it would satisfy the bounded raw moments condition.
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Table 2. Summary Statistics

Bank Characteristics
Failed Banks Bidding Banks

Variable N Mean StDev 10-90 Interval N Mean StDev 10-90 Interval

Tot. Assets ($Million) 322 628.39 1944.55 [48.86, 1009.15] 359 13,900 122,000 [171.94, 8791.93]

Tot. Deposits ($Million) 322 531.85 1561.12 [45.77, 919.61] 359 9841 83700 [147.05, 6638]

Ins. Deposits ($Million) 322 478.50 1322.45 [41.88, 915.48] 359 5575 42200 [121.88, 5221]

CRE (%) 322 24.59 12.37 [10.43, 43.31] 359 20.75 11.03 [7.92, 33.98]

C&I (%) 322 8.00 6.79 [1.52, 17.37] 359 9.99 7.07 [3.29, 18.81]

CNSMR (%) 322 1.52 2.16 [0.10, 3.71] 359 3.39 4.72 [0.30, 8.36]

SFR (%) 322 18.41 13.21 [3.71, 35.71] 359 17.18 11.95 [5.94, 30.86]

ARE (%) 322 59.90 12.34 [44.87, 74.27] 359 48.23 14.32 [30.84, 65.63]

ROA 322 -6.81 6.95 [−12.90, −1.72] 359 1.34 2.00 [0.17, 3.01]

Tier 1 Ratio 322 1.17 3.46 [−1.79, 3.58] 359 15.46 8.13 [10.69, 21.70]

Core Deposits (%) 322 77.37 15.56 [56.09, 94.74] – – – –

Book Value Equity (%) 322 13.93 15.24 [−0.29, 31.82] – – – –

Non-Accruing Loans (%) 322 10.97 6.52 [4.35, 19.44] – – – –

Pairwise Failure Dist. (km) 322 2052 1042 [1135, 4010] – – – –

# Auctions participated – – – – 359 2.40 3.43 [1, 5]

# Auctions Won – – – – 359 0.894 1.139 [0, 2]

Bidder-Failed Bank Comparisons

Portfolio %Diff: CRE 814 10.65 9.40 [1.57, 23.74]

Portfolio %Diff: C&I 814 6.21 5.96 [0.82, 14.38]

Portfolio %Diff: CNSMR 814 3.03 5.09 [0.15, 7.72]

Portfolio %Diff: SFR 814 9.68 9.84 [1.21, 20.94]

All Real Estate 814 15.31 11.63 [2.21, 32.34]

Avg. Pairwise Dist. (km) 814 306.88 412.78 [20.39, 838.49]

Auction Characteristics

# of Bids 322 3.96 3.79 [1, 8]

# of Bidders 322 2.60 1.72 [1, 5]

Cost to FDIC ($Million) 322 134.25 347.78 [9.00, 77.64]

Net Transfer Bid 1,269 -0.24 -0.26 [−0.76, −0.04]

%∆ in County HHI
for Deposits 246 5.99 4.24 [1.05, 10.69]

%∆ in Zip-Code HHI
for Deposits 217 11.45 16.41 [0.13, 31.73]

Balance-sheet information comes from the SDI for the quarter pre-failure. Variables CRE (commercial real estate), C&I

(commercial and industrial), CNSMR (consumer), SFR (single-family residential), and ARE (all real estate) represent shares of
lending in each sector. Core Deposits: bank deposits comprise core deposits—checking/savings accounts, consumer CDs—and

brokered deposits. Core deposits are more stable than brokered deposits because the latter are more sensitive to interest rate
fluctuations. ROA is return on assets and measures profitability. Tier 1 Ratio—equity capital and cash reserves divided by
risk-weighted assets—is a standardized measure of solvency that rises as the financial health of a bank becomes more secure.
Book Value Equity is the difference between the total assets and the total liabilities as a percentage of failed-bank assets. Non-
Accruing Loans are 90+ days past due as of the auction date. Pairwise Failure Dist. is calculated using the average distance
over all branch combinations between each pair of failed banks. Portfolio %Differences are the absolute value change in portfolio
shares for the failed bank and bidder bank in each bidder-failed bank pair. Average Pairwise Distance is calculated using the
average distance over all branch combinations of the failed and bidding bank. For comparability across auctions, Net Transfer
Bid is expressed as the transfer amount (from the FDIC to the bidder when negative, vice versa when positive) calculated using
equation (1), divided by the total assets of the failed bank.
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While πN(n|Zj) characterizes variation in total participation from the auctioneer’s perspec-

tive, from bidder i’s perspective the number of its competitors is a different random variable,

Mj ≡ Nj − 1, which has probability mass function πM(m|Zj) = πN(m + 1|Zj)
(m+1)

E[N |Zj ]
(see

Myerson (1998)). Assumption 1 is motivated by institutional details of failed-bank auctions:

number and identities of rivals are not revealed publicly until after the auction.

Bidding banks draw independent private valuations for acquisitions V ij ∼ FV (V ij|X ij),

where X ij = (Zj ⊗Wij) is shorthand for the Kronecker product of auction and bidder co-

variates (i.e., allowing for arbitrary interactions). Bidder i’s baseline value V ij is typically

negative, representing the minimal transfer from the FDIC at which it would be willing to

take over the failed bank’s business, as-is. Each package k is a unique configuration of discrete

switches, and each bidder i has valuation vijk for P&A under package k∈K={1, . . . , 16}:

vijk = v̄ij + vLS
ij d

LS
k + vNC

ij dNC
k + vP B

ij dP B
k + vV AI

ij dV AI
k + Dkλ, (2)

where vs
ij is the valuation for binary switch s ∈ {LS,NC, PB, V AI}, ds

k is an indicator for

s being turned on in k, Dk is a full set of pairwise switch indicator interactions, and λ is

a conformable vector of parameters. Switches are LS (loss share), NC (nonconforming), PB

(partial bank), and VAI (value appreciation instrument). Switch valuations are independent

across bidders i and follow joint distribution Sij =(V LS
ij , V NC

ij , V P B
ij , V V AI

ij )∼FS|Xi
(s|X ij).

Assumption 2. The distribution of private values (V ,S), conditional (only) on auction

traits Zj, is absolutely continuous, with a compact and connected support, and a differentiable

density that is strictly positive everywhere on its support. That is, for all Zj

fV,S(v, s|Zj) =
∫

Supp(FW )
fV,S(v, s|Zj ⊗w)fW (w|Zj)dw

exists, fV,S(v, s|Zj)∈C1, and fV,S(v, s|Zj)>0 ∀(v, s)∈Supp(FV ,S(v, s|Zj)).

Assumptions 1 and 2 imply that from each bidder’s perspective the distribution of rival

types is non-degenerate and well-behaved; in other words, there is non-trivial residual un-

certainty on rival P&A valuations after conditioning on auction covariates Zj. Rival traits

w are integrated out because they are ex-ante unobservable prior to bidding. In that sense,

bidder traits are essentially another variety of private information from a bidder’s perspec-

tive, but one that is observable (ex-post) to the econometrician in the empirical model. It

will sometimes be convenient to denote bidder i’s full set of package-specific valuations by

V ij =(Vij1, . . . , Vij16). Recall that each package represents a unique set of contract terms for

P&A of failed bank j, where each Vijk is constructed from the building blocks V ij, Sij, and

λ, according to equation (2). Let FV (v|Zj) : R16 → [0, 1] denote its joint distribution.

The set of net transfer bids submitted by bidder i is bij = (bij1, . . . , bij16), where bijk ∈R is

the dollar component of a P&A bid for contract package k. When the net transfer bid bijk
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is a negative number it represents a proposed cash transfer to i from the FDIC under the

terms of contract k; similarly, vijk represents its indifference transfer under contract k. We

denote i’s portfolio of packages bid on as Lij ={k : bijk > bjk}, where bjk is a choke point for

the kth package, at which price the FDIC would prefer not to trade. Bids made exactly at or

below the choke point win with zero probability, and we refer to them as trivial bids. Finally,

let bijk = bjk for k /∈ Lij (by convention). 17 Finite choke points are common knowledge

to bidders. In the context of failed banks they have a concrete legal interpretation: the

FDIC’s direct depositor reimbursement cost—i.e., failed-bank depositor receipts minus its

cash reserves—which by law (FDICIA) places a bound on any permissible P&A agreement.

For each auction, the FDIC also has a private reservation cost C0j ∼ FC0
(c0) representing

its internal estimate of directly reimbursing depositors and liquidating bank j without holding

an auction. We assume FC0
assigns positive probability to all values above min{bj1, . . . , bj16}.

Intuitively, bidders cannot predict exactly how much better the FDIC can do with a non-

auction liquidation over the direct reimbursement option. They assume that it can do any-

where between a lot better and no better, meaning that any bid slightly above the choke

price is viewed as winning with at least a small, positive probability.

An auction-specific vector Γ = [γLS
j , γVAI

j , γNC
j , γP B

j ]∈R
4 represents the FDIC’s evaluation

of the impact of each discrete component on its cost structure. The P&A contract is allocated

to the healthy bank offering the least-cost bid, evaluated according to:18

− Cijk = bijk + Γjdk + δijk + uj. (3)

The right-hand side is FDIC revenues Rijk under i’s bid on package k: recall that bijk<0 is a

proposed transfer from the FDIC to i and revenues are the negative of costs, or Rijk =−Cijk.

The weights Γ represent (respectively) internal FDIC trade-offs between the LS, VAI, NC,

and PB, components, and the dollar component bijk. The term uj is an unobserved cost

shock, including package-independent FDIC expenses incurred in the resolution process.

Assumption 3. The reserve-cost distribution FC0
assigns positive probability to all values

above min{bj1, . . . , bj16}. The vector (γLS
j , γ

VAI
j , γNC

j , γP B
j , uj) follows an absolutely continuous

joint distribution FΓU(γLS, γVAI, γNC, γP B, u|Zj) with marginal distributions having full support

on the real line. The bidder-package shock term δijk ∼Fδ(δ) follows an absolutely continuous,

unimodal distribution, and is independent across packages k, bidders i, and auctions j.

17 Our assumption throughout is that bidders never choose to submit bids that will lose with probability 1.
18Regarding interactions among discrete components in equation (3), we regressed ex-post costs on winning
bid component dummies and a full set of component interactions. We could not reject the joint exclusion
restriction of interactions (p-value=0.935). Thus, for simplicity we omit them from the scoring equation.
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A bidder’s information set includes auction traits Zj and various distributions, including

πM(m|Zj), FW (w|Zj), FV (v|Zj), FC0
(c0), FΓU(γLS, γVAI, γNC, γP B, u|Zj), and Fδ(δ). A bid-

der’s equilibrium win probability for package k, given its bid portfolio and given auction

covariates, is G(bijk|Lij, bij,Zj) ≡ Pr[i wins P&A contract k|Lij, bij,Zj]. For i to win on

package k, three events must occur all at once: bijk must dominate the (unknown) reserve

cost C0 (event A); bijk must dominate i’s own bids on other packages k′ ∈Lij (event B); and

bijk must dominate bids submitted by all other bidders (event C). More concretely,

G(bijk|bij, Lij,Zj) = Pr
[

− C0 − Γjdk − δijk − uj ≤ bijk

]

×
∏

k′∈Lij , k′ 6=k

Pr
[
Γj(dk′ − dk) + (δijk′ − δijk)≤(bijk − bijk′)

∣∣∣A∩B−k′

]

×
∞∑

M=1

( M∏

n=1

∏

k′∈Lnj

Pr
[
Γj(dk′ − dk) + (δijk′ − δnjk) + bnjk′ ≤bijk)

∣∣∣∣Zj,A∩B∩CM
−nk′

])
πM(M |Zj),

where B−k′ is the sub-event that bijk beats all of i’s other bids k′′<k′, k′′ 6= k, and CM
−nk′ is

the sub-event that, conditional on M competitors, bijk beats all bids k′′<k′ by bidders n′<n.

In the three inequalities, objects known to the bidder are on the right-hand side; unknown

random variables are to the left. Due to the scoring rule and competitor equilibrium bids bnjk′

being functions of rivals’ private information which is correlated with Zj (see Assumption 2),

the Pr[·] terms involve complicated distributions of sums of correlated random variables. The

three multiplicative terms above correspond to events A, B, and C, respectively; successive

conditioning is due to dependence on overlapping sets of random variables.

Given G, bank i chooses its optimal package portfolio L∗
i and associated bid profile b∗

i to

solve a (constrained) mixed discrete-continuous-choice decision:

max
Lij∈P(K)

{
max

bij∈R16

∑

k∈Lij

(vijk − bijk)G(bijk|Lij, bij,Zj)
}

subject to bijk ≥ bjk ∀k ∈ Lij,

bijk = bjk ∀k /∈ Lij,

where P(K) denotes the powerset of K. For each k∈K we have the following Karush-Kuhn-

Tucker (KKT) conditions:

vijk
∂G(bijk|Lij, bij,Zj)

∂bijk

−

G(bijk|Lij, bij,Zj) + bijk

∂G(bijk|Lij, bij,Zj)

∂bijk

−
∑

k′∈Lij ,

k′ 6=k

(vijk′ − bijk′)
∂G(bijk′|Lij, bij,Zj)

∂bijk


+ µijk = 0

µijk(bijk − bjk) = 0, µijk ≥ 0.

(4)



18 RESOLVING FAILED BANKS: UNCERTAINTY, MULTIPLE BIDDING & AUCTION DESIGN

The first line is the first-order condition (FOC); its first term is the marginal benefit of raising

one’s net transfer bid on package k—i.e., higher win probability—and the bracketed term

represents marginal costs—i.e., lower net transfer conditional on winning k and stealing win

probability from other own bids on k′ ∈ Lij. The last line is a complementary slackness

condition. Intuitively, the FOC states that either it must be possible to equate marginal

benefits and costs tied to bijk with an interior solution (given other k′ ∈Lij), in which case

µijk =0, or else package k must be omitted from i’s portfolio Lij, in which case (bijk−bjk)=0.19

4.1. Equilibrium Existence and Model Predictions. Our solution concept for the auc-

tion game defined above is a symmetric Bayes-Nash equilibrium (BNE). A pure-strategy

BNE constitutes a mapping from the space of private information into the space of bid port-

folios and bid levels (Lij, bij), BNE(Zj) : Supp(FV )×Supp(FS) −→ P(K)×R
16, such that,

given Zj, each bidder i has no unilateral incentive to deviate from the prescribed choice

BNE(vij, sij; Zj), when all other bidders behave similarly. The game is complex, but several

key model implications can be established. We demonstrate existence of a BNE by proving

characteristics that equilibrium bidding must satisfy (Lemma 1), and then invoking a result

by Jackson et al. (2002). What makes existence challenging in auctions is the presence of

discontinuous payoffs due to potential ties between bidders.20 The bidder-package shock δik

eliminates the discontinuous payoffs problem, and as Jackson et al. (2002) point out, would

imply existence by virtue of familiar classical results. In order to demonstrate that equilib-

rium existence does not hinge on that minor model component, for the purpose of Lemma 1

and Proposition 1 we consider the more difficult case where δ is a single point mass at zero.

We also discuss other cost-relevant bidding incentives, including selection of one’s portfolio,

Li, and optimization of bids on packages in that portfolio. Some of these aspects can be

proven outright, and some are more difficult but can be numerically verified using model

estimates. We discuss key results here and relegate formal proofs to Appendix A.

Lemma 1. In any Bayes-Nash Equilibrium (if one exists), the following must be true:

(1) bijk < vijk ∀k ∈
{
l | l ∈ Lij, vijl > bjl

}
;

19The KKT conditions need not hold for all portfolio choices, but only for the optimal choice L∗
ij . E.g.,

suppose that for some Lij there is no non-negative vector µij = {µij1, . . . , µij16} satisfying (4). Assuming
the complementary slackness conditions are true (and the set of excluded bids bijk =bjk implied by k /∈Lij),
if values of µij which satisfy the FOC involve at least one negative element, then Lij cannot be an optimal
portfolio choice. This is because there must be at least one package k which, if added to the portfolio to get
L′

ij =Lij ∪{k} (i.e., dropping the constraint bijk =bjk), must make the bidder strictly better off.
20For a simple illustrative example, consider an auction with N =2, where both bidders submit P&A proposals
on the same package k. Holding bidder 1’s bid b1jk fixed, consider a sequence {b2jkn}∞

n=1 → b1jk of 2’s bids
approaching b1jk from below. Along the sequence, bidder 1 wins with surety and bidder 2’s win probability
is zero, whereas in the limit these probabilities abruptly jump to something strictly between zero and one.
This discontinuity in the payoff structure of the game implies that traditional fixed-point approaches to
equilibrium existence (e.g., (Debreu 1952), (Glicksberg 1952)) do not apply.
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(2) G(bijk|Lij, bij,Zj) is strictly increasing in bijk for any non-trivial bid; and

(3) bijk = bjk ∀k s.t. vijk ≤ bjk.

(4) There are no mass points in the distribution of bids (for proof see Appendix A).

That is, equilibrium strategies must prescribe strictly profitable non-trivial bids; the win

probability on package k must be monotone and continuous in the bid on that package

(holding opponents’ actions and other own bids fixed); and trivial bids must be submitted

on packages where a bidder’s valuation is weakly below the package-specific choke point.

Proposition 1. In the private value, first-price, package auction with scoring-rule uncer-

tainty defined above, a symmetric Bayes-Nash Equilibrium exists.

We relegate a proof of the proposition to Appendix A.21 Fully characterizing the equilibrium

in this model is difficult, but certain revenue-relevant aspects of bidding incentives can be

formalized. Bidders are generally not indifferent to winning with each of the bids they submit;

rather, they submit a portfolio of non-trivial bids Lij that maximizes their expected surplus.

Remark 1 and Proposition 2 below pertain to crucial aspects of portfolio optimization.

Remark 1. Under scoring uncertainty (barring pathological distributions FV ) bidders engage

in multiple bidding with positive probability. On the other hand, with positive probability

bidders choose portfolios Li to be a strict subset of all packages K, due to a combination of

both mechanical package omissions (for k such that vijk is too low to facilitate bilateral trade

with the FDIC) and elective package omissions (on which bilateral trade is a priori feasible).

Examples of “pathological” distributions include cases where all private value mass is below

the choke points, thus precluding beneficial trade with the FDIC on multiple packages. In

other cases there exist more intuitive incentives for multiple bidding: a bidder may insure

against scoring rule uncertainty by submitting bids acceptable to itself on multiple packages.

The more surprising part of the remark is that banks may not “fully insure” by including all

possible packages in the set Lij.

There are two reasons for this. First, mechanically, a bidder may have a very low a package-

specific valuation. The second and more interesting reason is elective package omissions

21While Jackson et al. (2002) establishes BNE existence, it is difficult in our setting to prove the stronger
result of existence in pure strategies. In typical single-unit first-price auctions, this is done by showing that the
equilibrium strategy must be monotone in private signals, but this logic is complicated by multiple bidding in
our setting. However, in estimation we verify numerically that the system of equations in (7) below has rank
equal to the cardinality of Lij (i.e., full rank) for all i and j, which is consistent with a pure-strategy BNE in
the data-generating process. Note, however, that model identification and estimation are unaffected by this
question, since equations (7) and (8), which follow from the KKT conditions, must be satisfied by any BNE,
mixed or pure (recall that in a mixed strategy equilibrium a bidder must be indifferent to all actions in the
support of its mixed strategy). Moreover, our main counterfactuals eliminate scoring uncertainty, collapsing
the game to a typical first-price auction, where existence of pure-strategy BNE is known.
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due to the substitution effect. To fix ideas, consider a bidder deciding whether to place a

non-trivial bid on an additional package. Adding a new bid to portfolio Lij may increase

win probability overall, but will reduce its probability of winning with existing bids, one of

which may yield higher surplus. Recall also that bidders have strict preference rankings over

inclusion/exclusion of different discrete components, so they are not indifferent about the

packages (i.e., P&A contract terms) under which they would prefer to win in auction j. As

an illustration of this point, within the model recovered from the FDIC data it can be shown

numerically that 75% of package omissions from the portfolio Lij were elective, with private

values vijk high enough to facilitate mutually beneficial trade with the FDIC (see Section 6).

This strong numerical result highlights how substitution effects may play a central role in

bid portfolio choice within the model.

Moreover, substitution effects also shape the levels of optimal bids submitted on included

packages. This idea is represented by the third term inside the brackets in equation (4):

when forming a bid on package k, a bidder internalizes the cost of competition from bijk on

its prospects for winning on other packages k′ ∈Lij. This cost depends both on i’s likelihood

of winning package k′ and its gross utility of winning k′. Since ∂G(bijk′|Lij, bij,Zj)/∂bijk<0

(by construction) and (vijk′ −bijk′)>0 (by Lemma 1), i will respond to the “business stealing”

impact of bijk on its own other bids bijk′ by increasing the wedge between vijk and bijk.

Proposition 2. In the absence of scoring rule uncertainty, there is no incentive to engage in

multiple bidding, provided that the tie-breaking rule places equal weight on all bidders involved

in the tie (rather than on all bids involved in the tie, for proof see Appendix A).

Proposition 2 reduces the primary cost question to whether multiple bidding is good or bad

for FDIC resolution costs, on net. While substitution effects work against the auctioneer’s

interests, another important incentive arising from multiple bidding is the competition effect

built into the win probability G: multiple bidding by competitors forces one to best-respond

to a larger number of rival bids. This competitive pressure reduces bid shading and thus works

against substitution, so the sign of the overall effect is ambiguous. Although multiple bidding

in our setting hinges on scoring noise (since FDIC auctions can have only one winner each),

the substitution and competition effects defined here are also fixtures of general combinatorial

auctions, where multiple bidding is prevalent.

Finally, the noise effect introduces further nuance: by injecting uncertainty into the auction

allocation rule, equation (3) shifts the win probability away from high-value bidders, relative

to a world where the allocation rule is known. Since this group enjoys the largest conditional

surplus to begin with, they can afford to respond by bidding more aggressively (i.e., bid

shading less). This tendency is more pronounced when the difference between the winning
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bid and cover bid is small in expectation. We numerically isolate these conflicting incentives

within the estimated model in Section 6.

4.2. Modeling Choices: Independent Private Values. In our model we assume bid-

ders have independent private values (IPV) for absorbing the failed bank’s depositors, liabil-

ities, and assets into their own businesses. On technical grounds, the IPV assumption lends

tractability: bidding incentives and model primitives would be more complex with correlated

private values or a common valuation component.22 However, it is important to have some

assurance that the tractable model is a reasonable lens through which to interpret the data.

IPV is appropriate if the environment is consistent with (i) heterogeneous synergies between

bidder and failed-bank assets and depositor base, (ii) limited resale opportunities, and (iii)

ex-ante symmetry of information about ex-post value.

Heterogeneous synergies (i): evidence suggests that the charter value of a failing institution

depends on the identity of the winner. There are important management idiosyncrasies

(Bertrand and Schoar (2003)), regulator differences (Agarwal et al. (2014), Oktay et al.

(2015)), heterogeneity of benefits from geographic diversification (Acharya et al. (2006) and

Aguirregabiria et al. (2016)), and balance-sheet complementarities (Granja et al. (2017)),

that suggest the ongoing value of an institution depends on who owns it.

Limited resale (ii): a potential problem with the IPV assumption is that if bidders sell parts

of the failed bank on a secondary market, there could be a common element of valuations.

In practice, various factors mitigate this concern. First, the FDIC promotes continuity

of ownership by imposing a three-year anti-flipping constraint on private equity bidders.

Second, it imposes constraints on branch closures in the first year post-acquisition.23 Third,

the FDIC’s LS option reduces incentives for bidders to re-sell the failed bank’s loan assets

by insuring against future losses.

Ex-ante information symmetry (iii): as Kastl (2016) points out, the crucial assumption

for IPV is that bidders do not have asymmetric information about ex-post values. In our

context this seems a reasonable view, given that each bidding bank may access all of the failed

22E.g., positive identification results are sparse in interdependent values settings. Somaini (2020) focuses
on the most general information environment to date, but models simpler first-price auctions without the
additional complications in our setting. More recent work by Nguyen (2022) derives positive identification
results in the pure common values paradigm under standard first-price auction formats.
23For P&A transactions during our sample period, we investigate whether there are any cases where an
acquiring bank divested itself of all branches of the failed bank before the end of 2015, at least two years
(and up to six) post-resolution. We find only three such cases, all of which involve a failed bank with two or
fewer branches in its network. One acquiring bank closed one branch of the former failed bank and sold the
other within two years post-P&A, and another acquiring bank sold both former failed-bank branches after
14 months post-P&A. In the third case the acquiring bank sold the single branch belonging to the former
failed bank, along with nine of its own other branches roughly three and a half years post-P&A. None of
these three cases seems to signal re-sale as a primary motivation for P&A.
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bank’s financial and legal records before the auction occurs. Moreover, for asset classes that

do trade on secondary markets (e.g., mortgage-backed securities), bidders in FDIC auctions

can condition their bids on publicly-known prices at the time of resolution.

In principle, these ideas suggest that IPV is reasonable for FDIC auctions, though a data-

driven evaluation would be more reassuring. We execute two well-known tests of common

values (CV) versus IPV (Giliberto and Varaiya (1989) and Haile et al. (2006)) in Appendix

B; results from both suggest that our data do not reject IPV, but some caveats apply. The

Haile et al. (2006)) test was not designed for a setting with package bidding, and it is not

robust to forms of endogenous bidder selection that may be present in our data. Therefore,

we execute a third test recently proposed by Hickman et al. (2021), based on conditional

correlations among distinct bidders’ bids. This procedure is better suited to the FDIC setting

with multiple bidding and flexible bidder selection patterns.

We discuss full details in Appendix B, but to fix ideas consider three mutually exclusive

models that IPV rules out: affiliated private values (APV), pure common values (CV), and

unobserved, auction-specific heterogeneity with independent private values (UHIPV). Unlike

IPV (holding Nj fixed), these models imply residual correlation among competitors’ bids,

after controlling for information available to the econometrician. In APV bids are correlated

since private values are correlated. Under CV, ex-post winner utility is a common, unknown

quantity, and private information is an unbiased signal of that common value. UHIPV is

similar, though the common component is known to bidders (but not the econometrician)

and winner utility is a product of an idiosyncratic signal and the common component. In

the latter two cases, bids co-move with the common component.

The test procedure begins by regressing i’s mean bid (across k ∈ Lij) on the average of her

opponents’ mean bids, and a set of controls including Zj, a polynomial in Nj, and interactions

between opponent mean bids and the Nj polynomial.24 This last set of interactions is crucial

due to strategic co-movement that would exist even in an IPV world: all bidders react to

increasing competition (Nj) with more aggressive bids. The idea behind the test of IPV is

simple: after controlling for observable determinants of bidding co-movement by i’s mean

bid and her opponents’ mean bids, if there is residual conditional correlation then the null

hypothesis of IPV is rejected in favor of the alternate hypothesis of APV ∪ CV ∪ UHIPV.

We execute this test on our FDIC data (full results are in Appendix B.1): after controlling

for bidder selection on Zj and strategic co-movement of bids with Nj, we find no statistically

significant conditional correlation between i’s mean bid and the mean bids of her competitors

24Within the model, bidders do not directly observe Nj but they compute projections E[Nj |Zj ] given ob-
servable auction traits Zj . In the test we use ex-post realizations Nj as a proxy for bidder expectations.
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in auction j. This finding supports the view that our assumption of valuations V ij being

idiosyncratic and independent is reasonable within the FDIC context.

In a setting such as this, where bidders are bidding on an investment that has an uncertain

payoff, there may be some degree of interdependency of valuations in practice. For example,

this would be the case if the acquisitions team from one bidding bank is still interested in

the assessment of their counterparts at a rival bidding bank after both teams have carefully

examined the failed bank’s books. We adopt the assumption of private values for tractability

reasons and because there are both institutional details and evidence to suggest that the

interdependency we abstract from is not a primary concern.

4.3. Modeling Choices: Independence Across Auctions. Our assumption of indepen-

dence across auctions would be problematic if there were (i) learning across auctions, (ii)

complementarities across auctions, or (iii) banks had dynamic capacity constraints, so that

winning one auction limited future participation. Regarding (i) learning, since the impact

of each discrete component varies across auctions, bidders cannot learn the exact scoring

rule even through repeated participation.25 Regarding (ii) complementarities, when two ge-

ographically close banks are closed on the same day, the FDIC allows linked bidding so that

bidders can express complementary preferences. We drop auctions with linked bidding (see

footnote 6), and thus need only be concerned with temporal complementarities. Finally,

because of (iii) capacity constraints, one might be concerned about auctions within a short

period of one another, causing bidders to consider possible outcomes from other auctions

when bidding. Granja et al. (2017) show that when local bidders are poorly capitalized,

resolution costs increase. Although there are many reasons why bidders may be poorly cap-

italized, this result could be consistent with small, local bidders being capacity constrained.

In Appendix C (Table C.1) we execute and discuss several regression analyses to probe

for these sources of dependence. Briefly, we find that experience, size, and capitalization

are not significant predictors of winning, after controlling for Zj and Nj. We also find that

experience is not a significant predictor of bidding behavior. These results suggest that the

above forms of temporal dependencies are not major concerns in our setting.

5. Model Identification and Estimation

Here we discuss identification and estimation of model primitives, including the stochastic

least-cost scoring process, the FDIC reserve cost distribution, the distribution of bidders’ as-

is valuations, and discrete component utility adjustments. Consistent estimation of the win

probability G is pivotal to our empirical strategy, and is subject to three challenges: (i) the

25Even the econometrician cannot derive the specific component weights (γLS
j , γVAI

j , γNC
j , γP B

j ) in a given
auction j, though one can identify and estimate their joint distribution (see Section 5.1).
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scoring rule is random and unknown, (ii) there is uncertainty about the set of competitors

a bidder faces, and (iii) the FDIC allows multiple bidding. Moreover, valuations are only

identified for packages that are bid on, and package-specific values are related for a given

bidder. We take a three-stage approach to address these challenges.

5.1. Stage 1: Scoring Rule and Reserve Cost Distributions. The FDIC’s proprietary

scoring rule is not publicly observed and varies across auctions. Therefore, our first challenge

is to show that the distribution of the scoring rule is identified and estimable from the

available data. For the empirical model, we re-write equation (3) as

−Cijk = bijk + dLS
k (%LSj)(γ

LS
j )+dV AI

k (γVAI
j )+dNC

k (γNC
j )+dP B

k (%PBj)(γ
P B
j )+δijk+uj, (5)

where %LS (%PB) is the percentage of failed bank assets covered (excluded) under the

FDIC’s offered loss-share agreement (partial bank option).

Assumption 4. δijk follows a normal distribution δijk ∼ Φδ(δ; 0, σ2
δ ), with zero mean and

variance σ2
δ , and it is independent of the common shock vector (γLS

j , γ
VAI
j , γNC

j , γP B
j , uj).

26

Two factors in our context support the idea that δijk is independent of bidder identity.

First, participation is by invitation only; the vetting process would mitigate concerns that

the FDIC has a compelling interest to favor a given bidder. Second, the FDICIA legally

precludes considerations other than insuring depositors at the lowest cost. Still, perhaps

the FDIC may judge bidding banks on financial stability characteristics, with a desire to

minimize current and future resolution costs. As a robustness check on Assumption 4, we

ran a test for correlation between bidding bank characteristics and fitted δijk shocks; we

found no evidence that this was the case (see Online Appendix D.7.2).

Assumption 5. Common scoring shocks are normal FΓU = Φ
(
γLS

j , γ
VAI
j , γNC

j , γP B
j , uj; µ,Σ

)

with mean vector µ = (µLS
γ , µVAI

γ , µNC
γ , µP B

γ , µu) and Σ being a 5×5 matrix with variances σ2
s

on the diagonal and covariances σsσs′ρ(s, s′) on the off-diagonal, s, s′ ∈ {LS, VAI,NC, PB, u}.27

Assumption 4 is needed for identification, while Assumption 5 is largely for tractability. In

Online Appendix D.1 we provide a proof for why the scoring process is identified in order

to illuminate how the moments of the raw bid/cost data pin down model components. The

proof is based on somewhat weaker restrictions on the joint distribution FΓU : we maintain

the Gaussian copula structure while imposing no a priori functional forms on the marginal

distributions of (Γ, U). The semi-parametric identification argument combines deconvolution

methods (using mutual independence of δ) to back out the marginal distributions of the

26Additionally, we assume the idiosyncratic shock δijk is independent of bidder i’s private information.
27We assume throughout that (Γ, U) is conditionally independent of bidders’ private information, given Zj .
We also estimate a model specification where shock means are functions of auction covariates µ(Zj) (see
Table 3). This extension induces no appreciable changes to other model estimates or counterfactual results.
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common shocks. Intuitively, the three primary sources of identifying variation in the data

are (i) observed resolution costs (tied to the winning bid), (ii) empirical win frequencies of

bids on different packages, and (iii) comparisons between dollar amounts for winning and

losing bids that use different subsets of the discrete components {LS, VAI,NC, PB}. These

comparisons pin down both the marginal distributions of the scoring shocks, as well as the

correlations among them. The interested reader is directed to Appendix D.1 for the full

technical details of scoring-shock identification.

Within each auction we observe all bids and the FDIC’s cost associated with the winning

bid. For losing bids we know that associated costs were higher than the cost tied to the win-

ning bid. In order to incorporate both level information (winning bid) and bound information

(losing bids) we use a simulated Tobit maximum likelihood approach for estimation:

max
{σδ ,µ,Σ}

J∏

j=1

∫ ∫ ∫ ∫ ∫ Nj∏

i=1

∏

k∈Lij

φδ

[
(CT

j − Ĉijk); 0, σ2
δ

]Aijk × Φδ

[
(CT

j − Ĉijk); 0, σ2
δ

]1−Aijk

× φ
(
γLS, γVAI, γNC, γP B, u; µ,Σ

)
dγLSdγVAIdγNCdγP Bdu,

(6)

where CT
j is the observed cost; Ĉijk is the cost assigned to i’s bid on package k holding fixed

a realized value of (γLS, γVAI, γNC, γP B, u) but excluding the bidder-package-specific shock δijk;

and Aijk is an indicator for whether bidder i won auction j with a bid on package k.

Simulated integration is used because the component shocks are constant for all bids within

an auction but occur in various combinations across auctions. The resulting analytic integral

is therefore complicated in settings with many bidders and a variety of packages. We use

5,000 simulated draws (held fixed during run time), and standard errors are obtained using

the empirical Hessian estimator evaluated at the point estimates. Our estimator can also

accommodate Φ(·; µ,Σ) being conditioned on auction covariates Zj.

The reserve cost distribution FC0
is estimated using auctions where no sale occurred, so

deposits were paid out and the FDIC liquidated remaining failed bank physical and financial

assets. There are 26 such auctions during our sample period. This is the FDIC’s default out-

side option. Since we always observe the cost of deposit payout when it occurs, its distribution

is identified and directly estimable from raw data (see Figure OS.4, online supplement).

5.2. Stage 2: Win Probabilities. To estimate G(bijk|Li, bij,Zj) we adapt a re-sampling

approach proposed by Hortaçsu and McAdams (2010). G is the likelihood of (i) the scoring

weights favoring bijk over one’s other bids, (ii) bijk dominating the reserve cost, and (iii)

bijk beating competitors’ bids. Thus, we repeatedly simulate from the scoring process, the

reserve cost distribution, and the sample of competitors across all auctions in the data.
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Recall that bidders do not observe the number or characteristics of competitors prior to

bidding. Our estimator must account for bidder selection (by number and types) on auction

characteristics, so we use weighted re-sampling where, for each j, competitors from auction

j′ with Zj′ similar to Zj are more likely to be re-sampled. Bodoh-Creed et al. (2021)

show that identifying the distribution of the number of competitors, Mj, is sufficient to pin

down win probabilities in private value auctions with stochastic participation.28 This idea

is built into our estimator through simulation from the empirical distribution of the number

of rival bidders, πM(m|Zj) using observed (Nj,Zj) pairs in the data. Our sampling weights

also control for selection on unobserved rival bidder types (V ,S,W ) (i.e., endogenous entry,

based on auction-level observables).29 Recall from Assumptions 1 and 2 that a given rival’s

covariates W and rival private signals (V ,S) are unknown to bidder i prior to bidding, but

after observing auction covariates Zj, i knows their conditional distributions, FW (w|Zj) and

FV ,S(v, s|Zj). Thus, by constructing sampling weights to sample more frequently competitors

from auctions j′ with Zj′ similar to Zj, we are able to produce a win probability function

that replicates bidder i’s information set (including both numbers and types of competitors

it is likely to face) upon observing the covariates Zj within its own auction j.

More formally, fix (T, I,H)∈N
3, and for each auction j and each (bijk, Lij, bij,Zj) quadru-

ple, i=1, . . . , Nj, repeat t=1, . . . , T outer simulations as follows:

(1) Simulate an iid draw m∗
t from the empirical distribution π̂M(m|Zj).

(2) Using sample weights ω(j, j′,Zj) for each j′ =1, . . . , J , place ⌈Iω(j, j′,Zj)⌉ copies of

each bidder from auction j′ in a common urn and sample m∗
t bidders from the urn

(with replacement). Each sampled bidder n’s complete set of observed bids are added

to the tth simulated competitor profile, denoted χ∗
t ≡ {(btn, Ltn)}m∗

t
n=1.

(3) Holding χ∗
t fixed, perform inner simulations as follows for h = 1, . . . , H:

(a) Simulate iid draws {C∗
0th}H

h=1 from the reserve cost distribution F̂C0
.

(b) Simulate from Φδ(δ; 0, σ̂2
δ ) to get a sample {δ∗

thik′}k′∈Lij
for i’s own bids, and

{{δ∗
thnk′}k′∈Ltn

}m∗
t

n=1 for simulated competitor bids.

(c) Simulate shocks {γLS
th

∗, γVAI
th

∗, γNC
th

∗, γP B
th

∗, u∗
th}H

h=1 from Φ(γLS, γVAI, γNC, γP B, u; µ̂, Σ̂).

(d) Using the above information for h, compute FDIC resolution costs {C∗
thik′}k′∈Lij

for i’s bid profile, and costs {{C∗
thnk′}k′∈Ltn

}m∗
t

n=1 for sampled competitors.

(e) Compute and store the lowest competing cost relative to bijk, defined as C∗
thik ≡

min
{
C∗

0th,mink′ 6=k{C∗
thik′},minn=1,...,m∗

t
{mink′∈Ltn

{C∗
thnk′}}

}
.

28See Online Appendix D.2 for further explanation on why this result applies to our setting.
29Due to data limitations, Krasnokutskaya et al. (2018) parameterized the distribution of bids and the bidder
entry process; in our setting we are able to re-sample directly from the conditional empirical distributions
(given Zj) of the number of rivals, and rival traits (equivalently, rival bids and bid portfolios).
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Note that, due to the sampling weights, in step (2) above the simulated competitor sample

χ∗
t is constructed to replicate the conditional distribution of (L, b) pairs, given auction co-

variates Zj. In equilibrium these conditional (L, b) pairs will be generated by a set of rival

bidders having numbersM and types (V ,S,W ) from the analogous conditional distributions,

given Zj. The final win probability estimator is Ĝ(bijk|Lij, bij,Zj)≡∑T
t=1

∑H
h=1

1(C∗
thik

≤C∗
thik)

T H
.

An equivalent view of Ĝ is that it represents the survivor function of the random variable

C∗
ik. With this in mind, it follows that a similar process can be used to obtain an estimate of

the derivative g(bijk|Lij, bij,Zj). We use boundary-corrected kernel density estimation for ĝ

so as to avoid the need for sample trimming (see Hickman and Hubbard (2015)).

Some tuning parameters in the procedure must be pinned down. We chose T =1, 000 and

H=500 to balance numerical stability and computing time. We defer a complete discussion

on sampling weights to Online Appendix D.5. Briefly though, Zj is a rich set of 9 variables

describing each failed bank. As a dimension-reduction measure we combine the first principal

component of the 9 indicators with a Gaussian kernel function and the familiar Silverman

(1986) bandwidth rule to compute sample weights ω(j, j′,Zj).
30

5.3. Stage 3: Private Values. Following a standard technique pioneered by GPV, we use

first-order conditions to reverse-engineer bidders’ private valuations from their observable

bids and the equilibrium probabilities of winning with those bids. Equation (4) implies:

vijk = bijk +
G(bijk|Lij, bij,Zj) −

∑
k′∈Lij , k′ 6=k

(vijk′ − bijk′)
∂G(bijk′ |Lij ,bij ,Zj)

∂bijk

∂G(bijk|Lij ,bij ,Zj)

∂bijk

, k ∈ Lij, (7)

vijk ≤ bjk +
G(bjk|, Lij, bij,Zj) −

∑
k′∈Lij , k′ 6=k

(vijk′ − bijk′)
∂G(bijk′ |,Lij ,bij ,Zj)

∂bjk

∂G(bjk|Lij ,bij ,Zj)

∂bjk

k /∈ Lij. (8)

In contrast to GPV, these FOCs include both inequalities and equalities, and they also differ

by the presence of the second term in the numerator. Equations (7) and (8) imply a set of

pseudo-valuations v̂ijk for each package k∈Lij and pseudo-value bounds v̂ub
ijk for k /∈Lij. Note

that (8) depends on finite lower bounds in bid space for each package; we need to set the

level of these package-specific cut-offs. Rather than basing them on choke points (as in the

theory model), in the empirical model we define a cut-off probability ζ: a bank considering

a bid on package k will omit it from the portfolio Lij if it would result in a conditional win

probability below ζ in equilibrium.31 ζ determines the upper bound in equation (8).

30Using kernel-based sampling weights in this way implies Ĝ is asymptotically equivalent to the conditional

V-statistic estimator proposed by Hortaçsu and McAdams (2010). Results are very similar (but computing
time is much longer) if we use the first 3 principal components instead.
31I.e., we specify G(bijk|Lij , bij) = ζ in the empirical analog of equation (8). This is equivalent to imposing
a positive fixed cost of preparing each bid. These bounds bijk are strictly greater than the choke points,
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5.3.1. Utility Decompositions. In order to compute counterfactuals in the absence of uncer-

tainty, we need to decompose package-specific valuations vijk into baseline as-is valuations

vij and discrete component utilities. To that end, we adopt the following:

Assumption 6. Component utilities have the form vs
ij =X ijβ

s, s=LS, PB,NC, V AI, and

they enter vijk additively as in equation (2).

For convenience we define β ≡ [βLS,βP B,βNC ,βV AI ]. When estimating the component

utility parameters (β,λ) with a finite sample, the econometrician does not observe actual

bidder-package valuations but, rather, estimated pseudo-valuations v̂ijk,

v̂ijk = vijk + ξijk = vij + X ijβdk + Dkλ + ξijk, k ∈ Lij,

v̂ub
ijk ≥ vijk + ξijk = vij + X ijβdk + Dkλ + ξijk, k /∈ Lij,

(9)

where v̂ub
ijk = bijk +

ζ−
∑

k′∈Li, k′ 6=k
(vik′ −bik′ )∂Ĝ(bik′ |,Li,bi)/∂bijk

ĝ(bijk|Li,bi)
is a utility bound for omitted pack-

ages derived from equation (8) (see footnote 31), and we assume ξijk derives from sampling

variability in stages one and two.32 In order to separately identify as-is values and discrete

component valuations we take advantage of the within-bidder panel structure of multiple

bids submitted by the same bidder, treating vij as a bidder-auction fixed effect.33

Since the error term ξijk represents sampling variability in pseudo-values stemming from the

estimated win probability function Ĝ, there is no censoring problem in the error distribution

as in standard Tobit models: these errors are not observed by the bidders and do not influence

their choices.34 This also means that even with our fixed panel length of (at most) 16 possible

packages, the vector (β,λ) can be consistently estimated since noise in our stage-2 estimate

Ĝ diminishes as the number of auctions J → ∞.

We estimate component utility parameters (β,λ) and as-is values
{
{vij}Nj

i=1

}J

j=1
by GMM

with moment equalities and inequalities. Our estimator finds a best fit relative to the equality

leading to a more conservative measure as the restrictions for estimation will be less informative. We set
ζ = 5% though our results are robust to using nearby values (e.g., ζ = 3%) instead.
32A more general model might allow for random, idiosyncratic switch values vs

ij and λi, but as Cantillon
and Pesendorfer (2006) point out, identification would then require that all bidders submit a maximal set of
16 bids in all auctions, which is inconsistent with equilibrium play due to the substitution effect. In Online
Supplement D.7.1 we conduct a robustness check for idiosyncratic values of the most popular switch, LS, and
we fail to find evidence that our simplified model induces substantial bias.
33Estimation of non-separable fixed effects is a challenging econometric problem (e.g., see Chernozhukov et al.
(2013)), and is infeasible given our sample size.
34After estimating equation (9), we find that the variance of ξijk accounts for 8.65% of the total variation in
estimated pseudo-values v̂ijk (for included packages k ∈Lij). This relatively low number lends credibility to
our assumption that the error term in equation (9) represents sampling variability in pseudo-values derived

from the estimated win probability function Ĝ(bijk|bij , Lij , Zj).
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information, while minimizing violations of the bound information:

min
β,λ,{{vij}

Nj
i=1

}J
j=1

J∑

j=1

Nj∑

i=1

16∑

k=1

{
(v̂ijk − vij − X ijβdk − Dkλ)2 × 1(k ∈ Lij)

+
(
v̂ub

ijk − vij − X ijβdk − Dkλ
)2×1

(
k /∈ Lij ∩ v̂ub

ijk−vij −X ijβdk−Dkλ < 0
)}

.

(10)

The final multiplicative term above determines how inequality information is used. For a

particular value of the parameters, if the second term inside the indicator function is non-

negative for i on some package k /∈ Lij, then the corresponding inequality is satisfied and

no residual is added. Otherwise, the bound is violated for those parameter values and we

penalize the objective function by adding a squared residual term. Finally, to understand

what factors influence as-is valuations vij, we regress them on failed bank and bidder traits:

v̂ij =X ijα + eij. (11)

This exercise illuminates how values vary with failed bank and bidder traits, but these esti-

mates have no impact on the counterfactuals, while estimates from equation (10) do.

5.4. Integrating Over Bidder-Bid Match Uncertainty. In Section 3.1 we proposed an

unsupervised algorithm for resolving ambiguous assignments of bidder identities to bids. Re-

call that each run of the name matching algorithm can be thought of as producing a single

random draw from our assumed uniform prior over the set of feasible assignments A\A′.

To avoid our results being driven by simulation error, we integrate over the distribution of

bidder-bid match uncertainty at the estimation stage as follows. First, we independently

run the algorithm R = 100 times (with each run indexed by r = 1, . . . , 100) to get many

fully-specified feasible data sets, Ar ∈ A\A′, varying within auctions on some bidder-bid

match assignments.35 Next, we estimate stages 2 and 3 on all 100 data sets (stage 1 is un-

affected). Each set of point estimates
{{

{{v̂ijkr}16
k=1}

Nj

i=1

}J

j=1
, β̂r, λ̂r, {{v̂ijr}Nj

i=1}J
j=1, α̂r

∣∣∣Ar

}

is conditional on a single draw, Ar, from the (uniform) distribution of feasible assignments,

A\A′. Therefore, in a final step for each model parameter common to all r, we average over

the 100 conditional point estimates to compute unconditional point estimates:36

β̂ =
100∑

r=1

β̂r

100
, λ̂ =

100∑

r=1

λ̂r

100
, v̂ij =

100∑

r=1

v̂ijr

100
, i=1,...,Nj , j=1,...,J, α̂ =

100∑

r=1

α̂r

100
. (12)

Standard errors are estimated via the bootstrap (see Appendix D.6).

35 Note that in 89% of auctions in the full sample, the feasible set has cardinality |Aj \A′
j |≤100, suggesting

that 100 draws from the distribution should provide good coverage of the space of residual match uncertainty.
36It is important to note that the parameters in (12) are sufficient for computation of counterfactual model
equilibria, as they can be used (in conjunction with covariates Xij) to fully specify model-predicted package
valuations (recall that the error term in equation (9) represents sampling variability).
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As a robustness check on our assumption of a uniform prior on the feasible set A\A′, we also

compute a re-weighted version of equation (12) point estimates (the part of the model most

affected by potential mis-specification of the uniform prior). We do this using propensity-

score weights (see Appendix D.3.1) derived from correlations between covariates X ij and

package submission probabilities. Table OS.2 compares the baseline and re-weighted stage-3

results, and suggests our uniform prior assumption is reasonable: for β and λ (40 parameters

total), re-weighted estimates are statistically no different from baseline estimates.

As a final robustness check, we re-estimate our model and counterfactuals on the restricted

sample where all bidder-bid matches are known with certainty. Parameter point estimates

are similar (see Online Appendix D.10), suggesting that sample selection plays little role in

shaping model estimates. On the other hand, the model produces counterfactual results that

qualitatively differ in expected ways, given that the full sample has (not surprisingly) more

bidders per auction than the restricted sample (2.6 vs 1.6) and a larger fraction of auctions

involving multiple bidding (43% vs 22%).

6. Empirical Results and Counterfactuals

6.1. Least-Cost Scoring Rule Estimates. Results are presented in Table 3 for two dif-

ferent specifications (see Figure OS.6 in Appendix D.9 for model fit metrics). We estimate

the means and variances of the common shocks (γLS, γVAI, γNC, γP B, u) and the variance of δ.

In specification (2) we include time and location controls, and we allow the means of the two

most popular switches to depend on failed bank traits. These are LS and PB, which are both

observed often enough for statistical power with additional included controls.

Win probabilities are constructed with specification (1) (results are similar with (2)). Co-

efficients can be interpreted in terms of percent net asset transfers. Since γLS is interacted

with the percentage of assets covered by the LS agreement, multiplying the empirical average

of 74% by -30.5 we get a percent asset-transfer equivalent of -22.53. In plain English, for a

failed bank with $1Million in assets the FDIC would be indifferent (on average) between a

bid stipulating LS but zero net transfer, and an As-Is bid with a net transfer of -$225,300.

For PB transactions, µ̂P B
γ is 42.6, and the empirical mean share of assets excluded is 32%,

so the percent asset-transfer equivalent is 28.97(= 42.6×(1 − 0.32)). For a $1Million bank

failure, the FDIC is (on average) indifferent between a bid for a PB agreement with zero net

transfer, and an As-Is net transfer bid of $92, 704 (=$320, 000×0.2897, i.e., a net premium).

The relatively large LS and PB standard deviations indicate substantial bidder uncertainty

over how the FDIC makes these trade-offs.

The NC and VAI means, directly interpretable as percent net transfers, indicate these two

components play much smaller roles, though the high value of σ̂NC
γ implies that the NC switch
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Table 3. Least-Cost Scoring Rule Estimates

(1) (2) (1) (2)

Parameter Mean SE Coeff. SE Parameter SD SE SD SE

µu (Common) σu (Common) 11.665∗∗∗ 4.399 2.735 2.096
Constant -4.740∗∗∗ 1.663 0.261 1.001 σP B

γ (PB) 16.840∗∗∗ 6.154 4.301∗∗∗ 1.181

Book Val. -0.940∗∗∗ 0.038 σLS
γ (LS) 9.335∗∗∗ 3.696 3.066 3.500

µP B
γ (PB) σNC

γ (NC) 10.880 ∗∗∗ 2.669 12.787∗∗∗ 2.278

Constant 42.598∗∗∗ 4.361 60.000∗∗∗ 3.670 σVAI
γ (VAI) 0.003 2.887 0.374 1.034

% CRE -0.078 0.058 σδ (Idiosync.) 3.381∗∗∗ 0.415 7.475∗∗∗ 0.442
% CI -0.201 0.128

% NA -0.067 0.112
µLS

γ (LS)

Constant -30.452∗∗∗ 2.026 -19.915∗∗∗ 1.451
% CRE -0.554∗∗∗ 0.312
% CI -0.216 0.424
% NA 1.146∗∗∗ 0.359

µNC
γ (NC) -5.056∗∗∗ 1.374 -5.521∗∗∗ 1.452

µVAI
γ (VAI) -1.921 1.213 -3.373∗∗∗ 1.034

McFadden R2

M
0.139 0.219

Estimates of equation (6) are based on 322 auctions in the full sample (1,267 bid observations). Column (2) includes
Florida/Georgia fixed effects and year fixed effects (2011–2013 grouped together) interacted with PB and LS means, and
quarter fixed effects interacted with the mean of u. See Table OS.6 (online supplement) for estimated shock correlations. The
last row is McFadden’s R-squared, R2

M
≡1−L(µ, Σ)/L(µ0, Σ0), where L(µ0, Σ0) is the baseline log-likelihood of a model where

the mean vector and the variance-covariance matrix are both restricted to be one dimensional, µ0 =µ[1, 1, . . . , 1]⊤ and Σ0 =σI.
Note that R2

M
values ≥ 0.2 “represent excellent model fit” (McFadden (1979)), and are typically much lower than traditional

R2 values from OLS. Figure OS.6 (online supplement, computed under specification (1)) depicts a more complete analysis of
model fit, which is generally good. Statistical significance: ∗∗∗p<0.01, ∗∗ p<0.05, ∗p<0.1.

is a significant contributor to scoring uncertainty. The auction-specific common-shock mean

transfer equivalent is -4.7% with a standard deviation of 11.7%. These largely represent the

role of receivership (i.e., administrative) expenses, and are in line with Bennett and Unal

(2015) who estimate a mean and standard deviation of 4.5% and 9%, respectively. Finally,

the bidder-package shock plays a small, but non-zero role: a one standard deviation shift in

δijk accounts for 15% of the impact of including LS in a P&A bid.

6.2. Valuation Estimates. Table 4 reports estimates of equations (10) and (11) (see Figure

OS.7 in Appendix D.9 for model fit metrics). Discrete component utilities V s
ij depend on seven

variables summarizing failed bank and bidder bank traits, plus interactions. These controls

were selected to focus on riskiness of absorbing the failed bank’s asset portfolio, since offering

opportunities for risk management is mainly why the FDIC offers different P&A options.37

Note, however, that the model allows for bidders to disagree about the value of different P&A

contract options if they differ by degree of solvency, asset portfolio composition, or geographic

footprint. Failed bank size substantially raises the value of a LS provision. Monitoring and

reporting costs associated with LS may outweigh the insurance value for small failures, but

37Estimates for V LS
ij (V P B

ij ) also control for %LS coverage (%PB assets included) under standard options. In
including these two controls, we have a missing regressors problem for %LS and %PB, since this information
is not available for all auctions in our data (see Appendix D.4). In such cases we replace the missing regressor
values with their conditional expectations, given the values of the other regressors. This approach is in the
spirit of standard methods for regression with missing X’s surveyed by Little (1992, Section 4.2).
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Table 4. Value Shifters

Discrete Component Valuations V s
ij (βs)

s =LS† s =PB‡ s =NC s =VAI

Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE

Same Zip 0.627 0.665 -1.748** 0.756 -0.916 0.579 -2.577 1.827
Portfolio Distance -0.305*** 0.041 -0.333*** 0.073 0.073* 0.042 0.099 0.111
FB Size 5.022*** 0.298 -1.591*** 0.320 1.096*** 0.279 0.946** 0.414
Bidder Tier 1 Capital Ratio 0.093*** 0.027 -0.052 0.032 0.026* 0.014 0.044*** 0.017

FB %Core Deposits -0.195*** 0.016 -0.424*** 0.021 0.198*** 0.022 0.061 0.042

FB ROA -0.163*** 0.029 -0.444*** 0.040 0.039* 0.021 0.185*** 0.066
FB %Non-Accruing Loans 0.231*** 0.043 -0.082 0.055 0.042 0.034 0.167** 0.066
Constant -39.809*** 4.245 11.275*** 4.028 -33.834*** 4.153 -26.222*** 5.072
Average Value E

[
V s

ij

]
: 18.340 — -28.313 — -3.805 — -8.511 —

Component Interactions (λ) Baseline Valuations V ij (α)

LS×PB -9.987*** 0.654 Variable Median St.Dev. Effect

LS×NC -2.150*** 0.359 FB log(Tot. Assets) 4.464***
LS×VAI 1.960** 0.952 FB log(Tot. Deposits) -3.743***
PB×NC 6.104*** 0.614 FB %Core Deposits 0.115***
PB×VAI 0.369 1.362 FB ROA 0.210**
NC×VAI 3.180*** 0.643 FB Real Estate

Loans Share -0.130*

E
[
V ij

]
: -3.039 St.Dev.

[
V ij

]
: 31.678

Discrete Component valuation numbers and Mean/St.Dev. for Baseline Valuations are expressed as percentage points of
failed bank (FB) assets. Same Zip is an indicator for FB and Bidder having branches in same zip code. Portfolio Distance is
the ℓ1-distance between FB and Bidder loan portfolio shares in SFR, C&I, CRE, and CNSMR. Size is log(Tot. Assets) (by book

value) for the FB. Estimates account for 91.4% of total variation in v̂ijk for included packages (equation (9)).
† LS switch valuation estimates control for % of Loss-Share coverage. Coeff. estimate (std. err.): 11.588 (1.271).
‡ PB switch valuation estimates control for % of Partial Bank Assets included. Coeff. estimate (std. err.): 35.257 (2.465).

Baseline Value α controls: log(Tot. Assets) for FB and Bidder; Tier 1 Capital Ratio for FB and Bidder; FB %Non-

Accruing Loans; Avg. Pairwise Dist. (km); FB %Core Deposits (cubic polynomial); ROA for FB and Bidder (cubic polynomial
w/interactions); Same Zip; w/in-county %∆HHI (deposits); 1[Bidder is new entrant in all FB markets]; loan portfolio shares

in SFR, C&I, CRE, CNSMR, and ARE for FB and Bidder (cubic polynomials w/interactions); log(Tot. Deposits) for FB and
Bidder (quartic polynomial w/interactions); and log(Insured Deposits) for FB and Bidder. Median St.Dev. Effect is the median

(across FB-Bidder pairs) change in st.dev. units of V ij from a one st.dev. change in the relevant control, all else equal. Effects

not reported were minimal or statistically insignificant. Estimates account for 65.6% of total variation in v̂ij .
Statistical significance: ∗∗∗p<0.01, ∗∗ p<0.05, ∗p<0.1.

also, absorbing a larger distressed asset portfolio is simply riskier. From Table 2, a one

standard deviation increase in failed bank size entails a quadrupling of total assets, relative

to the mean failed bank; all else equal, this would raise the value of a LS provision by 38.6%.

Core deposit percentage plays a secondary role: a one standard deviation increase reduces

the value of a LS provision by 17.1%. As core deposits rise, the failed bank’s capital base

becomes less exposed to interest-rate fluctuations, and its overall value is less risky.

The PB option shifts P&A values by a margin of -28.3% of failed bank assets, on average;

i.e., bidders generally prefer to acquire all of the failed bank’s assets. A one standard deviation

increase in core deposit percentage further reduces the value of a PB option by 24.1%. Return

on assets and size are the second most dominant factors, each being roughly half as influential

as core deposits. Thus, as the failed bank’s liquidity becomes less volatile, as yield from its

asset portfolio rises, and as the total size of the asset portfolio rises, the value of excluding

assets significantly drops. Diversification seems to play a secondary, though non-trivial role as

well: bidding banks are less willing to exclude failed bank assets that complement their own
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existing portfolios (i.e, larger portfolio distance) and/or complement their current physical

branch network (i.e., same zip=1). NC and VAI shift valuations by smaller margins, but for

both, failed bank size is an economically important determinant.

For As-Is valuations we regress v̂ij on 11 failed bank controls and 15 bidder controls,

including non-linear effects and flexible interactions. These controls influence a bidder’s

comprehensive appraisal of absorbing all aspects of the failed bank’s business, including not

only its asset portfolio, but also its customer base, depositor liabilities (essentially a non-

negotiable aspect of P&A) and its physical branch network38. Our main finding is that two

factors play a dominant role in shaping baseline values: size of the failed bank’s asset portfolio

and size of its depositor liabilities. Standard deviation increases change baseline value V by

4.5 and -3.7 standard deviations, respectively. These two factors are positively correlated—

banks require capital (largely from deposits) in order to issue credit—so a simultaneous

standard deviation increase in the size of assets and liabilities on net implies a 0.722 median

standard deviation rise in As-Is takeover values. In other words, although adding customers

to the bidder’s business is in some ways a positive (e.g., service fees), the failed bank’s

depositors are not “new customers” in the traditional sense, since their capital has already

been invested by the failed bank. Thus, bidding banks primarily derive benefits from P&A

by acquiring financial assets at a discount. For this same reason, three other factors played

a secondary role in boosting P&A values during our sample period: stability of the Failed

Bank’s capital base, return on assets, and limited exposure to the real-estate market.

6.3. Incentive Decompositions and Counterfactuals. Our goal is to explore cost im-

plications of scoring uncertainty and multiple bidding. These depend on the complicated

interplay of distinct bidding incentives: the competition effect, the substitution effect, and

the noise effect. Before turning to our counterfactuals, we first provide context and intuition

in the next subsection by numerically characterizing these incentives within the baseline

data-generating process (DGP) through a series of off-equilibrium optimal bid calculations.

These off-equilibrium calculations illuminate incentive mechanisms that generate counterfac-

tual (equilibrium) cost changes under alternate auction formats.

6.3.1. Bidding Incentive Decompositions. First, we isolate the role of the competition effect,

i.e., the fact that bids become more aggressive because multiple bidding implies each bidder is

best-responding to more rival bids (holding Nj fixed). To do so we hold the average bid value

fixed for each of i’s competitors, while having i best-respond to only one bid per competitor.

Accordingly, we compute an alternate win probability, G̃i(bijk|Lij, bi,Zj), where we repeat-

edly sample (with replacement) a single bid per competitor (rather than all their bids), thus

38For clarity note that this exercise is informative of why healthy banks value failed bank acquisitions, but
the α coefficients have no impact on the counterfactuals, whereas the other estimates in Table 4 (βs, λ) do.
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maintaining average within-competitor bid levels. We then re-optimize i’s bids on its (fixed)

portfolio of packages Lij as a best response to G̃i. This is an off-equilibrium optimization

because G̃i is not consistent with opponents’ portfolio choices; however, differences relative

to the DGP isolate the competition effect by characterizing how i’s choice bij would change

if it were best-responding to only a single bid per rival, all else equal.

Second, we run singleton-bid calculations to isolate the two-fold role of the substitution

effect: on the one hand, i’s choice of bijk is influenced by its choices of bid levels on other

included packages k′ ∈Lij, and on the other hand, substitution influences i’s choice of which

packages to exclude from the portfolio Lij as well. To isolate the substitution effect on

included packages k∈Lij, we hold the DGP win probability G(·) fixed, and we re-optimize

bijk as a singleton bid, ignoring the presence of other own bids for each package k∈Lij.
39 This

is an off-equilibrium partial optimization by i, but differences relative to the DGP isolate the

substitution effect (for included packages) by showing how bid levels bij would change if i

did not internalize the “business stealing” effect of bijk on its own other bids k′ ∈Lij. Next,

for each omitted package k′′ /∈Lij, we similarly optimize i’s would-be singleton bid on k′′.40

We then determine whether the resulting singleton bid would have implied a non-trivial win

probability G(bijk′′|{k′′})>ζ. Once again, this is an off-equilibrium partial optimization by i,

but if bijk′′ , submitted as a hypothetical singleton portfolio, would have a meaningful chance

at winning, then i’s valuation vijk′′ would have allowed for bilateral trade between i and the

FDIC on package k′′. In other words, i chose to omit k′′ from Lij due to its detrimental effect

on expected surplus through business stealing from its other bids k′ ∈Lij (i.e., substitution).

Third, it is difficult to cleanly isolate noise effects within the model, i.e., how allocation-rule

uncertainty shifts win probability away from high-value bidders, causing them to bid more

aggressively. However, we can partially decompose noise effects by computing optimal bids

in two counterfactual worlds with pre-announced common shocks (γLS, γVAI, γNC, γP B, u): one

where the bidder-specific shock variance, σ2
δ , is the estimated value of 11.4, and one where it

is set to zero. We then compute the impact on high-value bidders, defined as those submitting

the top 25% of bids. Bidding differences relative to the DGP highlight how incentives change

when one source of allocation-rule noise (the bidder-package shock δ) is shut down.

Table 5 displays the results. Under the DGP, average P&A bids were for 85.8 cents on the

dollar, with mean conditional surplus at 22.5% of failed bank assets. If we shut down the

competition effect, the mean net discount rises by 74%, with average P&A bids of 75.3 cents

on the dollar. Thus, having bidders respond to multiple bids per rival creates competitive

39I.e., for each package k ∈ Lij we hold fixed external aspects of G(bijk|bij , L′
ij , Zj) (e.g., b−i,j , C0j , σδ, µ,

Σ) but we now condition on i’s own portfolio including only one package, L′
ij ={k}.

40Once again, we hold outside influences on the win probability G fixed and condition on Lij ={k′′}.
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Table 5. Bidding Incentive Decompositions

Change: No No Change*:
Change: No Substitution: Substitution: No δ Shock
Competition Singleton Singleton (Noise Effect);

DGP Effect Included Bids Omitted Bids (SOBs) High Bidders

Avg. Discount Bid -14.222 -10.482 2.410 -28.518 -1.374

Avg. Cond. Surplus 22.541 10.482 -2.410 20.920 —

% SOBs With Feasible Trade
(% Elective Portfolio Package Omissions) — — — 75.26 —

% SOBs Dominating Within-Bidder
Minimum Submitted Discount Bid, DGP — — — 19.41 —

% SOBs Dominating Within-
Auction Avg. Discount Bid, DGP — — — 20.14 —

Column 1 is DGP mean transfer bid and conditional surplus, in percentage units of failed bank assets. Columns 2 and 3 are

changes to the DGP numbers after removing competition and substitution effects. Column 4 is average singleton-bid/conditional
surplus for omitted packages, and percentage of omitted bids where bilateral trade with the FDIC was possible. Column 5 is a
partial decomposition of the noise effect. *Reported changes are for bids above the 75th percentile with σδ = 0, relative to a
world with σδ = σ̂δ > 0 (no scoring uncertainty in either case).

pressure that strongly favors the auctioneer. On the other hand, substitution works against

the auctioneer in two separate ways. For included bids, the presence of package k′ ∈ Lij

reduces i’s chances of winning on package k, so i compensates by choosing bijk to increase

conditional surplus (see equation (7)). Shutting down substitution reduces net discounts by

17% relative to the DGP, raising mean takeover bids to 88.2 cents on the dollar. Substitution

also shapes Lij, as shown in column 4. The average portfolio includes only 1.52 out of 16

possible packages, and we estimate that the substitution effect is responsible for 75.3% of all

portfolio package omissions. Thus, substitution also indirectly limits would-be benefits from

the competition effect. Off-equilibrium singleton omitted bids (SOBs) on excluded packages

imply capital transfers that are less favorable to the FDIC, on average, than submitted

transfer proposals. However, it is notable that one in five SOBs actually dominate the within-

auction average of submitted (equilibrium, often non-singleton) discount bids, and 19% of

SOBs by bidder i dominate i’s largest submitted capital transfer proposal to the FDIC. This

striking result underscores the role of substitution effects in driving both elective omissions of

beneficial trade opportunities between bidders and the auctioneer (through optimal portfolio

choice), and in shaping optimal bid values within non-singleton portfolios.

Finally, although the magnitude of the noise effect (column 5) may appear small, two

factors are worth noting: (i) it is based only on exclusion of the bidder-package shock δijk,

which has relatively small variance, and (ii) it does not include larger noise effects induced

by variation in the scoring weights (γLS, γVAI, γNC, γP B), since the noise effect from this last

source is difficult to cleanly isolate.41

41For the most part, noise effect incentives are not orthogonal to competition and substitution effects, making
them hard to numerically decompose. While announcing a fixed weighting vector (γLS, γVAI, γNC, γP B) would
shut down noise effects from scoring uncertainty, it would also eliminate incentives for multiple bidding (see
Proposition 2) and therefore simultaneously shut down competition and substitution effects as well. However,
shutting down δijk alone provides a clean (partial) decomposition of one source of noise effect incentives.
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6.3.2. Equilibrium Counterfactual Resolution Costs. The various decompositions in the pre-

vious section showed that the competition and noise effects arising from scoring uncertainty

work strongly in the auctioneer’s favor, while the substitution effect works strongly against

the auctioneer; thus, optimal auction design will largely hinge on which of these forces dom-

inate. With this context in mind, we now compute four counterfactuals to explore cost

implications of multiple bidding driven by scoring uncertainty. In the first counterfactual

scenario the FDIC announces, prior to bidding, that it will use the mean discrete compo-

nent weights E[(γLS, γVAI, γNC, γP B)]. We consider a mean scoring rule announcement as a

benchmark case because we do not observe the exact scoring rule within each auction in the

data. To avoid confounding incentive effects with the implications of a fixed scoring rule, we

compare results to resolution costs when the set of original bids is evaluated according to the

mean rule as well. We also compute three other counterfactuals where the FDIC eliminates

scoring uncertainty by constraining banks to bid only on a single package. These are (i)

LS Only (the most popular package among bidders within the DGP), (ii) As-Is Only (the

second most popular package), and (iii) LS+PB Only (the third most popular).42

All counterfactual policies shut down competition and substitution effects (Proposition

2) and largely mitigate noise effects. The remaining question is, which of these changes

will dominate? Since these countervailing forces may offset each other to different degrees

depending on failed bank traits and underlying bidder preferences, it is possible that the

optimal policy (scoring uncertainty vs none) varies across auctions. Thus, after computing a

one-size-fits-all (OSFA) change we use auction-specific cost differences to estimate a predictive

Probit model for whether costs under status-quo scoring uncertainty dominate. This model

could form the basis of a targeted uncertainty-mitigation policy, which in principle should be

weakly better than the analogous OSFA policy. Finally, for comparison to the cost changes

in our main counterfactuals, we compute a benchmark hypothetical scenario where the status

quo is preserved, but the expected number of bidders is increased by one, which is known to

have large impacts on auction revenues (see classic results by Bullow and Klemperer (1996)).43

Table 6 reports counterfactual results. After dropping four large outliers, FDIC reported

resolution costs for the remaining 318 failures were $32.7Billion ($102.8Million per failure).

42In all four cases the distributions of the common shock u and bidder-package shock δ remain unchanged.
Note also that changing auction format could potentially make expected outcomes more or less attractive to
some bidders. For simplicity we partially abstract from this detail and hold the bidder selection process (as
a function of covariates Zj) fixed across the DGP and our counterfactual scenarios.
43Note: our four main counterfactuals eliminate multiple bidding and condense the game to a standard first-
price auction, which has a unique symmetric equilibrium. The last counterfactual is purely for context: the
FDIC already strenuously encourages healthy banks to participate as bidders. See Online Appendix D.8
for details on equilibrium computation. Appendix D.8.1 contains a robustness check where we search for
potential multiple equilibria in the add-a-bidder counterfactual; we find no indications of this as a concern.
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Table 6. Counterfactual Cost Comparisons Under Mean Scoring Weights

ResolutionCost Levels Changes in Resolution Costs

Scoring

Actual Bids at Mean Announcement LS Only As-Is Only LS-PB Only One Extra
(Data) Scoring Rule OSFA OSFA OSFA OSFA Bidder

(Targeted) (Targeted) (Targeted) (Targeted)

Total 32,718 27,486 -12,270 -8,185 -1,231 6,417 -18,004
(-12,491) (-8,894) (-5,852) (-5,125)

Mean 102.890 86.435 -38.585 -25.740 -3.871 20.181 -56.737
P10 9 4.300 -0.621 3.152 1.089 8.323 -7.150
P50 41 38.824 -10.730 -0.516 -3.856 23.515 -6.508
P90 257.92 185.559 -47.596 -24.213 24.617 73.338 -16.088

Predicted Frequency Where
Status-Quo Uncertainty is Better: 0.094 0.594 0.358 0.783 —

Mean Bidder Switch Value: 2.666 18.340 0 -19.96 —

Mean FDIC Switch Value: 1.358 -22.535 0 12.146 —

Numbers in $Millions unless otherwise stated. Column 1 is raw cost data; column 2 evaluates winning bids at mean FDIC scoring
weights. Columns 3 and 5 remove uncertainty by announcing mean scoring weights. Columns 4 and 6 remove uncertainty by
limiting bid choices to a single P&A package (LS provision only). OSFA numbers are for “one size fits all” alternatives, and
Targeted versions have alternate formats imposed according to the predictive model in Table OS.7. Columns 2–7 add µu for

comparability. Totals and means exclude 4 outlier failed banks with total assets over $10Billion. P10, P50, and P90 rows are
results for 10th percentile, median, and 90th percentile failed banks by resolution costs. Mean Bidder Switch Value is computed
as E [Xijβdk + Dkλ] using bidder data and coefficient estimates from Table 4; Mean FDIC Switch Value is computed as

E
[
dLS

k
(%LSj)(γLS

j ) + dV AI
k

(γVAI
j ) + dNC

k
(γNC

j ) + dP B
k

(%P Bj)(γP B
j )
]

using Specification (1) of Table 3.

Evaluating costs at the mean scoring rule instead implies $27.5Billion; our subsequent analysis

focuses on differences from this benchmark. From column (3) we see that a OSFA scoring

weight announcement lowers total projected resolution costs by 44.6% ($12.3Billion). The

OSFA results from the LS-Only scenario produce a cost reduction of 29.8% ($8.2Billion).44

Cost-savings of these magnitudes would be offset by a one-time rebate of deposit insurance

assessment fees (to healthy banks) of between 10.25 and 6.81 cents per $100 of insured

deposits. Current annual assessment rates range from 1.5 cents to 40 cents per $100 of

insured deposits.45 The OSFA counterfactual policies achieve between 68% and 45% of the

cost benefits from adding an additional bidder to each auction.

A more targeted approach can potentially produce additional benefits. For each auction

j we defined an indicator SQ∗
j equalling 1 if the status-quo resolution cost (with scoring

uncertainty) was lower than the counterfactual cost, and 0 otherwise. We then ran a probit

regression of SQ∗
j on failed bank covariates.46 We report the frequency at which status-quo

uncertainty is predicted to produce lower costs in the bottom section of Table 6 (see Table

OS.7 in Appendix D.9 for probit estimates). For a mean-rule announcement this is true only

9.4% of the time, but for a LS-only auction it is true 59% of the time. However, in both cases

44Table OS.8 (Appendix D.9) reports changes under the 10th and 90th percentile scoring rules for comparison.
45See https://www.fdic.gov/deposit/insurance/calculator.html, accessed April 2021.
46Controls included size, total deposits, loan portfolio controls (%CRE. %C&I, %SFR, %CNSMR), %core
deposits, %delinquent loans, ROA, Tier-1 capital ratio, % loss-share coverage offered, and % partial bank
assets included. The probit estimator places more weight on cases where prediction mistakes are more
costly: sampling weights are assigned using the standardized absolute difference between status-quo cost and
counterfactual cost (zero difference from the mean recieves a default weight of 1).

https://www.fdic.gov/deposit/insurance/calculator.html
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Table 7. Counterfactual Impact on Winner Characteristics

Mean Median

Variable DGP Scoring Announcement DGP Scoring Announcement

Size 11.744 7.913 1.829 1.430
% CRE 22.463 21.848 22.612 22.364
% CI 10.066 9.564 9.021 8.733
Avg. Pairwise Distance (km) 531.253 482.965 264.394 214.952
Tier 1 Capital 16.447 15.818 14.322 14.053

%∆ HHI Deposits County 4.209 4.447 1.413 1.569

This table shows the impact of removing uncertainty on the characteristics of winners. Variable definitions are as in Table 2.
For comparability, the DGP column computes winner identities under the mean scoring rule benchmark (with 1,000 simulations
per auction of bidder-package shocks δ); these correspond to the actual winner identities in the raw data 69% of the time. Table
OS.10 (Online Supplement) displays similar figures under hypothetical coordinate-wise 10th and 90th percentile scoring weight

announcements for comparison.

the targeted uncertainty-mitigation approach produces only modest improvements over the

OSFA policy. This implies that when status-quo scoring uncertainty dominates LS-Only, it

is only slightly better, but when the opposite is true the difference tends to be large.

The other two counterfactuals render different results. If the FDIC were to allow healthy

banks to bid only on the As-Is contract, or only on the LS+PB contract, costs are projected to

either improve modestly or get worse. The targeted versions of these policies do significantly

better (between 21% and 19% cost savings), but still not as well as a mean scoring rule

announcement or a LS-Only auction. The final two lines of Table 6 present preferences

over P&A contract terms (net of baseline valuations) from bidders’ perspectives and from

the auctioneer’s perspective, and they provide insight into the stark differences across the

four counterfactual auction formats. Both formats that do best have the highest bidder

preferences for packages bid on, despite having relatively low auctioneer preferences for P&A

contract terms. In fact, the format that does worst for resolution costs (LS+PB) has the

highest auctioneer contract preference, but the lowest bidder contract preference. These

trends illustrate how offering contract-term options is a powerful way for the auctioneer to

motivate bidders to improve its bottom line through endogenous bid-level choice.

This idea is especially salient in the scoring announcement counterfactual, where bidders

select a single package from a menu of 16 based on their own preferences, while taking into

account the FDIC’s preferences encapsulated in the announced switch weights. By contrast,

imposing choice restrictions (LS Only, As-Is Only, or LS+PB Only) induces a shift in the

effective private value distribution among bidders. Therefore, another way to understand

our results is that the relative strengths of competition, substitution, and noise hinge on

the shape of the private value distribution. From a market-design perspective, the overall

lesson here is that, while scoring uncertainty is generally revenue negative, offering choices

to bidders—or at least, prioritizing their preferences when restricting choices—is a highly

effective means for achieving cost/revenue improvements.
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6.3.3. CF Failed Bank Acquirers. Post-financial crisis, there has been renewed interest in

banking market concentration, particularly for deposits (e.g., see Egan et al. (2017) and

Aguirregabiria et al. (2018)). By resolving failed banks through P&A mergers, the FDIC may

be indirectly influencing local market structure. To see if our proposed format changes may

imply such hidden costs, we report summary statistics on counterfactual winners and county-

level HHI for deposits in Table 7. County-level consumer banking markets with failures

in our sample are typically fairly competitive or moderately concentrated pre-failure, with

mean and standard deviation of HHI being 1,612 and 1,004, respectively.47 Counterfactual

acquiring banks are slightly smaller and have branch networks that are somewhat closer

to the failed bank’s network. As a result, local markets see a rise in local concentration

(4.5% counterfactually vs 4.2% in the DGP), but not by an economically significant margin.

Winners under the OSFA scoring-weight announcement are similar to winners in the DGP

in terms of loan portfolio composition and financial health.

7. Conclusion

This paper evaluates FDIC failed bank auctions. Selling platforms for distressed financial

assets are often similarly structured and are becoming more important within national and

international banking industries. They employ scoring rules to rank multidimensional bids

and often involve an element of scoring uncertainty, as in FDIC auctions. We find that

scoring uncertainty creates incentives for bidders to submit multiple bids, and on net, this

tendency raises costs (or reduces revenues) by a margin of between 30% and 45%.

More broadly, our framework and methodology highlight the specific incentive channels

through which this result obtains: (i) the substitution effect, which shapes bid portfolio

choices, and whereby a bidder’s own multiple bids lead to less aggressive bidding, (ii) the

competition effect, whereby multiplicity of bids submitted by one’s competitors spurs more

aggressive bidding, and (iii) the noise effect, which increases competitive pressure specifically

on high-value bidders. Although the latter is specific to our failed banks application, the

competition and substitution effects we study offer a window into broader market design

settings such as general combinatorial auctions where multiple bidding is common. Our

application also illustrates how, by offering multidimensional bidding options, the seller may

have some latitude to directly mold the distribution of private valuations among bidders.

These insights serve to enrich our understanding of market design in several complex, less-

understood settings in the modern economy.

47For context, The US Department of Justice does not consider a market to be even “moderately concentrated”
until “the HHI is between 1,500 and 2,500 points.” https://www.justice.gov/atr/herfindahl-hirschman-index

https://www.justice.gov/atr/herfindahl-hirschman-index
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Appendix A. Technical Proofs

First recall that for Lemma 1 and Proposition 1, we consider the case where δ is a point
mass at zero; otherwise the more difficult discontinuous payoffs problem vanishes.

42



Proof of Lemma 1: Equilibrium Bidding Requirements. For notational ease in this proof we
will drop the auction subscript j. We first prove part (1) of Lemma 1, that equilibrium
strategies can only prescribe non-trivial bids strictly below private valuations. Consider
bidder i’s decision problem of bids on some portfolio, Li ∈ 216. Note that on package k, any
bid bik > bk wins with nonzero probability because there is positive probability that zero
competitors show up and the reserve cost is dominated by bik.

CASE 1: suppose bik ≥ vik ∀k ∈ Li, and WLOG, suppose further that k= 1 is one such
package, and vi1 > b1, which occurs with positive probability. If this is true, then i’s expected
surplus is weakly negative and i could do strictly better by deviating to a bid profile where
b1 < bi1 < vi1 and bik = vik for each k ∈ Li, k > 1. Since a profitable deviation exists under
case 1, it follows that any equilibrium strategy must prescribe at least one bid in Li strictly
below the private valuation for the corresponding package.

CASE 2: suppose Li can be partitioned into two mutually exclusive, non-empty sets,
Lp

i ≡ {l | l ∈ Li, vil > bil}, the “profitable set,” and Lnp
i ≡ {k | k ∈ Li, vik ≤ bik}, the “non-

profitable set,” and let (bp
i , b

np
i ) = bi represent the corresponding partition of i’s profile of

non-trivial bids. By definition of the scoring auction game, the win probability function must
satisfy: (i) G(bk|Li, bi) = 0, ∀k, and (ii) G(bik|Lp

i ∪Lnp
i , (b

p
i , b

np
i )) < G(bik|Lp

i , b
p
i ), ∀k ∈ Lp

i .48

Note that i’s expected utility is
∑

k∈Lnp
i

(vik − bik)G(bik|Li, bi) +
∑

l∈Lp
i

(vil − bil)G(bil|Li, bi) <
∑

l∈Lp
i

(vil − bil)G(bil|Lp
i , b

p
i ),

where the inequality follows from the properties of G and the term on the right-hand side
represents i’s expected utility after dropping all bids in Lnp

i instead. Since a profitable
deviation exists in case 2 also, property (1) of the lemma must be true.

For property (2) of the lemma, suppose there is a hole in the support of bids for some
package k, where a positive mass of bidders choose bids at or below bk and a positive mass
choose bids at or above b′

k > bk, but zero mass choose a bid b∗
k ∈ (bk, b

′
k). If that were the

case, then bidders within a small neighborhood of b′
k could profitably deviate by switching

to a bid of (bk −ε) (i.e., with a larger capital transfer), ε<b′
k −bk: the change would strictly

increase their conditional surplus on package k while sacrificing negligible win probability
on k (for a small enough neighborhood). At the same time, this deviation would increase
chances of winning on other packages k′ ∈Li \k, which provide positive conditional surplus
by property (1). Thus, equilibrium bids must have full support and therefore the strictly
increasing property of G must also be true, because for any package k and any two bids
bik < b∗

ik, if a bid bi′k′ by bidder i′ on package k′ loses to bik then it must also lose to b∗
ik, since

bi′k′ + Γk′dk′ + δi′k′ < bik + Γkdk + δik implies bi′k′ + Γk′dk′ + δi′k′ < b∗
ik + Γkdk + δik.

Property (3) follows from properties (1) and (2) since no profitable bids that win with
positive probability are possible when vik ≤ bk and the bidder is indifferent between any
bids below bk. Finally, to prove property (4) of the lemma, suppose there is a positive
mass of bidders with package-k valuations on the non-empty interval (vk, v

′
k) who all choose

48This second condition comes from the fact that one’s optimal choice of own other bids on packages k′

must shift probability away from a given bid on package k since the scoring rule distribution creates positive
probability that the auctioneer may prefer awarding takeover contract k′ by a significantly wide margin to
overshadow any difference between bik and bik′ .
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equilibrium bids equal to b∗
k.49 In that case, one of them could profitably deviate to a bid

of b∗
k +ε for some small ε > 0. This would have the effect of over-cutting a positive mass

of competitors by an infinitesimal amount that would leave its expected surpluses and win
probabilities on its other own bids virtually unchanged for ε small enough. �

Proof of Proposition 1: Equilibrium Existence. First, note that our auction satisfies the def-
inition of an affine game with indeterminate outcomes, as proposed by (Jackson, Simon,
Swinkels, and Zame 2002, JSSZ). Their definition of a game of indeterminate outcomes with
the affine property entails several components. First, it must have a finite set of players; in
our case with probability 1 the game has finite Nj (set of bidding banks, by Assumption 1),
and N has finite mean, variance, etc. Second, the game must have a compact type space T ,
with a well-defined joint distribution over types that is absolutely continuous. In an auction
for a failed bank with traits Zj, player types (v̄ij, sij) live on a compact subset of R5 and
follow a probability measure FV ,S(V,S|Zj) which is absolutely continuous (by Assumption
2). Third, the game must have a compact action space, A. For each bidder in a failed bank
auction, their actions are chosen from a compact subset of P(K)×R16, since the lowest possible
bid on each package k is defined by the package-specific choke point, and the highest possible
bid (that is not strictly dominated with probability one) is the upper bound of the support
of the value distribution for package k. Thus, without loss of generality, we can ignore bids
outside this range for each package k, and the action space is compact. Fourth, the outcome
space of the game, Ω, is the set of all probabilistic assignments of winner status for the failed
bank, including scoring-weight variation, but, more importantly, allowing for arbitrary tie-
breaking rules to be implemented. Fifth, the game has an outcome mapping Θ:A→Ω that
is upper-hemi continuous at each action profile a∈ A.50 Sixth, and finally, there is a utility
mapping u :graphΘ×T → R

N that is continuous, convex-valued, and affine. In our model of
FDIC auctions, players’ utilities for a given outcome are

∑
θijk(vijk −bijk) where θik describes

the probability that i wins with package k, given the entire set of own and opponents actions.
These utilities are affine in actions, given that bidders are Von Neumann-Morgenstern utility
maximizers, and given the breadth of possible probabilistic divisions of the failed bank due
both to scoring-rule variation (when bidders bid on different packages) and to tie-breaking
rules (when bidders bid on the same package) allowed for under the outcome mapping Θ.

From this setup, JSSZ then define an augmented version of the original game, which they
refer to as its communication extension. The communication extension of a game is an
alternate game where players choose actions and face ex-post payoffs identically as in the
original game, but where they also make simultaneous reports to the auctioneer of their
private types in addition to their bid submissions. These type reports then form the basis
of an endogenous rule for resolving ties, should two players choose the same action. JSSZ
first show that an equilibrium of the communication extension exists. They then establish

49Randomness in of (γLS, γVAI, γNC, γP B) means that a mass point of bids on some alternative package k′ 6= k
cannot produce a mass point in the distribution of scores faced by a bidder on package k.
50To see why, it is illustrative to consider a simple example with only two bidders, and with an action profile
a such that both submit bids on the same package k. If their bids tie, i.e., a = (b1jk, b2jk), b1jk = b2jk,
then Θ(a) = {θ1jk|θ1jk = Pr[bidder 1 is awarded the P&A in auction j], θ1jk ∈ [0, 1]} is set-valued and
contains all probabilistic divisions of the failed bank between them. Now, for any convergent sequence of
action profiles, {at}∞

t=1 → a, if we choose a convergent sequence {bt}∞
t=1 → b, where bt ∈ Θ(at), ∀t, then it

must be true of the limit that b ∈ Θ(a), since Θ(a) contains all possible probabilistic divisions of the failed
bank between players 1 and 2.
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that, if players are indifferent to how ties are broken in the communication extension, then its
equilibrium must constitute an equilibrium of the original game as well. Thus, since our FDIC
auction model satisfies JSSZ’s definition of an affine game with indeterminate outcomes, their
Theorem 1 applies, so an equilibrium of the communication extension of our package-auction
exists. In any equilibrium of the communication extension, the properties proved in Lemma
1 would also have to apply, including part 4., that ties only occur with zero probability.
Therefore, players in the communication extension game are indifferent about how ties are
resolved, including a scenario where the tie-breaking rule is purely random and independent
of ex-ante type reports. This version of the communication extension is equivalent to the
original package auction game with scoring rule uncertainty, so therefore an equilibrium of
the original game must also exist.51

�

Proof of Proposition 2: No Multiple Bidding in Absence of Scoring Uncertainty. Suppose there
is no scoring uncertainty, so that the component weights are known to all bidders ex-ante.
Consider the auction from bidder 1’s perspective and suppose further that it formulates sepa-
rate bids on multiple packages. In that case the continuous dollar components would have to
be chosen so that the cost score for each of its bids is the same, making the FDIC indifferent
among them. Otherwise, suppose its bid b1jk on package k results in a cost score C1jk that is
strictly greater than its cost score C1jk′ from another of its bids b1jk′ . Then bidder 1 would
know with surety that b1jk cannot win the auction; this would be equivalent to omitting a
bid on package k, violating our supposition of multiple bidding.52 Therefore, all of bidder 1’s
bids must imply the same cost score.

With positive probability, player 1 faces at least one other competitor, call it bidder 2. If
2 submits a bid b2jl (on some package l) for which the cost score weakly dominates one of
player 1’s bids then it would weakly dominate all of player 1’s bids, C2jl ≤ C1jk = C1jk′ .
If C2jl < C1jk then player 2 wins outright; if C2jl = C1jk then the tie-breaking rule places
weight on each bidder that is independent of the number of bids they each submitted. Either
way, player 1 cannot increase its win probability by submitting multiple bids in the absence
of scoring uncertainty. Since 1’s preferences establish a strict ranking on winning the auction
under any of the 16 possible packages, in absence of scoring uncertainty it cannot improve
its expected payoffs by submitting multiple bids. �

51Importantly, note that JSSZ does not require that bidders be indifferent to how all uncertainty is resolved,
like, for example, exogenous uncertainty over rival types built into the definition of the original game; they
must only be indifferent to resolution of ties within the endogenous tie-breaking rule of the communication
extension. Our game is more complex than a traditional single-unit first-price auction, given that there are
16 possible bids that each bidder can submit in a given auction. However, the presence of random scoring
variation constitutes an exogenous source of uncertainty (similar to random variation in rival types) built
into the definition of the original game, and it actually helps to mitigate the discontinuous payoffs problem.
For example, if bidder 1 bids b1j1 on package 1, and if bidder 2 bids on package 2, then there is no longer any
sequence of 2’s bids {b2j2n}∞

n=1 that is guaranteed to produce the abrupt jump in win probability in the limit
as n → ∞. This is because the two packages differ by at least one discrete contract component and, holding
b1j1 fixed, the point at which the two bid levels would effectively tie is a non-degenerate random variable. In
that sense, exogenous scoring uncertainty actually smooths out payoff discontinuities across bids on different
packages, thus mitigating some of the problem that JSSZ is designed to solve. However, if bidder 1 and
bidder 2 both submit bids on package 1, we still have the original problem that existed in the traditional
first-price auction, and JSSZ’s main result provides a solution for that.
52Recall that bidders never submit bids that will lose with probability 1 (see footnote 17).
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Table B.1. Relationship between bids and number of bidders

Giliberto and Varaiya (1989) Test Haile, Hong, and Shum (2006) Test

VARIABLES log(bid) Std. Err. Sample Test Statistic P-value

Var(bids) 0.113 (0.0765) Full Sample 0.0330 0.9175

# Bidders -0.0693*** (0.0231) Restricted Sample 0.9484 0.2862
Constant 11.57*** (0.144)

State(FL,GA) Yes

Year FE Yes
R2 0.077

This table provides estimates of the CV versus IPV tests from Giliberto and Varaiya (1989) (GV89, left panel) and Haile
et al. (2006) (HHS06, right panel) on our sample. For GV89, we replicate their specification but replace the fixed effects
for the federal reserve districts that were badly hit by the crisis with fixed effects for the states that were badly hit.
Var(bids) measures the variance of bids within an auction. *** p<0.01, ** p<0.05, * p<0.1.

Appendix B. Testing Independent Private Values

Table B.1 (left panel) evaluates the IPV assumption using a test proposed by Giliberto and
Varaiya (1989) (GV89). We find that the number of bidders is negatively correlated with
the winning bid, which is a necessary but not sufficient condition for private values. Another
paper by Pinkse and Tan (2005) points out that this test has the drawback of potentially
failing to distinguish between IPV and CV in first-price auctions.

We also perform a test in the spirit of Haile et al. (2006) (HHS06): in an IPV setting
bidders’ valuations do not depend on their opponents’ information, so Nj does not affect
expected value, conditional on winning. Unlike GV89, HHS06 uses bidder valuations (not
bids), which must be estimated. Under IPV the expected value of winning should be un-
correlated with the number of bidders Nj; under the CV alternative it is decreasing. We
run the test procedure described in Section 3.1 of HHS06 on estimated full-bank valuations
by computing quantile-trimmed means of the estimated values conditional on the number
of bidders. The resulting p-value is 0.9175, so we fail to reject the null hypothesis of IPV,
though some caveats apply. First, HHS06 was not designed for settings with package bidding
like ours, and second, it is not robust to arbitrary forms of bidder selection, such as selection
on unobserved types which is present in our DGP.

B.1. A New Test. We execute a third test recently proposed by Hickman, Hubbard, and
Richert (2021), which is better suited to the FDIC setting and free of the limitations of
(Giliberto and Varaiya 1989). It is based on detecting conditional correlation among opposing
bids. Consider three mutually exclusive models that our IPV assumption rules out: (I) affil-
iated private values (APV), (II) pure common values (CV), and (III) unobserved, auction-
specific heterogeneity (with independent private values, UHIPV). The common thread is
that they all imply residual correlation among competitors’ bids, after controlling for rele-
vant information available to the econometrician. To see why, consider a generalization of
our IPV model that nests the other three as special cases: given Nj bidders in auction j,
private information regarding the value of an as-is takeover follows conditional distribution
FV |Y (v1,j, . . . , vNj ,j|yj,Zj), where yj follows a well-behaved distribution Y ∼ FY (y).
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In the APV model Y is irrelevant to ex-post utility and bidders’ private values vij are
correlated,53 so bids are correlated as well.54 In the CV model, ex-post as-is utility for
the winner is simply Yj and private information is an idiosyncratic signal vij = yj + εij,
E[εij] = 0.55 The UHIPV model is similar, except that the common component is observable
to bidders (but not to the econometrician), and ex-post utility of winning for i is yj × vij.

56

In the latter two cases, as Yj varies across auctions all bidders’ bids co-move with it. By
contrast, in the IPV model (conditional on observable (Zj, Nj)), Yj is irrelevant to ex-post
utility and (V 1,j, . . . , V Nj ,j) and Yj are mutually independent.

With this in mind, our test procedure begins with the following predictive regression:

Bidij = θ0 + θ1Bid−i,j + [P ij,P −i,j,X ij,N j]η + M jτ + εij, (13)

where Bidij ≡ ∑16
k=1 bijk1(k ∈ Lij)/

∑16
k=1 1(k ∈ Lij) is bidder i’s mean continuous bid sub-

mitted in auction j, Bid−i,j ≡ ∑
l 6=i Bidlj/(Nj − 1), Nj ≥ 2, is the average of within-bidder

mean bids across all of i’s competitors, P ij = [Pi1, . . . , Pi16] is a full set of indicators for which
packages i bid on, P −i,j = [P−i,1, . . . , P−i,16] is a full set of count variables for the number
of times i’s competitors bid on each package, N j = [Nj, N

2
j , . . . , N

k
j ] is a vector of polyno-

mial terms for the number of bidders, M j = [Nj, N
2
j , . . . , N

k
j ] ×Bid−i,j contains interactions

with the competitor mean bid, η and τ are conformable parameter vectors, and finally, εij

is simple prediction error. Now, the null hypothesis of IPV (with no residual unobserved
heterogeneity) translates into H0 :θ1 =0, and the alternate hypothesis Ha :θ1 6=0 corresponds
to APV ∪ CV ∪ UHIPV (including mixtures of the three).57

Terms involving N j and M j control for strategic co-movement that would exist even in
an IPV world with varying Nj: when the number of competitors rises bidders respond with
more aggressive bids (i.e., lower information rents).58 The M jτ term partials out strategic
co-movement between i’s actions and her opponents’ actions when competition becomes more
fierce. Since all bidders react to increasing competition in the same direction—revising their
bids to be more favorable to the auctioneer—then failing to control for M j could lead to
an apparent correlation between competitors’ bids, even under IPV. Finally, the X ij term—
which contains auction covariates Zj, bidder covariates W ij, and interactions—is needed
to control for observable variation in general failed bank value, as well as bidder selection

53Alternatively, one might assume private values are correlated with Y , but independent of each other
conditional on the unknown realization of Y . Thus, the role of Y is to induce correlation in the V ij ’s; this
model is known as “conditionally independent private values” (CIPV) and was proposed by Li, Perrigne,
and Vuong (2000). CIPV is a generalization of IPV and a special case of APV; see Hickman, Hubbard, and
Saglam (2012) for further discussion of information structures in empirical auction models.
54Hubbard, Li, and Paarsch (2012) showed that monotone equilibrium bidding implies that the bid distribu-
tion and private value distribution share a common copula.
55A further generalization of CV, the interdependent values model (IV, see Somaini (2020)), is possible: for
bidder i ex-post as-is utility is an idiosyncratic function Ui(Yj), so that there is a common component of
valuations and an idiosyncratic component as well. IV would likewise induce conditional correlation among
competitors’ bids (since all private information is relevant to i’s ex-ante expected payoffs) and is therefore
covered by our testing procedure as a possible mixture of CV and IPV or APV.
56Krasnokutskaya (2011) proposed a version of this model where the V ij ’s and Yj are independent.
57In the empirical model, switch-specific valuation adjustments are assumed to be deterministic, conditional
on Xij (Assumption 6 and equation (9)), so conditional idiosyncratic variation in bids stems from vij alone.
58We include polynomial terms because this effect is non-linear in the level of competition Nj . Within
the model, bidders compute projections E[Nj |Zj ] given auction covariates Zj , but in equation (13) we use
ex-post realizations of Nj as a proxy for bidders’ expectations.
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based on failed bank observables. After controlling for observable determinants of bidding
co-movement by i and i’s opponents, if there is still residual correlation between Bidij and
Bid−i,j, then the null hypothesis of IPV is rejected in favor of the alternate hypothesis;
otherwise, we fail to reject IPV.

Table B.2. Detecting Conditional Correlation among Competing Bids

OUTCOME VARIABLE: Bidij

(1) (2) (3) (4)

REGRESSORS Param Est. St.Dev. Param Est. St.Dev. Param Est. St.Dev. Param Est. St.Dev.

Bid−i,j(θ̂1) 0.819*** (0.021) -0.049 (0.183) -0.191 (0.277) -0.212 (0.192)

Nj ×Bid−i,j(τ̂1) — 0.439*** (0.131) 0.572*** (0.221) 0.517*** (0.137)

N2

j ×Bid−i,j(τ̂2) — -0.062** (0.028) -0.100* (0.054) -0.078*** (0.054)

N3

j ×Bid−i,j(τ̂3) — 0.004** (0.002) 0.007* (0.004) 0.004** (0.002)

Constant(θ̂0) -1.831 (1.421) -5.965*** (1.416) -10.830 (9.379) 12.834 (10.153)

Nj no — no — yes [0.747] no —
P ij yes*** [0.000] yes*** [0.000] yes*** [0.000] yes*** [0.000]

P −i,j yes*** [0.000] yes*** [0.000] yes*** [0.000] yes*** [0.000]
Zj no — no — no — yes** [0.012]

W ij(+interactions) no — no — no — yes [0.471]

State(FL,GA) no — no — no — yes* [0.062]
Year FE no — no — no — yes [0.639]

Observations 723 df =693 723 df =690 723 df =687 723 df =662
R-squared 0.806 0.832 0.833 0.844

This table provides estimates of our test of the null hypothesis H0 :θ1 =0 (IPV) against the alternate hypothesis Ha :θ1 6=0

(APV ∪ CV ∪ UHIPV and/or mixtures of the three). There are 723 bidder-specific observations in auctions with at least
two bidders. Standard errors for individual parameter estimates are in parentheses; p-values for joint exclusions of

variable groups are in square brackets. Results are robust to inclusion of higher-order polynomial terms in Nj . Statistical
significance: ***p<0.01, **p<0.05, *p<0.1.

Table B.2 displays results for various specifications of equation (13). Specification (1)
includes only the bid portfolio controls, and we get a statistically significant conditional
correlation between own mean bid and opponent mean bids. However, in specifications
(2)–(4), after controlling for M j the coefficient θ̂1 is much smaller and not statistically
different from zero. This result is robust to inclusions of failed bank characteristics, bidder
characteristics, and state/year fixed effects. These results support our assumptions that
correlated private values, common values, and unobserved failed bank heterogeneity are not
major concerns in our model of FDIC auctions.

Appendix C. Testing for Independence Across Auctions

To test for dependence across auctions, we estimate two sets of regressions. We first consider
a logit regression in which the dependent variable is an indicator that takes a value of 1 for
winning bids. If bidders (i) learn the scoring rule over time, then increased experience should
mean a bidder is more likely to win. In the case of (ii) complementarities, we expect more
aggressive bidding following a win as the value of a subsequent acquisition is increased. If (iii)
winning tightens capacity constraints leading to lower values for following P&A opportunities,
bidders should bid less aggressively following a winning bid. These effects are potentially
offsetting, so we exploit variation in bidder experience and capacity constraints by comparing
large bidders to poorly capitalized bidders.
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Table C.1. Effects of Experience and Size on Bidding Competition

Variables Winner (Logit) Bidder premium

(1) (2) (3) (4) (5)

Experience -0.072*** -0.075
(0.014) (0.083)

Experience pre-win -0.032 0.013 0.011
(0.168) (0.008) (0.008)

Experience post-win -0.047 -0.004 -0.004*
(0.047) (0.004) (0.002)

# Bidders -0.570*** -1.539*** -1.517*** -0.009 -0.009

(0.051) (0.212) (0.209) (0.008) (0.008)
Large -0.782 -0.013

(0.671) (0.030)
Large x Experience 0.059 0.002

(0.084) (0.084)
Low Capital -0.277 0.024

(0.466) (0.021)
Low Capital x Experienced -0.148 -0.018**

(0.170) (0.008)
Component Controls No No No Yes Yes
Failed-Bank Controls No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Bidder Controls No Yes Yes Yes No

Observations 1,227 305 305 305 305

Columns (1)-(3) present results from a Logit regression with dependent variable P r(winner = 1), while (4)-(5) present results
for the dollar component of the bid as a percent of total assets. Experience is the number of auctions in which a bidder has
participated. Experience post-win and Experience pre-win interact Experience with indicator variables for whether the bidder
has already or not yet won an auction, respectively. Large indicates the bidder is above the 75th percentile of all bidders in
terms of total assets, and Low Capital indicates the bidder’s risk-weighted Tier 1 capital ratio is below the 25th percentile.
Unreported controls include %CRE, %CI, %SFR, and log(Total Assets). Component controls indicate if the bid included LS,
PB, VAI, or NC options. Specifications (2)-(5) are limited to the restricted sample. Standard errors in parentheses, *** p<0.01,

** p<0.05, * p<0.1.

Results from column (1) suggest that experience has a small, negative correlation with
winning. In column (2), while also adding many controls, we aim to separate complemen-
tarities and capitalization effects. None of the variables of interest—size, capitalization, or
experience—are significant. Column (3) looks at the effects of experience before or after
the first time a bidder wins, and the effects on the probability of winning are both negative
but are also not significant. Columns (4) and (5) look at the size of bidder premiums (i.e.,
deposit premium − asset discount): higher bid premiums are associated with more aggres-
sive bidding. The coefficients on experience both pre- and post-winning are not significant.
Although not definitive, we do not find substantial effects of experience on bidding behav-
ior. For this reason (in addition to computational complexity) we do not model learning,
complementarities over time, or strategic bidding due to capacity constraints.
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Appendix D. Supplemental Online Appendix to accompany

“Resolving Failed Banks: Uncertainty, Multiple Bidding, & Auction Design,”

by Jason Allen, Robert Clark, Brent Hickman, and Eric Richert

D.1. Semi-Parametric Identification of the Least-Cost Scoring Rule. In this section
we discuss an alternate identification argument for the stochastic least-cost scoring model that
requires independence of idiosyncratic cost shocks δ, but imposes weaker functional form
restrictions on the joint distribution of the common shocks (γLS, γVAI, γNC, γP B, u). Despite
our use of parametric forms in the estimator for computational tractability, this alternate
identification argument helps to elucidate how the raw moments in the data pin down the
components of the scoring rule process. Recall equation (5), reproduced here for convenience,

−Cijk = bijk + dLS
k (%LSj)γ

LS
j + dV AI

k γVAI
j + dNC

k γNC
j + dP B

k (%PBj)γ
P B
j + δijk + uj.

In order to facilitate discussion on identification we begin by replacing Assumption 5 (joint
normality of the common shocks) with the following weaker condition:

Assumption 7. The common shocks (γLS
j , γ

VAI
j , γNC

j , γP B
j , uj) have a joint distribution charac-

terized by a Gaussian copula with correlation matrix Σ, with 1’s on the main diagonal and
correlations ρ(s, s′), s, s′ ∈ {LS, VAI,NC, PB, u} on the off-diagonal.

By Sklar’s theorem we know that a well-behaved joint distribution can be uniquely repre-

sented as FΓU(γLS, γVAI, γNC, γP B, u) = C
[
FLS

γ (γLS), F VAI
γ (γVAI), FNC

γ (γNC), F P B
γ (γP B), Fu(u)

]
,

where C is a copula function. One can think of a copula as representing the correlation struc-
ture among the set of jointly-distributed uniform random variables (YLS, YVAI , YNC , YP B, Yu),
where Ys = Fs(x). A Gaussian copula is the one that exists within a joint normal distribu-
tion; it stipulates that a full set of pairwise correlations completely characterizes all aspects
of random co-movement within the joint distribution.

Proposition 3. Under Assumptions 4 and 7, the bidder-package shock variance σ2
δ and the

joint distribution of the common shocks from the least-cost scoring rule (γLS, γVAI, γNC, γP B, u)
are semi-parametrically identified from the published resolution costs and bid histories, with-
out functional form restrictions on the marginal distributions of the common shocks.

The proof of this proposition proceeds through five main steps. First we argue that the
distribution of the sum of the auction-specific shock uj and the bid-specific idiosyncratic shock
δijk is identified from the subset of single-bidder auctions where the sole bidder submits only
an as-is P&A bid. In the second step, we show that the variance σ2

δ is identified from observed
win probabilities under varying differences bijk − bi′jk, when at least two bidders i and i′ bid
on the same package k. The third step uses a deconvolution argument to separate the known
distributions of (uj +δijk) and δijk to identify the distribution of uj. The fourth step identifies
the marginal distributions of each component-specific scoring shock by using bids that differ
by only that component and a similar deconvolution argument to steps 2 and 3. Finally, in
step five we can identify the correlations by leveraging the identity that the variance of the
sum of two random variables is the sum of their variances plus twice the covariance. For the
entire identification argument we hold fixed a given set of failed bank traits Zj.
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Step 1: To begin, we consider the subset of auctions with a single bidder submitting a
single As-Is takeover bid.1 In this case, the only uncertainty when trying to map observed
bids to observed losses stems from the convolution (uj +δijk).2 In this set of auctions the
scoring rule implies that Cijk − bijk = uj + δijk, and the left-hand side of that equation is
observed. Therefore, the right-hand side is identified from observed costs and bid submissions
in the subsample of single-bidder as-is auctions.

Step 2: We focus now on the set of auctions with two bids where the losing bid was
submitted on the same package that won the auction. In auction j, for any difference
between bidders i and i′ in bids on package k (i.e., with the same switch configuration) we
observe from raw data the frequency with which bi′jk beats bijk, which is the same as

Pr[bijk + δijk ≤ bi′jk + δi′jk] = Pr[δijk − δi′jk ≤ bi′jk − bijk].

The expression on the right-hand side is the CDF of the difference (δijk − δi′jk), which is
therefore known since the left-hand side can be derived directly from empirical frequencies.
By Assumption 4, δijk and δi′jk are independent with mean zero and variance σ2

δ , so the
variance of their difference (which is known from raw data) is just 2σ2

δ . Thus, since δ is
normal with mean zero, its distribution Φδ(δ; 0, σ2

δ ) is known as well.

Step 3: From steps 1 and 2 the distributions of δ and the convolution y ≡ (u + δ) are
known. Given that u is independent of δ, we can express the characteristic function of Y as
Ψy(t)=E[exp(ity)]=E[exp(it(u+ δ))]=Ψu(t)Ψδ(t), where Ψu and Ψδ are the characteristic
functions of u, and δ, respectively. Thus, we can obtain the marginal density of u as the
inverse Fourier transform of the ratio of known characteristic functions Ψy(t)/Ψδ(t).

Step 4: To identify the marginal distributions of each of the component-shocks γs, s =
LS, VAI,NC, PB, we iteratively apply a similar argument from steps 2 and 3. For clarity
and simplicity of discussion, it will be convenient to restrict attention to subsamples of
auctions with two bids, where the winning bid varies from the losing bid by a single discrete
component. Although this subsample will not contain all useful identifying variation in the
data-generating process, it will be sufficient to show that the dataset as a whole contains
requisite variation to uniquely identify the model parameters.

Let us consider identification of the marginal distribution of γVAI
j , the shock associated with

use of a VAI option.3 The same argument holds for the other three components. Consider
competing bids on package ki for bidder i and ki′ for bidder i′, where all discrete components
are the same across ki and ki′ , except that one includes a VAI provision and the other does
not. If ki includes VAI, then for any difference in bid premiums, we can observe the frequency
at which i′ beats i

Pr[bijki
+ δijki

+ Γjdki
≤bi′jki′ + δi′jki′ + Γjdki′ ] = Pr[δijki

− δijki′ + γVAI
j ≤bi′jki′ − bijki

],

and if ki excludes VAI we can observe the probability that i′ beats i

1In order for this subset to be non-empty, it must be true that πN (1) > 0, and the support Supp(F
V ,S

) must

be such that with positive probability each bidder wishes to only submit a single As-Is takeover bid. This
can be empirically verified, but for the purpose of this argument, we assume non-emptiness.
2The scoring rule shocks are unknown to bidders when choosing to enter and which package to bid on and
so this subset is equally likely to include any realization of uj + δijk.
3Because scoring shocks are unknown to bidders when forming their bids, and because shocks are independent
of their private information, the shocks to VAI in the subsample under consideration (auctions with two bids
where the winning and losing bid differ by the VAI switch) have the same distribution as the full sample.
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Pr[bijki
+ δijki

+ Γjdki
≤ bi′jki′ + δi′jki′ + Γjdki′ ] = Pr[bijki

− bi′jki′ ≤ δi′jki′ − δijki
+ γVAI

j ].

This identifies the distribution of δijki
− δi′jki′ + γVAI

j . From step 2, the distribution of
(δ−δ′) is known, where δ and δ′ constitute two independent draws from the distribution Fδ,
and by Assumption 4 this difference is independent of γVAI

j . As in step 3, a deconvolution

argument can be applied: we can express the characteristic function of y≡(δ− δ′ + γVAI
j ) as

Ψy(t) =E[exp(ity)] =E[exp(it(δ − δ′ + γVAI))] = Ψ(δ−δ′)(t)ΨVAI(t), where Ψ(δ−δ′) and ΨVAI

are the characteristic functions of (δ − δ′), and γVAI , respectively. Thus, we can obtain the
marginal density of γVAI as the inverse Fourier transform of the ratio of known characteristic
functions Ψy(t)/Ψ(δ−δ′)(t).

Step 5: Finally, the correlation parameters ρ(s, s′) can be uniquely pinned down using
Assumption 7 and comparisons across bids in auctions with two bidders and two bids, where
the winning and losing bids differ by two discrete components. Consider competing bids on
package ki for bidder i and ki′ for bidder i′, where all discrete components are the same across
ki and ki′ , except that one includes a VAI provision and a LS provision, and the other omits
both. If ki includes VAI+LS then for any difference in bid premiums, we can observe the
frequency at which i′ beats i as

Pr[bijki
+δijki

+Γjdki
≤ bi′jki′ +δi′jki′ +Γjdki′ ] = Pr[δijki

−δi′jki′ +(γVAI
j +γLS

j ) ≤ bi′jki′ −bijki
],

and if ki′ includes VAI+LS we can likewise observe the frequency at which i′ beats i as

Pr[bijki
+δijki

+Γjdki
≤ bi′jki′ +δi′jki′ +Γjdki′ ] = Pr[bijki

−bi′jki′ ≤ δi′jki′ −δijki
+(γVAI

j +γLS
j )].

Applying similar logic as before, this establishes that the distribution of the sum (γVAI+γLS) is
known. Since the marginal distributions of γVAI and γLS are also known, these three pieces of
information uniquely determine the value of the pairwise correlation parameter ρ(VAI, LS) =

Cov[γVAI,γLS ]√
Var[γVAI ]Var[γLS ]

through the identity Var[γVAI +γLS]=Var[γVAI ]+Var[γLS]+2Cov[γVAI, γLS]

which has a single unknown, Cov[γVAI, γLS]. Once again, similar logic applies to establish
that other pairwise correlations between discrete component shocks are uniquely determined
as well. By assumption 7 these pairwise correlations are sufficient to pin down the copula
governing the joint distribution of (γLS, γVAI, γNC, γP B).

For the final four pairwise correlations ρ(u, s), s∈{LS, VAI,NC, PB}, the sample of final
resolution costs tied to winning bids pins them down, provided that we see combinations
of enough different switches winning with positive probability. For simplicity of discussion,
consider the subsample of auctions with one bidder and a single bid submitted. Restricting
attention further to subsamples where a given package k was submitted, note that when the
single submitted bid includes the LS provision only, then the distribution of (γLS + δ + u) is
identified from raw data:

Pr[C1jk − b1jk ≤ c|(dLS
k , d

V AI
k , dNC

k , dP B
k )=(1, 0, 0, 0)] = Pr[γLS

j + δ1jk + uj ≤ c].

Thus, knowledge of the above CDF allows us to write down the relation

V ar
[
C1jk−b1jk|(dLS

k , d
V AI
k , dNC

k , dP B
k ) = (1, 0, 0, 0)

]

=V ar[γLS] + V ar[δ] + V ar[u] + 2Cov[γLS, u].
(14)
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This pins down the covariance between u and γLS, since the variance terms on the right-hand
side are known from previous steps. By similar logic, the sample of single-bid auctions where
the LS and VAI provisions were included imply the relation

V ar
[
C1jk−b1jk|(dLS

k , d
V AI
k , dNC

k , dP B
k ) = (1, 1, 0, 0)

]

=V ar[γLS] + V ar[γVAI ] + V ar[δ] + V ar[u]

+ 2Cov[γLS, γVAI ] + 2Cov[γLS, u] + 2Cov[γVAI, u].

(15)

Thus, since the variance terms and the first covariance term on the right-hand side are
known, then, provided that both types of single-bid auctions occur with positive probability,
equations (14) and (15) uniquely pin down values of Cov[γLS, u] and Cov[γVAI, u].

Extending similar logic to all 15 unique packages with at least one discrete switch on,
we have that the remaining set of four pairwise correlations between u and the discrete
component shocks are identified, as long as the following system of linear equations
∑

s

ds
22Cov[γ

s, u]=V ar[Cij2 − bij2|k=2]−V ar[δ]−V ar[u]−
∑

s

∑

s′

ds
2d

s′

2 Cov[γ
s, γs′

]

∑

s

ds
32Cov[γ

s, u]=V ar[Cij3 − bij3|k=3]−V ar[δ]−V ar[u]−
∑

s

∑

s′

ds
3d

s′

3 Cov[γ
s, γs′

]

...
...

...
...

∑

s

ds
162Cov[γ

s, u]=V ar[Cij16 − bij16|k=16]−V ar[δ]−V ar[u]−
∑

s

∑

s′

ds
16d

s′

16Cov[γ
s, γs′

]

(16)

has full rank (i.e., rank 4), where the sums above are over s, s′ ∈ {LS, VAI,NC, PB}. �

As a final note, for simplicity of discussion the above identification argument restricted
attention to subsamples of auctions (e.g., those with two bidders and two bids) and showed
that such subsamples are sufficient to uniquely identify model parameters. In reality, the
larger dataset has much more useful identifying variation: in auctions with three or more
bidders and/or three or more bids, there will be many winning bid vs. losing bid compar-
isons differing by 0, 1, 2, 3, or 4 discrete switches that will be informative of the marginal
distributions of δ and/or (γLS, γVAI, γNC, γP B, u), and/or the correlations among the last five
shocks. In our empirical application, the Tobit Maximum Likelihood Estimator we imple-
ment (based on an additional parametric assumption of joint normality) leverages all pairwise
bid comparisons available in the data. The identification argument here, on the other hand
is intended to demonstrate that the dataset contains sufficient information, in principle, to
uniquely determine values of relevant model parameters related to FDIC scoring shocks.

Finally, while Assumption 7 guarantees the identification of the model we implement in our
empirical application, it may be possible to maintain identification with further relaxations
of the conditions imposes on the copula structure. For example, the system of equations (16)
may lead to over-identification, given our restriction to a Gaussian copula structure among
the random variables (γLS, γVAI, γNC, γP B, u). However, identification in full generality—i.e.,
characterizing minimal restrictions on the correlation structure which lead to unique model
parameters being recoverable from available data—is beyond the scope of this paper.

D.2. The Bijective Property of Order Statistics Versus Parent Distributions Un-

der Stochastic N . In Section 5.2 we state that, given results proven by Bodoh-Creed
et al. (2021) (and also Hickman et al. (2017)), identifying the distribution of the number
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of competitors, Mj, is sufficient to pin down win probabilities in private value auctions with
stochastic participation. Here we provide some additional detail to justify this claim within
our setting. While Bodoh-Creed et al. (2021) did not consider a setting with multiple bid-
ding, their argument that pinning down the distribution of rival numbers πM is sufficient
(together with bid data) to identify a bijective mapping between the parent distribution of
rival bids/costs and the win probability (based on order statistics of rival bids/costs) still
applies to the current setting.

The idea is the following: Hold some level of competition mj fixed, and let GLB(L, b|Zj)
denote the parent joint distribution of a given bidder’s equilibrium choices of portfolio L
and bid profile b. Given mj independent draws from GLB (which is known from raw bid
data), one can use the known scoring process and reserve cost distribution (identified in a
step discussed previously) to construct the distribution of the lowest order statistic among
costs competing with i’s own bids, call it GC∗

−i
|M(C∗

−i|mj,Zj). However, this distribution
applies only in the event that M = mj; the actual distribution of the lowest competing cost
to which bidders best respond is a mixture:

GC∗
−i

(c|Zj) =
∞∑

mj=1

GC∗
−i

|M(c|mj,Zj)πM(mj|Zj).

Bodoh-Creed et al. (2021) argue that, holding fixed any (potentially infinite-dimensional)
parameterization of πM (and also Zj in the curent context), this relationship implies a
bijective mapping between the parent distribution GLB and the unconditional order statistic
distribution GC∗

−i
for each c in the support of C∗

−i. The main difference between their setting
and ours is that we are fortunate to have access to direct observations of Nj, whereas Bodoh-
Creed et al. (2021) observed only stochastic lower bounds on Nj.

Once GC∗
−i

is known, the only remaining information to account for in determining the win

probability function G(bijk|Lij, bij,Zj) in the FDIC context is competition from one’s own
(known) bids on packages k′ ∈ Lij, k

′ 6= k.

D.3. Additional Estimator Details: Name Matching Algorithm. Recall from Section
3 that the raw bid summaries include the winning bid, the cover bid, all other losing bids,
the identities of the winning bidder and the cover bidder, and a complete list of all bidders
who submitted at least one losing bid (including the winner and/or cover bidder if they
submitted multiple bids). In 129 auctions out of 322 in our sample, there are some bids for
which the identity of the submitter is partially ambiguous. We use an unsupervised algorithm
to determine possible assignments for these cases. Underpinning the algorithm is a simple
idea that each bid submitted by healthy bank i must have non-trivial win probability, given
the distribution of FDIC scoring weights, and conditional on other bids submitted by i. This
implies two key restrictions that substantially narrow the set of possible matches. First,
i cannot submit multiple bids on the same package, as this would imply that one must
surely lose. Second, i cannot submit two bids if one dominates the other with very high
probability.4 After taking these constraints into account, the algorithm iteratively resolves
remaining ambiguous assignments of bids to bidder identities randomly.

4For example, suppose the FDIC is known to have a strong preference against awarding P&A contracts with
a LS provision, on average. In that case, the same bidder could not have submitted one bid b for an as-is
P&A contract and at the same time another bid b′ < b on a contract with a LS provision only.

5



More formally, for each auction j let Ij = {i1, i2, . . . , iTj
} denote the complete list of

bidders who submitted at least one losing bid (excluding the cover bid), and let Oj =
{O1, O2, . . . , OPj

} denote the complete list of un-matched losing bids, where Op = (bp,dkp
) ∈

R
5 is a complete set of money and non-money bid characteristics, where kp ∈ {1, 2, . . . , 16}

denotes the package corresponding to net transfer bid bp. Note that the set Ij may not
include the identities of the winner and/or cover bidder, denoted iw and ic, respectively, if
either (or both) of them did not submit multiple bids. Moreover, define a tolerance ψ > 0
and two positive integers Q and q. For each auction j = 1, . . . , J ,

(1) If Ij = ∅, or if |Ij| = |Oj| = 1 (i.e., no ambiguity), then assign losing bid p= 1 to
bidder l=1 and continue on to auction j + 1; otherwise, go to step 2.

(2) If |Ij| = |Oj|> 1, randomly match each l ∈ Ij to a single p∈ Oj and continue on to
auction j + 1; otherwise, go to step 3.

(3) If |Ij|< |Oj|≤Q and |Ij \ {iw, ic}|≤q do the following (otherwise go to step 4):
(a) First compute the full set Aj of possible candidate assignments of unique bids

O ∈ Oj to i ∈ Ij, where |Aj| =
(

Pj

Tj

)
(Tj!)

(
T

Pj−Tj

j

)
= Pj !

(Pj−Tj)!

(
T

Pj−Tj

j

)
. Each

assignment, denoted Aja ={Oa
i1
, . . . ,Oa

iTj
}, a=1, . . . , |Aj|, partitions Oj into i =

1, . . . , Nj bidder-specific bins Oa
ji = {Op1

, . . . , OpPji
}, where each bidder identity

i is assigned at least one bid (i.e., Pji ≥ 1). Initialize set A′
j = ∅ and eliminate

candidates by doing the following for each a = 1, . . . , |Aj|:
(i) If some Oa

ji ∈ Aja contains (bp,dkp
) and (bp′ ,dkp′ ) where kp = kp′ (that is,

if any bidder is matched with two bids on the same package k), re-define
A′

j = A′
j ∪Aja.

(ii) Given the known distributions Fδ and FΓU , compute within-i win proba-
bilities for each bid in each assignment, conditional on the full set of bids
Oa

ji assigned to each i. If Aja involves at least one i submitting at least
one bid with less than ψ probability of winning against i’s other bids in
Oa

ji, re-define A′
j = A′

j ∪Aja.
(b) Assuming a uniform prior on the remaining feasible assignments Aj\A′

j, randomly
select one from this set and continue on to auction j + 1.

(4) Otherwise, if |Oj| > Q or |Ij \ {iw, ic}| > q (so that |Aj| becomes too large to be
computationally feasible), do the following:
(a) Initialize all bidders’ individual assignments Oji = ∅, except if iw ∈ Ij (ic ∈ Ij),

in which case the initial configuration of Ojiw (and/or Ojic) contains only the
winning (cover) bid.

(b) Define O∗
j =∅, I∗

j =∅ and for each p∗ =1, . . . , Pj do the following:
(i) If |Ij \ I∗

j | = |Oj \ O∗
j | then randomly match each l ∈ Ij \ I∗

j to a single
p∈Oj \O∗

j and continue on to auction j+1. Otherwise, go to step 4(b)ii.
(ii) Randomly choose one bid Op∗ from Oj \O∗

j and re-define O∗
j =O∗

j ∪Op∗ .

(iii) Compute the list Ip∗

j of bidders for whom Op∗ is an eligible addition to
their current set of bids—i.e., where Oji does not contain a bid on package

kp∗ and Oji∪Op∗ wins against Oji with more than ψ probability. If Ip∗

j =∅,

then temporarily (for p∗ only) re-define Ip∗

j simply as the set of i such that
Oji does not contain a bid on package kp∗ .

(iv) Randomly select i∗ ∈Ip∗

j and re-define Oji∗ =Oji∗ ∪Op∗ and I∗ =I∗∪i∗.
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Table OS.1. Replicating Portfolio Frequencies in Restricted Sample

Test Wave 1: Test Wave 2: Test Wave 3: Test Wave 4:
Drop Cover ID Drop Cover Bid Drop Winner ID Drop Winner Bid

Observed Empirical

Package Portfolios Frequencies Mean p25-p75 Mean p25-p75 Mean p25-p75 Mean p25-p75

6 7 13 14 1 1 [1, 1] 1 [1, 1] 0.153 [0, 0] 0.245 [0, 0]
7 15 – – 6 5 [5, 5] 5 [5, 5] 4.841 [4, 5] 4.986 [4, 6]
13 15 – – 6 5 [5, 5] 5 [5, 5] 4.926 [4, 6] 6.762 [6, 7]
1 9 – – 1 1 [1, 1] 1 [1, 1] 1.000 [1, 1] 1.134 [1, 1]
9 15 – – 1 1 [1, 1] 1 [1, 1] 1.516 [1, 2] 1.341 [1, 2]
11 15 – – 4 2 [2, 2] 2 [2, 2] 2.020 [2, 2] 3.020 [3, 4]
7 8 15 16 1 1 [1, 1] 1 [1, 1] 1.000 [1, 1] 0.568 [0, 1]
5 7 9 11 1 1 [1, 1] 1 [1, 1] 0.211 [0, 0] 0.223 [0, 0]
1 3 – – 2 1 [1, 1] 1 [1, 1] 0.659 [0, 1] 0.556 [0, 1]
15 16 – – 1 1 [1, 1] 1 [1, 1] 1.000 [1, 1] 1.000 [1, 1]
11 13 – – 1 0 [0, 0] 0 [0, 0] 0.000 [0, 0] 0.305 [0, 1]
1 3 7 – 1 1 [1, 1] 1 [1, 1] 0.382 [0, 1] 0.276 [0, 1]

This table presents results from running the bidder-bid matching algorithm on the restricted data set after dropping
some known bidder-bid match information. The first four columns contain package IDs that are observed to occur
together within bid portfolios in the data. Single bid portfolios are excluded from the table for brevity, while all multi-bid
portfolios are depicted. Column 5 presents the estimated empirical frequencies of these multi-bid portfolios using the
restricted sample of 193 auctions (where all bidder-bid information is known with certainty). Test waves successively drop
nested sets of known bidder-bid information and run the algorithm to determine portfolio frequencies that it predicts.
Test Wave 1 drops information on the identity of the cover bidder, Test Wave 2 also drops the identity of the cover

bid, Test Wave 3 also drops the identity of the winning bidder, and Test Wave 4 drops all seed information used by the

algorithm, including the identity of the winning bid.

(v) If p∗<Pj, increment the index p∗ by one and return to step 4(b)i; otherwise,
continue on to auction j+1.

Note that the within-i win probabilities mentioned above are not equilibrium objects, but,
given scoring shock variability, represent how often one of i’s bids beats out i’s own other
bids. In our implementation we chose ψ = 0.05. In the above recursion, step (1) applies
to situations where there is no match ambiguity. Step 3 is default algorithm behavior,
but it is computationally expensive when Tj and/or Pj is even moderately large. In our
implementation we chose Q = 6 and q = 1. Step 4 takes a recursive approach that is more
tractable for large values of Q and q, and is nearly equivalent to assuming a uniform prior
over the set of feasible assignments Aj \A′

j in step (3b).5

D.3.1. Probing Robustness of the Uniform Prior Assumption. If it is inappropriate to uni-
formly sample from the feasible set, this may introduce mis-specification error into parameter
estimates. To evaluate the relevance of this concern, we re-estimate the parameters of the
model using an alternative weighting scheme that makes use of information contained in cor-
relations between bidder-auction covariates X ij and the propensity to submit bids on each
of the 16 unique packages. The alternative weighting scheme models the probability that a
given bidder i in auction j (with characteristics X ij) will submit a bid on package k as

wijk ≡ Pr [i submits bid on package k in auction j|X ij] = Φ(X ijBk), k = 1, . . . , 16.

Once this probability is known for all (i, j, k) triples, we can then make distinctions between
feasible bidder-bid match assignments that are more or less likely, relative to the uniform prior
baseline. That is, if one bidder-bid assignment involves matches between bid portfolios and
bidder covariates that are more likely than another bidder-bid assignment, then the algorithm

5Recursivity of step (4) delivers tractability at a cost of having a small chance that some bids (when p∗ is
very close to Pj) may not be compatible with matching to any bidder, given previous assignments.
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Table OS.2. Re-Weighting Stage-3 Parameter Estimates for a Non-Uniform
Prior of the Feasible Set of Bidder-Bid Matches

Discrete Component Valuations V s
ij (βs)

s =LS s =PB s =NC s =VAI

Covariates Xij Baseline Re-Weighted Baseline Re-Weighted Baseline Re-Weighted Baseline Re-Weighted

Same Zip 0.626918 0.300519 -1.74838 -2.2442 -0.91601 -1.03797 -2.57679 -1.52831
Portfolio Distance -0.30474 -0.28489 -0.3334 -0.31782 0.073329 0.078931 0.0992 0.065608
Size 5.021852 4.967419 -1.59102 -1.51461 1.096244 1.13027 0.945617 0.856891
Tier 1 Ratio 0.09251 0.063564 -0.05192 -0.07989 0.026138 0.019298 0.044335 0.045474

% Core Deposits -0.19537 -0.209 -0.42372 -0.4153 0.198137 0.182469 0.060695 0.0696
ROA -0.16312 -0.17601 -0.44444 -0.42612 0.039253 0.009328 0.18473 0.168953

%NA Loans 0.2306 0.227503 -0.0823 -0.0683 0.041929 0.056817 0.166497 0.143793

% included LS/PB 11.58817 11.96085 35.25663 33.326
Constant -39.8093 -38.1861 11.27483 11.14299 -33.8344 -33.6813 -26.2224 -25.8579

Component Interactions (λ)
Baseline Re-Weighted

LS X NC -2.150 -1.897
PB X NC 6.104 6.0902
NC X VAI 3.180 3.835
LS X PB -9.987 -9.941
LS X VAI 1.960 1.921
PB X VAI 0.369 1.318

will select the former with higher probability, rather than both being selected with equal
probability, as in the default behavior described above. We compute this weighting scheme
at the package-bidder level rather than at the portfolio-bidder level, due to dimensionality
and sample-size constraints.

We fit this model using an observed vector Y ij ∈ {0, 1}16 where each element is a binary
variable which takes a value of 1 if bidder i in auction j is known to have submitted a bid
on package k in auction j, and 0 if bidder i in auction j is known to have omitted a bid on
package k from its bid portfolio Lij. At most, we would have 16 observations per bidder-
auction pair, but for the same reasons that prompted use of the name matching algorithm, we
have a missing information problem. Therefore, we only use verifiable outcome information
from two sources: the known package submitted by the winning and cover bidders (for all
auctions, yijk =1 in both cases), and package omissions for all bidders when bids on package
k were never submitted in auction j (yijk = 0 in such cases). This introduces nonrandom
sample selection—for some (i, j, k) we will not be able to determine whether i submitted a
bid on package k or not—but an appropriate selection correction is possible by construction
of a set of sampling weights as proposed by Nevo (2003): we use moments from the full
sample to weight each available observation by the inverse of its selection probability.

Within the available outcome data, for every auction we know the value of yijk if no bid is
submitted on package k in auction j, or if (i, j, k) is the winning or cover bid.6 In order to
pin down the respective selection probabilities of these two events, we estimate two auxiliary
models prior to the main probit model. For the first auxiliary model, within each package k
we specify the probability of it being omitted by all participants in auction j as

Pr [bids on package k are never submitted in auctionj|Zj] = Φ(ZjB
aux
k ).

6There are some additional cases where the identities can be positively linked, but we do not use them here
for difficulty in deriving their selection probabilities. This amounts to a trade-off of power for tractability.
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With the relevant outcome variable and auction covariates observed in every auction, this
first auxiliary model is identified and estimated via the standard probit method.

For the second auxiliary model, note that in order for a bidder-bid pair to show up in the
sample of winners and cover bidders, it must correspond to one of the top two bids from
the respective auction. In other words, it must imply a resolution cost (revenue) that is
lower (higher) than the third lowest implied cost in auction j, which we denote by Cj(3 :Nj).
Letting b∗

j denote all observed bids within auction j (un-linked from submitter identities), we
can characterize the probability of a given bid bijk on package k dominating the third order
statistic. That is, we can simulate the distribution of the random variable Cj(3 :Nj), which
depends on the submitted dollar bids b∗

j and the joint distribution of FDIC scoring shocks
(Γ, δ):

κijk ≡ Pr
[
bijk + δijk + Γjdki

+ uj ≥ −Cj(3 :Nj)
∣∣∣∣b

∗
j

]
.

Although these probabilities are analytically difficult, we can derive values of κijk for each
winning bid and cover bid by using the known values of all package bids and simulating
repeatedly from the estimated distribution of the scoring shocks from Stage 1.

These two auxiliary models allow us to express sample weights νijk as inverse selection
probabilities for all (i, j, k) where yijk is observed as:

νijk =





1
Φ(ZjBaux

k )κijk
if i submits winner or cover bid on k in auction j

1
1−Φ(ZjBaux

k )
if package k was never submitted in auction j.

(17)

This facilitates the following weighted log-likelihood function for the main probit model of
package submission probability as a function of bidder and auction covariates:

Lk(Bk) =
∑

i

{
νijk(yijklog(Φ(X ijBk)) + (1 − yijk)log(1 − Φ(X ijBk)))

}
, k = 1, . . . , 16.

The resulting probit estimates of ŵijk = Φ(X ijB̂k) can be used to augment the bidder-bid
assignment algorithm, in order to test for robustness of the uniform prior assumption. For
each simulated assignment of bids to bidders we can calculate the implied likelihood of each
(within-auction) simulated assignment

Pr [Aja ∈ A\A′] =
Nj∏

i=1

∏

k∈Oa
ji

wijk. (18)

These composite assignment-specific weights characterize the relative likelihood of each
draw from the feasible set Aj \A′

j. After normalizing so that they sum to one (across all
feasible assignments), we get an alternate (potentially non-uniform) weighting of bidder-bid
matches. Summary statistics for these weights are presented in Figure OS.1. For the figure
we simulated 1,000 independent runs of the name matching algorithm (with uniform sampling
in the final step) and we compute the normalized product weights from equation (18). For
each auction in the sample, we then store the maximum computed weight across all 1,000
simulations. This maximum provides a strong check on deviations from the uniform prior
assumption: if it were perfectly satisfied, then the maximum should be exactly 1/1,000 for all
auctions, and if it were dramatically violated, we should see non-trivial mass at large values
(i.e., close to 1). Note that the within-auction maximum across the 1,000 simulations of the
name matching algorithm represents extreme behavior (i.e., the worst from the perspective of
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our uniform-prior assumption), rather than average behavior. The figure plots the histogram
of the maximum, and it shows that the estimated alternate weighting scheme conforms closely
to our uniform prior on the feasible set. In the vast majority of auctions, the worst behavior
across the 1,000 runs of the algorithm is tightly packed near 1/1,000, which is strongly
consistent with the uniform prior assumption.

Figure OS.1. Max weight
Max weight across 1000 simulated assignments for each auction in the sample. A uniform prior would imply

a weight close to 1/1000 weight on each auction.

Finally we perform a final robustness check to evaluate how differences from the uniform
prior might have impacted model parameter estimates. Recall from Section 5.4 that the main
estimator integrates across the bidder-bid assignment error by computing point estimates
separately for 100 independent runs of the name matching algorithm. This produces 100 sets
of point estimates, each conditional on a particular draw from the uniform distribution of
feasible assignments, and we compute a simple arithmetic mean of these 100 conditional point
estimates (with uniform weighting, see equation (12)) to get unconditional point estimates.
With the above probit model, we may consider an alternative specification that replaces
the simple arithmetic mean with a weighted average, where the weights account for the
probabilities

w∗
r ≡ Pr

[
Ar =∪J

j=1Ajr ∈ A\A′
]

=
J∏

j=1

Nj∏

i=1

∏

k∈Or
ji

wijk.

These weights reflect the fact that some of the bidder-bid assignments Ar will be more (or less)
likely to occur than under the uniform prior, once accounting for the available information on
correlations between bidder-auction covariates and the propensity to submit a bid on given
packages. This implies the following alternative to equation (12) for the common parameters
used in counterfactual computation:

β̂ =

∑100
r=1 w

∗
r β̂r∑100

r=1 w
∗
r

, λ̂ =

∑100
r=1 w

∗
r λ̂r∑100

r=1 w
∗
r

. (19)

Table OS.2 shows that the baseline and re-weighted estimates are very similar; in fact, taking
sampling variability into account, it turns out that for each of the parameters displayed in the
table, the re-weighted point estimate falls within the 95% confidence interval of the baseline
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estimate. This suggests that any mis-specification error introduced by the uniform prior
assumption plays a negligible role.

D.4. Additional Estimator Details: Partial Missing Information on LS and PB.

One challenge we encounter is a missing data problem. Although the LS and PB options are
discrete from bidders’ perspectives, we want to capture the empirical fact that there is some
exogenous variation across auctions in the percentage of assets covered/included for these
components.7 The difficulty is that we only observe the amount of assets included in the PB
or covered by the LS agreement when it is part of the winning bid package. As a result,
the percentage of assets covered (included) is unobserved when the winner turns LS (PB) off
and at least one loser turns that same switch on. We use the observed percentages of assets
covered/included under winning bids with LS and/or PB to estimate their distributions, and
we correct for missing information, where applicable, by integrating over these distributions.8

Relative to the ideal dataset where we observe the PB and LS percentages for every auction,
this problem leads to lower statistical power but does not introduce bias into our estimates.
For simplicity of notation, we abstract from the missing information problem in our main
discussion of the estimator. When computing counterfactuals, for cases with missing infor-
mation on PB/LS, we fix the percentage of assets included at the average percentage from
the auctions where it is observed.

D.5. Additional Estimator Details: Sampling Weights. In constructing our re-sampling
estimator for the win probability function Ĝ(bijk|bij, Lij,Zj), we need sampling weights
ω(j, j′,Zj) that reflect how informative the behavior of bidders in auction j′ is for the ex-
pected behavior of bidders in auction j where i is competing. For each failed bank up for
bids in our dataset, we observe nine indicators describing aspects of asset portfolio and fi-
nancial health. Although it is impossible to formally test for additional selection on other
characteristics which are potentially observable to bidders but not to the econometrician, the
rich set of observables for each failed bank auction mitigates this concern significantly.

A more salient concern in our case is the curse of dimensionality: conditioning Ĝ on a nine-
dimensional Z in a fully non-parametric way given our sample size is both computationally
and statistically infeasible. To cope with this problem, we compute the sampling weights
using a dimension-reduction strategy based on principal components analysis. Specifically,
we compute a full set of principal components of the failed bank covariates, denoted PCp, p =
1, . . . , 9. Results are described in Table OS.3. The percentage of total variance explained by
the first principal component, PC1, is roughly 30%, while PC2 and PC3 account for 19% and
14%, respectively. PC1 seems to largely represent capitalization and bank performance, while
the factor loadings for PC2 and PC3 represent the size and area of portfolio concentration.

We compute sampling weights in the following way. First, using only the first principal
component, for each auction j we compute sample weights by centering a standard Gaussian

7As discussed in Section 2.2 the FDIC stipulates the nature of the PB option (e.g., excluding commercial
loans) so that bidders’ only decision is whether or not to bid under the FDIC’s offered option. For an LS
option, the FDIC typically stipulates the set of assets covered, and an 80% reimbursement on future losses
of asset value (relative to book value at time of resolution).
8The empirical distribution of the percent of assets included in a PB transaction is indistinguishable from a
uniform distribution on [0, 100] under a Kolmogorov-Smirnov test. Therefore, for convenience we model the
distribution of PB percentage as uniform, while the distribution of the percent of assets covered by an LS
agreement is assumed to follow its empirical distribution.
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Table OS.3. Principal component failed bank traits

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

log(Total Assets) 0.023 -0.347 -0.515 -0.417 -0.412 0.184 0.469 0.126 0.005
%CI -0.030 0.423 -0.296 0.530 -0.321 0.576 -0.075 0.108 -0.004
%CON 0.163 0.517 -0.154 -0.115 0.563 -0.011 0.531 0.264 -0.023
%CRE -0.022 -0.465 -0.013 0.705 0.151 -0.154 0.483 -0.074 0.024
%NPL -0.214 -0.397 -0.246 -0.076 0.609 0.512 -0.304 0.064 0.001
%OREO -0.013 -0.065 0.722 -0.141 -0.066 0.567 0.354 -0.051 0.015
ROA 0.483 -0.227 0.165 0.092 -0.063 -0.019 -0.191 0.799 -0.001
Leverage 0.587 -0.062 -0.073 0.007 0.053 0.120 -0.044 -0.363 -0.703
T1 Ratio 0.589 -0.022 -0.090 -0.012 0.068 0.113 -0.054 -0.347 0.710
% of Variance Explained 29.406 18.875 14.458 10.400 8.802 7.635 6.172 3.955 0.297

The table presents the estimated coefficients from a principal component analysis that serves as a dimension-reduction strategy

for our weighted re-sampling estimator of the win probability function Ĝ(bik|Li, bi). The variables are Log Total Assets which

is the log of the asset variable from the SDI data. %Commercial Real Estate (CRE), %Commercial and Industrial (CI),
Consumer (CON) are the percentage commercial real estate commercial/industrial, and consumer, respectively, of the total
loans and leases. Tier 1 Capital Ratio (Tier 1 Ratio) is the Tier 1 risk-based capital ratio. Leverage Ratio is the core capital

ratio. NPL Ratio is the sum of assets 90 days past due and the non-accruing assets as a share of the total loans and leases.
OREO Ratio is other real estate owned divided by total assets. ROA is return on assets. Before computing the principal
components, all of these variables are then standardized by subtracting their mean value then dividing by their standard
deviation.

kernel ϕ(x; 0, 1) over PC1j and choosing bandwidth hp
1 according to Silverman’s optimal rule.

Sampling weights for all other auctions j′ are then computed as

ω(j, j′,Zj) = ω1(j, j′,Zj) = ϕ

(
PC1j′ − PC1j

hp
1

; 0, 1

)

and then normalized to sum to one. Adopting these as sampling weights for determining
the win probabilities that bidders in auction j faced means that the other auctions j′ in
our dataset are re-sampled at a frequency that is proportional to their similarity (in terms
of PC1) to auction j. Using sampling weights derived from kernel functions in this way

implies our final estimator of the win probability function Ĝ is asymptotically equivalent to
the conditional V-statistic estimator proposed by Hortaçsu and McAdams (2010).

This dimension-reduction strategy based on the first principal component of our set of nine
failed bank portfolio indicators leads to a feasible estimator of the win probability function
Ĝ, but a question remains about whether there is additional systematic selection by bidders
on failed bank information that is not well-proxied by the first principal component PC1.
In order to test for sensitivity to more flexible sample weighting schemes, we also computed
normalized kernel function weights relative to the first three principal components.9 After
estimating baseline pseudo-values using only PC1, call them v̂1

ijk, and then re-estimating
pseudo-values using the first three principal components in this expanded way, call them
v̂3

ijk, we found that our results were very close. The correlation between the two estimates

was 0.94 and that regressing v̂ijk on v̂P C3

ijk resulted in an R2 of 0.88. Given the similarity of

9The resulting sample-weight formula was as follows:

ωp(j, j′, Zj)=ϕ

(
PCpj′ − PCpj

hp
p

; 0, 1

)
, p=1, 2, 3; ω(j, j′, Zj)=

ω1(j, j′, Zj) + ω2(j, j′, Zj) + ω3(j, j′, Zj)
∑

j′ 6=j

∑3

p=1
ωp(j, j′, Zj)

.
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the results, we opted for the simpler (and computationally less costly) method using only
PC1 as our baseline specification.

D.6. Additional Estimator Details: Stages 2 & 3 Bootstrap Procedure. Stages 2
and 3 standard errors are estimated via the bootstrap, with re-sampling done 400 times
at the auction level. Each bootstrap sample (a list of auction IDs) is applied to various
match assignment realizations, which concern only within-auction information. Like the
point estimates, each bootstrap estimate is an average across different match assignments.
Since 100 estimates per bootstrap sample would be computationally prohibitive, we select a
smaller set of 10 representative match assignments (held fixed across all 400 bootstraps). We
find this representative set by first ordering each of the 100 independent match assignments
a = 1, . . . , 100 from point estimation by the signed ℓ1-distance of their conditional estimate
vector [λ̂a, β̂a, α̂a] from the unconditional point estimate [λ̂, β̂, α̂] =

∑100
a=1[λ̂a, β̂a, α̂a]/100.

We then select the 5th, 15th, . . . , 85th, and 95th percentile match assignments from the ordered
list as our representative set. This smaller set of 10 can now serve as a stand-in for the larger
set of 100 independent match assignments, thus reducing computation time by a factor of
10.10

D.7. Additional Robustness Checks.

D.7.1. Robustness Check: Deterministic Discrete Component Valuations. In equation (9)
we assume that discrete component valuations (and discrete component interactions) are
deterministic, conditional on X ij, which contains failed bank characteristics Zj, bidding
bank characteristics W ij, and interactions between the two. A more general model might
allow for random, idiosyncratic switch values vs

ij and λi, but as Cantillon and Pesendorfer
(2006) point out, this would require that all bidders submit a maximal set of 16 bids in all
auctions—which is inconsistent with equilibrium play due to the substitution effect—in order
to achieve identification.

A possible implication of this modelling choice is that it might lead to an omitted variable
bias problem: unobserved noise in bidders’ values of the discrete components like LS are
absorbed in the regression error in equation (9), and could be correlated with the baseline
valuation vij. We construct an informal test for omitted variables in the LS example since it
is the most commonly used discrete component. If there is an omitted variable such that the
unobserved benefit from loss share is correlated with the regression error in equation (9), these
correlations would only influence the estimation of the regression equation through the set
of observations where the loss share component is turned on. We can drop all such packages
from estimation of stage 3, and estimate baseline values vij for all bidders that place at least
one bid on a package without LS.11 The estimated vij’s from the model without loss share
are very close to those from the complete model (correlation coefficient=0.913), suggesting
that our dimension-reduced model with deterministic switch valuations does not introduce
economically important sources of bias.

10As a check, we average across the representative set of 10 assignment match point estimates; the result is
nearly identical to the point estimates that average across all 100 assignment matches.
11More specifically, we estimate an alternate version of the system (9) where all equations and inequalities
involving LS are eliminated, and all bids by any bidder which includes LS are dropped. For this exercise, we
also retain only those bidders who submit at least one bid on a package not including LS.
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D.7.2. Robustness Check: δijk Independent of Bidder Identity. As a robustness check on
Assumption 4 we ran a test for possible correlation between 3 stability-related bidding bank
characteristics

W ij = [1, tot. assetsij, return on assetsij, tier 1 capital ratioij]

and the “fitted” shocks δijk. The challenge here is that the econometrician does not observe
the actual δijk shocks, but we can integrate over their distribution.

Specifically, we start by simulating (Γjs, ujs) = (γLS
js , γ

VAI
js , γNC

js , γP B
js , ujs) values, s =

1, . . . , 1, 000, for each auction j in the data. Then for each bidder-auction-package-simulation
combination we compute Cδ

ijks = − (bijk + Γjsdk + ujs) and fitted shocks δ̂ijks ≡ C∗
j − Cδ

ijks,
where C∗

j is the (observed) cost associated with the winning bid in auction j. We then regress

fitted shocks δ̂ on W ijι via integrated Tobit Maximum Likelihood,

(ι, σ̃δ) = arg max
∑J

j=1

∑
1,000

s=1
log

[∏Nj
i=1

∏
k∈Lij

ϕ(δ̂ijks−W ijι;0,σ̃2

δ)
Aijk Φ(δ̂ijks−W ijι;0,σ̃2

δ)
1−Aijk

]

1,000

where ι = [ι0, ι1, ι2, ι3]
⊤ is a conformable parameter vector and σ̃δ is an auxiliary parameter

for the purpose of the current test only. Finally, we execute a likelihood ratio test of the joint
restriction H0 : ι1 = ι2 = ι3 =0, and find that the data fail to reject the null hypothesis (p-value
of 0.996). This suggests that observable characteristics of bidding banks do not enter the
scoring equation, and that it is plausible to assume that δijk is distributed independently of
bidder identity.

D.8. Counterfactual Equilibrium Computation. In two counterfactuals we explore ways
for the FDIC to mitigate scoring uncertainty—by announcing scoring rule weights or by only
allowing bidders to bid on a P&A contract with the LS switch on and all other switches turned
off. In either case, multiple bidding incentives are absent. To compute optimal bids under
this scenario, we use Gauss-Seidel iteration, updating bidders’ best responses sequentially
until each one is best responding to the counterfactual equilibrium win probability function
G, calculated given the other bidders’ strategies. An additional step is required to choose
optimal packages (one for each bidder) for the scoring announcement counterfactual. The
optimal package for a given bidder can be calculated by comparing a bidder’s vijk to Γ as an-
nounced by the FDIC, for k = 1, . . . , 16. Intuitively, each bidder will choose its most favored
package to win on, subject to the cost in terms of win probability imposed by the scoring rule.
More formally, each bidder will elect to bid on package k∗

ij = arg maxk∈{1,...,16} {vijk + Γdk}.

Our third counterfactual quantifies the effect (studied by Bullow and Klemperer (1996))
of the presence of one additional bidder (on average) in each auction. The extra bidder
counterfactual compares the equilibrium with the distribution of number of opponents in the
data to one where this probability mass function is shifted to the right by one. This exercise
is meant to provide context to the cost savings numbers for the other two counterfactuals: an
additional bidder is known to imply large benefits to the auctioneer in private value auctions.
It is not meant as a policy prescription exercise as the other two counterfactuals, given that
the FDIC already engages in extensive efforts to encourage participation by healthy banks
in its P&A auctions. Computing the equilibrium in this plus-one exercise is challenging,
as is equilibrium computation in combinatorial auctions generally, since there are many
combinations of packages on which to bid.
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To handle this problem, we begin by computing a preliminary set of optimal bids under
a scenario where all bidders choose a maximal portfolio of bids, one on every package. By
assuming that all bidders submit maximal portfolios of bids, we transform an intractable,
high-dimensional, mixed discrete-continuous decision problem to a simpler (though still high-
dimensional) continuous decision problem. One technical challenge in this preliminary com-
putation step has to do with a discontinuity in bidders’ objective functions. In the model
we assume that bids below a choke point cut-off win with zero probability, and therefore are
not submitted. In theory, there is a continuous transition of win probability to this cut-off,
but in our empirical implementation we use more conservative cutoffs: there we assume that
no bidder will choose to submit a bid with a win probability strictly below ζ = 0.05. This
more conservative cut-off creates discrete jumps in bidders’ profits as they change their bids
across the cutoff. To maintain continuity of a bidder’s optimization problem, we transform
the win probabilities below these cutoffs according the following function:

G̃(bijk|Lij, bij) =





0.05
G(bijk|Lij ,bij)10

0.0510 if G(bijk|Lij, bij) < 0.05

G(bijk|Lij, bij), otherwise.

Using this transformed win probability function, we apply Gauss-Seidel iteration to update
bidders’ best responses sequentially (blocks of 8 bidders are performed simultaneously) un-
til each bidders’ bid is a best response to the transformed counterfactual equilibrium win
probability function G̃.

Once we have this preliminary solution computed, we take additional steps to mitigate
the impact of our maximal portfolio assumption and our probability smoothing measure.
Using the optimal bids from the first step, we define Li as the subset of packages for which
G(bik|Lij, bij) ≥ ζ. Finally, we perform a second Gauss-Seidel iteration to allow bidders to
re-optimize their bid levels holding fixed their choice of packages Li.

D.8.1. Probing for Potential Multiple Equilibria: Add-a-Bidder Counterfactual. For our main
counterfactuals—the first where the FDIC announces the mean scoring rule and the second
in which the FDIC constrains bidders to a single package choice—there is no multiple equi-
libria problem as both of these involve scenarios where the complicated scoring-rule auction
collapses to a simple 1-dimensional first-price auction.

However in the additional bidder counterfactual we do need to consider the potential for
multiple equilibria. We probe for multiplicity by solving for the add-a-bidder equilibrium
from multiple different start points. For the baseline solution, we take observed bids as
starting values and compute the equilibrium. We then re-compute the equilibrium from six
additional restart points. For the first three restart points, we inflate observed bid values by
10%, reduce bid values by 10%, and then we inflate half of all bid values (randomly selected)
by 10% and reduce the other half by 10%. For the next three start values we do the same
thing, but using an inflation/reduction factor of 20%.

We then compare the results of the multiple restarts to see if the solver seems to be
gravitating toward the same solution. Table OS.7 shows that the empirical frequencies of
package choices are very similar for all seven solutions, with the possible exception of the
“Minus 20%” restart, where several of the least frequently chosen packages have somewhat
different empirical frequencies. Some minor differences across the seven equilibrium solutions
may be due to relatively inconsequential marginal bids (i.e., those for which bidders are nearly
indifferent to their inclusion because of low win probabilities) showing up with different
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Table OS.4. Add-a-Bidder CF Package Choice Frequencies: Multiple Restarts

Packages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Original 56 15 82 14 19 11 127 19 82 19 170 15 37 13 433 35
Plus 10% 68 17 83 18 24 16 130 25 90 24 174 19 42 20 439 42
Mixed 10% 50 15 87 17 20 14 130 22 77 23 169 19 38 15 438 43
Minus 10% 64 22 87 23 30 22 136 33 90 30 177 26 47 25 444 48
Plus 20% 70 25 89 25 29 24 135 33 96 32 176 27 49 29 439 48
Mixed 20% 39 15 84 17 19 13 130 26 65 23 172 19 39 19 440 38
Minus 20% 28 6 87 9 14 7 131 15 49 9 160 9 34 9 443 34

frequency across the multiple restarts. To probe this issue further, Figure OS.2 presents the
empirical CDF of win probabilities for equilibrium bids computed from each of the different
starting points. As can be seen from the figure, the seven resulting CDFs of win probabilities
are almost indistinguishable. Although we are not aware of a way to definitively prove that
the equilibrium is unique, this computation exercise suggests that multiplicity is not a major
concern for our add-a-bidder counterfactual.

Figure OS.2. Win Probabilities Multiple Restarts
The figure plots the distribution of the win probabilities of each bid submitted in the computed equilibrium.

D.9. Supplemental Tables and Figures.
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Figure OS.3. U.S. bank failures since 1980
This graph plots the number (blue, round) and size (orange, diamond) of U.S. bank failures between 1980 and 2018.

Figure OS.4. Loss in deposit payout
Data provided by the FDIC. In all auctions bids are compared to the estimated cost of an insured deposit

payout as part of the least-cost test. The direct estimated cost is divided by total assets of the failed bank.

The vertical axis is empirical frequencies from a total of 26 resolutions by insured deposit payout.

Table OS.5. Number of Bidders and Bids Per Auction

Panel A # Bids

# Bidders 1 2 3 4 5 6 7 8 9 10+ Total

1 104 9 0 0 0 0 0 0 0 0 113
2 0 42 13 5 7 1 2 0 0 0 70
3 0 0 19 16 6 3 4 4 2 4 58
4 0 0 0 11 10 6 7 2 3 0 38
5 0 0 0 0 1 4 6 1 2 4 18
6 0 0 0 0 0 4 1 2 2 4 13
7 0 0 0 0 0 0 0 1 2 6 9
8 0 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 1 0 1

10 0 0 0 0 0 0 0 0 0 1 1

Panel B

1 103 9 0 0 0 0 0 112
2 0 42 11 1 3 1 1 59
3 0 0 18 4 0 0 0 22

We plot the number of bids (horizontal) given a fixed number of bidders (vertical). Panel A is the full sample and Panel
B is the restricted sample where we can link all bids with all bidders. Each cell is a count of how many auctions in the
data correspond to a given (#Bidders, #Bids) pair.
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(a) loss-share (b) partial bank

Figure OS.5. Loss-Share and Partial Bank Acquisitions
Panel (a) are percentages covered in loss-share agreements for single-family residential mortgages (SFR) and commercial assets
during our sample period. The y-axis is the number of bids made, with the percentages on the x-axis. Panel (b) is a histogram

of the percentage of a failed bank’s assets acquired in partial-bank bids.

Table OS.6. Estimated Correlations for Least-Cost Rule Shocks

COMPONENT VAI PB NC LS common
VAI 1 -0.671*** 0.364 -0.078 0.580***

std.err. (0.214) (0.318) (0.297) (0.171)
PB 1 -0.497* -0.114 0.020

std.err. (0.287) (0.327) (0.330)
NC 1 -0.547* 0.025

std.err. (0.303) (0.369)
LS 1 -0.276

std.err. (0.310)
common 1

The table reports estimates for correlations ρs,s′ , s, s′ ∈ {γLS
j , γVAI

j , γNC
j , γP B

j , uj}, where γVAI
j is the scoring rule shock

on the VAI switch, γP B
j is the scoring rule shock on the PB switch, γNC

j is the scoring rule shock on the NC switch,

γLS
j is the scoring rule shock on the LS switch, and uj is the auction-specific shock to FDIC costs. Standard errors are

reported in parentheses. Statistical significance: ∗∗∗p<0.01, ∗∗ p<0.05, ∗p<0.1.
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Figure OS.6. In-sample fit for least-cost estimation

The horizontal axis depicts actual FDIC reported resolution costs (from the winning bid). The value on
the vertical axis represents the model-predicted conditional mean resolution cost, given model estimates
of the joint distribution of (γLS, γVAI, γNC, γP B, u, δ), and known shock bound information contained in
the rankings between the winning bid and all other losing bids. The thick solid line is the 45◦-line,
and each dot represents one auction. Note that the scatter-plot here would exhibit variation around
the 45◦-line even in absence of mis-specification error. This is because the residual term δijk + uj is
never observed for the winning bid, and neither is the vector of switch-cost weights, though bounds on
the values of (γLS, γVAI, γNC, γP B) may be derived from the fact that the winning bid produced a cost
below the costs tied to all other bids within the same auction. Given the residual prediction error from
presence of these six unknown values, one can compute 95% bounds on prediction error, depicted in
the plot by thin dashed lines. If the model were devoid of mis-specification error, we would expect to
see precisely 5% of scatter-plot points laying outside the prediction bounds. In the figure, the empirical
frequency of conditional cost predictions outside the bounds is 5.6%. These two numbers being close
provides some assurance that the cost model seems to fit the data fairly well. Moreover, while the
figure shows some costs that are significantly overestimated, there is roughly an equal number that are
under-estimated, suggesting that the two should balance each other out when computing counterfactual
total or mean costs.
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Figure OS.7. In-sample fit for valuation estimation

In each of the panels above, the horizontal axis value is the left-hand-side variable in equation (9): this
is an equality for package values on included bids in the left-hand panel, and an inequality for bounds
on package values on excluded bids in the right-hand panel. The vertical dimension in both panels is
the value of the prediction vij + Xijβdk + Dλ. Variation around the 45◦-line stems from the error
term ξijk, which accounts for 8.65% of total variation in v̂ijk for included bids. In the left-hand panel
it is expected that the scatter-plot is centered below the 45◦-line (since these bidder-package pairs were
characterized by valuations below the endogenous cutoff for submitting a non-trivial bid), while some
variation above it is possible in finite samples due to ξijk.

Table OS.7. Targeted Auction Format Probit Results

Outcome Variable: 1 [Status Quo Costs < CF Costs]
CF: Scoring

Announcement CF: LS Only CF: As-is CF: LS-PB Only
Failed Bank

Characteristics Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE

Size -0.224 0.732 -0.032 1.164 -0.496 0.684 -0.274 0.669
Tot. Deposits -0.177 0.724 -0.438 1.255 0.285 0.678 -0.090 0.656
%CRE Loans 0.043 0.096 0.160* 0.092 -0.027 0.102 0.190* 0.099
%C&I Loans -0.082 0.090 -0.009 0.083 -0.137 0.095 0.028 0.091
%SFR Loans -0.031 0.106 0.187* 0.096 -0.023 0.108 0.140 0.112
% CNSMR Loans -0.073 0.084 -0.023 0.081 0.027 0.091 0.093 0.104
%Core Deposits -0.378*** 0.089 -0.296*** 0.090 -0.800*** 0.107 0.022 0.093
%NA Loans -0.106 0.110 -0.446*** 0.110 -0.529*** 0.161 -0.234** 0.116
ROA -0.136 0.126 -0.225* 0.122 -0.385* 0.199 0.107 0.161

TIER 1 0.087 0.114 -0.019 0.105 -0.181 0.112 -0.171 0.115

% LS Coverage 0.040 0.072 0.008 0.080 0.116 0.072 0.044 0.089
% PB Assets Incl. 0.465*** 0.124 0.631*** 0.136 1.200*** 0.321 0.540*** 0.157
Constant -0.671*** 0.079 0.020 0.075 -0.423*** 0.080 0.863*** 0.086

McFadden R2

M
0.143 0.179 0.285 0.300

Standardized coefficients are displayed from a Probit model that predicts whether the status quo format with scoring
uncertainty will have lower costs than a given counterfactual format—Scoring Announcement and Loss Share Only,
respectively. When coefficient values are positive (negative), an increase in the corresponding covariate makes scoring
uncertainty more (less) attractive to the auctioneer. Sample size is J =322 for all regressions. Note that R2

M
values ≥0.2

“represent excellent model fit” (McFadden (1979)), and are typically much lower than traditional R2 values from OLS.
Statistical significance: ∗∗∗p<0.01, ∗∗ p<0.05, ∗p<0.1.
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Table OS.8. Cost Comparisons for 10th and 90th Percentile Scoring Rules

Resolution Cost Levels: Changes in Resolution Costs
Status Quo Scoring Uncertainty

Scoring Scoring

10th Pctl Mean 90th Pctl Announcement Announcement LS Only LS Only
Scoring Rule Scoring Rule Scoring Rule P10 SR P90 SR P10 SR P90 SR

OSFA OSFA OSFA OSFA

Total -9,437.6 27,486 64,410 -27,739 -20,498 -2,317 -14,304
Mean -29.678 86.435 202.55 -87.228 -64.460 -7.286 -44.980
P10 37.606 185.51 457.93 -27.510 -144.775 -0.06 -99.090
P50 1.6223 38.478 88.153 -19.478 -21.526 0.73 -5.130
P90 -117.16 4.308 18.453 -173.099 -2.090 30.578 3.278

This table depicts the revenue impact of removing uncertainty in the least-cost scoring rule. Column 1 represents baseline
bidding under scoring uncertainty, but where the scoring weights are held constant at the (coordinate-wise) 10th per-
centiles. Columns 2 and 3 are similar, but scoring weights are held fixed at the (coordinate-wise) means (as in Table 6
in the body) and 90th percentiles, respectively. Columns 4 and 5 depict a scoring rule announcement while maintaining
bidders’ choices of 16 packages to bid on. Columns 6 and 7 limit bidders’ package choices to a single P&A package with
a loss share provision only. Columns 4–7 represent “one size fits all” counterfactual scenarios where all auctions take the
alternate format. Totals and means exclude four large outlier failed banks with total assets over $10Billion each.

Table OS.9. Counterfactual Package Choice Frequencies

Package Percent of Bids

Nonconforming Loss Share Partial Bank VAI DGP Scoring Announcement

No Yes No No 42.70 11.96
No No No No 15.60 56.10
Yes Yes No No 12.69 2.75
No Yes Yes No 8.51 13.88
No No Yes No 3.86 6.70

Yes No Yes No 2.76 0.00
No Yes No Yes 2.76 0.00
Yes No No No 4.96 0.00
Yes Yes Yes No 3.62 3.59
Yes Yes No Yes 0.95 0.00
No Yes Yes Yes 0.55 0.00
Yes Yes Yes Yes 0.55 0.00
Yes No No Yes 0.24 0.00
No No No Yes 0.16 0.00
No No Yes Yes 0.00 5.02
Yes No Yes Yes 0.00 0.00

This table lists the observed frequency of each package in the data versus the frequency with which that package is bid

on in the counterfactual with a scoring announcement. The packages are ranked by popularity within the DGP.

Table OS.10. Counterfactual Impact on Winner Characteristics:
10th and 90th Percentile Scoring Rule Announcements

Mean Median

10th Pctl Mean 90th Pctl 10th Pctl Mean 90th Pctl
Scoring Rule Scoring Rule Scoring Rule Scoring Rule Scoring Rule Scoring Rule

Size 6.476 7.913 6.661 1.430 1.430 1.633
% CRE 22.091 21.848 21.970 22.387 22.364 21.837
% CI 9.292 9.564 9.481 8.656 8.733 8.656
Distance 481.432 482.965 449.860 209.994 214.952 218.429
Tier 1 Capital 15.934 15.818 15.638 13.783 14.053 13.996
%∆ HHI Deposits County 4.380 4.447 4.310 1.620 1.569 1.490

This table shows the impact of a scoring rule announcement on the characteristics of winners under an announced scoring
rule where the shocks (γLS, γVAI, γNC, γP B, u) are at the coordinate-wise 10th percentiles, means, and 90th percentiles.
Variable definitions are in Table 2.
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Table OS.11. Summary Statistics: Restricted Sample

Bank Characteristics Bidding Banks
Failed Banks (avg. over participated auctions)

Variable N Mean StDev 10-90 Interval N Mean StDev 10-90 Interval

Tot. Assets ($Million) 193 576.12 1961.18 [48.86, 1181.17] 123 5973.8 1960 [158.45, 1340]

Tot. Deposits ($Million) 193 492.594 1576.12 [45.77, 919.61] 123 4352 1360 [125.90, 9466]

Ins. Deposits ($Million) 193 434.65 1275.35 [44.85, 915.48] 123 3015 8577 [108.12, 7507]

CRE (%) 193 24.13 11.84 [10.26, 41.46] 123 22.85 12.28 [7.21, 39.69]

C&I (%) 193 7.73 6.69 [1.17, 17.39] 123 9.36 5.74 [3.06, 16.51]

CNSMR (%) 193 1.65 2.30 [0.08, 3.92] 123 2.33 2.65 [0.19, 5.81]

SFR (%) 193 18.55 13.27 [3.03, 37.49] 123 17.34 13.08 [3.28, 30.86]

All Real Estate (%) 193 61.00 11.52 [48.43, 74.24] 123 50.30 14.43 [33.12, 67.84]

ROA 193 -7.48 7.67 [−12.96, −1.87] 123 1.57 2.46 [−0.06, 3.82]

Tier 1 Ratio 193 1.08 3.39 [−1.77, 3.50] 123 15.46 8.13 [10.69, 21.70]

Core Deposits (%) 193 74.94 15.03 [53.73, 92.94] – – – –

# Auctions participated — — — — 343 2.40 3.43 [1, 5]

Bidder-Failed Bank Comparisons

Portfolio %Diff: CRE 277 9.63 8.24 [1.45, 21.08]

Portfolio %Diff: C&I 277 5.73 5.28 [0.76, 12.92]

Portfolio %Diff: CNSMR 277 2.36 3.21 [0.13, 5.79]

Portfolio %Diff: SFR 277 9.93 10.31 [1.19, 23.36]

All Real Estate 277 15.31 11.43 [2.21, 31.86]

Avg. Pairwise Dist. (km) 277 487.62 736.13 [26.16, 1417.32]

Auction Characteristics

# of Bids 193 1.76 1.04 [1, 3.00]

Cost to FDIC ($Million) 193 137 347.55 [10.96, 329.0]

Bid Discount 340 -0.13 0.30 [−0.53, 0.15]

%∆ in County HHI
for Deposits 141 5.95 4.14 [1.16, 10.33]

This table displays descriptive statistics for the restricted sample of failed bank auctions for which all bids can be positively

matched to their respective bidder identities. Balance-sheet information for failed banks and bidders comes from the SDI for

the quarter pre-failure. Variables CRE (commercial real estate), C&I (commercial and industrial), CNSMR (consumer), SFR
(single-family residential), and All Real Estate represent shares of lending in each sector. Core Deposits: bank deposits comprise
core deposits—checking/savings accounts, consumer CDs—and brokered deposits, made to a bank by a third-party broker to

increase its liquidity. Core deposits are more stable than brokered deposits because the latter are much more sensitive to interest
rate fluctuations. ROA is return on assets and measures profitability. Tier 1 Ratio, is a measure of financial health. Portfolio
%Differences are the absolute value change in portfolio shares for the failed bank and bidder bank in each bidder-failed bank

pair. Average Pairwise Distance is calculated using the average distance over all branch combinations of the failed and bidding
bank. Bid Discount is the transfer amount calculated using equation (1) divided by the total assets of the failed bank.

D.10. Data and Inference on the Restricted Sample.

Appendix E. Data Description

As of June 2010, consumer loans were no longer covered in loss-sharing agreements, and
bidders were asked to choose a coverage percentage of up to 80% on single-family residential
(SFR) and commercial loans. Finally, in September 2010 a three-tier structure for SFR
and/or commercial loans was adopted, where bidders chose coverage levels separately for
each tier. Figure OS.8 provides an example of the FDIC failed-bank list.
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Table OS.12. Value Shifter Estimates: Restricted Sample

Discrete Component Valuations β

LS PB NC VAI

Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE Coeff. Est. SE

Same Zip -6.489∗∗∗ 0.723 -0.883 0.892 -1.379 0.748 -10.690∗∗∗ 2.557

Portfolio -0.449∗∗∗ 0.0798 -0.194∗ 0.106 0.097 0.085 0.286 0.298
Size 8.353∗∗∗ 0.391 0.509 0.333 1.024∗∗∗ 0.299 1.196∗∗ 0.702
Tier 1 0.376∗∗∗ 0.054 -0.151∗∗∗ 0.036 0.033 0.021 0.015 0.043
%Core -0.034 0.028 -0.177∗∗∗ 0.031 0.062∗∗ 0.030 0.153∗∗∗ 0.065
ROA -0.106∗∗∗ 0.030 -0.178∗ 0.059 0.300∗∗∗ 0.051 0.309 0.214
%NA -0.146∗∗ 0.056 0.132 0.088 -0.009 0.046 0.392∗∗ 0.168
Constant -173.272∗∗∗ 7.890 -27.1099∗∗∗ 5.437 -23.583∗∗∗ 4.499 -64.663∗∗∗ 5.987
Average 28.342 — -23.450 — -7.830 — -36.776 —

Component Interactions λ Baseline Valuations α

LS×PB -9.657∗∗∗ 0.640 Same Zip 7.615 6.499
LS×NC -0.439 0.575 Portfolio 0.573 0.902

LS×VAI 24.706∗∗∗ 5.455 Size 1.293 2.679
PB×NC 7.909∗∗∗ 0.782 Tier 1 -0.036 0.236
PB×VAI 4.772 2.987 %Core -1.460∗∗∗ 0.204
NC×VAI 3.087∗∗ 1.326 ROA 0.407 0.419

%NA -0.540 0.474
Distance -0.843∗ 0.409
%∆CRE -0.195 0.449

∆HHI -29.532 56.300
Constant 96.707∗∗ 41.213

Balance-sheet information comes from the SDI for the quarter pre-failure. Variables CRE (commercial real estate), C&I

(commercial and industrial), CNSMR (consumer), SFR (single-family residential), and All Real Estate represent shares
of lending in each sector. Core Deposits: bank deposits comprise core deposits—checking/savings accounts, consumer
CDs—and brokered deposits, made to a bank by a third-party broker to increase its liquidity. Core deposits are more
stable than brokered deposits because the latter are much more sensitive to interest rate fluctuations. ROA is return on
assets and measures profitability. Tier 1 Ratio—equity capital and cash reserves divided by risk-weighted assets—is a
standardized measure of solvency that rises as the financial health of a bank becomes more secure. Book Value Equity is
the difference between the total assets and the total liabilities as a percentage of failed-bank assets. Non-Accruing Loans

are 90+ days past due as of the auction date. Pairwise Failure Dist. is calculated using the average distance over all
branch combinations between each pair of failed banks. Portfolio %Differences are the absolute value change in portfolio

shares for the failed bank and bidder bank in each bidder-failed bank pair. Average Pairwise Distance is calculated using
the average distance over all branch combinations of the failed and bidding bank. For comparability across auctions, Net
Transfer Bid is expressed as the transfer amount (from the FDIC to the bidder when negative, vice versa when positive)
calculated using equation (1), divided by the total assets of the failed bank.
† LS switch valuation estimates control for % of Loss-Share coverage. Coeff. estimate (std. err.): 120.4611 (4.567).
‡ PB switch valuation estimates control for % of Partial Bank Assets included. Coeff. estimate (std. err.): 27.758 (4.192).
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Table OS.13. Bidding Incentive Decompositions: Restricted Sample

Change: No No Change*:
Change: No Substitution: Substitution: No δ;
Competition Singleton Singleton (Noise Effect)

DGP Effect Included Bids Omitted Bids (SOBs) High Bidders

Avg. Discount Bid -12.348 -7.870 4.336 -32.691 -3.657
Avg. Cond. Surplus 26.221 7.870 -4.336 32.142 —

% SOBs
w/Trade Feasible — — — 58.75 —
% SOBs Dominating
Avg. Discount Bid, DGP — — — 20.59 —

This table explores removal of incentive channels on bidding. Column 1 lists mean discount value and conditional surplus
(vik − bik) under the DGP, in percentage units of the book value of the failed bank’s assets. Columns 2 and 3 display the

changes in these numbers, relative to bids submitted under the DGP, after removing the competition effect and substitution
effect, respectively. Column 4 displays the percentage of omitted bids on packages where bilateral trade with the FDIC

was possible, as well as averages of bids and conditional surplus for omitted packages under the DGP, in absence of the
substitution effect. Finally, Column 5 depicts a partial decomposition of the noise effect.

*Reported changes in column 5 are for bids above the 75th percentile in absence of scoring uncertainty and the bidder-
specific shock δ, relative to a no-scoring-uncertainty counterfactual that includes the bidder-specific shock δ.

Table OS.14. Counterfactual Cost Comparisons: Restricted Sample

Resolution Changes in Resolution Costs
Cost Levels

Scoring
Bids at Mean Announcement LS Only One Extra

Actual Scoring Rule OSFA OSFA Bidder

Total 23,812 19,766 -5,909 -3,074 -18,476
(-6,848) (-5,957)

Mean 124.020 102.948 -30.774 -16.011 -96.232
P10 315.860 188.203 -7.005 8.632 -25.047
P50 47.500 42.242 -4.150 0.915 -11.482
P90 10.940 6.032 1.897 3.200 -10.091

Predicted Frequency Where —
Status Quo Uncertainty is Better: 0.453 0.729 —

Mean Bidder Switch Value: 14.884 28.342 —
Mean FDIC Switch Value: -2.289 -22.336 —

This table depicts the revenue impact of removing uncertainty in the least-cost scoring rule. Column 1 is data, while

column 2 maintains scoring uncertainty but provides an estimate of FDIC resolution costs implied by the mean scoring
rule. Column 3 and 5 depict the impact of removing uncertainty by announcing the scoring rule weights prior to bidding.

Columns 4 and 6 remove uncertainty by limiting bidders’ package choices to a single P&A package with a loss share

provision only. The OSFA columns represent a counterfactual “one size fits all” scenario where all auctions take the
alternate format. The Targeted columns represent a counterfactual scenario where alternate auction formats are imposed
on a subset of auctions, according to the predictive model in Table OS.15. Totals and means exclude one large outlier
failed bank with total assets over $10Billion.

24



Table OS.15. Targeted Auction Format Probit Results: Restricted Sample

Outcome Variable: 1 [Status Quo Costs < CF Costs]
CF: Scoring Announcement CF: LS Only

Failed Bank
Characteristics Coeff. Est. SE Coeff. Est. SE

Size -2.01 1.397 -0.659 1.389
Tot. Deposits 1.761 1.217 0.351 1.399
%CRE Loans 0.182 0.131 0.147 0.128
%C&I Loans 0.035 0.121 0.182 0.123
%SFR Loans 0.025 0.146 0.152 0.121
% CNSMR Loans -0.061 0.115 0.008 0.147
%Core Deposits -0.413*** 0.132 -0.270** 0.101
%NA Loans -0.603*** 0.172 -0.476*** 0.110
ROA 0.036 0.260 -0.101 0.266
TIER 1 -0.084 0.155 -0.016 0.140
% LS Coverage -0.203* 0.117 -0.308*** 0.140
% PB Assets Incl. 0.907*** 0.254 0.904*** 0.140
Constant -0.179* 0.102 0.353*** 0.112

McFadden R2

M 0.244 0.280

This table presents coefficients from a Probit model that predicts whether the status quo auction mechanism with scoring
uncertainty will have lower costs than a given counterfactual auction format—Scoring Announcement and Loss Share
Only, respectively. When coefficient values are positive (negative), an increase in the corresponding covariate will make
scoring uncertainty more (less) attractive to the auctioneer. Sample size is J =193 in all regressions. Note that R2

M
values

≥ 0.2 “represent excellent model fit” (McFadden (1979)), and are typically much lower than traditional R2 values from

OLS. Statistical significance: ∗∗∗p<0.01, ∗∗ p<0.05, ∗p<0.1.
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Figure OS.8. Example of the FDIC failed-bank list
This is an example of what the FDIC provides in terms of failing banks. There is the failing bank and
the acquirer. In addition, the date of closing, location information, and the last time information on the
acquisition was updated is provided. Information is updated, for example, as the FDIC collects and pays out
dividends stemming from the sale of assets. Source: FDIC
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Bid Summary

Legacy Bank, Scottsdale, AZ

Closing Date: January 7, 2011

Type of 

Transaction

Deposit 

Premium/ 

(Discount) 

%

Asset 

Premium/ 

(Discount) 

$(000) / %

SF Loss 

Share 

Tranche 1

SF Loss 

Share 

Tranche 2

SF Loss 

Share 

Tranche 3

Commercial 

Loss Share 

Tranche 1

Commercial 

Loss Share 

Tranche 2

Commercial 

Loss Share 

Tranche 3

Value 

Appreciation 

Instrument

Conforming 

Bid
Linked

Nonconforming 
all deposit whole 
bank with loss 
share (1)

1.00% $ (9995) 80% 80% NA 80% 80% NA Yes No N/A

All deposit whole 
bank with loss 
share

0.25% $ (21975) 75% 75% N/A 75% 75% N/A No Yes N/A

All deposit whole 
bank with loss 
share

1.00% $ (9525) 80% 80% N/A 80% 80% N/A No Yes N/A

All deposit whole 
bank with loss 
share

0.25% $ (21475) 80% 80% N/A 80% 80% N/A No Yes N/A

All deposit whole 
bank with loss 
share

0.00% $ (22000) 80% 80% N/A 80% 80% N/A No Yes N/A

Nonconforming 
Whole Bank 
P&A (2)

0.00% $ (41679) N/A N/A N/A N/A N/A N/A No No N/A

(1) Deemed nonconforming due to cap placed on Value Appreciation Instrument

(2) Deemed nonconforming since bid excluded all OREO.

Other bid

Notes:

The winning bidder's acquisition of all the deposits was the least costly resolution compared to a liquidation alternative. The liquidation alternative was valued using valuation models to estimate the market 

value of the assets. Bids for loss share, if any, were valued using a discounted cash flow analysis for the loss share portfolio over the life of the loss share agreement. If any bids were received that would have 

been more costly than liquidation they have been excluded from this summary.

The cover bid is the least costly bid after excluding all bids submitted by the winning bidder.

The Other Bidder Names and the Other Bids are in random order. There is no linkage between bidder names and bids, except in the case of the winning bid and the cover bid.

For more information on the bid disclosure policy, see www.fdic.gov/about/freedom/biddocs.html.

Bidder

Winning bid 

and bidder: 

Enterprise 
Bank & Trust, 

Clayton, 
Missouri

Cover - 

Commerce 
Bank of 
Arizona, 
Tucson, 
Arizona

Other bid

Other bid

Other bid

Other Bidder Names:

Commerce Bank of Arizona, Tucson, Arizona

Enterprise Bank & Trust, Clayton, Missouri 

SouthWest Bank, Odessa, Texas

Wedbush Bank, Los Angeles, California

Figure OS.9. Example of an FDIC failed-bank bid summary
This is an example of Enterprise Bank & Trusts acquisition of Legacy Bank (AZ). The closing date was
January 7, 2011. The list of bidders includes Enterprise Bank & Trust, Commerce Bank of Arizona, SouthWest
Bank, and Wedbush Bank. There were 6 bids in total from these 4 bidders. Source: FDIC.
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