
Queen's Economics Department Working Paper No. 1425

To infinity and beyond: Efficient computation of
ARCH(\infty) models

Morten Ørregaard Nielsen
Queen's University and CREATES

Antoine L. Noël

Department of Economics
Queen's University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

11-2020

To infinity and beyond:
Efficient computation of ARCH(∞) models∗

Morten Ørregaard Nielsen†

Queen’s University and creates

mon@econ.queensu.ca

Antoine L. Noël
Queen’s University

noela@econ.queensu.ca

November 6, 2020

Abstract

This paper provides an exact algorithm for efficient computation of the time se-
ries of conditional variances, and hence the likelihood function, of models that have
an ARCH(∞) representation. This class of models includes, e.g., the fractionally in-
tegrated generalized autoregressive conditional heteroskedasticity (FIGARCH) model.
Our algorithm is a variation of the fast fractional difference algorithm of Jensen and
Nielsen (2014). It takes advantage of the fast Fourier transform (FFT) to achieve an
order of magnitude improvement in computational speed. The efficiency of the algo-
rithm allows estimation (and simulation/bootstrapping) of ARCH(∞) models, even
with very large data sets and without the truncation of the filter commonly applied in
the literature. In Monte Carlo simulations, we show that the elimination of the trunca-
tion of the filter reduces the bias of the quasi-maximum-likelihood estimators and im-
proves out-of-sample forecasting. Our results are illustrated in two empirical examples.

JEL codes: C22, C58, C63, C87.

Keywords: Circular convolution theorem, conditional heteroskedasticity, fast Fourier
transform, FIGARCH, truncation.

1 Introduction

Many autoregressive conditional heteroskedasticity (ARCH) models have a so-called ARCH(∞)
representation, which is similar to the linear representation for time series models for the con-
ditional mean. The ARCH(∞) representation, or model, appears to be introduced by Boller-
slev (1986). An example is the very popular fractionally integrated GARCH (FIGARCH)
model of Baillie, Bollerslev, and Mikkelsen (1996); see below for additional examples.

∗We are grateful to participants at the Canadian Econometric Study Group meeting 2019 for comments.
Nielsen thanks the Canada Research Chairs program, the Social Sciences and Humanities Research Council
of Canada, and the Center for Research in Econometric Analysis of Time Series (CREATES) for financial
support. Noël thanks the Social Sciences and Humanities Research Council of Canada for financial support.

†Corresponding author. Address: Department of Economics, 94 University Avenue, Queen’s University,
Kingston, Ontario K7L 3N6, Canada. Email: mon@econ.queensu.ca. Tel.: 613-533-2262. Fax: 613-533-6668.

1

In ARCH(∞) models, the sequence of conditional variances is a linear convolution of all
previous squared innovations, where the weights are simple functions of the parameters of
the model. By standard methods, the calculation of the sequence of conditional variances,
and hence of the likelihood function, requires O(T 2) arithmetic operations. Evaluating the
likelihood function of an ARCH(∞) model requires calculation of the sequence of conditional
variances, and optimizing the likelihood typically requires many iterations and hence many
calculations of the sequence of conditional variances with different parameter values. Thus,
for large sample sizes, the O(T 2) computational cost can be prohibitive for estimation of the
model, and even more so for multivariate models. Even if it is not prohibitive for estimation
with a given sample, it may render bootstrap inference or simulation methods infeasible.

Sample sizes commonly applied in empirical work have grown tremendously in recent
years, especially in finance. Time series of daily observations over many years are very
common; for example, our daily exchange rate data in Section 5.2 has 12,300 observations.
However, much longer data series are sometimes analyzed. For example, in recent empirical
work, models of the ARCH(∞) class have been fitted to samples of size 100,032 (Han, 2008),
509,472 (Chortareas, Jiang, and Nankervis, 2011), 55,860 (Conrad, Rittler, and Rotfuß,
2012), and 156,672 (Naeema, Shahbazb, Saleemc, and Mustafaa, 2019).

To speed up computation it has been standard in the literature, at least since Baillie et al.
(1996), to truncate the convolution at a fixed truncation number such as 1,000. That is,
only a part of the time series of innovations is used to calculate the sequence of conditional
variances. Of course, this is an approximation which implies that the calculation is not exact.

In this paper, we discuss efficient computation of the sequence of conditional variances,
and hence the likelihood function, for any model that has an ARCH(∞) representation. We
make three separate contributions.

First, we show how to apply the fast Fourier transform (FFT) of Cooley and Tukey (1965)
and the circular convolution theorem to reduce the required number of arithmetic operations
from O(T 2) to O(T log T). Our proposed algorithm is a variation of an algorithm recently
proposed by Jensen and Nielsen (2014) for the calculation of fractional differences. The vari-
ation is threefold. We (i) apply the FFT-based method to a transformation of a time series
instead of the time series itself, (ii) account for possible truncation of the convolution, and
(iii) apply arbitrary coefficients instead of the fractional difference coefficients. The algo-
rithm is exact and does not rely on any approximation device. The increase in computational
speed relative to linear convolution can easily be a factor of 10 or even much more for sample
sizes that can be encountered in practical applications, and is sufficient to make bootstrap
and simulation methods for ARCH(∞) models feasible, even with very large sample sizes.

Second, in a small Monte Carlo simulation, we quantify the estimation bias introduced by
using a fixed truncation number. We show that, for the truncation number typically applied
in the literature, 1,000, the bias can be substantial. However, because our algorithm is exact
and sufficiently fast to eliminate the need for truncation, it does not suffer from this bias.

Third, in the Monte Carlo simulation, we also compare out-of-sample forecast perfor-
mance with and without truncation. We find that the bias from truncation makes forecast
less precise compared with no truncation. Moreover, the difference in forecast errors with
and without truncation in fact increases with the sample size.

In two empirical applications we apply our algorithm to data sets of exchange rates.
These highlight the differences obtained with and without the truncation number, and in

2

particular emphasize the very different computational time achieved with the new FFT-
based algorithm compared with standard linear convolution.

Recently, Klein and Walther (2017) also proposed an application of the FFT and circular
convolution theorem, based on Jensen and Nielsen (2014), to calculate the sequence of con-
ditional variances for FIGARCH models. Their method and algorithm is closely related to
ours. However, Klein and Walther (2017) maintain the fixed truncation number throughout
and do not consider exact algorithms. They also do not consider the bias associated with
the application of a fixed truncation number. We include some comparisons with their al-
gorithm, which show that, in the absence of the fixed truncation number, its computational
time is of the same order of magnitude as the standard linear convolution algorithm.

Many conditional heteroskedasticity models proposed in the literature have an ARCH(∞)
representation, going back to the GARCH model of Bollerslev (1986). However, the con-
ditional variance of the (finite-order) GARCH model is a sum of only a fixed number of
terms (in the same way that an ARMA model is a sum of a fixed number of terms, but it
has an MA(∞) representation). Because the GARCH model is a sum of only a fixed num-
ber of terms, it will not benefit noticeably from our method. In contrast, our method will
be of great benefit to models where the conditional variance is not a sum of a fixed number
of terms. In particular, this covers all the long-memory-type conditional variance models in
the ARCH(∞) class, e.g., the FIGARCH model of Baillie et al. (1996), the long-memory
GARCH model of Karanasos, Psaradakis, and Sola (2004), and the hyperbolic GARCH
model of Davidson (2004). Finally, our method also applies to some models that are not
even in the ARCH(∞) class. For example, it applies to the fractionally integrated asymmet-
ric power ARCH model of Tse (1998) and the linear ARCH model of Robinson (1991) and
Giraitis, Robinson, and Surgailis (2000), and it partly applies to the fractionally integrated
exponential GARCH model of Bollerslev and Mikkelsen (1996); see Section 2.2 for details.

The next section defines the ARCH(∞) class and explains our proposed FFT-based algo-
rithm for calculation of the sequence of conditional variances. Section 3 presents results on
the computational time for the new algorithm and compares with the standard linear convo-
lution algorithm and the Klein and Walther (2017) algorithm. An analysis of the effects on
computational time of using a fixed truncation number is also given. In Section 4 we present
the results of a small simulation study to investigate the estimation bias that results from
truncation and compare out-of-sample forecast performance. Section 5 illustrates our results
with two empirical applications. Finally, in Section 6 we give some concluding remarks.

2 FFT algorithm for ARCH(∞) models

We consider the following generic conditional variance model for the series (ǫt)
T
t=1, which is

either an observable series (such as asset returns) or the error term from a (regression) model,

ǫt = σtzt, Et−1(ǫ
2
t) = σ2

t , and zt ∼ i.i.d.(0, 1). (1)

Here, (zt)
T
t=1 is an independently and identically distributed (i.i.d.) innovation series with

mean zero and variance normalized to one, (σ2
t)T

t=1 is the conditional variance series, and
Et−1 denotes the expectation conditional on the information available at time t − 1.

The ARCH(∞) model (or representation) for the conditional variance is

σ2
t = c +

∞
∑

j=0

λjǫ
2
t−j, (2)

3

where c and λj are the corresponding constant and coefficients, respectively. Of course, in
practical applications, the series (ǫt) will be available only for t = 1, . . . , T , where T denotes
the sample size. In practice, therefore, the summation in (2) will need to be truncated at
j = t − 1. This results in the following ARCH(∞) model, which can be viewed, for example,
as a device to approximate the likelihood function,

σ2
t = c +

t−1
∑

j=0

λjǫ
2
t−j. (3)

The summation in (3) is a linear convolution. By a standard linear convolution algorithm,
for given series (ǫt)

T
t=1 and (λj)

T −1
j=0 , and a given value of t, the calculation (3) requires 2t

arithmetic operations (t multiplications and t additions). Thus, the calculation of the series
(σ2

t)T
t=1 requires

∑T
t=1 2t = T 2 + T arithmetic operations.

When the sample size is large, the computational burden of T 2 +T arithmetic operations
makes the calculation of the conditional variance series (σ2

t)T
t=1 very slow. This can render

optimization of a likelihood function, and certainly simulations and bootstrapping, infeasible.
To overcome the computational burden of the calculation in (3), Baillie et al. (1996) suggested
truncating the summation in (3) at a fixed number, say n, which is typically chosen to be
1,000. This truncation has become standard in the literature. The resulting model is thus

σ2
t = c +

min{t−1,n}
∑

j=0

λjǫ
2
t−j. (4)

The required number of arithmetic operations to calculate the series (σ2
t)T

t−1 in (4) is only
of order nT . Importantly, for a fixed truncation number n, the number of operations grows
only linearly with the sample size and hence avoids the squared growth required for the
calculation in (3).

While the introduction of the truncation number, n, in (4) allows for much faster calcu-
lation of the conditional variance series (σ2

t)T
t=1, it also introduces an approximation. It is no

longer an exact algorithm to calculate the desired series given in (3). In Section 4 we present
the results of some Monte Carlo simulations to illustrate and quantify the bias in parameter
estimation resulting from this approximation.

We now introduce an alternative method to calculate the conditional variance series
(σ2

t)T
t=1 in (3) without truncation using frequency domain techniques. Specifically, we will

apply the fast Fourier transform (FFT) combined with the so-called circular convolution
theorem. As discussed in Jensen and Nielsen (2014) in the context of calculating fractional
differences, this method reduces the number of arithmetic operations to order T log T . To
describe this method, we will need the following two definitions.

Definition 1. The discrete Fourier transform (DFT), f = (fj)
T
j=1, of a series a = (at)

T
t=1 is

the solution to
a = T −1Ff,

where F is the Fourier matrix given by Fjk = w
(j−1)(k−1)
T with wT = e2πi/T and i =

√−1. �

Definition 2. Let aj and bj be two periodic sequences, meaning that aj+NT = aj and
bj+NT = bj for N = ±0, ±1, ±2, Then the circular convolution of (aj)

T
j=1 and (bj)

T
j=1 is

defined as

4

(a ⊛ b)t =
T
∑

j=1

ajbt−j+1 =
t
∑

j=1

ajbt−j+1 +
T
∑

j=t+1

ajbT +t−j+1, t = 1, . . . , T. �

We next present two theorems. The first is a finite version of the circular convolution
theorem, which shows how the circular convolution in Definition 2 can be calculated using the
DFT in Definition 1. For periodic integrable functions, this result can be found in Zygmund
(2003, Thm. 1.5, p. 36). The finite version has appeared in the early engineering literature
as an application of the FFT; e.g. Stockham (1966, p. 230) and Cooley, Lewis, and Welch
(1969, p. 32). Our version, presented in Theorem 1, is taken from Jensen and Nielsen (2014)
and the proof can be found there.1

Theorem 1. Let a = (at)
T
t=1 and b = (bt)

T
t=1 be two sequences. Then

a ⊛ b = T −1F (F̄ a ◦ F̄ b), (5)

where ◦ denotes element-wise multiplication and F̄ is the complex conjugate of F .

To apply the result in Theorem 1 in our context, we need to transform the linear con-
volutions in (3) and (4) into circular convolutions. To economize on notation, we consider
only (4), but allow the possibility that n = T − 1, in which case we obtain (3).

Our second theorem shows that the sequence of conditional variances in (3) or (4) (where
the former is obtained by setting n = T − 1 in the latter) can be calculated by extending the
sequences with zeros and applying the result in Theorem 1. Specifically, we extend the vector
of errors, (ǫt)

T
t=1, and the vector of coefficients, (λj)

n
j=0, with zeros to length 2T − 1. Thus,

let the extended vectors be denoted ǫ̃ = [ǫ′, O′
T −1] and λ̃ = [λ′, O′

2T −1−(n+1)], respectively,
where Om denotes an m × 1 vector of zeros. We then prove in Theorem 2 that the linear
convolution of (ǫ2

t)
T
t=1 and (λj)

n
j=0 in (4) can be found as the first T elements of the circular

convolution of (ǫ̃2
t)

2T −1
t=1 and (λ̃j)

2T −2
j=0 .

Theorem 2. Let ǫ̃2 and λ̃ denote the (2T − 1) × 1 extended vectors of squared errors and

coefficients, respectively. In particular, the t’th element of ǫ̃2 is ǫ̃2
t . Then the vector of

conditional variances, (σ2
t)T

t=1, in (3) or (4) can be calculated as the first T elements of the

(2T − 1) × 1 vector c + T −1F (F̄ λ̃ ◦ F̄ ǫ̃2).

Because of the truncation number, n, the result in Theorem 2 may appear to be different
from the corresponding result in Theorem 2 of Jensen and Nielsen (2014), which does not
consider truncation. Although Theorem 2 does in fact follow from Theorem 2 of Jensen
and Nielsen (2014), it seems intructive to give a short proof of Theorem 2 to explicitly
demonstrate the role of the extended vectors ǫ̃ and λ̃.

Proof. From Theorem 1 we know that λ̃⊛ ǫ̃2 = T −1F (F̄ λ̃ ◦ F̄ ǫ̃2). Therefore, it only remains

to be shown that (λ̃ ⊛ ǫ̃2)t =
∑min{t−1,n}

j=0 λjǫ
2
t−j for t = 1, . . . , T . From Definition 2, noting

that the extended sequences have 2T − 1 elements and that the λ̃j sequence starts at index
j = 0, we find that

(λ̃ ⊛ ǫ̃2)t =
t
∑

j=1

λ̃j−1ǫ̃
2
t−j+1 +

T +t−1
∑

j=t+1

λ̃j−1ǫ̃
2
2T +t−j +

2T −1
∑

j=T +t−1

λ̃j−1ǫ̃
2
2T +t−j. (6)

1In Jensen and Nielsen (2014) there is a small typo in the fifth and sixth lines of the proof, where (t−1)(s−
1) should be (t−1)(u−1) in the exponents. However, since the last equality sets s = u the result is the same.

5

When j = t + 1, . . . , T + t − 1 we have 2T + t − j = T + 1, . . . , 2T − 1, so that ǫ̃2
2T +t−j = 0

by definition. Similarly, when j = T + t + 1, . . . , 2T − 1 and t = 1, . . . , T we have λ̃j−1 = 0
by definition. This leaves only the first term on the right-hand side of (6). When t − 1 ≤ n,

this term is equal to
∑min{t−1,n}

j=0 λ̃j ǫ̃
2
t−j, which is what we needed to show. When t − 1 > n,

we split the first term on the right-hand side of (6) as

t
∑

j=1

λ̃j−1ǫ̃
2
t−j+1 =

n
∑

j=0

λ̃j ǫ̃
2
t−j +

t−1
∑

j=n+1

λ̃j ǫ̃
2
t−j.

For j = n + 1, . . . , t − 1 and t = 1, . . . , T we have λ̃j = 0 by definition, so that the last
summation is zero, which proves the desired result.

Theorem 2 shows that the linear convolution of (ǫ2
t)

T
t=1 and (λj)

n
j=0 in (4) can be found as

the first T elements of the circular convolution of (ǫ̃2
t)

2T −1
t=1 and (λ̃j)

2T −2
j=0 , which in turn can

be calculated using the DFT. The power of this result lies in the fact that the required DFTs
can be calculated extremely efficiently by the FFT. Indeed, the latter requires only an order
T log T arithmetic operations, as shown by Cooley and Tukey (1965). This implies that, not
only can the conditional variances be calculated an order of magnitude faster than using the
standard linear convolution method, but also that the order of magnitude is the same with
and without truncation. That is, there is no need to introduce a truncation number to speed
up computation as in (4).

Most standard implementations of the FFT requires the length of the vectors to be a
power of two.2 This is easily accommodated by further extending the vectors with zeros.
Thus, to apply the FFT in the calculations, the vectors ǫ and λ must be extended with zeros
such that the number of elements in the vectors is equal to the smallest power of two that
is at least 2T − 1. This ensures that both Theorem 2 and the FFT can be applied.

The implementation described in the previous paragraph implies that conditional variance
series for a range of sample sizes can be calculated in the same amount of time. For example,
consider T = 1,025 and T = 2,048. In both cases, the smallest power of two that is at least
2T − 1 is 11, and consequently one must extend with 3,071 zeros when T = 1,025 and 2,048
zeros when T = 2,048. In both situations, the extended vectors have 4,096 elements, and
thus it will take the same amount of time to compute the conditional variances using the
FFT-based method in Theorem 2.

In Listings 1 and 2 we present our Matlab codes to implement the standard linear convo-
lution algorithm and the FFT-based algorithm in Theorem 2, respectively. The former is a
simple application of Matlab’s filter function. Implementations of the FFT-based method
in Theorem 2 for R and Ox can be found in Listings 3 and 4, respectively. All codes are
downloadable from the authors’ websites.

Listing 1: Matlab code to calculate ARCH(∞) conditional variances by LC method

1 function [sigma2_arch] = arch_lc(cst, epsilon, lambda)

2 sigma2_arch = cst + filter(lambda, 1, epsilon.^2);

3 end

2Some modern implementations require only that the length is a product of powers of small prime num-
bers, such as 2k3l5m, and the subsequent discussion is easily adapted to such cases.

6

Listing 2: Matlab code to calculate ARCH(∞) conditional variances by FFT method

1 function [sigma2_arch] = arch_fft(cst, epsilon, lambda)

2 T = size(epsilon, 1);

3 np2 = 2.^nextpow2(2*T❂1);

4 sigma2_arch = ifft(fft(epsilon.^2, np2).*fft(lambda, np2));

5 sigma2_arch = cst + sigma2_arch(1:T);

6 end

Listing 3: R code to calculate ARCH(∞) conditional variances by FFT method

1 arch_fft <❂ function(cst, epsilon, lambda){

2 iT <❂ length(epsilon)

3 np2 <❂ nextn(2*iT❂1, 2)

4 sigma2_arch <❂ fft(fft(c(lambda, rep(0, np2❂iT))) * fft(c(epsilon^2,

rep(0, np2❂iT))), inverse = T) / np2;

5 sigma2_arch <❂ cst + sigma2_arch[1:iT]

6 return(Re(sigma2_arch))

7 }

Listing 4: Ox code to calculate ARCH(∞) conditional variances by FFT method

1 arch_fft(const cst, const epsilon, const lambda)

2 {

3 decl T, sigma2_arch;

4 T = rows(epsilon);

5 sigma2_arch = fft(cmul(fft(lambda'~zeros(1,T)), fft((epsilon.^2)'~zeros

(1,T)), 2);

6 return cst + sigma2_arch'[0:T❂1];

7 }

2.1 Example: FIGARCH model

We now consider an example that we will apply extensively in the remainder. The most
well-known ARCH(∞) model for the conditional variance is probably the FIGARCH(p, d, q)
model of Baillie et al. (1996). For that model, the conditional variance specification is

β(L)σ2
t = ω +

(

β(L) − φ(L)(1 − L)d
)

ǫ2
t , (7)

where β(L) = 1−∑p
i=1 βiL

i and φ(L) = 1−∑max{p,q}
i=1 φiL

i are polynomials in the lag operator,
L, whose roots all lie outside the complex unit circle. The fractional difference operator
(1 − L)d is defined in terms of the fractional coefficients πj(u) = u(u + 1) . . . (u + j − 1)/j!
from the binomial expansion of (1 − z)−u, so that, for a generic series (xt)

T
t=1, we have

(1 − L)dxt =
∑t−1

j=0 πj(−d)xt−j.
The specification (7) can be rearranged to get an ARCH(∞) representation. For sim-

plicity, suppose p = q = 1, so that β(L) = 1 − βL and φ(L) = 1 − φL. This is the most
commonly applied variant of the FIGARCH model. Then (7) can be written in the form (2)

7

with c = ω/(1 − β) and

λj =

0 for j = 0,

φ − β + d for j = 1,

βλj−1 + φπj−1(−d) − πj(−d) for j ≥ 2;

(8)

see Baillie et al. (1996) for details. Let g1 = φ − β + d and gj = φπj−1(−d) − πj(−d) for
j ≥ 2. Then the λj coefficients in (8) can be rewritten as

λj =

0 for j = 0,
∑j−1

i=0 βigj−i for j ≥ 1.
(9)

The last term in (9) is clearly a linear convolution. To speed up computation, the series of
λj coefficients should also be calculated using our FFT-based algorithm.

It follows that efficient calculation of the conditional variances in the FIGARCH(1, d, 1)
model should use our FFT-based algorithm twice: once to calculate the conditional variances
given the λj coefficients, and once to calculate the λj coefficients given the model parameters.
The former calculation is described in detail in Theorem 2. Similarly, (λj)

n
j=1 can be found

as the first n elements of the (2n − 1) × 1 vector n−1F (F̄ β̃ ◦ g̃), where β̃ and g̃ denote the
vectors (βj)n−1

j=0 and (gj)
n
j=1 extended with zeros to length of the smallest power of two that is

at least 2n − 1. Matlab implementations of the calculation of (λj)
n
j=0 are shown in Listings 5

and 6 for the linear convolution algorithm and the FFT-based algorithm, respectively.

Listing 5: Matlab code to calculate λj coefficients of FIGARCH(1, d, 1) by LC method

1 function [lambda] = lambda_lc(phi, beta, d, nTrunc)

2 lambda = zeros(nTrunc+1,1);

3 k = (1:nTrunc)';

4 pij = cumprod((k(1:end)❂d❂1)./(k(1:end)));

5 g = zeros(nTrunc,1);

6 g(1) = phi ❂ beta + d;

7 g(2:end) = phi*pij(1:end❂1) ❂ pij(2:end);

8 lambda(1) = 0;

9 lambda(2:end) = filter(beta.^(0:nTrunc❂1), 1, g);

10 end

Listing 6: Matlab code to calculate λj coefficients of FIGARCH(1, d, 1) by FFT method

1 function [lambda] = lambda_fft(phi, beta, d, nTrunc)

2 lambda = zeros(nTrunc+1,1);

3 k = (1:nTrunc)';

4 pij = cumprod((k(1:end)❂d❂1)./(k(1:end)));

5 g = zeros(nTrunc,1);

6 g(1) = phi ❂ beta + d;

7 g(2:end) = phi*pij(1:end❂1) ❂ pij(2:end);

8 np2 = 2.^nextpow2(2*nTrunc❂1);

9 lambda(1) = 0;

10 tmp = ifft(fft(beta.^(0:nTrunc❂1)', np2).*fft(g, np2));

8

11 lambda(2:end) = tmp(1:nTrunc);

12 end

2.2 Application to non-ARCH(∞) models

Our FFT-based methodology can also be applied with great benefit to some models that are
not even in the class of ARCH(∞) models. In particular, the linear ARCH model of Robinson
(1991) and Giraitis et al. (2000) is given by σt = c +

∑∞
j=1 λjǫt−j, c.f. (2). Clearly, our FFT-

based algorithms described above and presented in Listings 2 and 6 can easily be adopted
to this model by simply replacing σ2

t and ǫ2
t−j with σt and ǫt−j, respectively. Similarly, the

fractionally integrated asymmetric power ARCH model of Tse (1998) is given as in (7), but
with σ2

t and ǫ2
t replaced by σδ

t and h(ǫt), respectively, where h(ǫ) = (|ǫ| − γǫ)δ and δ > 0.
Again, our FFT-based algorithms apply with minimal changes to this model.

Finally, the popular fractionally integrated exponential GARCH (FIEGARCH) model of
Bollerslev and Mikkelsen (1996) is given as in (7), but with σ2

t replaced by log(σ2
t) and ǫ2

t

replaced by h(ǫt/σt), where h(z) = γ1z + γ2(|z| −E|z|). Thus, because σt enters non-linearly
on the right-hand side of the conditional variance equation, the sequence of conditional
variances for the FIEGARCH model cannot be written as a convolution and our methodology
does not apply to the calculation of the conditional variance sequence. However, the λj

coefficients for this model are identical to those for the FIGARCH model, and the calculation
of these can therefore take advantage of our FFT-method as in Listing 6. At least this will
reduce the computational time of calculating the λj coefficients for this model from O(T 2)
to O(T log T) compared with standard linear convolution.

3 Computational time

In this section, we compare the computational time of our new algorithm in Theorem 2 and
Listings 2,6 with the algorithm in Klein and Walther (2017) as well as the standard linear
convolution implementation in Listings 1,5. All computations were performed in Matlab on
a desktop with an Intel Core i5 (5250U) 1.6GHz processor running macOS Catalina 10.15.6.

In our first numerical experiment, we compare the difference in computational time for
standard linear convolution and our FFT-based algorithm as a function of sample size.
Specifically, for a given vector of coefficients, [d, φ, β, ω] = [0.46, 0.27, 0.65, 0.02], we calculate
the conditional variances for the FIGARCH(1, d, 1) model using the method in Listings 1,5
(blue line) and the FFT-based algorithm in Listings 2,6 (red line). That is, we calculate the
λj coefficients in (9) followed by the conditional variances in (3), i.e. without truncation,
with random numbers for ǫt. This is done a large number of times (10,000 for T < 4,096 and
1,000 for T ≥ 4,096), and the median time in milliseconds across repetitions is reported in
Figure 1 as a function of sample size. In Panel (a) the axes are linear and in Panel (b) the
axes are logarithmic. In particular, the figure clearly shows the different orders of magnitude
of the computational time for the two methods (T 2 vs. T log T). The figure also demonstrates
how the computational time for the FFT-based algorithm is essentially a step function of
the sample size, because of the padding to the smallest power of two that is at least 2T − 1.

We also notice from Figure 1(b) that for T = 500 to T = 1,000, the two methods perform
equally well, while linear convolution does better for smaller sample sizes and the FFT-
based algorithm does better for larger sample sizes. Thus, to obtain the fastest possible

9

Figure 1: Computational time

0 100 200 300 400 500

Sample size 10
3

0

50

100

150

200

250

300

S
e
c
o
n
d
s

Linear convolution

FFT method

(a) Linear scale

10
2

10
3

10
4

10
5

Sample size

10
-6

10
-4

10
-2

10
0

10
2

S
e
c
o
n
d
s

Linear convolution

FFT method

(b) Log-log scale

algorithm across all sample sizes, we recommend implementing the linear convolution method
for smaller sample sizes and the FFT-based algorithm for larger sample sizes. This can easily
be achieved by combining the implementations in Listings 1 and 2 using an if statement,
and similarly for Listings 5 and 6.

In our next experiment, we focus on the effect of truncation on computational speed,
and compare linear convolution (LC), our FFT-based algorithm, and the algorithm of Klein
and Walther (2017, henceforth KW).3 The setup is the same as in Figure 1, except for the
introduction of the truncation number. To reflect samples sizes in modern empirical work
(see references in the introduction), we consider T = 3,000 to T = 500,000 and truncation
numbers from n = 1,000 to n = 5,000, as well as no truncation, n = T − 1. For each (T, n)
pair, we repeated the calculation 10,000 times (for fixed n) or 1,000 times (for n = T − 1),
except for KW and LC with T = 500,000 and n = T −1, where we only used 100 repetitions.
In Table 1 we report the resulting median time across repetitions in milliseconds.

In Table 1 we first note that our FFT-based method is faster than the other methods for all
sample sizes and truncation numbers considered. While the computational times of both the
KW and LC algorithms are very sensitive to the choice of truncation number, the FFT-based
method is much less so. For example, from n = 1,000 to n = T − 1, the computational time
of the KW and LC algorithms increase by a factor of 7–8 for T = 3,000 and several hundred
for T = 500,000. On the other hand, the computational time of the FFT-based method only
approximately doubles for either sample size. Hence, with our FFT-based algorithm, there
is really no need for the truncation number and the associated approximation.

Using the exact filter to calculate the conditional variances, i.e. without truncation (n =
T − 1), the difference in computational time between the KW and LC algorithms on the one
hand and our FFT-based algorithm on the other hand is very substantial. For T = 10,000,
which is a rather common sample size in finance, the FFT-based algorithm is 15–20 times
faster than the KW and LC algorithms. For the largest sample size considered, T = 500,000,

3The Klein and Walther (2017) Matlab code was downloaded from the publisher’s website.

10

Table 1: Computational time for different sample sizes and truncation numbers

n = 1,000 n = 2,000

T KW LC FFT KW LC FFT

3,000 0.48 0.64 0.38 1.54 1.72 0.52
5,000 0.75 0.99 0.63 1.56 2.44 0.77

10,000 1.40 1.85 1.19 2.19 4.25 1.32
25,000 2.94 4.46 2.59 3.80 9.70 2.75
50,000 6.51 8.80 6.47 7.48 18.8 6.65

100,000 15.5 17.7 13.3 16.5 37.1 13.5
500,000 88.0 88.5 79.6 90.4 183 79.8

n = 5,000 n = T − 1

T KW LC FFT KW LC FFT

3,000 — — — 4.05 4.70 0.68
5,000 — — — 12.1 14.2 1.30

10,000 11.1 23.9 1.92 37.6 51.4 2.61
25,000 12.6 53.4 3.33 205 352 6.28
50,000 16.2 102 7.17 868 1, 611 14.2

100,000 25.3 201 14.1 3, 440 6, 610 34.0
500,000 99.8 988 80.0 147, 506 293, 788 192

Notes: Median computational time in milliseconds across 10,000 repetitions (fixed n) or 1,000 repetitions

(n = T − 1) for different sample sizes and truncation numbers (only 100 repetitions for KW and LC with

T = 500,000 and n = T − 1). KW is the algorithm of Klein and Walther (2017), LC is linear convolution

(Listings 1,5), and FFT is our proposed algorithm (Listings 2,6). The fastest algorithm for each (T, n) pair

is highlighted in bold.

the FFT-based algorithm is over 750 times faster than the KW algorithm and 1500 times
faster than the standard LC algorithm.

The numbers reported in Figure 1 and Table 1 are difficult to extrapolate directly to
the time required for, e.g., estimation of a model or a simulation study. This is because,
in estimation, each evaluation of the likelihood function and its derivatives involves several
convolutions, and this is repeated for many iterations to obtain convergence. Practical
examples of such timings and extrapolations to simulations are given at the end of Section 5.2.

4 Estimation bias

Since we are able to compute the sequence of conditional variances, and hence the likelihood
function, of any model with an ARCH(∞) representation very quickly using our FFT-based
algorithm, we can explore the effects on the estimators from approximating the calculations.
That is, we can simulate the estimation bias that results from using a fixed truncation number
in the calculation of the conditional variances in (4). As an alternative to (4), Baillie et al.
(1996) suggested terminating the summation in (4) at a fixed n and replacing unobserved
pre-sample values of ǫ2 by the unconditional sample variance, T −1∑T

t=1 ǫ2
t . We also consider

11

Table 2: Simulated bias and MCSE for FIGARCH(1, d, 1) model—DGP 1

n = 1,000 (P) n = 1,000 n = T − 1

T Par. Bias MCSE Bias MCSE Bias MCSE

5,000 d 0.0808 0.0923 0.0036 0.0462 −0.0042 0.0486
φ −0.0244 0.0434 −0.0014 0.0349 −0.0036 0.0356
β 0.0511 0.0790 0.0016 0.0597 −0.0078 0.0601
ω −3.1 × 10−5 3.7 × 10−5 1.5 × 10−5 3.7 × 10−5 9.7 × 10−6 3.4 × 10−5

10,000 d 0.0648 0.0505 0.0125 0.0310 −0.0013 0.0331
φ −0.0139 0.0250 0.0010 0.0237 −0.0017 0.0246
β 0.0474 0.0420 0.0130 0.0338 −0.0028 0.0361
ω −1.6 × 10−5 2.3 × 10−5 2.0 × 10−5 2.5 × 10−5 5.2 × 10−6 2.1 × 10−5

25,000 d 0.0504 0.0289 0.0203 0.0207 −0.0006 0.0208
φ −0.0070 0.0146 0.0020 0.0143 −0.0007 0.0151
β 0.0407 0.0256 0.0212 0.0218 −0.0012 0.0226
ω 1.8 × 10−5 2.3 × 10−5 4.1 × 10−5 2.4 × 10−5 3.3 × 10−6 1.5 × 10−5

50,000 d 0.0436 0.0200 0.0247 0.0157 −0.0001 0.0143
φ −0.0040 0.0104 0.0020 0.0102 −0.0005 0.0107
β 0.0372 0.0184 0.0254 0.0164 −0.0005 0.0157
ω 5.3 × 10−5 2.5 × 10−5 6.9 × 10−5 2.5 × 10−5 2.4 × 10−6 1.2 × 10−5

100,000 d 0.0393 0.0149 0.0279 0.0127 4.0 × 10−5 0.0101
φ −0.0019 0.0074 0.0020 0.0074 −0.0003 0.0077
β 0.0352 0.0142 0.0283 0.0130 −0.0002 0.0112
ω 9.8 × 10−5 2.8 × 10−5 1.1 × 10−4 2.8 × 10−5 1.8 × 10−6 1.1 × 10−5

Notes: Simulations are based on 10,000 replications. “(P)” denotes fixed truncation with pre-sample values

equal to the unconditional sample variance. DGP 1 has [d, φ, β, ω] = [0.4; 0.2; 0.6; 0.0001].

this possibility, and denote the results by “(P)” (for pre-sample) in the following tables.4

Specifically, in this section we simulate the bias of the estimated coefficients in the baseline
FIGARCH(1, d, 1) model for a range of sample sizes, T ∈ {5,000; 10,000; 25,000; 50,000; 100,000},
and either fixed truncation, n = 1,000, or no truncation, n = T − 1. For each sample size,
we simulate 10,000 samples from the FIGARCH(1, d, 1) model given by (1) and (7) with
zt ∼ i.i.d.N (0, 1). We consider two different parameter values in the data generating process
(DGP). First, DGP 1 has θ = [d, φ, β, ω]′ = [0.4; 0.2; 0.6; 0.0001]′. Second, we consider DGP 2
with θ = [0.4; 0.28; 0.68; 0.0001]′ to investigate the effect of a larger value of β on the bias.

Given observations (ǫt)
T
t=1 and truncation number n, the quasi-maximum-likelihood esti-

mator is

θ̂ = arg max
θ

log L(θ) with log L(θ) = −1

2

T
∑

t=1

(

log(σ2
t) +

ǫ2
t

σ2
t

)

, (10)

where σ2
t is calculated from (4) and (9). The maximization is unconstrained, but inequality

constraints on the parameters that guarantee non-negativity of the conditional variances are

4We are grateful to an anonymous referee for this suggestion.

12

Table 3: Simulated bias and MCSE for FIGARCH(1, d, 1) model—DGP 2

n = 1,000 (P) n = 1,000 n = T − 1

T Par. Bias MCSE Bias MCSE Bias MCSE

5,000 d 0.1123 0.1098 0.0087 0.0465 −0.0046 0.0497
φ −0.0502 0.0578 −0.0029 0.0325 −0.0009 0.0337
β 0.0577 0.0622 0.0061 0.0397 −0.0047 0.0423
ω −4.2 × 10−5 2.7 × 10−5 1.1 × 10−5 3.1 × 10−5 8.8 × 10−6 3.0 × 10−5

10,000 d 0.0886 0.0673 0.0204 0.0330 −0.0019 0.0350
φ −0.0353 0.0347 −0.0049 0.0224 −0.0007 0.0235
β 0.0493 0.0404 0.0148 0.0276 −0.0023 0.0296
ω −2.6 × 10−5 2.4 × 10−5 1.5 × 10−5 2.5 × 10−5 5.4 × 10−6 2.2 × 10−5

25,000 d 0.0684 0.0347 0.0315 0.0228 −0.0009 0.0223
φ −0.0239 0.0178 −0.0074 0.0144 −0.0003 0.0146
β 0.0413 0.0230 0.0227 0.0183 −0.0010 0.0186
ω −6.1 × 10−6 2.3 × 10−5 3.3 × 10−5 2.3 × 10−5 3.4 × 10−6 1.6 × 10−5

50,000 d 0.0597 0.0232 0.0373 0.0178 −0.0003 0.0154
φ −0.0193 0.0123 −0.0090 0.0106 −0.0004 0.0104
β 0.0376 0.0165 0.0266 0.0142 −0.0005 0.0132
ω −4.0 × 10−5 2.4 × 10−5 5.8 × 10−5 2.4 × 10−5 2.3 × 10−6 1.3 × 10−5

100,000 d 0.0547 0.0176 0.0415 0.0149 −3.4 × 10−5 0.0111
φ −0.0166 0.0100 −0.0103 0.0095 −0.0003 0.0079
β 0.0354 0.0136 0.0291 0.0122 −0.0003 0.0097
ω −8.3 × 10−5 2.8 × 10−5 9.4 × 10−5 2.8 × 10−5 1.8 × 10−6 1.1 × 10−5

Notes: Simulations are based on 10,000 replications. “(P)” denotes fixed truncation with pre-sample values

equal to the unconditional sample variance. DGP 2 has [d, φ, β, ω] = [0.4; 0.28; 0.68; 0.0001].

checked post-estimation; see Baillie et al. (1996, footnote 19) and Conrad and Haag (2006).
The Monte Carlo simulation results can be found in Tables 2 and 3 for DGPs 1 and 2,

respectively. For each sample size and truncation number, we report the bias and Monte
Carlo standard error (MCSE) for the four parameters.

We first observe from Tables 2 and 3 that replacing unobserved pre-sample observations
with unconditional variance estimates appears to induce a large bias. Indeed, the biases in
the (P) column are substantially larger than in other columns, and particularly the estimates
of d and β are heavily upwards biased. It would appear that adding the effect of many (up
to n − 1) constant observations near the start of the sample, but none later, induces a type
of non-stationarity which biases estimates of d and β upwards. Johansen and Nielsen (2016)
analyze bias in an ARFIMA model using higher-order asymptotic theory, and show that
inclusion of a level parameter (in our model this is ω) essentially eliminates all bias coming
from pre-sample values, so there appears to be no need for plugging in arbitrary constant
pre-sample values. A similar mechanism may apply in our setup.

Next, disregarding the (P) column, we see that the truncation at n = 1,000 induces a

13

Table 4: Simulated out-of-sample forecast RMSE (×1,000) for FIGARCH(1, d, 1) model

DGP 1 DGP 2

T n = 1,000 (P) n = 1,000 n = T − 1 n = 1,000 (P) n = 1,000 n = T − 1

5,000 1.9797 1.4328 1.2003 2.2205 1.5488 1.2619
10,000 1.8057 1.4575 0.9092 2.0225 1.5901 0.9440
25,000 1.8871 1.7448 0.7159 2.1068 1.9261 0.7488
50,000 2.2862 2.2152 0.5517 2.5440 2.4401 0.5827

100,000 2.5670 2.5736 0.4298 2.8311 2.8332 0.4461

Notes: We conducted 500 expanding window one-step-ahead out-of-sample forecasts and report the resulting

forecast RMSE averaged across 100 simulation replications. “(P)” denotes fixed truncation with pre-sample

values equal to the unconditional sample variance. DGP 1 has [d, φ, β, ω] = [0.4; 0.2; 0.6; 0.0001] and DGP 2

has [d, φ, β, ω] = [0.4; 0.28; 0.68; 0.0001].

substantial bias that increases with the sample size, T . This is expected since a larger sample
size implies that a fixed truncation affects a larger proportion of the sample. The parameters
d and β seem particularly affected by the truncation. The biases in these estimators are
likely several parameter standard errors in magnitude for the larger sample sizes.

Comparing across Tables 2 and 3 we note that biases are substantially larger for DGP 2
(in Table 3) compared with DGP 1 (in Table 2). It appears that, as the β parameter
increases, it is more difficult to identify a given d from highly persistent autoregressive-type
dynamics, thus increasing the bias of both d and β.5

Finally, we conduct a small out-of-sample forecast comparison. For each sample, we
estimate the model based on the first T −k−1 observations and calculate the one-step ahead
forecast of observation T − k. We repeat this for k = 1, . . . , 500 and calculate the forecast
root-mean-squared-error (RMSE) for these 500 one-step-ahead forecasts. We then average
the RMSE across 100 simulation replications and report the results (×1,000) in Table 4 for
a range of sample sizes, truncation numbers, and the two DGPs.

In Table 4 we first note that truncation implies less precise forecasts. For each DGP
and for each sample size, the smallest forecast RMSE is obtained by using the untruncated
filter. The difference in forecast RMSE between truncation at n = 1,000 and no truncation
is always in favor of no truncation and varies from a reduction of about 16% (for DGP 1 and
T = 5,000) to over 80% (for DGP 2 and T = 100,000). More generally, the results in Table 4
reflect those in Tables 2 and 3, in the sense that (i) setting pre-sample values equal to the
unconditional variance estimate increases forecast RMSE, (ii) forecast RMSE is higher for
DGP 2 compared with DGP 1, and (iii) the difference in forecast RMSE between truncation
at n = 1,000 and no truncation increases with the sample size.

In conclusion, the results of our Monte Carlo simulations in Tables 2–4 clearly illustrate
the consequences of the approximation implied by truncating the convolution as in (4).
The resulting bias in the estimators is substantial, and it is worse for larger sample sizes.
Furthermore, the truncation and associated bias result in less precise out-of-sample forecasts.
Importantly, however, these problems are easily avoidable by application of our proposed

5We are grateful to an anonymous referee for suggesting a second DGP with a larger value of β based on
this motivation.

14

Figure 2: Daily DEM-USD exchange rate 3/13/1979–12/31/1998

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
1

1.5

2

2.5

3

3.5

(a) spot rate

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998

-4

-3

-2

-1

0

1

2

3

4

(b) return

FFT-based algorithm, which is exact and does not rely on any approximation or truncation.

5 Empirical illustrations

The persistence in the volatility of nominal exchange rates has been well-documented in the
literature, and exchange rates are often modeled using FIGARCH-type models. Indeed, a
daily time series of Deutsche Mark-US dollar (DEM-USD) exchange rates was used as the
empirical example in Baillie et al. (1996). An updated data set, covering until the end of the
DEM era and start of the Euro, was subsequently analyzed in Baillie, Cecen, and Han (2000).
In our first empirical illustration, we consider this data set. As a second empirical illustration,
we consider a longer time series of daily US Dollar-British Pound (USD-GBP) exchange rates.

5.1 Deutsche Mark-US Dollar exchange rate from 1979 to 1998

In this subsection, we analyze the daily DEM-USD exchange rate from March 13, 1979 to
December 31, 1998, for a total of 4,975 spot rate observations.6 In Figure 2(a) we plot the
spot rate and in Figure 2(b) we plot the continuously compounded percentage returns. It is
clear from the figure that the spot exchange rate is nonstationary. Indeed, standard arbitrage
arguments would dictate that the spot rate should be a Martingale, which justifies modeling
the returns as serially uncorrelated as in (1).

Table 5 reports the quasi-maximum-likelihood estimates for the FIGARCH(1, d, 1) and
FIGARCH(1, d, 0) models with either no truncation or with truncation at n = 1,000 (with
or without setting pre-sample value equal to unconditional variance estimates). Several
interesting findings appear from these results. First, regardless of the truncation number, the
additional parameter in the (1, d, 1) specification compared with the (1, d, 0) specification is
highly significant as measured by a t-test on the additional φ parameter. Thus, we consider
mainly the FIGARCH(1, d, 1) model. Second, for this model and data set, we note that the
parameter estimates for d, and to a lesser extent β do vary with the truncation number.
Third, with truncation at n = 1,000 the computing times for our FFT-based method are

6The Euro was introduced on January 1, 1999. Our data set was downloaded from the Federal Reserve
H.10 historical data website, and covers the same time period as that analyzed in Baillie et al. (2000), but
has a slightly different number of observations.

15

Table 5: FIGARCH models for DEM-USD exchange rate (1979–1998)

n = 1,000 (P) n = 1,000 n = T − 1

(p, d, q) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0)

µ 0.0033 0.0032 0.0038 0.0033 0.0041 0.0035
(0.0087) (0.0087) (0.0086) (0.0086) (0.0086) (0.0086)

d 0.4544 0.2860 0.4334 0.2741 0.4794 0.2854
(0.0186) (0.0180) (0.0194) (0.0176) (0.0192) (0.0168)

φ 0.2929 0.2984 0.2801
(0.0214) (0.0222) (0.0213)

β 0.6689 0.2143 0.6530 0.2026 0.6778 0.2130
(0.0146) (0.0234) (0.0152) (0.0236) (0.0155) (0.0232)

ω 0.0131 0.0519 0.0179 0.0613 0.0147 0.0511
(0.0034) (0.0079) (0.0036) (0.0086) (0.0042) (0.0095)

Iterations 34 16 34 16 37 17
Fcn. evals. 230 108 236 105 236 105
Time FFT 191 92 193 88 356 155
Time LC 311 174 277 150 3,356 1,225

Notes: Quasi-maximum-likelihood estimates for FIGARCH(p, d, q) models for the DEM-USD percentage

returns from March 14, 1979 to December 31, 1998 for different truncation numbers and T = 4,974 return

observations. Standard errors are reported in parentheses, and “(P)” denotes fixed truncation with pre-

sample values equal to the unconditional sample variance. Finally, the number of iterations and the total

number of function evaluations are reported, along with the computing time in milliseconds using the FFT-

based method and the linear convolution (LC) method.

about two-thirds of those for the LC method, but without truncation (n = T − 1) the
computing time for our FFT-based method is almost ten times faster than for the LC method.

5.2 US Dollar-British Pound exchange rate from 1971 to 2020

In this subsection, we analyze the daily USD-GBP spot exchange rate from October 1, 1971 to
October 2, 2020, for a total of 12,300 spot rate observations. The data series was downloaded
from the FRED database and is plotted in Figure 3. As in the previous subsection, the spot
exchange rate is nonstationary and we model the continuously compounded returns.

The estimation results for the USD-GBP data set are presented in Table 6, which is laid
out precisely as Table 5. The results are qualitatively quite similar, except they are more
pronounced in Table 6 because of the longer sample.

First of all, the FIGARCH(1, d, 1) specification is again statistically superior to the
FIGARCH(1, d, 0) specification, regardless of truncation number. Secondly, the estimates
for d, and again to a lesser extent for β, are now quite different for the three different
FIGARCH(1, d, 1) estimates. The estimates in the “(P)” column are larger than the others,
as expected based the simulation findings in Section 4. Comparing truncation at n = 1,000,
which is standard in the literature, with no truncation, the estimates of d differ by about one
standard error. The parameter ω, which is usually not of primary interest, differs even more.

16

Figure 3: Daily USD-GBP exchange rate 10/1/1971–10/2/2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
1

1.5

2

2.5

3

(a) spot rate

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
-10

-5

0

5

(b) return

Table 6: FIGARCH models for USD-GBP exchange rate (1971–2020)

n = 1,000 (P) n = 1,000 n = T − 1

(p, d, q) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0)

µ −0.0004 0.0007 0.0012 0.0020 0.0016 0.0025
(0.0048) (0.0045) (0.0049) (0.0046) (0.0053) (0.0050)

d 0.4948 0.3257 0.4230 0.3123 0.4459 0.3136
(0.0182) (0.0140) (0.0177) (0.0132) (0.0194) (0.0143)

φ 0.2532 0.2633 0.2535
(0.0177) (0.0167) (0.0170)

β 0.6543 0.2562 0.5970 0.2429 0.6036 0.2377
(0.0165) (0.0174) (0.0163) (0.0170) (0.0172) (0.0175)

ω 0.0113 0.0311 0.0140 0.0327 0.0115 0.0250
(0.0037) (0.0070) (0.0042) (0.0073) (0.0050) (0.0091)

Iterations 34 20 30 20 31 19
Fcn. evals. 238 132 226 142 238 137
Time FFT 370 208 356 281 715 493
Time LC 664 422 654 466 16,581 9,272

Notes: Quasi-maximum-likelihood estimates for FIGARCH(p, d, q) models for the USD-GBP percentage

returns from October 4, 1971 to October 2, 2020 for different truncation numbers and T = 12,299 return

observations. Standard errors are reported in parentheses, and “(P)” denotes fixed truncation with pre-

sample values equal to the unconditional sample variance. Finally, the number of iterations and the total

number of function evaluations are reported, along with the computing time in milliseconds using the FFT-

based method and the linear convolution (LC) method.

The computing time using our FFT-based method is now much faster than the LC
method. Without truncation, our FFT-based method is about 23 times faster than the LC
method for the FIGARCH(1, d, 1) model. As an order of magnitude, a simulation study or
a bootstrap with 10,000 replications for the FIGARCH(1, d, 1) model in Table 6 without

17

truncation would require 46 hours with the LC method but less than 2 hours with our FFT-
based algorithm. This result confirms those found in Section 3, and could certainly be the
difference between bootstrap inference or simulations being feasible or not.

6 Conclusion

In this paper we have considered the computation of the time series of conditional vari-
ances for models in the ARCH(∞) class. This class is very large and contains many com-
monly applied models in empirical finance such as the FIGARCH model. For models in the
ARCH(∞) class, we have provided an exact algorithm for efficient computation of the con-
ditional variances, and hence of the likelihood function. Our algorithm is based on the fast
Fourier transform (FFT) and achieves an order of magnitude improvement in computational
speed from O(T 2) to O(T log T). The efficiency of the algorithm allows estimation, as well
as simulation and/or bootstrapping of ARCH(∞) models, even with very large data sets.
We have focused on univariate models, but multivariate models will achieve a proportional
increase in computational speed.

Furthermore, to speed up computation it has been completely standard in the literature
to resort to a truncation of the ARCH(∞) model at a fixed truncation lag. With our
proposed algorithm, this is not needed. As additional contributions, we also showed that
the elimination of the truncation substantially reduces both the bias of the quasi-maximum-
likelihood estimators and the out-of-sample forecast errors.

We illustrated our results with two empirical examples that highlighted both the differ-
ences in the computational speed and in the parameter estimates for our FFT-based algo-
rithm and the standard algorithm with and without truncation.

As sample sizes in economics and finance have become longer in recent years (see examples
in the introduction), efficient computation has become increasingly more important. As we
have shown, this is certainly true for daily time series, and when the models discussed in this
paper are applied to high-frequency data this becomes crucially important. Furthermore, the
gaining popularity of computationally intensive methods of inference, based on simulation,
bootstrapping, or machine-learning techniques, that require estimation of (variations of) each
model a large number of times, emphasizes these points even more.

Data availability statement

The daily DEM-USD exchange rate data that support the findings of this study are openly
available in the Federal Reserve H.10 historical data website at https://www.federalreserve.

gov/releases/H10/hist/dat89_ge.htm and https://www.federalreserve.gov/releases/

H10/hist/dat96_ge.htm. The daily USD-GBP exchange rate data that support the find-
ings of this study are openly available in the FRED database at https://fred.stlouisfed.

org/series/DEXUSUK. The data files are included in the online supplementary materials to-
gether with the computer programs listed in the paper. The latter are also available on the
authors’ websites.

References

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen (1996). Fractionally integrated generalized
autoregressive conditional heteroskedasticity. Journal of Econometrics 74, 3–30.

18

Baillie, R. T., A. Cecen, and Y. W. Han (2000). High frequency Deutsche Mark-US Dollar
returns: FIGARCH representations and non linearities. Multinational Finance Journal 4,
247–267.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics 31, 307–327.
Bollerslev, T. and H. O. Mikkelsen (1996). Modeling and pricing long memory in stock

market volatility. Journal of Econometrics 73, 151–184.
Chortareas, G., Y. Jiang, and J. C. Nankervis (2011). Forecasting exchange rate volatility

using high-frequency data: Is the Euro different? International Journal of Forecasting 27,
1089–1107.

Conrad, C. and B. R. Haag (2006). Inequality constraints in the fractionally integrated
GARCH model. Journal of Financial Econometrics 4, 413–449.

Conrad, C., D. Rittler, and W. Rotfuß (2012). Modeling and explaining the dynamics of
European Union Allowance prices at high-frequency. Energy Economics 34, 316–326.

Cooley, J. W., P. A. W. Lewis, and P. D. Welch (1969). The fast Fourier transform and its
applications. IEEE Transactions on Education 12, 27–34.

Cooley, J. W. and J. W. Tukey (1965). An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation 19, 297–301.

Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity
models, and a new model. Journal of Business & Economic Statistics 22, 16–29.

Giraitis, L., P. M. Robinson, and D. Surgailis (2000). A model for long memory conditional
heteroscedasticity. Annals of Applied Probability 10, 1002–1024.

Han, Y. W. (2008). Intraday effects of macroeconomic shocks on the US Dollar-Euro ex-
change rates. Japan and the World Economy 20, 585–600.

Jensen, A. N. and M. Ø. Nielsen (2014). A fast fractional difference algorithm. Journal of

Time Series Analysis 35, 428–436.
Johansen, S. and M. Ø. Nielsen (2016). The role of initial values in conditional sum-of-

squares estimation of nonstationary fractional time series models. Econometric Theory 32,
1095–1139.

Karanasos, M., Z. Psaradakis, and M. Sola (2004). On the autocorrelation properties of
long-memory GARCH processes. Journal of Time Series Analysis 25, 265–282.

Klein, T. and T. Walther (2017). Fast fractional differencing in modeling long memory of
conditional variance for high-frequency data. Finance Research Letters 22, 274–279.

Naeema, M., M. Shahbazb, K. Saleemc, and F. Mustafaa (2019). Risk analysis of high
frequency precious metals returns by using long memory model. Resources Policy 61, 399–
409.

Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional het-
eroskedasticity in multiple regression. Journal of Econometrics 47, 67–84.

Stockham, T. G. (1966). High-speed convolution and correlation. Proceedings of the Spring

Joint Computer Conference 28, 229–233.
Tse, Y. K. (1998). The conditional heteroscedasticity of the yen-dollar exchange rate. Journal

of Applied Econometrics 13, 49–55.
Zygmund, A. (2003). Trigonometric Series, vol. I and II, 3rd rev. ed. Cambridge, UK:

Cambridge University Press.

19

	Introduction
	FFT algorithm for ARCH(∞) models
	Example: FIGARCH model
	Application to non-ARCH(∞) models

	Computational time
	Estimation bias
	Empirical illustrations
	Deutsche Mark-US Dollar exchange rate from 1979 to 1998
	US Dollar-British Pound exchange rate from 1971 to 2020

	Conclusion
	Data availability statement
	References

