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Abstract

This paper discusses how to design, solve and estimate dynamic programming models using the

open source package niqlow. Reasons are given for why such a package has not appeared earlier

and why the object-oriented approach followed by niqlow seems essential. An example is

followed that starts with basic coding then expands the model and applies different solution

methods to finally estimate parameters from data. Using niqlow to organize the empirical DP

literature may support new research better than traditional surveys. Replication of results in several

published papers validate niqlow, but it also raises doubt that complex models solved with

purpose-built code can ever be independently verified.

Keywords: Dynamic Programming, Computational Methods, Replication Studies

1. INTRODUCTION

Since the early 1980s fields such as macro, labor, and industrial organization have estimated discrete choice,

discrete time, dynamic programs.1 A barrier to empirical DP is the need to write computer code from scratch

without benefit of tools tailored to the task. When such computing tools emerge they ease verification,

replication and innovation in the area. For example, in applied econometrics, widespread adoption of Stata and

R has replaced low-level programming with high-level scripts that are portable and easy to adapt. Dynare plays a

similar role solving dynamic stochastic general equilibrium (DSGE) models based on Matlab.

Why has empirical DP not benefited from development of a similar platform, even as applications and new

solutions methods continue to be published? Although researchers shared their code nearly all published

empirical DP work uses purpose-built code. Rust's distribution of Gauss code for Rust (1987) in the 1990s is the

closest attempt to create a common platform. There are good reasons to doubt a platform for empirical DP is

feasible. The models are complex, the details vary greatly across fields, and their use involves multiple layers of

computation (nested algorithms). Perhaps all they have in common are tools provided by mathematical

languages, such as matrix algebra, simulation, and numerical optimization.
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Does no empirical DP platform exist because it is impossible? Or, is it possible, but for some reason a

common platform has not emerged from purpose-built code? This paper introduces the software package

niqlow to support the latter explanation. The package's design, and how it differs from purpose-built code,

suggests why in nearly forty years no platform for empirical DP emerged.

niqlow replaces low-level purpose-built coding with high level tools to design, build and estimate

empirical DP models. To demonstrate this claim a simple model is defined and coded with essentially a one-to-

one correspondence between the mathematical elements and coding statements. The model is then extended and

estimated from data without rewriting code or programming any standard aspects of empirical DP directly.

Starting with Eckstein and Wolpin (1989) and continuing through at least Keane et al. (2011), reviews of

the empirical DP literature have attempted to standardize notation with no reference to computing. Because the

math does not map directly to code, these frameworks offer limited help to someone developing their own first

model. Using niqlow concepts as an intermediate translation between math and working code creates a new

way to describe and organize the DP literature. When compared to starting from scratch or "hacking" existing

code, new empirical DPs are easier to develop and verify using standardized concepts.

For example, many published models contain a binary action  and a state variable  whose transition is

 That is,  counts how many times  has been chosen in the past. Until now all researchers code 

 independently from scratch. In niqlow, however,  is simply an "action counter" that can be added to any DP

model with one or two user-written statements. Solution algorithms are built into niqlow, and two or more

methods to solve a model can be compared without changing any low-level coding. Previously this required

duplicating code specific to each method.

A standard section of most structural estimation articles derives the estimation objective step by step. This

leaves the impression that the econometrics is specific to the model and the data, which is indeed the case when

using purpose-built code. But customized econometric objectives is not a deep feature of other models. For

example, a Stata user need not provide a function that returns the log-likelihood for their panel-probit data set.

Stata can compute it using details provided by the user. Automation of econometric objectives for empirical DP

also emerges in niqlow.

The second half of the paper conducts the first replication study of empirical DP results. Half a dozen

papers published before 2000 are targeted. The replications help validate niqlow and build out its capabilities.

The exercise also makes suggests that most published empirical DP results are essentially impossible to verify

independently and will remain so until at least one common platform emerges.

niqlow uses the object-oriented programming (OOP) paradigm to provide menus for state variables,

solution methods, and econometric calculations. This paper briefly explains OOP and why it seems fundamental

to creating a platform for empirical DP. It also proffers an answer to why such a platform emerged so late

compared to other areas of applied economics.

To promote collaborative development, niqlow is open source software housed on github.com under

a GPL License. New solution methods and replications can be added to the platform. Solution methods can now

be compared on different models not simply those chosen by authors proposing a new approach.2

1.1 A Tale of Two Papers
The divergence over time in the toolboxes available for empirical work can be traced starting from two early

"structural" estimation papers: MaCurdy (1981) and Wolpin (1984). The former estimates a lifecycle labor

a s

s′ = s + a. s a = 1

s s
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supply model on panel data using an approximation to the structural model. That is, the Lagrange multiplier on a

lifecycle budget constraint in the MacCurdy model has a closed form in the estimated specification. That form

could be imposed while estimating other parameters, but it would have to be computed on each iteration of the

econometric objective. Instead, MaCurdy (1984) approximates the multiplier as a function of constant

characteristics of the person This approximate model can be estimated using two-stage least squares and

instrumental variables.

The latter paper, Wolpin (1984), estimates a lifecyle model of fertility on panel data using maximum

likelihood. Its abstract defines the approach as a nested solution algorithm that imposes all restrictions of the

model on the estimated parameters.3 Although many things have changed since then, many if not most empirical

DP papers follow the same basic strategy.

Given resources available at the time, both MaCurdy (1981) and Wolpin (1984) required extensive original

programming and significant computations. Fast-forward to today and MaCurdy's procedure has been reduced to

a single line of Stata code, roughly:

• xtivreg lnh `xvars' (lnw = exper exper2 L2.wage), first fd

That is, the procedure was a panel IV regression on first difference of log hours using experience and lagged

wages as instruments for current wages. Stata's syntax allows the list of exogenous variables ̀ xvars' to be

defined elsewhere. On the other hand, nearly all empirical DP models continue to require purpose-built

programs for the model. Any change requires re-coding. Certainly a single line in a Stata script cannot define an

empirical DP model.

There are many reasons why panel IV estimation would have received more attention from software

developers than maximum likelihood estimation of discrete choice dynamic programming models. The puzzle is

not the difference in relative attention. Instead it is the absolute level of development: since Wolpin's purpose-

built code there has been essentially zero infrastructure developed for empirical DP models. Something has

blocked progress in the empirical DP toolbox that did not block IV panel regression code from evolving into

single commands in popular packages.

Two claims are made here about this block in developing a platform. First, object-oriented programming

(OOP) appears essential for removing barriers to a more general economics toolkit. This claim is based on

niqlow and the absence of a non-OOP alternative to it. Without shifting to OOP code there was no way to

avoid custom coding empirical DP. Second, an explanation is given for why empirical DP did not shift to OOP

until niqlow. It is discussed in Section (6.5) after demonstrating the niqlow approach.

2. OOP VERSUS PP
Consider the task of creating a computing platform to be used by others to solve their own problems. Call the

original coder the programmer and the one using the platform the user. OOP can be compared to the more

straightforward procedural programming (PP) approach that has produced most published empirical DP results,

in which the programmer and user are essentially the same person or team. Since this paper argues computer

programming paradigms have affected the development of economic research, the two relevant paradigms are

briefly described here. Readers familiar with OOP can skip this section.4

3



The difference between PP and OOP is how data are stored and processed. In procedural programming

(PP) data stored in vectors or other structures are passed to procedures (aka functions or subroutines) to do the

work.5 The procedure sends the results back to the program through a return value or arguments of the

procedure. The programmer of a platform would write functions that the user would call in their own program

sending their data to the built-in functions.

OOP directly connects (binds) data and the procedures to process them. It does this by putting them

together in a class. This brings new syntax and jargon. A class is a template from which objects are created

during execution of the program. A class and objects created from it have variables (members) and functions

(methods) that process the data stored in the class members.

OOP has three key features that are difficult to code using PP alone. First, a class can be derived from a

base class while adding or modifying components. In other words, a class can inherit features from a parent

class. The programmer may define child classes from a derived parent to handle different situations the user may

confront. Each child in turn might have derived grandchildren. The user can also create their own derived class

that inherit only the features of the ancestor classes. Inheritance is a downstream connection between classes

created by the programmer for the user.

Second, all objects of the same class can share member data and methods while having their own copies of

other members as designed by the programmer. Shared members are sometimes called static because additional

storage for them is not created dynamically as objects are created during execution. Suppose a user's program

creates one thousand objects of a class. All of them need access to a common parameter  Then  can be stored

in a static member of the class shared by all. If another value  is specific to each object then it is in a dynamic

member and each object will have its own version of  Static or shared members is a horizontal connection

between objects while a program executes.

Third, there is an upstream connection between classes. In OOP jargon this is called a virtual method.

Suppose the parent class marks profit() a virtual method. As with all ancestor features, a child class can

access profit(). However, the child can define its own method profit(). Since the parent class labels the

method virtual it allows the child version to replace the parent version when used by other parent code. That is,

the programmer has given the user the option (or the requirement) to inject their own code into the base code. If

profit() is not virtual then the user can still create their own version but it will not replace the parent version

inside the parent code.

These downstream, horizontal, and upstream connections between data and the functions that process them

can be implemented without using objects in procedural programming. However, as argued above, for more

than 30 years almost no PP platform for empirical DP has been attempted, and none have succeeded in freeing

users from writing the basic functions themselves. This suggests the complex environment of empirical DP

requires OOP.

2.1 An Example
To illustrate differences between OOP and PP, consider a package written by a programmer to be used by

economists (users): first using the PP paradigm only and then using OOP. The package, named Marshall,

solves for Marshallian demand for a consumer with utility  defined on a vector  and a given price vector 

and income 

q. q

x

x.

U(x) x p

m :

⋆( , ; ) ≡ arg max ( ).
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Most readers have probably coded an objective and then called a built-in optimization procedure to optimize

that function. Marshall is a specialized version of that general problem.

The PP package documentation explains how users should code  in order to interact with tools in the

package. The user codes u(x), and sends it to a built-in procedure of the form demand(u,p,m). That

procedure uses algorithms to compute  Suppose the user wants to use the Cobb-Douglas function, 

 Using "pseudo-code" the key parts of the user's program might look like:

#uses Marshall

u(x) {

    return sum_i ln(x[i])

    }

qdemand = demand(u,prices,income)

print("x* = ",qdemand)

Now consider the OOP version of Marshall. The programmer might define a class for a consumer:

classclass Consumer {

    membersmembers

                xstar, p, m

    methodsmethods

                demand()

                budget(p,m)

        virtualvirtual u(x)

    }

The syntax is pseudo code similar to actual OOP languages, including Ox. The method u(x) belongs to the

Consumer class and does the work of computing utility. The budget parameters are stored as members of the

class. These will be set by passing them to the budget() method. The method demand() is the same as the

PP procedure above, but it will get the information it needs from the data members rather than from arguments.

It stores the result in the member xstar.

The package comes with the Cobb-Douglas function set as the a default to demonstrate the package

without any coding. Now  is coded as a method of the Consumer class:

Consumer::u(x) {

    returnreturn sum( log(x) )

    }

Unlike an ordinary function, the code for u() has the prefix of the class it belongs to. Code for the other

methods would also be part of the package. User code to create a Consumer object, set the budget to already-

defined values, and solve for  might look like this:

x⋆(p,m;U) ≡ arg max x:px≤m U(x).

U()

x⋆(p,m).

U(x) = ∑ lnxi.

u()

x⋆
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#uses Marshall

    ⁞

agent = newnew Consumer()

agent -> budget(prices,income)

agent -> demand()

print("x* = ",agent.xstar )

Here the new operator will make a copy of the template for Consumer in memory and store it in the variable

agent. The code above would use the built-in utility and compute quantity demanded at the prices and income

sent to the budget operator. The syntax object -> method() is a common way to invoke a method for a

particular object. That is, instead of sending  to demand() in the PP approach, the data specific to agent is

automatically available to the demand() method belonging to agent.

The code so far uses a built-in utility. Suppose the user wants to use a CES function. To do so, the user

creates a class derived from Consumer.

classclass CES : Consumer {

    membersmembers  a

    methodsmethods  u(x) CES(ina)

    }

CES::CES(ina) {     a = ina    }

CES::u(x)     {     return sum_i (x[i]^a)^(1/a)    }

⁞

agent = new CES(0.2)

agent -> demand()

⁞

The first line shows that CES is a child of Consumer, whereas Consumer was a base class not derived from

something else. Tjee new class does not declare its own demand() method, CES inherits the version from

Consumer. The user also provides a method that is called to cretae a new object. As with Ox, this constructor

has the same name as the class in the pseudo code. The parameter is passed to it and stored in CES.a, ready to

be used by utility.

When demand() is invoked, the user-provided  will be called not the default version written by the

programmer even though the user has not changed and perhaps cannot even see the code for demand(). This is

because Consumer::u() was marked as virtual. By declaring u() virtual the programmer gives the user

a controlled ability to change the underlying code.

In the PP packaged this injection of code was accomplished by passing u to the demand function.

However, when many functions need to be replaced and many different consumer problems are solved by the

user's program the PP approach can become unwieldily. The OOP approach has fixed costs of setup, but it

scales more efficiently for both the programmer and the user as the problem increases in complexity. It is easier

to ensure the right data and the right functions are being used within the package.

The programmer can create a taxonomy of classes for the user to choose from. In this simple case,

Marshall might not just have a single Consumer class. It might have child classes for different classes of

utility. The user can then start with one of those classes to either specialize or extend it for their model. An OOP

package can provides the user with a structured menu of options, which is an important part of the niqlow

approach to DP.

u

u()
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3. EMPIRICAL DYNAMIC PROGRAMMING

This section defines key elements of dynamic programming that appear in empirical applications. This

framework is then combined with a simple example implemented in niqlow before extending it to account for

multiple problems and parameter estimation.

3.1 A Single Agent Problem

3.1.1 The Primitives

The symbols used to define a single generic DP model and explained in this section are in order:

The first element is the state , a vector of state variables:  A state is an element of the

state space  Second, at each state an action  is chosen, a vector of action variables: 

The action is chosen from the feasible choice set 6 Third, the next state encountered in the program,

denoted , follows a semi-Markov transition that depends on the current state and action, 

When making decisions at , the agent's objective involves the one-period payoff or utility  In

niqlow it is treated as a vector-valued function of the feasible action set, so it will be written  The

objective is additive in values of possible states next period discounted by  The values of actions include a

shock  contained in the vector  These shocks often appear in empirical DP to smooth the solution.7

Finally, parameters that determine the other primitives are collected in the structural parameter vector 

All the other primitives listed above are implicit functions of  When the empirical DP includes agents solving

different problems, exogenous (demographic) data define different problems and they also interact with  The

roles of parameters and data are made explicit later.

3.1.2 Bellman's Equation

The value of an action takes the form8

The final term in the action value  is the endogenous expected value of future decisions. Optimal state-

contingent choices and their value are defined as

Value at  integrates over optimal value conditional on  For a model with no  the integral collapses to 

θ ∈ Θ α ∈ A(θ) P(θ ′;α, θ) U (α, θ) δ ζ ψ. (1)

θ θ = ( s0 … sN ) .

Θ. α α = (a0 … aM ) .

A(θ).

θ ′ P (θ ′;α, θ) .

θ U (α, θ) .

U (A(θ), θ) .

δ.

ζα ζ.

ψ.

ψ.

ψ.

vζ (α, θ) = U (α, θ) + ζα + δE α,θ V (θ ′) . (2)

(2)

α⋆
ζ
(θ) = arg max vζ (α, θ)

Vζ (θ) = max α∈A(θ)  vζ (α, θ)

V (θ) = ∫
ζ

 Vζ (θ) f(ζ)dζ.

(3)

θ ζ. ζ

V () ≡ Vζ().
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The expected value of next period's state further sums over the transition of the discrete states:

Two assumptions about  are built into this expression. First, future shocks are built into  which is not

affected directly by the current shock because  is IID over time. Second, the transitions of other state variables

can be influenced by  only through the action  These conditions form Rust's (1987) conditional independence

(CI) property.

Bellman's equation, also known as the Emax operator, imposes the conditions  at all states

simultaneously:

3.1.3 Conditional Choice Probabilities: Three Flavors

The agent conditions choice on all available information, and  in  is the set of feasible actions that

maximize value at a state. This leads to the first notion of choice probability: from the agent's perspective. In

particular, non-optimal choices have 0 probability of occurring. If the optimal choice is unique then the agent

chooses it with probability 1. If  has a full-rank continuous distribution with unbounded support then there is

zero probability of ties in action values and  will be unique. To account for models with no  and without

loss of generality, the first flavor of choice probability assigns equal probability to all optimal actions:

where  is the indicator function and  is the cardinality of a set 

The choice probability in  is not continuous in the parameter vector  because it includes an indicator

function. For example, suppose a small change in a parameter induces a small change in utility. This can shift an

action  from optimal to not optimal and vice versa.  jumps in value which in turn makes an

econometric objective built on it discontinuous.

This issue is fixed by treating  as private to the agent. Now choice probabilities based on public

information are continuous because they integrate over , leading to the second notion of choice probability:

For example, when  is extreme value we get the familiar McFadden/Rust form of CCP:

The choice probability in  is relevant to the empirical researcher but not to the agent who conditions choice

o n . (The integrated value  in  is relevant to the agent, because they also take an expectation of

arriving at state  and then observing realized values of )

E α,θ V (θ ′) = ∑
θ ′∈Θ

 V (θ ′)P (θ ′;α, θ) . (4)

ζ V (θ ′)

ζ

ζ α.

(3)

∀ θ ∈ Θ, V (θ) = ∫
ζ

 [max α∈A(θ)  U (α, θ) + ζα + δE α,θ V (θ ′)]  f (ζ) dζ. (5)

α⋆ (3)

ζ

α⋆ ζ,

CCP1: P ⋆
ζ

(α; θ) = , (6)
I {α ∈ α⋆

ζ
(θ)}

#α⋆
ζ
(θ)

I{ } #B B.

(6) ψ

α P ⋆
ζ

(α; θ)

ζ

ζ

CCP2: P ⋆ (α; θ) = ∫
ζ

 P ⋆
ζ

(α; θ) f(ζ)dζ. (7)

ζ

P ⋆ (α; θ) = . (8)
ev(α,θ)

∑a∈A(θ)e
v(a;θ)

(7)

ζ V (θ ′) (3)

θ ′ ζ ′.
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If  is excluded from the model, CCPs may still need to be continuous in the parameter vector . This leads

to the third notion of conditional choice probability: ex post smoothing using a kernel ( ) over all feasible

action vectors:9

CCP3 adds trembles to CCP1. Equations  and  differ because, in the former, the shocks enter the value

function and affect the expected value of future states. In the later, the smoothing takes place separately from the

value function. So a logistic kernel is the same functional form as the McFadden/Rust CCP in , but the

values of the actions are not the same.

The three CCP flavors, un-smoothed as in , ex-ante smoothed as in , and ex-post smoothed in ,

are all part of niqlow. Within the smoothed classes, the functional or distributional form is a further part of the

specification. niqlow provides options for standard functional forms and gives the user the possibility of

adding alternatives.

Once solved, the DP model generates an endogenous state-to-state transition:

This transition sums over all feasible actions. Computing  is unnecessary in ordinary Bellman iteration,

because an agent following the DP will make a choice at each  they reach.  does play a role in some

solution methods and predictions as discussed later in Section (5.4).

A final component of a single agent empirical DP model is the set of initial conditions from which data are

generated. In non-stationary (lifecycle) models there are often natural initial values of state variables when the

agent first makes a choice. If the environment is stationary then there may be a stationary or ergodic distribution

over states, denoted . Treating the transition in  as a matrix, the stationary distribution satisfies

It is often assumed that data are drawn from the ergodic distribution as the initial condition for estimation

or prediction.

3.2 Building a DP in niqlow
Empirical DPs have typically been solved using purpose-built programs with hard-coded loops to span the state

space  of the model. Different tasks (model solution, prediction or simulation, etc.) use a different nests of

loops that must be kept synchronized with the model's assumptions. Introducing another action or state variable

requires re-coding and re-synching at the lowest level of the code.

A platform to build and solve any DP model cannot start with this code structure. In particular the hard-

coding of the platform by the programmer cannot be model-specific. Instead, the work to build the state space,

solve the model, and use it must be constructed from the user's code. The platform must offer standard choices

and "plug-and-play" tools for building the model. Algorithm 1 summarizes how a user would use niqlow

following this approach.

ζ ψ

K()

CCP3: P ⋆
K

(α; θ) = K [ v (A (θ) ; θ)  ] . (9)

(7) (9)

(8)

(6) (7) (9)

P (θ ′; θ) = ∑
α∈A(θ)

P ⋆ (α; θ)P (θ ′;α, θ) . (10)

(10)

θ (10)

f∞(θ) (10)

P (θ ′; θ) f∞(θ) = f∞(θ). (11)

Θ
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Algorithm 1. User Coding Steps in niqlow

A. Declare a new class (template) for the model

B. Create the DP

1. Initialize (call Initialize())

2. Build the model (add action and state variables, etc.)

3. Create state and action spaces (call CreateSpaces())

C. Code  and other functions related to the model.

D. Solve the DP

Apply a solution method to compute  and 

E. Use the Solution

Simulate data, predict outcomes, estimate parameters, etc.

These steps solve a single agent DP once and use it somehow. Empirical DP almost always requires

solving multiple problems multiple times using a nested solution method. In this case the Use and Solve steps

above are intertwined (nested). How niqlow handles this is discussed in Section (6).

None of the steps in Algorithm 1 include low-level tasks such as: "Code loops to iterate on the value

function and check for convergence." These tasks are done for the user based on the high-level elements their

code provides. The top-level elements may appear in the code in a different order, but the numbered steps in part

B must be executed in that order. Steps B.1 and B.3 each correspond to the specific named function in niqlow.

The amount of coding that other elements in Algorithm 1 involve depends on the model and its purpose.

3.3 Example: Lifecycle Labor Supply
Consider a simple discrete choice lifecycle labor supply model. The agent lives 40 periods with the objective of

maximizing discounted expected value of working ( ) or not ( ) each period. Earnings ( ) come

from a Mincer equation that is quadratic in actual experience  Earnings are subject to a discrete IID shock .

Six equations describe the model:

U()

V (θ) P ⋆ (α; θ)

m = 1 m = 0 E

M. e
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The earnings shock follows a discretized standard normal distribution taking on  different values, hence the

notation  The parameter  is the utility of not working. The coefficients in the earnings equation are

elements of the vector  that includes the standard deviation of the earnings shocks, .10 The vector  in the

earnings function is constructed at each state based on the current values of the state variables.

As a bridge to understanding niqlow code to implement , first translate the model into terms used in

niqlow:

The Labor Supply Model Using niqlow Concepts

Element Value Category Params / Notes

Clock Ordinary Aging T=40.

CCP ExtremeValue .

Actions Binary Choice

States: Action Counter

Zvariable

N=40

N=15

Choice Set for all 

Utility

 defined in .

This intermediate translation of the math is a new way to summarize the DP literature and a strategy to

reduce the fix cost of building new models. Using these essential elements we can write the code corresponding

to each abstract step in Figure 2. The shock  could be placed in  with  Why it is efficient to place in  is

explained in Section (3.6.2).

A. Declare the template for 

With line numbers added and Ox keywords in bold the code is:

Objective: E∑39

t=0
0.95t [U (mt; et,Mt) + ζm]

V shocks: F(ζm) = ee
−ζm

Experience: Mt = ∑t−1

s=0
ms;  m0 = 0

E Shocks: et 
iid
∼ dZ(15)

Earnings: E(M, e) = exp{β0 + β1M + β2M
2 + β3e} = exp{xβ}

Utility: U(m; e,M) = mE(M, e) + (1 − m)π.

(12)

15

dZ(15). π

β β3 x

(12)

t

ζ ρ = 1

α = (m)

θ

ϵ

=

=

(M)

(e)

A(θ) = {0, 1} θ

U ( ) = ( π

E(θ)
)

E(θ) (12)

e θ M. ϵ

θ
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[A]

[B]

[C]

    class LS : ExtremeValue {

1.      staticstatic decldecl m, M, e, beta, pi;

2.             Utility();

3.      staticstatic Build();

4.      staticstatic Create();

5.      staticstatic Earn();

    }

The class is named LS and is derived from the built-in class for extreme value shocks (ExtremeValue).11 The

declaration is not executed. Instead, it is the template for creating each point in the state space while the

program executes (step B.2 of the algorithm). Most variables and methods needed by LS are already defined by

its ancestor classes. Only details that niqlow cannot know ahead of time need to be added to LS. Line 1 of [A]

declares a member for each element of the model, except  and  which are stored internally. All the new

members are "static" as briefly explained in Section (2) as a horizontal connection between objects. An object of

the LS class is created for each point in the state space  but there is only one copy of the static members

shared by each object.12

Create, Solve and Use

The code executed to solve the labor supply model appears in the class's methods as well as other parts of the

user's program. Like C, an Ox program always contains a procedure named main() which is where execution

begins. LS is designed so that the user's main procedure can be short:

#include "LS.ox"

     main() {

1.        LS::Create();

2.        VISolve();

3.        ComputePredictions();

         }

These three lines of code correspond to steps B-D in Algorithm 1. The sub-steps of B are combined into the

Create() method. A user could put all the code inside main() rather than isolating some of it in

Create(). Line 2 solves the value function and computes choice probabilities (step C). Solution methods are

described in Section (4). Line 3 generates average values of all the variables based on the solution, as an

example of using the solved model (step D).

B. Create the Model

The three sub-steps in part B are put together in Create():

    LS::Create() {

1.       Initialize(1.0,new LS());

2.       Build();

3.       CreateSpaces ();

         }

Any DP model must include lines 1 and 3 of [C]. Items like state variables and actions must be added to the

model in between those two statements. Build() contains the code specific to the labor supply model. As with

t δ,

Θ,
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[D]

main(), Create() could contain more lines of code rather than placing them in Build(). The reason for

this becomes apparent when the simple model is extended later on. The version of Initialize() and

CreateSpaces() invoked by this code depends on which class LS was derived from.

B.2 Build the Model

In niqlow the action and state vectors are not hard-coded. They are built dynamically as the program executes

by adding objects to a list. These tasks must happen in the Build sub-step of Algorithm 1. In the labor supply

code they are placed in Build():

    LS::Build() {

 1.      SetClock(NormalAging,40);

 2.      m = new BinaryChoice ("m");

 3.      M = new ActionCounter ("M",40,m);

 4.      e = new Zvariable ("e",15);

 5.      Actions (m);

 6.      EndogenousStates (M);

 7.      ExogenousStates (e);

 8.      SetDelta (0.95);

 9.      beta = <1.2 ; 0.09 ; -0.1 ; 0.2>;

10.      pi = 2.0;

        }

Line 1 of [D] uses SetClock() to specify the model's clock using one of niqlow's built-in clocks,

NormalAging. The parameter for normal aging is the horizon  here 40 years. If the user wanted to solve an

infinite horizon model the code would simply change to SetClock(InfiniteHorizon). These choices

dictate how storage is created and how Bellman's equation is solved, but from the user's perspective it is simply

a different choice of clock. Because model time  is essential it is an implicit element of  and is stored

internally.

Line 2 of [D] creates a binary action and stores it in m (declared a member of the LS class in [A]). Line 5

sends m to Actions() which adds it to the model. The two state variables are created on lines 3 and 4.

Already mentioned in the introduction, ActionCounter is a built-in class derived from the base

StateVariable class. 13  needs to know which action variable it is tracking, so  is sent when the counter

is created on line 3 along with the number of different values to track (from 0 to 39).

Line 4 creates the earnings shock as object of the Zvariable class. Creating state variable objects do not

automatically add them to the model. Lines 6 and 7 do this. Since  is IID it can be placed in the  vector by

sending it to ExgoenousStates(), explained below. However,  is endogenous because its transition

depends on its current value and the action  It must be placed in  by sending it to EndogenousStates().

The last three lines of Build() set the value of model parameters. Because they do not affect the state

space these statements can be placed elsewhere as long as they are executed before the model solution is started.

Further, there is no need to formally define  and make these elements of it because this model is not going to

be estimated. This will happen in the extension below. The discount factor  is set by calling SetDelta() and

is stored internally like the clock  was.

B.3 Creating Spaces
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[E]

Line 3 in [C] sets up the model by creating the state space, the action spaces and other supporting structures.

Selected output from the niqlow function is given in Figure 1. The summary echoes the model's class and its

ancestors back to the Bellman class. It echoes the clock type and then list state variables and the number of

values they take on. Note that  was added to  by SetClock(), and it is the second right-most variable in 

Several state variables are listed that take on 1 value and were not added to the model by the user code. These

are placeholder variables for empty vectors explained below. Next, the report lists the size of the state space 

and some other spaces. The difference values are discussed later.

Figure 1. CreateSpaces() Report for the Labor Supply Model

0. USER BELLMAN CLASS:    LS | Exteme Value  | Bellman

1. CLOCK:                 3. Normal Finite Horizon Aging

2. STATE VARIABLES

              |eps   |eta |theta -clock        |gamma

                e    s21      M      t     t''     r      f

       s.N     15      1     40     40      1      1      1

3. SIZE OF SPACES

                       Number of Points

    Exogenous(Epsilon)               15

    Endogenous(Theta)                40

    Times                            40

    EV()Iterating                    40

    ChoiceProb.track               1600

    Total Untrimmed               24000

5. TRIMMING AND SUBSAMPLING OF THE ENDOGENOUS STATE SPACE

                           N

    TotalReachable       820

         Terminal          0

     Approximated          0

C. Code Utility and Other Functions

Step C in Algorithm 1 says to code utility and other functions. This code is written before running the program

and creating spaces, but utility is not involved in that step and only gets called once a solution method begins.

The user's utility replaces a virtual utility called inside niqlow algorithms. There are several other virtual

methods that the user might need to replace, and some examples appear below.

To match the model specification in , and in anticipation of empirical applications, earnings and utility

are coded as separate functions:

    LS::Earn() {

       decl x;

1.     x = 1 ~ CVCV(M) ~ sqr(CVCV(M)) ~ AVAV(e);

2.     return exp( x*CVCV(beta) ) ;

       }

    LS::Utility() {

3.     return  CVCV(m)*(Earn()-pi) + pi;

       }

t θ θ.

Θ
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The Mincer equation has been written in matrix form as  The expression for x on line 1 uses Ox-

specific syntax to construct the vector. The presence of CV() and AV() in these expressions is specific to

niqlow and is fundamental enough to merit some explanation.

If  were an ordinary counter taking on values between 0 and 39 then the statement D=M; sets D to the

current value of M. However, M is an object of a class so it is not the same as its value. Instead, the current or

counter value of  is a member of the object. Classes in niqlow that represent DP variables have a member v

that holds the counter or current value of the variable. The internal code sets the value of v to correspond to the

current state  before code such as Utility() is called. The function CV(M) returns M.v. So either D=M.v;

or D=CV(M); is how user code would set D to the value of  at the current state.

Recall that utility is treated as a vector valued function corresponding to the feasible set  Since  is

an action variable its current value is not a scalar at  In this simple one-choice model the current value is

always the same:  If other actions were added, or if constraints on feasible actions were

imposed on choice, the current value of  would be a different length because the number of distinct actions 

would change.

Since  is a simple count variable, it takes on values like a loop counter or index. The earnings shock , is

also like a loop counter, so its Its counter value ranges from 0 to 14. However,  is a discretized normal random

variable and the counting values are associated with both positive and negative real numbers, i.e. quantiles of

the standard normal distribution, such as  the 10th percentile of . The user's code can carry out

these transformations of the integer value e.v, but niqlow can track actual values of variables for the user.

The actual values of an object are stored as vector member actual. Thus the actual value at any point is

actual[v]. The current value is an index into the actual vector. The function AV() function retrieves this

value, so when   might equal -1.282. For  the actual vector is (0 1 … 39) and

actual[v]=v. That is, the default is that AV(s)=CV(s). Only in the case like a discretized normal will

there be a difference. The user can set actual values for their state and action values and can make them

dependent on structural parameters.

The parameter  stored in pi is set to a real number on line 10 in [D]. It is not an object of a class, so pi is

its own value. The vector beta, created on line 9 is also its own value, but line 2 of [E] sends it to CV(). This

is unnecessary (at this point), but is still correct. That is because CV() is code so that when an ordinary scalar or

matrix is passed it simply returns the value: thus CV(beta)=beta. The reason to do this becomes apparent

when discussing estimation of parameters in Section (5.4.)

D-E. Solve and Use the Solution

Line 2 of main() in [B] calls a function that will solve the DP model. Solution methods are discussed Section

(4). ComputePredictions() is also part of niqlow and is called in the main program on line 3. It uses

the solved model and integrates over the random elements and optimal choice probabilities to produced

predicted outcomes at each  How predictions are computed and used to estimate in GMM estimation is

discussed in Section (5.4).

E = exp{xβ}.
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The output of the prediction listed in Figure 2 shows the agent works with probability 0.3982 in the first

period. This integrates over the discrete distribution of earnings shocks and the continuous extreme-value choice

smoothing shocks as well as optimal decisions. In the last period of life a large sample of (homogeneous) people

would work 13% of the time and will have accumulated 7.52 years of experience.

Figure 2. Predictions for the Labor Supply Model

 t           m           M                 t           m           M

  0      0.3982      0.0000                20      0.1540      4.9016

  1      0.3761      0.3982                21      0.1508      5.0556

  2      0.3537      0.7743                22      0.1480      5.2064

  3      0.3319      1.1279                23      0.1456      5.3545

  4      0.3111      1.4598                24      0.1434      5.5000

  5      0.2918      1.7709                25      0.1414      5.6434

  6      0.2741      2.0628                26      0.1397      5.7848

  7      0.2580      2.3369                27      0.1382      5.9246

  8      0.2434      2.5949                28      0.1369      6.0628

  9      0.2303      2.8383                29      0.1358      6.1997

 10      0.2186      3.0686                30      0.1348      6.3355

 11      0.2082      3.2872                31      0.1339      6.4703

 12      0.1989      3.4954                32      0.1332      6.6042

 13      0.1907      3.6944                33      0.1325      6.7373

 14      0.1834      3.8850                34      0.1320      6.8699

 15      0.1769      4.0684                35      0.1316      7.0019

 16      0.1712      4.2453                36      0.1313      7.1335

 17      0.1661      4.4165                37      0.1310      7.2648

 18      0.1615      4.5825                38      0.1309      7.3958

 19      0.1575      4.7441                39      0.1308      7.5267

The definition of the labor supply model corresponds roughly 1-to-1 with user code in niqlow. There has

been no previous attempt to embed empirical discrete dynamic programming in a higher-level coding

environment for even a simple class of models. It is true that one-time code for what has been shown so far is

not complicated. Extensions of the model are shown which can be implemented with one or two lines in

niqlow that would otherwise involve rewriting of the one-time code. Before discussing them, consider a side

benefit of using a platform rather than purpose-built code: efficiency.

3.4 Efficient Computing
Dynamic programming suffers from the curse of dimensionality: the amount of work to solve a program

depends on the size of the state space  which grows exponentially in the dimensions of the state vector  How

big  can be before it is too big depends on many factors, including processor speed, solution methods and code

efficiency.

Θ θ.

Θ
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The labor supply model is a small problem, and a novice coder can implement it with straightforward code.

However, efficient code is not necessarily simple or intuitive to write. As a novice builds on the small problem

inefficiencies in their code can invoke the curse of dimensionality before necessary. When this happens they

need to discover the inefficiencies and rewrite their code. These inflections points, where a novice's progress

slows down while rewriting code, may determine when a project stops. That is, the point can be reached where

the marginal cost of finding and eliminating inefficiencies exceeds the marginal value of additional complexity.

This section discusses three ways efficiency is automatically accounted for in niqlow. Many other

strategies to increase efficiency, and to balance storage and processing requirements, are encoded in niqlow.

Models developed with niqlow do not avoid the curse of dimensionality, but they can delay it. Further, code

development becomes more linear compared to a naive approach which includes inflection points that

dramatically slow progress.

3.4.1 Time (and Memory) is of the Essence

An important distinction among dynamic programming models is whether the model's horizon, denoted , is

finite or infinite. More precisely, the issue is whether any regions of the state space are ergodic. If  is ergodic, 

simply separates today from tomorrow and the value of all states can affect the value at any current state.

Bellman's equation then implies a fixed point in the value function. If, at the other extreme, the agent is subject

to aging and  then only future states affect the value of states at  Bellman's equation can then be

solved backwards starting at  In between these extremes there are mixed clocks that include

stationary and non-stationary stages as well stochastic clocks such as the risk of early death.

A solution method could always assume that the DP problem is ergodic. The reason for not doing this is

practical: past states would enter calculations unnecessarily. A practical DP platform exploits the reduced

storage and computation implied by a non-stationary clock. It also must exploit methods to find fixed points

quickly in stationary models.

As seen in the labor supply code (Line 1 of [D]), the clock is set by SetClock(). The clock controls how

Bellman's iteration proceeds. If  is a stationary phase (so it is possible that ) then a fixed point condition

must be checked before allowing time to move back to  If, on the other hand,  is a non-stationary phase

then no fixed point criterion must be satisfied.

Further, empirical dynamic programming involves multiple stages which process (span) the state space, not

just Bellman iteration. For example, once the value function has been computed the model can be used for

simulation, prediction or estimation. These processes involve all values of time whereas Bellman's iteration only

involves "today" and possible states "tomorrow". This creates another complication. While iterating on

Bellman's equation the transition  should map into only the possible next time periods. But when

simulating outcomes the transitions must relate to model time.14

niqlow addresses all these issues for the user without re-coding. It accounts for differences in how

backward iteration proceeds and what future values are required to compute current values. It also uses different

linear mappings from state values into points of the state space depending on whether it is accessing the value

function or tracking model time.

3.4.2 Not all State Variables are Equally Endogenous

A state variable has a transition that determines its value in the next period depending on the current state of the

program and the action chosen. Empirical DP models contain some state variables that follow simple or

T

Θ t

t′ = t + 1, t.

t = T − 1.

t t′ = t

t − 1. t

P (θ ′;α, θ)

17



specialized transitions, such as the earnings shock  in the labor supply model. The agent conditions their choice

on the realized value of  but  has no direct impact on future states, including its own value which is IID. This

means less information needs to be stored about  than, say,  niqlow handles this by letting the user place

state variables in different vectors (really lists of state variable objects).

In the labor supply model  was added to the "exogenous" vector and  was added to the "endogenous"

vector. Figure 3 illustrates the full set of options for classifying state variables. It begins at the top where the

state vector contains generic state variables,  Each is filtered into one of five vectors based on its transition.

The two leftmost vectors contain variables for which the transition can be written  because they are IID.

The two rightmost vectors contain variables that are fixed for the agent because they do not transit at all: 

 In the middle is the vector that contains state variables that may be neither transitory nor permanent.

This is the endogenous vector  Naive code treats all state variables generically at the cost of wasted

computation or storage.

Figure 3. Sorting State Variables into Separate Vectors

There are two vectors to each side of  in the figure because specialized state variables differ in a

dimension other than their own transitions. The two vectors to the right of  in Figure 3 distinguish between

random and fixed effects and are discussed later. The general expression for the transition of variables in  is 

 The transition can depend on the action and all other state variables except those in  By

definition, a variable placed in  cannot directly affect other transitions. If an IID state variable can directly

affect the transitions of other state variables it can be placed in  That is,  (and ) satisfy conditional

independence but  does not.15
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The basic notation of a DP model involving , , and  appearing in -  must be extended to account

for the option to sort state variables into the five vectors:

That is,  potentially depends on everything except  which only affects  The primitive transition

depends on everything except  and  so the same is true of the expectations operator over future states. The

new categories of state variables allow niqlow to economize on storage and computing in large-scale DP

projects. By the same token, these extra vectors can be ignored when solving a small DP.

The minimum required information that has to be stored at  is a matrix of dimension , where 

 means the number of distinct values of the semi-exogenous vector. This space holds the value of actions 

 The full IID vector  is summed out at each value of  This requires only temporary storage for

utility 16

Once  is finalized this matrix can be rewritten with the conditional choice probability matrix 

 This re-use of the same matrix cuts storage in half. Further, the presence of group variables implies

looping over the state space  repeatedly. However, niqlow re-uses  for each value of  which can

drastically cut storage compared to code that stores each DP problem simultaneously.

Almost not other information about the DP problem is duplicated at each point . Otherwise large scale DP

problems would take up more memory than necessary. A key example of this conservation of information: only

one object of each state variable in the model is created. There is not a different object for a state variable

associated with each state. The value of a state variable  at the current state is the member s.v discussed

earlier.

3.4.3 Not All States Are Reachable

In the labor supply model the agent begins with 0 years of experience. States at  with positive values of 

are irrelevant to any application of the problem to data. There is no need to solve for  at these states,

although doing so causes no harm. A t  the only reachable states are  and  The other 38

values of  are irrelevant to the problem in the second period. The terms reachable and unreachable are used

for this distinction instead of feasible and infeasible. Whether a variable's value is reachable depends on the type

of clock and the initial conditions not just the set of feasible actions  If the clock were stationary, or if

initial conditions allowed for other initial values of  then these states would become reachable.

Dedicated code for spanning the state space for the labor would account for unreachable states by changing

the main loop, similar to this pseudo-code:

for ( t=39; t>=0; --t ) {

    for (M=0; M<=tt​​; ++M) {

         ⁞

        }

    }

Note the limits on the inner loop is t not 39. This is an example of hard-coded procedural programming for a

α ζ θ (2) (5)

Basic ⇒ Extended

U (α; θ) ⇒ U (α; ϵ, η, θ, γ)

vζ (α, θ) ⇒ vζ (α; ϵ, η, θ, γ)

P (θ ′;α, θ) ⇒ P (θ ′;α, η, θ, γ)

E α,θ V (θ ′) ⇒ E α,θ,η,γ V (θ ′, γ)

(13)
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particular kind of state variable appearing a specific model. To enforce reachability as the model is changed

requires inserting, deleting or modifying these loops. Since naive code has multiple nested loops to handle

different tasks the chance of mistakes or inefficiencies is always present.

niqlow accounts for unreachable states for many state variable classes when CreateSpaces() is and

it builds  For example, if the model has a finite horizon clock and includes an action counter like , then

only points that satisfy  are created. The user can override this if, for example,  is not the initial

condition. This one-time cost of deciding which states are reachable reduces storage requirements and lowers

the ongoing cost of each state space iteration that may occur thousands of times during estimation.17

3.4.4 Adding up Inefficiencies in Naive Code

Three possible code inefficiencies have been explained: generic transitions, duplicate storage of action value

and choice probability, and unreachable states. How large are these issues in the simple labor supply model?

The output in Figure 2 computes the savings and reports them to the user.

First, the naive state space would include  states. A value function for all 

states must be computed. However, niqlow would instead average the 15 values of the IID earnings shocks

and store only a single value at each  Next, niqlow would reduce  to  states through

trimming of unreachable states. And based on the finite horizon clock it would only store the value function for 

 points while iterating (one vector for  and one for ). Finally, a naive solution might store 

 numbers,  for action values and  for choice probabilities at each state (whether reachable

or not). Meanwhile, niqlow would store  values, overwriting  with 

The transition  is computed from the transitions of the state variable objects the user has added

to the model. A simple solution would express the transition at each  as a possibly sparse matrix: one column

for each point in  for  and a row for each feasible action at the current state. A naive approach would require

a  matrix at each  This is not totally naive because it uses the fact that all transitions are to the next

time period  Since  is IID its transition does not depend on  and since  is deterministic only two

values have non-zero probabilities in the transition. This means that computing  naively is a potentially a

large matrix calculation that includes mainly zeros. Instead, niqlow detects the endogenous transition in the

labor supply model involves only two states since the next state is either  or 18

3.5 Extensions
Suppose the labor supply model is just an initial attempt that the user wants to build on. They can add/modify

elements of LS or they can create a new class derived from LS keeping the base untouched. Some extensions

are discussed here showing the changes needed to effect them. The new derived class will be called LSext in

each case.

Θ. M
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[F]

First, suppose the earnings shocks should change from IID to correlated over time:

If the model were hard-coded in loops, this change would require a major rewrite. In niqlow it requires

two simple changes to Build(). First, replace Zvariable() on line 4 with e = new

Tauchen("e",15,3.0,<0.0;1.0;0.8>);. Now  contains an object that implements Tauchen's

approach to discretizing a correlated continuous shock. As before, 15 discrete values will be used. The

remaining arguments set the options of the discretization, including a correlation of  that appears in a

vector of normal parameters. Second, since  is no longer IID it is placed in  along with  (as on line 6 above

in Build()). Those two changes complete the modifications.

Most DP applications involve heterogeneous agents solving related but different dynamic programs. In

niqlow different DPs create different points in the "group space" denoted  A single DP problem is a point 

in this space. This was illustrated in Figure 1 which showed  to the right of  There are two types of

permanent heterogeneity, corresponding roughly to fixed and random effects in econometrics models. Fixed

effect variables are observed permanent differences in exogenous variables placed in the  sub-vector. Random

effect variables are unobserved permanent differences placed in . Memory is economized by reusing the state

space for each group. That is,  is shared for all values of  19

In a second extension the model will include gender and race variables and a discrete unobserved skill.

Three more lines of code in the build segment expands the model:

    LSext::Build() {

1.      Initialize(1.0,new LSext());

2.      LS::Build();

        ⁞

3.      x = new Regressors({"female","race"},<2,3>);

4.      skill= new NormalRandomEffect ("skill", 5);

5.      GroupVariables(skill,x);

        ⁞

        CreateSpaces();

    }

The template for LSext (not shown) would add static members for the new variables x and skill. Since

LSext is derived from LS they common elements are already available. However, Initialize() on Line 1

must receive a copy of LSext to clone over the state space. It cannot be sent a copy of the base LS class as was

done in the base model. CreateSpaces() can only be called once, and the new group variables must be

added to the model before it is called.

This is why LS::Build() did not include calls to Initialize() and CreateSpaces(). They

were placed in [C]. Now on line 2 LSext::Build() can reuse LS::Build() in [D] to set up the shared

elements. If the user expects to create further extensions built on LSext::Build then the first and last

statements in [F] would be moved to a different function so that derived classes can use it but initialize and

create spaces for its class.

et+1 = 0.8et + zt+1. (14)
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[G]

[H]

The Regressors class on line 3 holds a list of objects that act like a vector and can be used in

regression-like equations such as earnings. The columns can be given labels and the number of distinct values

are provided (in this case 2 and 3, respectively). T h e NormalRandomEffect on line 4 is like

Zvariable() except it is a permanent value rather than an IID shock. Earnings and utility would be modified

to these group variables (not shown).

Next, the user wants to add a choice to attend school or not ( ) and a state variable to track accumulated

schooling:  The agent cannot attend school and work in the same period, so the choice vector and

feasible set are now

Although initialization and space creation can only occur once, in between new variables can be added to

the vectors more than once. So the extended build is simply:

LSext::Build() {

    ⁞

    LS::Build();

    s = new BinaryChoice("att");

    S = new ActionCounter("sch",8,s);

    Actions(s);

    EndogenousStates(E);

    ⁞

    }

The base version added m to the action vector and this adds s to it. S is an action counter like M but limited to 8

years of additional schooling to reduce the size of the state space.

The agent must tell niqlow to impose the condition that the agent can either work or study but not both.

This creates an additional trimming of unreachable states:  In this approach the agent has to impose

this extra condition on reachable states. Later on a different approach is shown that will do this automatically.

The user replaces two built-in virtual methods with their version:

LSext::FeasibleActions() {

    return CV(m) .* CV(s) .== 0;

    }

LSext::Reachable(){

    return CV(M) + CV(S) <= I::t;

    }

The first returns a vector of ones and zeros that indicates whether an action  is feasible at the current state  It

says the product of each row of the action vector must be 0. Ox syntax allows the expression to closely match

the definition of  The second returns a scalar 0 or 1 to indicate whether the current state is reachable from

initial conditions. It needs to now what the current value of  is which up until now was not required. Since the

clock is stored internally niqlow places its current value in the I class, so I::t is always available as well as

other indices of the current state.

4. SOLUTION METHODS

s

S ′ = S + s.

α = ( s a ) ∈ A(θ) ≡ {α :  s ∗ a = 0} .

M + S ≤ t.

α θ.

A(θ).

t
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In niqlow a DP solution method is coded as a class from which objects can be created then applied to the

problem. The base Method class iterates over (or spans) the group space  and the state space  by nested

calls to objects to iterate over parts of the spaces down to iteration over the exogenous state vectors at each

endogenous state  These procedures are equivalent to the usual nested loops in purpose-built DP code.

4.1 Bellman Iteration
Solution methods can be categorized in different ways. One distinction is between brute force and clever

methods. Brute force methods, such as Wolpin (1984), iterate on Bellman's equation  to solve the model

while estimating parameters in . Bellman iteration is implemented by the ValueIteration class derived

f rom Method. The function VISolve() used in [B] is a short cut that creates an object of the

ValueIteration class, calls its solution function, prints out the results and deletes the object.

Bellman iteration itself depends on details of the model, most notably the model's clock. Algorithm 2

describes the algorithm and how allows properties of the clock to determine the calculations.

The form of the Emax operator itself also depends on the smoothing method, related to the presence of  in

choice values. If no smoothing terms are present, Emax is simply the maximum of  over  In

general, the solution method relies on code related to the base class the DP model to handle it.20

Algorithm 2. Backward Bellman Iteration

Let  denote the subset of states with the clock set to  Let SetP be a binary flag. Let  and  be two vectors of

equal size that depends on the maximum size of  and how many different values  can take on for the clock.

A. Initialization

1. Set t = T-1.

2. Set 

3. Span the state space to compute and store  at each 

4. Set SetP= TRUE if  is a non-stationary phase.

Notes. If the clock is stationary  starts at 0. Final values from a previous solution can be stored

in  instead of re-initialized.

Γ Θ

θ.

(5)

ψ.

ζ

v (α; ϵ, θ) α ∈ A(θ).

Θt t. V1 V0

Θt t′

V1 (θ ′) =
→
0 .

P (θ ′;α, θ) θ.

T − 1

t

V1
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B. Iteration

1. If  STOP. (Convergence has occurred and choice probabilities have been computed over )

2. Visit each point in 

a. Compute  and  for each action and each IID vector 

b. Compute  (or Emax) defined in , averaging over  Set  for each 

c. If SetP=TRUE, replace the matrix holding  with the choice probability  in equation .

3. Check convergence by calling the Clock's Update() function

4. Swap  and . Return to step 1.

C. Update (clock specific).

If SetP=TRUE

Set . (Convergence was achieved on the last iteration)

Otherwise

Compute 

If  then SetP=TRUE.

In purpose-built code, working backwards in  and spanning  would involve nested loops. In a language such

as FORTRAN the depth of the nest would depend on the number of state variables in  Adding or dropping

states requires inserting or deleting a loop.21

niqlow relies on a fixed depth of nesting independent of the length of vectors. The difference in the

update stage is handled by a method of the clock. One segment of code works for all types of clock. Further, the

same code handles tasks other than Bellman iteration. Each task, such as computing predictions, is a derived

class with its own function that carries out the inner work at each state. New methods can be implemented

without duplicating loops in different parts of procedural programming code.

4.2 Variations on Value Iteration
Several alternatives to Bellman iteration algorithm are currently implemented in niqlow. This section briefly

discusses some key ones. Summaries of the algorithms appear in the Appendix.

Most methods try to reduce calculations relative to brute force methods. Rust (1987) used Newton-

Kantorovich (NK) iteration, summarized in Algorithm A1. This strategy applies to a model with an ergodic

clock so the fixed point can be expressed as the root of a system of equations. It relies on the state-to-state

transition defined in  which is not needed for ordinary value iteration. A number of initial Bellman

iterations reduce , defined in Algorithm 2, below a threshold. Then NK starts to update according to a

Newton-Raphson step. Since NK is a class derived from ValueIteration it inherits the ordinary method

but also contains the code to switch.

t = −1 Θ.

Θt.

U (α; ϵ, θ) v (α; ϵ, θ) ϵ.

EV (5) ϵ. V0 (θ) = EV θ.

v(α) P ⋆ (α; θ) (7)

V0 V1

t = t − 1

Δt ≡ |V1 − V0|

Δt < ϵV I

t Θt

θ.

(10)

Δt
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[I]

Hotz and Miller (1993) introduced the use of external data to guide the solution method as described in

Algorithm A2. It is somewhat related to NK, because it delays or even skips value function iteration completely.

This class of methods is referred to as CCP (conditional choice probability) methods, because it uses observed

choices to obtain values of  in one step without Bellman iteration. The Aguireibiria and Mira (2002)

extension to the one-step Hotz-Miller technique is summarized in Algorithm A8. This effectively swaps the

nesting in Wolpin (1984): likelihood maximization changes utility parameters which are fed to  and then

updates 

The Keane and Wolpin (1994) approximation method, described in Algorithm A3, is also derived from the

basic brute force algorithm. It splits iteration over the state space into two stages. At the first stage it visits a

subsample of states to compute Emax defined in . Information is collected to approximate the value function

on the sample. At the second stage the remaining states are visited to extrapolate  from the first stage

approximation using information that is much less costly to compute than the full Emax operation. An example

of applying Keane Wolpin approximation is described in the replication section.

A user coding the Keane-Wolpin algorithm from scratch faces extensive changes to all nested loops. One

issue is that, as Keane and Wolpin (1994) report, the approximation can save substantial computational time but

is not particularly accurate. It can be useful to get a first set of estimated parameters more quickly and then

either increase the subampling proportion or simply revert to brute force. So a novice coder would likely copy

their brute force loops and then "hack" them to carry out the two stages. Now the code has two nested loops that

need to be kept in synch as the model changes or the brute force approach is abandoned altogether.

In niqlow the two algorithms can be compared by adding three lines of code while being ensured they are

solving the same model:

    ⁞

     vi = new ValueIteration();

     kw = new KeaneWolpin();

1    vi->Solve();

2    SubSampleStates ( 0.1, 30 , 200 );

3    kw -> Solve();

On Line 1 ordinary value iteration is used. Then on Line 2 the user creates a 10% subsample of reachable states

with a minimum of 30 and a maximum of 200 states at each . Line 3 then applies the KW approximation.

Output of the two solutions can be compared, and routines are available to compare the value function results

between two algorithms.

Another common problem combines Bellman iteration with the calculation of reservation values of a

continuous variable  where  and is IID over time. Like the choice-specific value shocks , values of 

 are neither stored nor represented as an element of the ordinary state vector. Instead,  affects equations in

the solution method and ultimately choice probabilities. With a few changes shown below the labor supply

model can be converted to a reservation value problem in niqlow.

V (θ)

P ⋆

V .

(5)

V (θ)

t

Z, Z ∼ G(z) ζ

Z G(z)
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Finding reservation values in niqlow is described in Algorithm A4. To use t, several conditions must

hold. First,  must to be one-dimensional (only one variable added to it); no smoothing shock  is included; no

state variables are placed in the  and  vectors; and choice values  must the single-crossing property.

The user must parameterized the model to enforce the last condition. The other conditions are enforced by

niqlow by requiring the reservation value method be applied to a model of the OneDimensionalChoice

class. This special class also creates dynamic (non-static) space for  Any IID state variables must stay in  so

that the value of  can be stored conditional on their values as well.

In some models not all states involve reservation wages. For example, if no offer arrives in a period of a

search model no reservation value is defined. Such states still have a value that enters the value of other states.

This is a condition determined by the model and denoted  for "continuous choice." The agent is making a

discrete choice at each value of continuous state variable. This is coded by finding reservation values for when

the continuous choice jumps. By default, all states of a OneDimensionalChoice model involves

reservation values, so . As with reachable states discussed above, the user can provide a

replacement Continuous() method to indicate whether or not  is computed at 

The Appendix explains how niqlow represents reservation value models and as an example converts the

discrete shock in the labor supply model into a continuous shock.

5. PARAMETERS, DATA, AND ESTIMATION

5.1 Overview
In estimation, parameters contained in  are chosen to match the external data. As usual, the current estimates, 

 are used as if they were the true parameters. Most empirical DP publications contain a section that

constructs the sample log-likelihood function or the GMM objective. The econometric objective seems totally

specific to the model and difficult or impossible to automate across models. However, niqlow automates the

computation of objectives built on economic models for a various structural techniques. It integrates an OOP

package for static optimization and root-finding algorithms with the DP methods already discussed.

Most empirical DP uses variants of the nested algorithm introduced in Wolpin (1984) and illustrated as a

two-sided feedback loop i n Figure 4. Given  the DP model is solved and outcomes (CCPs) produced.

Parameters are changed by a numerical optimization routine. It is this feedback that MaCurdy (1981) avoided by

approximating the Lagrangian rather than computing its value based on the current value of the regression

coefficients.

Figure 5 illustrates more layers of dependency. The top (or outer) level is an optimization algorithm that

controls  The parameters are tied to an econometric objective at the next level down. Levels 1 and 2

correspond to the two sides of Figure 4 which hides the layers below.

The objective relies on a data set (level 3) which must be organized to match the model to external data

allowing for issues such as unobserved states and measurement error. Model outcomes and predictions use the

DP solution method (level 4). Finally, the base of the pyramid is one or more DP models.

Each level of Figure 5 must interface with the adjacent levels. The DP model must also access the

structural vector  controlled at the top level. niqlow provides classes for each level and the connective tissue

between them. This integrated approach then supports automated construction of estimation problems. That is,

the user need not write code for higher levels and can focus on the code at the base.

α ζ

ϵ η v (α, θ)

z⋆. θ

z⋆

CC(θ)

CC(θ) = 1.

z⋆ θ.

ψ

ψ̂,ψ

ψ

ψ.

ψ

26



Figure 4. DP Estimation as a Two-Stage Cycle

Estimation methods such as Aguireibiria and Mira (2002)'s pseudo MLE and Imai et al (2009)'s MCMC

estimation avoid computations within stages and swap the order of levels in Figure 5. Dedicated purpose-built

code to implement them looks very different than Wolpin nested solution code. However, in niqlow the levels

of Figure 5 are modular. They can be re-ordered as long different connections between objects representing each

level have been written.

Previous sections used the labor supply model to demonstrate how to build up a DP as objects derived from

the Bellman class, which corresponds to Level 5 of the pyramid. DP solution methods represent level 4. This

section discusses how Levels 2 and 3 are represented in niqlow.
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Figure 5. Levels of Dependency in Empirical DP

5.2 Outcomes and Predictions
Data related to a dynamic program are represented by the Data class which has two built-in child classes. Data

can be based on either outcomes or predictions. An outcome corresponds to the point when all randomness and

conditional choices have been realized at a state. The complete outcome is a 6-tuple written as a function of

parameter vector  :

Some elements of  are never observed in external data. In particular, the continuous shock vector  and the

random effects vector  are treated as inherently unobserved. Only the agent knows these values at the point

they choose .

ψ,

Y (ψ) ≡ ( α ζ ϵ η θ γr γf ) . (15)

Y ζ

γr

α

28



Empirical work requires outcomes to be defined that mask components of the full outcome. Outcomes

must also be put in a sequence to create the path of an individual agent. Unlike reduced-form econometrics

empirical DP data cannot generically be represented as a matrix or even a multi-dimensional array of numbers.

Instead, in niqlow they are stored as linked-lists of objects of the Outcome class. The next section builds on

outcomes to define "generic" likelihood functions. The niqlow code is shown to estimate the simple labor

supply model without the user coding the likelihood.

A prediction, on the other hand, is the expected value of outcomes conditional on some information. The

basic prediction integrates over all contemporaneous randomness conditional on  and the permanent variables:

This is what an agent expects to happen (in a vector sense) given that  has been realized but the IID state

variables have not. The continuous shock  is integrated out by the choice probability 

As with outcomes, the information not available in the external data will not always match up with the

conditional information in . And predictions must be put in sequence to create a path. After discussing

likelihod Section (5.5) returns to prediction and how they are used to construct GMM objectives.

5.3 Likelihood
There are three types of likelihood built into niqlow depending on what aspects of the model are observed in

the data. The types are labeled F, IID and PO. Each is a version of the full outcome  in which more

information is masked or unobserved than in the previous version. The type of outcome must match up to the

external data which is denoted 

niqlow can determine which likelihood to apply automatically from the data read into an

OutcomeDataSet object. The appropriate formula is computed without further user coding. Since each level

of information relaxes the previous one, the PO algorithm could be applied to the other forms. Using the more

restricted forms when possible speeds computation.

5.3.1 F: Full Likelihood

Define  as the full information outcome from the econometrician's point of view. That is, it includes

everything but these elements of :

where  denotes missing information.

To build a likelihood function using full information, first assume there are no random effects variables so

it is irrelevant that  is missing in . Then the likelihood for a single single observed outcome is the

probability that the observed action would be taken:

This compact expression requires some explanation. The superscript has shift to  and the model outcome is

shown with no superscript to avoid duplicate notation. On the right hand side is the conditional choice

probability. This takes one of the forms in - .

θ

E [Y (θ; γr, γf)] ≡ ∑
η
∑

ϵ
∑

α∈A(θ)
fη(η)fϵ(ϵ)P

⋆(α; ϵ, η, θ, γr, γf)Y (ψ). (16)

θ

ζ P ⋆.

(16)

Y

Ŷ .

Y F

Y

Y F (ψ) ≡ ( α ⋅ ϵ η θ ⋅ γf ) , (17)

⋅

γr Y F

LF ( Y (ψ̂) ;  Ŷ ) = P ⋆(α̂; ϵ̂ , η̂ , θ̂ , ⋅, γ̂f). (18)

LF

(6) (9)
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Since the observed outcome includes the action and all state vectors, their data values are inserted into the

conditioning values. niqlow integrates data and predictions so it inserts the observed values for the user. The

model and external versions of the data illustrated in Level 3 of Figure 5 correspond to  and 

respectively. Calculations such as  then enter an overall objective at Level 4.

5.3.2 All But IID Likelihood

Data rarely contain the full information outcome of a model as defined here. More common is the next case in

which  is unobserved. For example, in the labor supply model the earnings shock  would probably be

unobserved. However, it is typical to observe additional function(s) of the full outcome to help identify

parameters of the model. In that case, earnings is observed in the agent worked. Extra information of this form is

sometimes referred to as "payoff-relevant variables." In niqlow they are referred to as auxiliary outcomes, and

they are all placed in a vector 

This leads to the third outcome type:

The auxiliary outcomes have been added to the front of the outcome. The agent has more information than 

 so it is unnecessary for them to condition choices or transitions on  On the other hand, when information in

the data is less than the agent's,  can contribute to the likelihood.

Both the smoothing shock  and the IID state  affect the DP transition only through the choice of  This

means the IID outcome is sufficient to predict the next outcome as the agent would, namely using 

A likelihood for a sequence of outcomes for and individual can be constructed that integrates only over the IID

elements. Note that the other IID vector,  does not satisfy this condition because it can directly affect the

transitions of other state variables.

The likelihood of an outcome when  is unobserved is an expectation of 

The choice probability component is weighted by the conditional probability of  given that it generates the

observed value of  In this case  can be discontinuous in  In the case of the labor supply model only

observed earnings on one of the 15 points of support for  would have positive likelihood. Further, if the set of

discrete values of  consistent with the model changes with a small change in  it causes a jump in likelihood.

It is standard to add measurement error to observed auxiliary values (and other states or actions) in order to

smooth out the IID likelihood. The measurement error is ex post to the agent's problem so it enters only at this

stage:

Here  is the likelihood contribution for the data given the model's predicted value for the auxiliary vector 

As shown below, niqlow includes built-in classes to add normal linear or log-linear noise to any outcome's

likelihood contribution. Other types of measurement or classification error can be created by creating a class

derived from the built-in Noisy class.

5.3.3 Path and Panel Likelihood

Y (ψ) Ŷ ,

(18)

ϵ e

y.

Y IID(ψ) ≡ ( y α ⋅ ⋅ η θ ⋅ γf ) . (19)

y y.

y

ζ ϵ α.

P (θ ′;α, θ) .

η,

ϵ LF :

LIID( Y (ψ̂) ,  Ŷ  ) = ∑
ϵ
f (ϵ | y = ŷ)LF (Y , Ŷ ) . (20)

ϵ

y. (20) ψ.

e

ϵ ψ

L( Y (ψ̂) ;  Ŷ  ) = P ⋆(α̂; ⋯)f(ϵ)Ly(ŷ , y). (21)

Ly() y.
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So far we have considered a single decision point in the DP model. In general, a path of outcomes for an agent

is observed. The likelihood must account for stochastic transitions from one state to the next along the path.

Denote a single outcome on the path as  and the path itself as

The index  is not necessarily the same as model time  and since  is an element of  it does not need to be

specified separately. The corresponding observed path is  with  decisions observed. Random effects

in  create permanent unobserved heterogeneity along a path which must be accounted for now.

Le t  be the probability distribution of the random effects vector. The distribution can depend

implicitly on  and  Multiple paths with the same fixed effects are stored in a "fixed panel." These fixed

panels are concatenated across  in a "panel." A panel might hold simulated data only, but if external data will

be read in then it is represented in niqlow by the OutcomeDataSet class.

Suppose the information available at a single decision is either full (F) or everything-but-IID as defined

above. Let  indicate which type of data are observed. Then the likelihood for a single agent's path

is

The rightmost term is the model probability for observed state-to-state transitions which only applies before the

last observation on the path.

Efficient computation and storage of both the DP solution and this likelihood requires some coordination.

And the placement of the "nested" solution algorithm must be exact. When there are fixed effects the model

must be solved for each combination of  and  Let there be  different combinations of groups. As

discussed earlier, the endogenous state space  is not duplicated for each combination of permanent values.

Otherwise storage requirements would multiply -fold. On other hand, this means each combination must be

fully processed for a given structural vector  before proceeding to the next group. The fixed panel must

initialize a vector to contain  for each of its members and then store partial calculations for  Only when

the outer summation in  is complete can the log of the path likelihood be taken and summed across paths to

form the log-likelihood. This must then be repeated for each fixed effects vector.

5.3.4 2-Stage Estimation

A version of ML estimation commonly known as two-stage estimation is available in niqlow (Algorithm 6).

Since it was used in Rust (1987) two-stage estimation has been used to reduce the computational burden of

maximum likelihood estimation. Parameters in the structural vector  must be marked whether they only affect

the transition of endogenous states or not. Consistent estimates of those parameters can be found without

imposing Bellman's equation using the observed transitions.

More generally, in two-stage estimation each parameter is given one of the three markers by the user. The

full parameter vector then contains three lists (sub-vectors):

Ys

{Y } = (Y0, … , YT̂ ) . (22)

s t, t θ

{Ŷ } T̂ + 1

γr

g(γr)

γf ψ.

γf

τ ∈ {F , IID}

L( {Y } (ψ̂) , {Ŷ } ) =

∑
γr
g (γr) ∏T̂

s=0
{Lτ(Ys, Ŷ s) × [P (θ̂s+1; α̂s, η̂s, θ̂s)]I{s<T̂ }} .

(23)

γr γf . G

Θ

G

ψ

L() γr.

(23)

ψ

ψ = (ψ0 ψp ψu ) . (24)
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The first,  contains parameters held fixed throughout estimation, including weakly identified parameters or

ones set through "calibration." The second vector,  includes parameters that affect only transitions, 

 The final vector,  contains parameters that affect utility and the discount factor  if it is

estimated.

At the first stage only  is estimated using the limited information path likelihood:

This is the same as  except "1" replaces the model's generated CCP. The likelihood conditions on the

observed choice can be computed without solving Bellman's equation for  The rest of the model setup is still

required to compute the outcome-to-next-state transitions along the path. After estimating  they are fixed at

those values and  is made variable. The likelihood reverts to .

Algorithm 5. 2-stage Estimation.

1. Set weakly-identified or other fixed parameters (contained in ).

2. Set initial values of  and ensure the optimizing algorithm does not vary other elements of the overall vector.

Do not iterate on  while maximizing the partial likelihood  by varying 

3. Fix all elements of  except the  vector. Iterate on  to compute CCPs and use the full path likelihood 

.

4. [Optional] Free elements of  as well. Iterate on the full likelihood to gain precision and compute correct

standard errors.

As the replication of Rust (1987) in Section (6.2) demonstrates, niqlow implements 2-Stage Estimation

without modifying the underlying code. The user declares the objective as two-stage and sends lists of estimated

parameters for  and  The user code sets the stage and estimates accordingly.

5.3.5 Type PO: Partial Observability

Implicit in  are two assumptions. First, the initial conditions for the agent's problem are known up to 

Second, the full action and endogenous states in  are observed so that the likelihood only integrates and sums

over IID values,  and  Calculation of  can then proceed forward in time and the path, starting with 

More generally, partial observability of the outcome creates a difficulty for computing the path likelihood

forward in time. Let  be a state variable in the endogenous vector  that is unobserved in the data at outcome 

 It could missing systematically as a hidden state or incidentally for this outcome alone. It has a distribution

conditional on past outcomes that can be computed moving forward. So the contribution to likelihood at  can

be computed by summing over possible values of  weighted by its conditional distribution. However, the

distribution at  depends on the distribution of  at  So the distribution must be carried forward in the

calculation. Each unobserved value creates more discrete distributions to sum over.

ψ0,

ψp,

P (θ ′;α, θ) . ψu, δ

ψp

L1st( Y (ψ̂) , Ŷ  ) = ∏T̂

s=0
1 × P(θ̂s+1; α̂s, θ̂s)I

{s<T̂ }. (25)

(23)

P ⋆.

ψp

ψu (23)

ψ̂0

ψ̂p

V () (25) ψ̂p.

ψ̂ u V (θ)

(23)

ψ̂u

ψp ψu.

(23) γr.

θ

ζ ϵ. L s = 0.

q θ

Ys.

s

q

s + 1 q s.

32



Even if all the unobserved states are tracked and their joint distribution across missing information

computed, this can still be inadequate to compute the correct likelihood. With  missing at  suppose also that

the future point  it equals  in the data. However, that value happens to have zero probability of

occurring if  at  For example, if a stock was only at  at  it may be impossible for the stock to grow to

 by 

Since  was unobserved at  the forward likelihood included  in the sum and the distribution. Now the

contributions of paths that start at  must be eliminated between  and  The likelihood must sum over

only unobserved states conditional on past observed outcomes and future consistent outcomes. In general there

is no way to calculate the likelihood forward when endogenous states or actions are unobserved.22

Ferrall (2003) proposed Algorithm 6 to handle partial observability. Instead of computing the likelihood of

a path going forward in time, it is computed backwards starting at the last observed outcome  At any point 

the likelihood computed so far is not a single number. Instead, likelihood is a number attached to every state at 

that is consistent with the observed data from  forward. This avoids the trap of following paths forward that

end up inconsistent with later outcomes.

A one-dimensional vector of likelihoods, denoted  contains the information to track likelihood

contributions farther in the future. If, at a particular , the IID-level outcome is observed then this vector

collapses to a single point. Encountering missing values for a smaller  will expand the  to vector again.

The algorithm works for the special cases of Full or IID observability as well, but moving backwards is slower

than algorithms that can move forward in . When data are read into niqlow the user flags which variables are

observed, and all other variables are treated as unobserved. As the data on the observed variables is read in

incidental missing values are also detected. Then each observed path can be assigned one of the three tags 

 and the most efficient path likelihood is then computed.

q Ys,

s + k q⋆⋆

q = q⋆ s. q⋆ s

q⋆⋆ s + k.

q s q⋆

q⋆ s s + k.

T̂ . s

s

s

LPO
s ,

s

s LPO
s

s

τ ∈ {F , IID,PO}
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Algorithm 6. Partial Observability Path Likelihood

Initialization

Set  Initialize  Define sets of outcomes  and , initialized as empty.

Iteration

1. Construct  as outcomes consistent with the current observation on the path, 

Here " " means that the model outcome has the same values as the data.

2. For all , define

Transitions inconsistent with observations later in the realized path are zeroed out.

3. Transition probabilities are multiplied by the conditional likelihood: ,

4. Decrement s. Swap  and 

5. If , return to step 1. Otherwise, handle initial conditions.

Initial Conditions

a. With simple aging  corresponds to the first observed decision period,  If  then the same

process as above is continued but all outcomes are consistent with the data (because there is no data for 

). If  and  is a singleton, then its likelihood is the path likelihood. Otherwise, average the

likelihoods of outcomes in  to collapse the path likelihood to a scalar.

b. If the clock is ergodic then optionally weight initial outcomes on path with the stationary distribution defined in

.

5.4 Estimating the Labor Supply Model
Consider using external data to estimate the parameter vector  of the labor supply model. For simplicity other

parameters are held fixed so we can set structural vector as  Data for individual  is a path of the form:

s = T̂ . LPO
s+1 = 1. Υ0 Υ1

Υ0 Ŷ s :

Υ0 ≡ {Y : Y ∈ Ŷ s} .

∈

Y ∈ Υ0

P(Y ′;Y ) = { ∑θ∈Y ∑α∈YP
⋆(α; θ)LPO

s+1(Y ′)  if Y ′ ∈ Υ1

0  otherwise.

∀Y ∈ Υ0

LPO
s (Y ) ≡ LIID (Y , Ŷ s) ∑

Y ′P (Y ′;Y ) .

Υ0 Υ1.

s ≥ 0

s = 0 tmin. tmin > 0

t < tmin tmin = 0 Υ1

Υ1

(11)

β

ψ = β. i

{Ŷ}i

= { (ms,M
o
s ,Eo

s )  }i
s=0,…,T̂

i.
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[J]

[K]

[L]

All work decisions are observed and there are no gaps in model time ( ). Actual earnings,  depend

on the observed work choice:

The earnings shock  is unobserved when not working. It could be inferred from  except observed earnings, 

 include log-linear measurement error:

The auxiliary vector  appearing in  contains  The observed path does not necessarily start at . If it

does, then observed experience  equals actual experience because it can be computed from past work

decisions before sending the data to niqlow. Otherwise, we'll assume that  equals initial experience

(acquired perhaps through retrospect questions). In this case  is the likelihood for one observation with type 

To bring the simple labor supply model to this data, derive from LS a new class:

class LSemp : LS {

 static decl obsearn, dta, lnlk, mle, vi;

 static ActualEarn();

 static Build();

 static Estimate();

    }

Since LS is the parent class all its components are also in LSemp. LSemp does not declare Utility because

its utility is the same as LS. The model is built using the code already included in the base LS class:

    LSemp::Build() {

1.      Initialize(1.0,new LSemp());

2.      LS::Build();

3.      obsearn = new Noisy(ActualEarn);

4.      AuxiliaryOutcomes(obsearn);

5.      CreateSpaces();

        }

The required Initialize() function is called on line 1. The only difference with the earlier call is that

the state space  consists of LSemp objects not LS objects. The empirical version of the model shares the same

set-up as the earlier version, so LS::Build() can be called on line 2. Observed earnings is created as an

object on line 3. The Noisy class adds measurement error to the argument, actual earnings  coded as a static

function:

LSemp::ActualEarn() {

    return m->myEV() ? Earn() :.NaN;

    }

Line 4 of [K] adds obsearn to the auxiliary outcomes, which makes it an element of the  vector introduced in

.

ts+1 = ts Ea,

Ea = {E()  if m=1
.  if m=0.

e Ea

Eo,

Eo = eνEa, ν ∼ N(0,σ2).

y (19) Eo. t = 0

M o

M o
0

(23)

τ = IID.

Θ

Ea

y

(19)
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[M]

The function for actual earnings requires some explanation. It uses Ox's .NaN code for missing values

when not working ( ). This is determined by m->myEV() instead of, say,  which was explained

earlier as returning the current value of m. That is used during Bellman iteration when  is taking on

hypothetical values.

At the estimation stage, however, the DP model must use the external value of actions to provide a

predicted value of earnings. This was seen in the likelihood  where the observed action  enters the choice

probability. niqlow handles this through its Data-derived classes that set values shared with the DP model.

myEV() is another method of action and state variables. It retrieves the realized value of the variable if called

during a post-solution operation such as likelihood calculation.

In ordinary econometrics, such as panel IV techniques, an endogenous variable is its own value. Only the

value in the data is relevant. The need for CV() and myEV() reflects the complexity of nested estimation

algorithms handled by niqlow and illustrated in Figure 5. At the solution stage variables must take on

hypothetical values to solve the model. At the estimation stage values from the external data set must be inserted

into the contingent solution values such as the CCP.

Estimate() contains the code to compute the MLE estimates of :

    LSemp::Estimate() {

1.      beta = new Coefficients("B",beta);

2.      vi = new ValueIteration();

3.      dta = new OutcomeDataSet("data",vi);

4.      dta -> ObservedWithLabel(m,M,obsearn);

5.      dta -> Read("LS.dta");

6.      lnlk = new DataObjective("lnlk",dta,beta);

7.      mle  = new BHHH(lnlk);

8.      mle -> Iterate();

        }

On line 1  is created as an object derived from the Parameter class designed to be manipulated by

optimization algorithms. Like state variable objects, the value of the parameter is the v member of the class.

Different classes constrain parameters in ranges of real numbers and vectors of related parameters like 

In the basic model  was an ordinary vector. Its value was set inside LS::Build() in [D]. In this version

the goal is to estimate  from data. So on line 1 its value is replaced. It now holds an object of the

Coefficients class. This is designed to hold a vector of freely varying parameters like regression

coefficients. A constant vector is needed as default for starting values. Since beta contains a vector before this

line, its current value can be sent as the initial vector. By the end of line 1 that vector is stored internally in the

object and beta now contains an object not a vector.

The code for the true earnings function LS::Earn() in [E] already included CV(beta). So when this

model is estimated it will retrieve the values from the parameter object under the control of an optimization

algorithm.

m = 0 CV (m),

m

(18) α̂

β

β

β.

β

β
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In the first use of the labor supply model the simple VISolve() function carried out Bellman iteration

once. Its use of a solution method object was hidden from the user. Now that the solution method is nested

within a likelihood calculation it is not enough. The vi member holds the value iteration object (line 2).

Somehow this object must be embedded (nested) within the estimation procedure.

Lines 3-5 in [M] create the data set object. As illustrated in Figure 5 this handles both external data and

model predictions. The dataset object also needs to know which model outcomes are in the external data

(implying other variables should be treated as unobserved). Line 4 says that , , and observed earnings are in

the data and will have the same labels as their objects. Now the data can be read from a Stata file on line 5. A

column in the external data must hold the ID of each path and the value of  so that a panel of paths can be

created. Since they were not set explicitly in the code, the default labels will be used and must appear in the data

file to avoid an error. As Read() reads in the data it determines whether there are missing values along the

path and what type of variable is missing (an element of  versus other vectors that imply partial observability.)

By line 6 the class of likelihood function for each path in the data has been determined.

The DP solution method created on line 1 of [M] has already been embedded at line 3, because vi was

sent as the second argument when dta was created. Whenever a new likelihood evaluation is needed vi-

>Solve() will be called to re-solve the model. This is the "nesting" of the solution algorithm inside the

sample likelihood.

Line 6 creates the econometric objective. DataObjective expects a data set such as dta to be sent to

it. It has a built in method to compute the log likelihood. The objective is the "home" of the parameters to be

estimated, 

Lines 7 creates the algorithm to carry out the outer iteration of maximizing the likelihood. Note that the DP

model is analogous to the econometric objective lnlk, and the Bellman solution method vi is analogous to the

optimization algorithm. One difference is that the user's code must send lnlk to the optimization algorithm,

whereas the value function method does not take an object.

This asymmetry is caused by the fact that only one DP model can exist at any point in the execution of the

program and there is not a dynamically declared object that encapsulates it. Earlier it was discussed that

niqlow relies on static variables in order to delay the curse of dimensionality in terms of storage/memory

required by the state space  Thus, vi does not need to be told which DP problem to solve because there is

always only one. The dynamic objects are the points in the state space each of the user's Bellman-derived class.

However, the base class for an objective like lnlk uses no static variables so multiple objectives may be

defined if necessary, including nesting of objectives within other objectives. But mle must know its job is to

maximize lnlk and not some other objective.

This example uses the BHHH algorithm (line 7), which is Newton's method except the outer product of the

likelihood's Jacobian matrix is used to approximate the Hessian. This happens without any special coding from

the user because any Objective object has two methods for evaluating itself. One returns a scalar. The other

returns a vector to be aggregated into the scalar. In this case, lnlk returns the vector of log-likelihoods for each

observation. In turn BHHH uses the vector version to compute the matrix of partial derivatives with respect to 

and then the outer product.

m M

t

ϵ

β.

Θ.

ψ
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Line 8 in [M] calls the Iterate() method of the BHHH object to maximize the log-likelihood starting at

the initial values of  Values read in from a file can supplant the hard-coded starting values of beta. This is

analogous to Method classes for different DP solution methods, each having a Solve() function to carry out

the task on demand.

5.5 Summary of the Estimation Code
An additional 14 lines of executable code were used to estimate the simple labor supply model. The chains of

interactions in the code segment above matches the stacking illustrated in Figure 5. The DP model itself (the

base level) is implicit, because only one state space can be defined. Next comes the solution method (vi) for

solving the DP. Then a data set object (dta) to store the panel of external data and to interface with the solution

method.

Next, an econometric objective (lnlk) holds parameters (beta) and acts as an interface between dta and

the optimization algorithm (mle). When evaluating the likelihood the external side of the data is inserted into

the automatically generated objective based on conditional choice probabilities and transitions. The myEV()

function used in ActualEarn() matches the data and its theoretical counterpart and handles integration over

unobserved components when necessary.

The algorithm mle is at the top of the pyramid. Its Iterate() method modifies parameters of the

objective which in turn will call the solution method to update the DP's prediction and compare them to the data

using the log-likelihood function as the metric. The algorithm does not know how the parameters it is choosing

enter the problem, but the user's code ensured that their current value would enter the DP problem by using

CV(beta) on line 2 of [E] and passing beta to the objective on line 6 of [M]

The user's code could substitute different classes at each level of the process without changing any other

code. The user's code can create different solution methods, load different data sets, or compare different

optimization algorithms on the same objective. None of this requires changing the underlying code for the DP

problem as long as CV() and other preparations discussed above have been used to make the code ready for

alterations.

5.6 Moments and Predictions
A basic prediction denoted  was defined in  that integrates current IID randomness and conditional

choices. Predictions always integrate over permanent random effects ( ) since they are treated as unobserved.

Predictions always condition on permanent fixed effects (  since they are treated as observed. Thus there is a

single predicted path for each  whereas multiple outcome paths (used for MLE and data simulation) can be

generated and/or observed in data for each . Concatenating prediction paths across different fixed effects

produces a prediction panel.

One reason to use predictions (GMM) instead of outcomes (MLE) is limited access to confidential data on

individuals. The confidential data may be housed on a secured data network that lack the computing power the

empirical DP requires. If the researcher is allowed to take averaged data out of the secure system these moments

can be used to estimate 

5.6.1 Sequence of Predictions

β.

E[Y ] (16)

γr

γf)

γf

γf

ψ.
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To simplify notation, the description here will focus on only the endogenous state vector . Begin with an initial

distribution over states, denoted  For example, if the initial state is given as  then this would simply be

a vector of 0s and one 1:  Or, in a stationary environment the initial conditions might be

the stationary distribution  defined in .

Now consider the distribution of  after  decisions,  This distribution starts from  and then

accounts for the distribution of actions at 0 and the subsequent states at  and so forth until  actions have been

taken. The prediction is the expected outcome over optimal conditional choice probabilities:

Computationally this involves a loop over the state space and an inner product of the outcome and

conditional choice probability vectors. Within the same loop, the distribution over states in the next period can

be computed recursively.

First,  is initialized as a vector of zeros. Then it is updated with:

Once the prediction and next stage's distribution are computed,  is incremented and the process repeated

to form a path of predicted outcomes of a desired length.

Unlike path likelihood, which must deal with missing information along the path,  can be treated as the

full outcome. Figure 2 displays one element of  vector, namely the action  along the path prediction for

the simple labor supply. The full vector would also include the state  The exogenous states would by

definition have time-invariant predictions and are not recorded in  However, they can enter auxiliary

outcomes which would be included in the prediction.

The external data may have missing information. Continue to define  as the data but now is not an

individual path but an average across ex-ante identical agents sharing a value of  It includes only including

observed components of the outcome. To match empirical moments (averages) to the model prediction , a

masking matrix  selects columns of the full outcome that are observed at stage  Then the differences

between the predicted moment and the empirical moment is

Masking is applied to the predicted moment only to make it conform to the external data vector.

5.6.2 Calculation or Simulation?

When the state space is large, computing the prediction is costly, mainly because of the need to compute  by

looping over all states. Simulation avoids computing  Further, simulation code is fairly simple and fast: draw

a  from  and an  from  Compute  as an unbiased estimate of  Then

draw a simulated realization  from  Repeat over the length of the observed paths. The

vector of realized outcomes is one simulation matching to the observed data. Repeat the path simulation

multiple times and average the outcomes to increase precision of the simulated estimate of 

θ

Q0(θ). θ0

Q0(θ) = I {θ = θ0} .

Q0(θ) = f∞(θ) (11)

θ s Qs(θ). Q0()

1 s

Es[Y ] = ∑
θ∈Θ

∑
α∈A(θ)

P ⋆(α; θ)Qs(θ)EY (α, θ). (26)

Qs+1

Qs+1 (θ ′) = Qs+1 (θ ′) + ∑
α∈A(θ)
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As with simulated MLE, simulated moments can be discontinuous in estimated parameters. For example,

suppose a structural parameter (an element of ) affects the transition of unobserved states. Then 

will change in response to the parameter. On the next simulation a small change in this parameter will either

change the simulated next state or not, which creates a small jump in the objective. If, on the other hand, the full

distribution  is computed then predicted outcomes remain continuous in estimated parameters as long as 

 and  are continuous in 

A s niqlow includes tools to simulate realized paths it is possible to construct simulated method-of-

moment objectives to estimate  However, the base code uses direct computation of  to ensure continuity at

the cost of greater execution time.

5.6.3 GMM Objectives

Returning to the differences between averaged data (moments) and predictions defined in , concatenate

them along an observed path:

To form an econometric objective the vector of differences is aggregated into a scalar value. There are 3 types of

GMM objectives built into niqlow. The simplest case is a weighted sum of all differences:

The negative sign appears because objectives are maximized. The user specifies the weights  to place on each

observed moment  at each point  including an option to set all weights equal. Otherwise these weights can be

ad hoc "importance" weights. Further, the number of observations averaged at each  can be read in so that

weights also account for precision in the empirical moments. If the model includes different observed group 

there is a summation over their separate values of in  and the subsequent forms.

The next option is to specify a matrix or matrices to account for contemporaneous correlations between

observed moments:

Finally, efficient GMM requires that a weighting matrix for the full path of moment differences:

The efficient matrix  can be computed from individual data if available and the empirical moments are

computed from them. However, this is not helpful if GMM is used because only moments over individual paths

are available. niqlow includes procedures that will simulate individual paths and then compute  from them

using a first-stage (consistent but inefficient) parameter vector.

The previous section discussed all the code involved in estimating the labor supply model using MLE.

Much of that code would remain if GMM were used instead. The key differences would be a single statement:

ψ P (θ ′;α, θ)

Qs

P (θ ′;α, θ) P ⋆(α; θ) ψ.

ψ. Qs

(28)
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    momdta = new PredictionDataSet(UseLabel,"avgdata",vi);

The first line creates a prediction data set and specifies that vi is the nested solution method object to be called

whenever the objective will be re-computed. This also specifies the default weighting scheme in . The

statements to match outcomes to data columns, create the data objective and read in the data are essentially the

same as with MLE.

Suppose parameters have been estimated using  as first-stage consistent but not efficient estimates.

Then this line:

momdta -> SimulateMomentVariances(1000);

uses 1000 simulated individual paths of the predicted outcomes (using the first stage parameters) to compute the

variance matrix of all observed moments along the path,  for each  These matrices are stored in a file. (If

the individual level data are available then the empirical covariance matrices of outcomes being averaged in the

moments/predictions can be computed directly.) Then, for the second stage the data set would now specify

intertemporal weights:

    momdta = PredictionDataSet(UseLabel,"avgdata",vi,0,INTERTEMPORAL);

As with MLE example in the previous section, niqlow can construct GMM objectives automatically for a

wide class of problems with no user coding beyond defining what is observed in the data.

5.7 Roadblocks
Return to the question posed earlier: What does the main econometric work of MaCurdy (1981) now take one

Stata command but Wolpin (1984) still requires purpose-built code? MaCurdy (1981) found ways to keep data,

model predictions, and estimated parameters from having multifaceted roles. Wolpin could not do this, in part

because the binary choice he analyzed does not concentrate future value into a Lagrange multiplier on a budget

constraint. And estimated parameters are not just coefficients on observables. They enter the value function and

therefore choice probabilities for all choices over the lifetime. The choice probabilities are contingent, and the

observed choices determine which one enters the likelihood. In nearly 40 years of published research no

software emerged to assemble a DP model and derived its empirical content from pre-defined components when

faced with these complex interactions. Instead, all or nearly all work continued to use purpose-built code within

the procedural programming (PP) paradigm.

For techniques such as panel IV used in MaCurdy (1981), the data and estimated parameters do not interact

with model predictions in the same way. The observed hours of work, while a choice within the lifecycle model,

really only enters the model as an observed data point. There is no need to track contingent other choices that

would alter future states as in a discrete DP model. Thus, hard-wired code for panel IV and other similar

methods could move towards an OOP approach as followed by Stata, R and other current platforms.

(30)

(30)

Ω, γf .
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Why did a similar platform for empirical DP not arise from PP code? One reason outlined above is that

elements of DP models, such as state variables, encode more information than a current value. A state variable

also has a transition which potentially depends on actions, other states and estimated parameters. That

information has to pass from the user's code to built-in routines. Further, efficient computation dictates that

details of the state transitions should alter the loops that solve Bellman's equation on the state space. For

example, only states reachable or relevant to time  should enter value calculations at . In addition, a single

object, such as an action vector , plays multiple roles. One role is in computing utility at a state while solving

the model. Another a role is helping to determine the transition of state variables affected by the actions. The

action vector takes on a third role when, for example, the observed choice determines which CCP enters the

likelihood.

Shortest-path PP code leads to "hard-wiring" these complex elements. Changing aspects of the model

involves rewriting the hard-wired code. So one particular model cannot be turned into a template for any model.

niqlow demonstrates that the OOP paradigm can account for these multi-faceted roles without requiring the

user to re-program the innermost code.

There are several reasons why researchers coding empirical DP never adopted OOP in the past so that

perhaps a more general platform might emerge from a single model. First, to this day, empirical DP remains

"compute bound," meaning processor speed is a limiting factor to the scale of the model. For reduced-form

estimation researchers could move to Stata even when it was restricted in many ways compared to, say,

FORTRAN. They could do so because by the 1980s these techniques were not compute bound. Meanwhile

empirical DP continued to rely on FORTRAN or other PP languages to produce fast but single-purpose hard-

wired nested loops. And once estimation was complete there is little incentive to return to the code and make it

general, which would be difficult anyway for the reasons give above. So when options to use OOP in other

languages became available, researchers comfortable with OOP would have seen little added value for their

purpose-built code.

To overcome the roadblock niqlow could not generalize purpose-built code. Instead it required an OOP

representation of required elements of a DP model before solving a single model. Classes encode features of

each element independent of the rest of the model. This and other aspects of the package create computational

overhead compared to, say, nested loops in FORTRAN. However, as discussed in Section (3.3), efficiencies in

the design are coded once-and-for-all rather than re-coding hard-wired loops only when inefficiencies of simple

code become a limitation. Further, integrated data and optimization tools, as illustrated in the estimation of the

simple labor supply model, further reduces specialized coding.

t t

α
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The higher fixed cost of carrying out a single "structural" estimation limits entry and keeps published

results opaque to most readers. Meanwhile, published reduced form work is often accompanied by Stata do files

that can be tweaked easily to carry out related work or eventually converted to native commands. Adoption of

niqlow is still challenged by computational concerns. Custom-built and expertly-tuned code for a single

problem will always finish quicker than equivalent code in niqlow if the starting line for the comparison is the

start of program execution. When the starting line is pushed back to the first attempt to explain some economic

behavior as a dynamic program, then time-to-completion is likely to even out and perhaps favor niqlow.

Novice researchers appear to grossly underestimate the time required to produce empirical DP results even when

carried out by experienced researchers. If their forecasts were more accurate the short-term gains from hard-

wired code may seem less important. Further, as argued above, the inflection points in adding complexity to the

model are straightened out by niqlow, so projects may have fewer footnotes stating that obvious extensions

were not made because of computational cost.

The final component of the roadblock is not building on the past. A researcher who has published an

empirical DP project can share their custom and finely tuned code for their problem. This code may not run on

the novice coder's system, and the code is unlikely to include documentation or instructions for adopting the

code for other problems. This roadblock is lowered by niqlow because it is open source, fully documented,

and implemented in a free mathematical language. Learning from past work directly by modifying code that

replicates existing DP results becomes possible.

6. REPLICATIONS

Replicating published papers in niqlow helps verify aspects of the code and demonstrates it is a viable

platform for building on existing work. As Hammermash (2007) argues, systematic replication exercises in

econometrics have proven to be difficult. They receive mainly lip service. Replication of empirical DP papers

poses some unique challenges and at least one advantage compared to other fields. The main challenge is

reconstructing the layers of computation illustrated in Figure 5.

One advantage for replicating empirical DP compared to "reduced form" empirical papers is that most

empirical DP papers report in-sample and counterfactual policy predictions that do not require the data to repeat.

Clear descriptions of the model, values of all structural parameters, and explanations of what outcomes are

being reported are sufficient to attempt a replication. On the other hand, replicating reduced form analysis

usually requires the original data (or at least cross products of the estimation sample). Recent reduced-form

results are easier to replicate than older ones because data and code in standard platforms such as Stata and R

are now commonly provided.

For empirical DP models, code may be provided for recent work, but determining whether it contains

mistakes is difficult by simply reading and executing it. Further, published work pushes the boundary of feasible

computations so the cost of attempting to replicate current work is very high. On the other hand, results

produced at the boundary of feasible computations twenty years ago are now cheap to compute. Not only are

computers orders of magnitude faster, but the original analysis required many iterations and specification

changes to optimize the econometric objective. Overall, replicating or verifying old reduced-form is harder than

current reduced form analysis, but the opposite is typically true for empirical DP results.
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The replications discussed here focus on pioneering work covering now-standard approaches to empirical

dynamic programming. Each replication is describe following the template used for the lifecycle labor supply

example. Key aspects of the model are defined using niqlow's terms. Some niqlow code is shown when it

illustrates a new and general point. In some cases original symbols are changed in order to avoid conflict with

niqlow notation. When discrepancies between the replication and original results remain after efforts to

eliminate them some possible reasons are given.

6.1 Wolpin's Fertility Model
As discussed earlier, Wolpin (1984) models fertility choices given random child mortality and non-random

lifecycle income. The replication solves the model differently than the original in order to use the same approach

as the simple lifecycle labor supply model example. The original solution method is the reservation value

approach followed in the replication of Wolpin (1987) in Section (6.4).

Wolpin (1984) Model Summary (replication version)

Element Value Category / Params / Notes

Clock Ordinary Aging

CCP Bellman (Unsmoothed)

Actions Binary Choice a birth

States: Zvariable

RandomUpDown

N=15

N=19.

Choice Set fecund years

Utility  income net of child-rearing costs.

Exp. utility of surviving children

Wolpin solves for the reservation value of  for having a child, but in the replication  is simply discretized

and optimal choices are computed without smoothing. Since parameters are not being estimated it does not

matter that the choice probabilities are not smoothed. A newborn child dies during the year before utility is

realized, thus the one-period utility includes an expectation over the random outcome. The mortality probability 

 is specified as  where  is the logistic distribution function.

The stock of children,  is therefore not a simple action counter we have encountered several times

already. Instead, it is a special case of built-in class for state variables that moves up or down one value or stays

the same. The user provides an expression that returns the state-contingent vector of probabilities and the

RandomUpDown handles the transition.

t T = 30.
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=
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The parameter estimates reported in the published version are slightly different than the ones reported in

the working paper version, Wolpin (1982). The working paper reports more predictions based on the estimates

than the published version. Thus, the working paper results are the target of the niqlow replication. In

particular, the focus is on the average value of , the probability of a birth, by age of the mother. This

requires summing over realized states of surviving children, a calculation within the realm of niqlow's

Prediction class. The paper also reports changes in lifetime children born based on hypothetical changes in

income and child mortality rates.

Table 1 reports a comparison of the reported and replicated predictions. Replicated birth probabilities by

year are within .02 of the reported probabilities at each year. Each row of Panels B and C replicate behavioral

responses to different hypothetical changes in income and child mortality. Looking at total fertility (column )

the replicated values are all within about 2% of the reported values. The relative changes are all in the same

direction as well. The difference in solution methods is not a large part. Reported figures are based on 200

values of the discretized normal shocks and sensitivity of the replicated values to changing that is small

compared to the discrepancy with the reported values. Changes in numerical precision in computing over 40

years are probably sufficient to explain the discrepancy.

Table 1. Replicating Wolpin (1984) Results

A. Birth Probabilities by Age

 t  Original  Replicated     t   Original  Replicated

 0   .138       0.13930       10    .400       0.39801

 1   .360       0.37811      11    .376       0.36816

 2   .552       0.54229      12    .345       0.33831

 3   .543       0.53234      13    .313       0.30630

 4   .530       0.52239      14    .281       0.27363

 5   .515       0.50746      15    .250       0.23881

 6   .498       0.49254      16    .216       0.20701

 7   .477       0.47264      17    .182       0.17413

 8   .454       0.44776      18    .149       0.14428

 9   .428       0.42289      19    .122       0.11473 

 

B. Hypothetical Income Changes on Fertility

      ORIGINAL                REPLICATED

N1-5    N6-10    N   |   N1-5   N6-10     N

2.124   2.369  7.047  |  2.1144  2.3433  7.0211

2.117   2.362  7.024  |  2.1095  2.3380  7.0058

2.121   2.367  7.039  |  2.1144  2.3433  7.0197

2.134   2.380  7.086  |  2.1294  2.3578  7.0605

2.154   3.402  7.158  |  2.1443  2.3728  7.1242

2.126   2.376  7.146  |  2.1244  2.3532  7.0651

Each row is based on different values of parameters in the income process  (changes in values not shown). Columns are periods 1-5, 6-10, and overall. Reported

values are expected number of births in the range. (Columns for 11-15 and 16-20 are not shown here.)

P ⋆(1; θ)

N

Y
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C. Hypothetical Child Survival and Fertility

       ORIGINAL              REPLICATED

 N1-5   N6-10    N  |   N1-5   N6-10      N

2.124   2.369  7.047 |  2.1144  2.3433   7.0211

2.078   2.326  6.801 |  2.0939  2.3163   6.9418

2.032   2.282  6.555 |  2.0647  2.2883   6.8454

1.979   2.230  6.274 |  2.0380  2.2587   6.7561

1.927   2.175  6.001 |  2.0100  2.2331   6.6611

2.003   2.356  7.018 |  2.1443  2.3775   7.1292

Each row is based on different values of parameters in the child mortality logit (changes in values not shown). Columns and reported values same as Panel B.

Source of Original: Wolpin 1982. A. Table 5, page 43. B. Table 8, page 45. C. Table 9, page 47.

6.2 Rust (1987)
Rust 1987 is a model of bus engine replacement and is probably the most replicated paper within this class,

because the model is influential and fairly simple. Rust released documented code and the data in the 1990s that

is still available, although how many researchers have used that code is unknown. The package was not

designed to be a general purpose platform and applications would have likely been very similar to the bus

replacement model. As with the labor supply example shown earlier, we begin with replicating the model's

predictions at the estimate parameters. Then, following the example further, a derived class is used to

incorporate data and replicate some econometrics results.

6.2.1 Solution

The original article estimates many different specifications on different bus engine types. The replication is

based on Model 11, a case emphasized in the original. It includes a linear cost of bus maintenance estimated on

group 4 engines and fixing the number of discretized odometer readings to 90.

Rust (1987) Model Summary

Element Value Category Params / Notes

Clock Ergodic

CCP ExtremeValue .

Actions Binary Choice replace engine.

States: Renewal , discrete mileage

Choice Set for all 

Utility Linear cost.

t

ζ ρ = 1

α = (d),

θ = (x) N = 90

A(θ) = {0, 1} θ

U ( ) = ( −θ1x

−RC
)
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[N]

niqlow has a pre-defined Rust class which includes the first three components above as pre-defined

features. The user simply adds their own state variables to the model. It also provides Renewal state variable

class. The user specifies the increment probabilities and the binary action that renews the process. The basic

code (not showing all statements):

struct Zurcher : Rust {

    static decl x;

    Utility();

    }

Zurcher::Run() {

    Initialize(new Zurcher());

    EndogenousStates(x = new Renewal("x",NX,d,theta3) );

    CreateSpaces();

    SetDelta(0.9999);

    VISolve();

    }

Figure 3 in the paper compares predicted values of , probability of replacement given mileage, for

discount factors of 0 and 0.9999. Figure 6 compares the original predictions and the replications. The additional

information in the original figure is the empirical hazard rate. The replication is very close as can be determined

when looking at the axis values at key points. For example, the curves both cross at about  and  at

0.03.

Figure 6. Replicating Rust Figure 3

Original

P ⋆(1;x)

x = 63 P star
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Replicated
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[O]

6.2.2 Estimation

Having verified that niqlow replicates the solution at estimated parameter values, consider the estimation

stage. The bus data was read into to an OutcomeDataSet. A new class EZ derived from Zurcher accounts

for parameters, data and estimation. As with the labor supply example discussed above,

Zurcher::Utility() is reused in the derived class. Rust 1987 used the two stage estimation procedure in

Figure 4. The key statements used to replicate Rust's complete estimation procedure are

 1.     plist = EZ::SetUp(0);

 2.     EMax  = new ValueIteration();

 3.     buses = new BusData(EMax);

 4.     nfxp  = new DataObjective("ZurcherMLE",buses,plist[0]);

 5.     mle   = new NelderMead(nfxp);

 6.     nfxp  -> TwoStage(plist[One],plist[Two]);

 7.     nfxp  -> SetStage(0);

 8.     mle   -> Iterate(0);

 9.     nfxp  -> SetStage(1);

10.     mle   -> Iterate(0);

As with the labor supply estimation code in Section (5.5), the statements mirror the pyramid in Figure 5.

EZ::SetUp(), which is not shown, returns three lists of parameters: the full list  and the subvectors  and 

 defined in . The argument 0 sets the first row to replicate, which fixes  to estimate the myopic

model. EMax defined on line 2 holds the same solution method which is based to the bus data object on line 3.

The likelihood is defined as a DataObjective on line 4, which expects a data object and the full

parameter vector is sent to it. The objective is declared as two-stage and the subvectors are sent on line 6.

Setting the stage to 0 on line 7 ensures a flag has been set to skip iteration on Bellman equation. Only transitions

enter the likelihood . The renewal transitions are optimized when iteration is started. Then the second stage

is declared, which sets the no-iteration flag to false so that choice probabilities enter the likelihood  and

only utility-related parameters are varied.

Model 11 in Rust (1987) was estimated for two discount factors. The final values of the likelihood were

collected and likelihood ratio statistics computed. Table 2 summarizes the reported and replicated values. The

likelihood values are within 1% of the original values. Nonetheless the likelihood ratios are different enough

that computed p-values go from 0.053 in the original to 0.089 in the replication. Attempts to explain the

discrepancy failed, but as with Wolpin (1984) it seems quite possible that software and hardware differences are

the primary cause. More importantly, the replication verifies the automated construction of the likelihood

functions inside niqlow.

ψ ψp

ψu (24) δ = 0

(25)

(23)
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Table 4. Replicating Empirical Results in Rust 1987

δ
Original

lnL

Replicated

lnL

.9999 -3304.155 -3309.692

0 -3306.028 -3311.143

Like Ratio: 3.746 2.902

p-value 0.053 0.089

Source of Original: Rust (1987), Table IX Group 4 Estimates

6.3 Wolpin (1987): Reservation Values
Wolpin (1987) estimates a search model by solving for the reservation wage  in a finite horizon. As discussed

above, solving for reservation values is an extension to basic Bellman iteration described in the Appendix. To

solve for  the user code must provide the utility vector at the current guess of the reservation wage , denoted 

 To work backwards the user must also provide the expected utility of each option given the reservation

wage ,  In this model there are states at which no choice is feasible. In this case the user code provides

utility as in the standard discrete choice models.

The clock is a finite horizon with ordinary aging, but different ranges of  represent different stages in the

transition from full-time schooling to full-time work. Reservation wages are computed for search in a school

and for a fixed number of weeks if leaving school without a job. For weeks beyond that the agent must accept

any offer so the reservation wage is  (or in general the lowest possible offer) and no solution is required.

Finally, the model is closed out by a large number of periods in which the wage is received each week.

Wolpin (1987) Model Summary

z⋆

z⋆ z

U(z).

z⋆ EU.

t

0
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Element Value Category / Params / Notes

Clock Ordinary Aging. T=615.  in school

CCP OneDimensionalChoice

Actions Binary Choice accept offer.

States: h: IIDBinary

m: LaggedAction

has offer

accepted in .

Choice Sets condition to solve for 

no offer

has offer, can choose 

must accept offer

Utility

at 

lifetime value of offer

Exp. Utility Expected wage offer

see 

Utility Non-choice state

Although , the indicator for having an offer in hand, evolves independent of other choices it is not

identically distributed since its distribution depends on time. The IIDBinary class allows the user to specify a

probability that  which in the model is

Even if  were truly IID it must be included in  since niqlow does not allow for exogenous state

variables within reservation value models.

The estimates use a discount rate of , but the original text states for the long post-search period a

"annual discount rate of 5 percent" was used. In weekly terms this results in a discount factor of 

 The searcher gets the full present value of wages upon acceptance. This is

consistent with the model since there are no further decisions after a wage is accepted. If further decisions that

depend on the accepted wage were made then a discrete approximation to its distribution would have to be

tracked as a discrete state variable.

The niqlow code for this model combines elements of the discrete and continuous earnings shocks

version of the labor supply model. Two elements are worth noting to show how they are handled. First,  is

included in the state vector to indicate that a job was accepted the previous period and decision making ends. To

mark a value  as terminal simply requires:

 m -> MakeTerminal(1);

This must happen in the Build code segment such as [D]. Future values are not computed at terminal states, so

the value of a terminal state is return as the utility by the user's code.

t t < 61

ln z ∼ N( ~w,σ2)

α = (a)

θ = (h,m)

t − 1

CC(θ) = (!m)h& t < 115 z⋆

A(θ) = ⎧⎨⎩
{0} !h
{0, 1} CC(θ)
{1} (!m)h& t ≥ 115

z

PDV (z)

U(z)

=

=

z+δT−t
v

1−δv

( −c

PDV (z)
) .

Ew

EU

=

=

~w exp{σ2/2}

( c

PDV (Ewλ/p)
) (42)

U() = (1 − m)(−(1 − h)c

+hPDV (Ew))

h

h = 1,

P(h = 1) = { 0.01  if t ≤ k
Φ (−2.08 − 0.0025(t − k))  t > k.

h θ

δ = 0.999

δv = eln(.95)/52 = .99901408.

m

m = 1
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Second, as discussed earlier in Section (4.2), a state involves a reservation value if it satisfies

At other states the searcher has no choice: they either have no offer to reject or they must accept any offer.

This is achieved by providing a replacement for the virtual Continuous() method with one that returns the

logical condition:

SchToWork::Continuous() {

    return (I::t < T+k) && CV(h) && (1-CV(m));

    }

The target of the replication are predicted hazard rates reported in Wolpin (1987). A hazard rate is the same

as averaging  conditional on not terminating yet ( ). The paper grouped the hazard by weeks which

requires some additional code. The table of predicted hazards in the original paper and the replicated results are

given in Table 3. The results are substantially different. Starting from the bottom, we see the replicated hazard is

about one-fifth that of the reported values. The difference falls as we move back in time to the point that the

initial replicated hazard is only 10% below the reported value. This first hazard includes in-school search. The

computed reservation wages are for the most part negative. Given log-normal offers this implies all offers are

accepted. And after week 54 all offers must be accepted if still searching (by assumption). Together this means

that, except near week 1 in the table, the declining hazards simply reflect the falling offer probability not a

change in rejection rates.

The reported replication values include improvements from close readings of the text and modifying the

code (such as the exact calculation of PDV above). However the differences remain unresolved with Table 3 the

best attempt. The original text (Wolpin 1987 p. 812) notes negative reservation values. Given the need to

calculate expected values entering this period while iterating backwards it is important to handle negative values

carefully. That is, when  is on the support of offers it is possible to use  to compute , the value of

rejection. This should receive 0 weight in the calculation because  when offers are log-

normal and  Numerical issues in these computations from the 1980s may explain the discrepancy with

modern calculations.

CC(θ) = (t < T + k) & h & (1 − m).

P ⋆(1) m = 0

w⋆ w⋆ v(0)

Prob(w ≤ w⋆) = 0

w⋆ < 0.
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Table 5. Replication of Wolpin (1987) Table IV, p. 813

Weeks i Reported Replicated

1 .313 .2773175

2-13 .141 .08758

14-26 .135 .0825763

27-39 .127 .0690007

40-52 .117 .0577042

53-65 .105 .0545755

66-78 .097 .0445571

79-91 .090 .0355048

92-104 .083 .028323

105-117 .076 .0228554

118-130 .070 .0186378

131-143 .064 .0153897

144-156 .059 .0127247

157-166 .054 .0107464

Predicted hazard rates out of job search at estimated parameters.

6.4 Aiyagari (1994)23

The primary focus of niqlow is estimation of dynamic programming models. Replication of the calibrated

equilibrium model of Aiyagari (1994) demonstrates that the tools are in place for other nested DP applications,

as well as the combined estimation of equilibrium models. In the case of Aiyagari (1984) a DP model of

households feeds into an equilibrium condition on prices through an aggregate production function. The

Equilibrium type of objective in niqlow handles this class of problem.

Aiyagari (1994) DP Model Summary

Element Value Category / Params / Notes

Clock Ergodic

CCP Bellman (unsmoothed)

Actions assets N=?. actual v's uneven

States:

z:: Tauchen

S: LaggedAction

N=(7,?)

labor shock

current assets

Choice Sets for all 

Utility  interest rate;  wage.

Dynamic restriction on 

t

α = ( s ) t′

θ = ( z S )

A(θ) = {0, … , ?} θ

C()

U ( )

=

=

S(1 + r) + wez − s,

{ C ≥ 0

−∞ else

C(α;θ)μ−1−1

μ−1

r = w =

s
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[P]

Outside the agent's problem an aggregate production determines prices:

where  and  are per-capita capital and labor, respectively. Equilibrium  and  satisfy value marginal

product conditions:

where  is the depreciation rate of capital and  is the stationary distribution over states in .

Aiyagari (1994) reduces the system from 2 equations down to 1 by writing  as a function of . The root of

the equation in  is solved by bracket-and-bisection. To compute quantities in  Aiyagari simulates 10,000

draws of  and averages the value of  from the agent's optimal decisions. Labor supply is computed using the

closed form for the expected value of a lognormal variable (already used in the reservation earnings example).

When derived from the Equilibrium class the quantities of inputs supplied come from DP model

predictions discussed several times above. Unlike the original code, which uses analytic derivatives to compute

the equilibrium conditions, Equilibrium uses numerical gradients. The user provides the production

function as an object of the Objective class, the same class from which DataObjective and

Equilibrium itself are derived. Some standard forms such Cobb-Douglas are provided in niqlow.

Equilibrium also takes a parameter list for the system which are prices.

To create the equilibrium system takes 10 statements:

    AiyagariEQ::AiyagariEQ(){

1     aggF = new CobbDouglas("F",MPco,1.0,AYG::Flabs);

2     deprec = zeros(Two,One); deprec[KK] = Kdeprec;

3     price = new array[Two];

4     price[KK] = new Bounded(AYG::Plabs[KK],-Kdeprec,1.5*lam,lam);

5     price[LL] = new Determined(AYG::Plabs[LL],Wage); 

6     [stnpred,Qcols] = AiyagariAgent::Build(price,KK);

7     Equilibrium("Eq",1,price);

8     SetOneDim(KK,KK);

9     alg = new OneDimRoot(this);

      }

    AiyagariEQ::Wage() {

10      return alM1*( alpha/(CV(price[KK])+Kdeprec) )^(alpha/alM1);

      }

When an Equilibrium-derived object is created it sets aggF as an objective, CobbDouglas in Aiyagari

(1992). Line 2 sets that capital depreciates but labor does not (remains 0). Lines 3-5 create an array of prices.

The interest rate  is constrained between two theoretical bounds. As mentioned above, the wage  is computed

by a closed form consistent with equilibrium and the current value of . The return value on line 10 using the

price of capital and technology parameters set elsewhere is the closed from for .

f(K,L) = KαL1−α, (33)

K L r w

Quantities Prices

K =

∑
θ f∞(θ)S r = f1(K,L) − ψ

L = E[ez] w = f2(K,L) = (1 − α)[α/(r + ψ)]

(34)

α

1−α

ψ f∞ (11)

w r

r (34)

z S

r w

r

w
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[Q]

The household's problem, AiyagariAgent, is nested within the equilibrium calculations. Line 6 in [P]

calls a Build() function (not shown here because it is similar to ones discussed earlier). This function

receives prices so they can be passed on to the agent's problem. In turn, it creates and returns a

PathPrediction object stored in stnpred. Build() has also nested the value iteration method within

the prediction object it sends back. Prediction start from the ergodic distribution,  It tracks asset holdings 

 and labor supply  in the prediction. Equilibrium needs to know which columns of the prediction matrix

contain these outcomes. These indices are also returned by Build() and stored in Qcols on line 6.

By Line 7 all the required elements of the Equilibrium class have been created so now the base creator

function is called. This adds price to the parameter list of the system. Attempts to solve the 2x2 system failed

so line 8 concentrates the system from 2 dimensions down to 1 as done in Aiyagari (1994). This means a one-

dimensional root-finding algorithm can be used (line 9). This must be paired with defining the wage as a

Determined parameter so the system varies only one price, . This change in strategy is achieved by simply

modifying lines 8 and 9 and changing the class used on line 5.

The system's value is computed by the vfunc() routine. The base Equilibrium class contains an

automated vfunc() method, similar to the automatic econometric objectives explained above. It computes the

system of equations to solve using the components defined by the user's code. That is, AyagariEQ does not

need to provide the code. The internal code illustrates how the elements from the user code are used:

    Equilibrium::vfunc() {

1       stnpred -> Predict(T,Zero);

2       Q = stnpred -> GetFlat(T,Qcols)';

3       aggF -> Encode(Q);

4       foc = aggF -> Gradient()' - CV(deprec) - vcur.X;

5       return foc;

        }

Line 1 computes stationary predictions for the household problem, which will itself call a value iteration method

to resolve the agent's problem at the current prices. Line 2 gets the values for aggregate supply of inputs using

Qcols to select the right columns. Line 3 then sends these values to the aggregate production function. Line 4

takes the numerical first order condition for profit maximization. Prices are stored internally in vcur.X for

reasons not explained here. Note that Line 5 returns a 2x1 vector of first order conditions, but line 9 of [P] made

internal adjustments so that only the capital equation will be used and seen by the solution algorithm.

Some details are missing in Aiyagari (1994). In particular, the grid on assets is not described completely.

Further, it appears that the upper bound  and the set of points were varied as parameter values were changed.

Table 4 reports the original and replicated values of  for some sets of parameters reported in the original. The

top set of parameters were the main focus of the replication and the output is essentially the same.

The main issue left unexplained by the original is the number and location of grid values for  These were

modified in order to match the first outcome. As parameters varied gaps emerge between the replication and the

original values in Table 4. This may be due to Aiyagari modifying the grid along with the parameter values.

Some attempt was made to do this in the replication with mixed success.

f∞(θ).

S ez

r

U

r

S.
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One issue the replication raises is the lack of smoothing. The asset choice  is discrete, so for each  and

labor supply shock  there is a unique optimal value of . This results in limited variation in the transition

probabilities near the top and bottom of the range of  Indeed, the stationary distribution becomes unstable or

non-existent for some parameter values. The finite simulation used by Aiyagari (1994) may have been a poor

approximation to the stationary distribution in these cases. A small amount of ex-post smoothing of the choice

probabilities would help ensure an ergodic distribution exists regardless of parameter values. In niqlow this

simply requires a change in the base class for the agent model to one which provides either type 2 or type 3

smoothed choice probabilities.

Table 6. Replication of Aiyagari (1984)

Parameter Values Equilibrium interest rate 

σ ρ μ Original Replicated Rel. Diff

0.2 0.0 1 4.1666 4.1668 4.3439e-05

0.2 0.0 3 4.1456 4.1580 0.0029849

0.2 0.0 5 4.0858 4.1423 0.013824

0.2 0.3 3 4.0432 4.1284 0.021078

0.2 0.6 5 3.5857 3.9045 0.088913

0.4 0.0 1 4.0649 4.1096 0.011003

0.4 0.0 3 3.7816 3.9332 0.040084

0.4 0.0 5 3.4177 3.7609 0.10043

0.4 0.3 1 3.4188 3.7562 0.098704

0.4 0.3 5 2.8032 3.3374 0.19055

0.4 0.6 1 3.7567 3.9110 0.041074

0.4 0.6 3 1.8070 2.4476 0.35450

0.4 0.9 1 3.3054 3.5640 0.078233

Source of Original: Aiyagari 1994. Table II A and B, page 678.

6.5 Rosenzweig and Wolpin (1993)
Rosenzweig and Wolpin (1993) estimates a lifecyle model of consumption, farm production and asset

accumulation. Compared to the first generation of empirical DP, the model includes a larger set of state

variables, more complex feasible sets, and non-linear utility in consumption.

Each year the farmer chooses to buy and sell bullocks, breed bullocks, and purchase an irrigation pump, a

one-time choice. Calves must mature before they are productive. Bullocks can die, and bad weather shocks can

push farm profits and therefore consumption negative. Accumulating bullocks beyond what is productive

provides partial insurance for these shocks. Farmers are risk averse, negative consumption is infeasible so

instead farmers hit an exogenous positive consumption floor which requires they sell-off bullocks.

Rosenzweig Wolpin (1993) Model Summary
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[R]

Element Value Category Params / Notes

Clock Ordinary Aging

CCP Bellman (unsmoothed)

Actions b: buy/sell bullocks

m: purchase pump

c: birth calves

N=(5,2,3)

actual: 

States:

M:PermanentChoice

Lk: LaggedAction

B: custom

N=(2,3,3,3,3)

has pump

calves born 

Bullock stock

e: Zvariable

w: IIDBinary

N=(?,2)

profit shock

weather shock

Choice Sets stock 

1 calf per bullock

at most 1 pump

Utility Profit

Gross Consumption

Selloff condition

, Net Consumption

Consider just the endogenous state elements, the clock (item 1) and  (item 3). In direct coding this model

already requires at least 6 nested loops to span the state space, not counting the two additional exogenous

variables in item 4. This is now a common size for empirical DP models, but compared to work published

before 1992 the number of dimensions is a rapid growth in complexity. Many of the interactions between state

variables are non-trivial. For example, because a pump lasts forever  stays at  for all  after  Further,

the feasible number of bullock transactions depends on the current stock. However, in niqlow the state space 

 is still set up with three statements:

M     = new PermanentChoice("M",m);

lcalf = KLaggedAction(calf,BullMaturity);

B     = new Bullocks();

The first two state variable types are built into niqlow. The third is particular to this model and requires a new

transition  Its transition is similar to other standard state variables.

t T > 50

α = ( b m c )

{−2, 1, … , 2}

θ = (M L1 L2 L3 B )

t − k

ϵ = ( e w )

A(θ) = {α : 0 ≤ b + B ≤ BM

 & c ≤ B

 & M + m ≤ 1} 

Π = xβπ

x = (1 IB=1 IB≥2 MwAgeAge2 e)
C⋆ = Π − pmm − pcc − pbb

S = (b = −B)&(1 − c)&(1 − m)

C = ⎧⎪⎨⎪⎩
C⋆ C⋆ > Cfloor

Cfloor C⋆ ≤ Cfloor&S

. else

U() = (C − Cfloor)
γ1

γ

θ

M 1 t m = 1.

Θ

B′.

57



Two policy experiments based on the estimated model are summarized as figures in the original text. The

baseline predictions (not the responses to policy changes) are replicated in niqlow. Figure 7 shows predicted

consumption over the farmer's lifecycle. The graphs begin at age 30 and end at age 90. The effect of insurance

(which eliminates the effect of weather shocks) is compared to simulated paths with periodic shocks that result

in selling of bullocks for self-insurance.

The replicated graph below the original does not match the consumption level. Average consumption is

approximately 1700 rupees more in the replication than the original. The lifecycle profiles have similar shapes

except the replicated version shows the end-of-life effect of selling off bullocks because they are not needed for

smoothing. The decision horizon is not stated in the text but it appears it was set greater than the ages shown in

order to eliminate this effect. Larger values of  were used in the replication to see if that could explain the

differences in levels, but the age-by-age differences remained similar.

Figure 7. Replicating RW Figure 1--Consumption Profile

T
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Figure 8 showed the average stock of bullocks by age under the baseline and two different policies. Again, the

level in the replication is not the same. At age 30 the original baseline average is approximately .6 bullocks. In

the replication it begins over .8. The original baseline stock reaches about 1.2 bullocks per farmer then declines

(driven by the age profile in farm profits). The replicated result never reaches 1.0 before declining. These

differences may be an artifact of the approach to simulation which has not been repeated in the niqlow

version. They may also be caused by other differences that cannot be eliminated based on the information

available.

Figure 8. Replicating RW Figure 2--Bullocks

6.6 Keane and Wolpin (1997)
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Keane and Wolpin (1997) can be viewed as a multifaceted extension of the basic labor supply model coded

earlier. Instead of a binary action, the agent has 5 options: work in one of three sectors, attend school, or stay

home. In turn, experience in (and previous selection of) four of the options helps determine current and future

wages. The one-dimensional IID discrete earnings shocks in the basic labor supply model becomes a vector of

five shocks (IID over time but correlated across sectors). There is a single random effect that takes on 4 values

and determines an endowment of sector-specific skill. A binary fixed effect controls for years of completed

schooling by age 16, the start of the program.

Keane and Wolpin (1994) estimates three models: a static ( ) model, a basic model, and an extended

model to explain more features of the data. The replication targets the basic model, although features in the

extended model are handled by built-in features of niqlow. The state space in the basic model is large even by

current standards. The Keane-Wolpin approximation method discussed in Section (4.2) was created to make

estimation of the model feasible. However, in the original paper models were estimated using both the full

brute-force and Keane-Wolpin approximation method, with an emphasis on the full solution.

Keane and Wolpin (1997) Model Summary

Element Value Category / Params / Notes

Clock Ordinary Aging T=50.

CCP ExPostSmoothing Logit Kernel .

Actions N=5; sector

WC, BC, Mil, Sch, Home

States: ValuesCounters

MVNvectorized

Groups RandomEffect N=4; skill endowment

FixedEffect N=2; initial schooling

Choice Sets School feasible for first  years

Utility  

college & grad. sch. tuition

The state variables are created as follows:

1.  offers = new MVNvectorized("eps",M,N,{zeros(M,1),vech(chol)});

2.  xper   = ValuesCounters("x",accept,mxcnts);

3.  k      = new RandomEffect("k",Ntypes,kdist);

4.  isch   = new FixedEffect("Is",NIschool);

One way to extend the labor supply model would replace the earnings shock with a five-dimensional vector. If

δ = 0

t

ρ = 1/500

α = ( d )

θ = (x0 x1 x2 x3 )

ϵ = ( e0 e1 e2 e3 e4 ) V ar(e) = Ω

γr = (k),

γf = (S0)

A(θ) = { {0, 1, 2, 3, 4}  t < S

{0, 1, 2, 4}  else
S

hd = Xαd + E(k, d) + α2x2
d

−Id=3[x3. > Dy]β

d = 0, … , 4

U ( ) = ⎛⎜⎜⎜⎜⎜⎜⎝

exp{h0e0}

exp{h1e1}

exp{h2e2}

h3 + e3

h4 + e4

⎞⎟⎟⎟⎟⎟⎟⎠
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used here it would create a lattice of points representing the five-dimensional vector. Using just 3 discrete values

for each shock results in  exogenous points at each endogenous point. Instead, a one-dimensional state

variable is used that vectorizes  MVNvectorized on line 1 represents  using Noffers pseudo-random

draws of IID standard normal vectors of length 5 are used. Noffers is much smaller than 243. It takes a vector

of means and a vectorized version of the lower triangle of the Cholesky decomposition of  Keane and Wolpin

estimated  using a vector of standard deviations and a correlation matrix which were combined to produce the

Cholesky representation.

ValuesCounters is not a class (hence new does not appear on line 2). Rather, it is a function that

creates and returns a list of action counter objects for different values of a single action. So xper is a list of five

state variables all ready to be added to . The argument mxcnts is a vector of maximum counts. For "home"

section ( ) the max count is 0 because it does not enter  This will result in a state variable that takes on

only one value (thus expending the length of  but not the size of the state space). The state variables inherently

compute reachability as a function  so that the user code does not need to do this.

The finite-mixture random effect  has a distribution that depends on isch. This is handled by sending a

static function on line 3 which returns a column from a matrix of type proportions, kprob. In the replication

code the matrix is constant. When estimating it would contains sets of simplex parameter vectors. When the

model predictions or likelihood is to be evaluated the distribution of the random effects variables is used to

integrate over types.

The first step in computing utility is constructing a linear index vector:

 is a matrix constructed from the experience levels in all sectors. The coefficients are choice-specific,

allowing own-experience to have a different return in the sector that other experience (again noting that

schooling is simply experience in the school sector). In addition, own-experience squared enters  as does the

type- and sector-specific skill endowment. Initial schooling at age 16 is added to  before constructing  and 

, and schooling beyond 12 and 16 years ( ) requires paying level-specific tuition.

Based on , the base utility is a vector for current actions:

Note that  equals utility at the median shock vector, . It is not expected utility because the normal

errors enter employment utility multiplicatively. Keane and Wolpin used the true mean adjusted for the variance

in the wage shocks to compute "maxE."  only needs to be computed once for all discrete shock vectors.

Decomposing this way reduces computations at each point in the state space that is sample for complete

solution. It is the vector required at non-sampled points in the approximation.

With some setup of the parameter vectors, 5 lines of code compute  :

35 = 243

ϵ. ϵ

Σ.

Σ

θ

d = 4 X.

θ

t

k

h = Xαd + E(k, d) + α2x2
d (35)

X

h

x3 X

x2
3 Dy

h

Uθ = { eh  d < 3
h d ≥ 3

. (36)

Uθ ϵ = 0

Uθ

Uθ
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[T]

[U]

    KWJPE97::ThetaUtility() {

1.      x = CV(xper);

2.      x[school]+=School0[CV(isch)];

3.      Er = alph0*(1~x[:school])' + ownsqr.*sqr(x)' + kcoef[][CV(k)];

4.      Er[school] -= bet*(x[school].>YrDeg);

5.      Er[:military] = exp(Er[:military]);

       }

niqlow always calls ThetaUtility() before it loops over exogenous variables. If the user does not supply

this function the virtual method does nothing. KWJPE97 provides a replacement both because it saves

calculations and because it is required when using the Keane-Wolpin approximation method. The variable Er

can be static, meaning all points share one location not different locations for each  Otherwise, storing Er at

each  would quintuple the storage required by  As discussed earlier, the fact that the state space is reused

across group variables avoids multiplying storage eight-fold across values of k and isch.

Finally, utility conditional on the shocks builds from the base utility vector:

KWJPE97::Utility() {

    rr = AV(offers)';

    rr[:military] .*= Er[:military];

    rr[school:] += Er[school:];

    return rr;

    }

AV(offers) returns the 1x5 vector of errors as if individual normal shocks were included. The base Er

created by ThetaUtility() is added or multiplied to offers depending on the type of sector.

Code for computing both the brute force and Keane-Wolpin approximation results for the estimated basic

model is available in the niqlow package. The replication targets choice probabilities reported in Figures 1-5

in Keane and Wolpin (1997) for the basic model. In the original they were produced by simulating paths and

aggregating choices. In the replication the predicted paths are computed not simulated.

However, replications have failed to match the figures closely. Among the reasons for this are some

ambiguities in the details of the original code, especially concerning the estimated variance matrix of the

earnings shocks and the method to smooth choice probabilities. Choice probabilities are sensitive to guesses for

these details. This itself is an obstacle to learning from previous research when no common platform exists.

Further, the model is large enough that computing both the value function and predictions is costly. Elements of

the replication code are validated from smaller test code, so it seems likely that either parameters are

misreported in the original or a description is misinterpreted.

7. CONCLUSION

This paper introduces an approach to empirical dynamic programming that eliminates the need for customized

coding of each project. niqlow is an open-source platform that uses object oriented programming (OOP) to

provide its user a set of tools to design, solve and estimate a model. The platform recognizes that empirical DP

involves multiple phases including: computing the value function to determine choice probabilities; evaluating

the likelihood for a data set, finding consistent parameter estimates; simulating the effects of policy

θ.

θ Θ.
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experiments. The user's code consists primarily of high-level statements that select off-the-shelf components of

standard models and accomplish these phases without re-inventing the wheel for their particular problem.

Using niqlow this paper replicates results from several seminal papers in the literature. In some cases the

results are similar to the original. In other cases discrepancies remain unexplained. Results replicated here were

generated before the turn of the century. What does this exercise say about current research and whether it may

be verified independently? The prospects are dim until a platform such as niqlow is used to produce new

empirical DP results.

Replication of these older papers takes anywhere from a few seconds up to 30 minutes on a laptop given

correct code has been written. Until results match up to the published output the source of the problem must be

tracked down. It could be the description in the paper is wrong or is being misinterpreted or there really was a

bug in the original code. Of course the bug may be in niqlow, but since it is not purpose-built its output is

compared to test problems with known answers as well as replication that have been successful. When a bug is

discovered in niqlow relevant to one of the replications the code is run again to see if it discrepancies go away.

But at some point an unsuccessful replication attempt simply stops.

To replicate more recent work than shown here requires deciphering descriptions of much more complex

models. Even if independent replication code can be written, producing the results are likely to take non-trivial

amounts of computer power. This takes as given the reported estimates. To verify that they satisfy the extremum

conditions for consistency requires the original data and orders of magnitude greater computing power. As

Hammermash (2007) and others have lamented, replicating existing results is valued insufficiently to justify

months of coding let alone days or weeks of computing to verify results from a single publication.

There is little evidence from the literature that sharing purpose-built code for a published paper has

promoted verification or direct extension of already published empirical DP work. Referees of empirical DP

models are also rarely in a position to replicate results reported in manuscripts. Perhaps some referees review

code submitted by the authors, but since all code is customized it seems likely that only errors in transcribing

output could be caught. Finding bugs in purpose-built code for a large empirical DP model is never going to be

practical. At best, referees can point to discrepancies in output that might be caused by mistakes that the authors

can work to resolve.

Incorrect but unused results are not particularly harmful. If the results do not affect policies there is no need

to verify them. Results generated from empirical DP papers have played at best an indirect role in shaping

policy. One reason for this is skepticism among researchers not performing empirical DP themselves. For them

results are opaque, not independently verified, and rarely subject to robustness checks. Thus, a conundrum

exists: empirical DP results are not trusted in part because they are based on purpose-built code that will never

be practical to verify. Because the results are not trusted they rarely play any role in policy debates. Since they

do not influence policy verifying the results stay unverified.

Going forward, the only hope to improve verification is to adopt open standards for describing, coding, and

computing models. As seen in other areas of economics, more than one standard can be adopted. Once at least

one standard has been established, results produced to no standard at all should be valued less than those that

can be verified within an open-source framework.

63



What is valued most in economics is not applications of existing methods but the creation of new methods

that potentially improve on existing ones. Typically when a new empirical DP method is published it is applied

to a simple model and compared to an existing method using purpose-built code. The method is not "plug-and-

play." A researcher wishing to compare the approaches for themselves must "hack" code provided by the

method's developers. On the other hand, plug-and-play is an increasingly accurate description of techniques

coded in platforms such as R and Stata.

As with applications, publication of new methods should require they be plug-and-play on a common

platform, if one exists. If required, other researchers and perhaps referees could compare the new method to old

ones for other models and along dimensions not considered by the developers. This may in turn focus the

literature on methods that truly improve on existing ones.
 

64



NOTES

1 Recent reviews of the literature include Aguirregabiria and Mira (2010) and Keane et al. (2011). Recent

advances in solution methods include Imai et al (2009), Arcidiacono and Miller (2011), Kasahara and

Shimotsu (2012) and Aguirregabiria and Magesan (2013).

2 As Dynare is built on Matlab, niqlow is written in the mathematical language Ox, which is free for research

purposes and runs on most systems. Current niqlow syntax is used here and the code is included in the

examples in niqlow distribution. The current version has no graphical user interface or menu system, but

the OOP approach makes it straightforward to build an interface that would produce the code for the user

based on menu selections.

3 If Wolpin (1984) had followed MaCurdy (1981) it would have relied on a panel probit model. However, unlike

Euler equation based model, the forward-looking factors in a discrete choice model cannot be isolated to a

single Lagrange multiplier. An "approximate" structural approach in Wolpin (1984) that avoided a nested

solution would have likely been a poor approximation and possibly more costly to compute than the exact

solution.

4 Statistical packages such as Stata rely on OOP in the underlying code, but users are somewhat sheltered from

OOP concepts in using them. No other platform I am aware is designed as a general platform for doing

model-based empirical economics, whether object-oriented or not.

5 In the context of solving economic models, "data" refers here not just to the observations in a statistical

analysis but also parameter values, prices, choices, state variables, etc. These are the quantities that the

program is processing in order to solve and estimate a model.

6 The emphasis in niqlow is placed on discrete actions and discrete states, but some elements of the core code

includes continuous state variables and continuous choices can be incorporated. Methods for continuous time

models can be added as well.

7 The shock vector  can be multiplicative not additive. The additive form is more common and is the default in

niqlow.

8 It is possible to describe dynamic programming without defining  However, empirical DP explains

probabilistic choices, usually by integrating over the addition shock. The values of individual choices are

needed to compute the choice probabilities beyond defining or solving the DP.

9 For example, Keane and Wolpin (1997) smooth choice probabilities ex post because the jointly normal shocks

are discretized. This is not obvious to the reader because the text refers to Keane and Wolpin (1994) and the

explanation is given in footnote 23. The kernel used is not stated directly appears to be the Logit kernel used

in McFadden (1989).

10Another approach would keep the earnings shock continuous and solve for a reservation value for  This

framework is described later and used in the replication of Wolpin (1997).

11 Currently niqlow also includes model classes based on normally distributed additive shocks, both ex ante

and ex post.

ζ

v (α, θ) .

m = 1.
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12 This use of static variables to replace action and state variables is critical to memory management. If they

were not static, each point in the state space would have its own version of the variables duplicated across the

state space  As static members they do not increase memory requirements along with the state space. The

state-specific (non-static) members which expand with the size of  are kept to a minimum.

13 An action counter has a deterministic transition. We can also express this as a stochastic process 

 Further, this is what is called an autonomous state variable: its transition does not depend

on the value of other state variables, simply the current value  and some aspects of the action vector 

niqlow allows for blocks of state variables for which the transition must be jointly determined. Each state

variable class has a Transit() method which returns a pair of values: a vector of feasible integer values

next period and a matrix of transition probabilities corresponding to feasible actions (rows) and feasible state

values next period (columns). Because  was added to the model its Transit() function will be called at

each state along with all other transitions. The transitions for all state variables are combined to form 

 which ends up as a vector of feasible state indices and a matrix of probabilities.

14 In between the extremes,  may include both ergodic and non-ergodic subspaces. For example, a model may

have a sequential phase during  matters but eventually reach a stationary phase:

In an ordinary lifecycle model  is a final period, but under this clock the agent stays in the final period

forever. Lifecycle models can often incorporate early mortality:

The last period  is death which may have an intrinsic value (such as bequests). The current value

function depends on values for two different future times,  and  I n niqlow the clock is a

combination of  and another state labelled  For the most part  stays hidden from the user. Its job is to

track which values of  are feasible next period. Its role can be explained by reference to different types of

clocks. In both ergodic and simple finite horizon models,  only takes on one value:  if ergodic or 

 if simple finite horizon (normal aging). So for these clocks  always. But in mixed clocks or

stochastic clocks more than one value of  can occur tomorrow and  tracks those.

15 An example of an IID process that could be sorted into  but not  is a wage offer  with on-the-job search. If

the offer is accepted it determines earnings this period also the existing wage next period. The existing wage

is then state variable placed in  because its transition depends on choices. Next period a new IID outside

shock  is realized as well, but current  affected the transition beyond its influence on the action  so it must

be placed in  not 

16In addition, niqlow stores the transition  at each state because they are needed for simulation and

prediction. The transitions are stored for each  using a sparse method that tracks only feasible new state

indices and the vector of probabilities conditional on choices. The transitions of the IID vectors  and  are

stored once and combined with the  transition to determine the full state-to-state process.
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17 In complex models there are other ways states become unreachable. How the user specifies this is illustrated

in Section (3.5).

18 niqlow uses a feature of Ox that allows indexing a vector with a vector of integers. Using an interpreted

language such as Ox includes overhead, but features of the syntax such of this can result in fast as well as

simple and general code.

19Since outcomes and predictions require solutions are available for the problem, the algorithms must solve each

group's problem and process it before the next one. The simple VISolve() function can only be used with

heterogeneity to solve the problems. Use of the solved solutions requires nesting the a solution method within

the use of the solution as discussed Section (5.4).

20 Other important qualifiers include the presence of IID state variables and terminal states at which Bellman

iteration is not applied. niqlow allows the user to control these and other details of the model.

21DP models coded in FORTRAN and relying on an array of indices to represent the state vector run into a hard-

limit of 7 subscripts or counts of state variables. niqlow avoids this altogether by mapping a

multidimensional space into one dimension. That is, if  is a vector of state variable indices, then the state's

one-dimensional index is , where  is a row vector of offsets that depend on the number of values each

state variable takes on. In addition, as in other interpreted languages, the length of a vector such as  can be

set dynamically during runtime in Ox.

22 One approach for computing likelihood with unobserved states is to use simulation of outcomes based on

optimal choices. This is an effective way to calculate the likelihood for a given set of parameters. The

complication is ensuring that the simulated value is continuous in estimated parameters.

23 This replication was developed with Nam Phan. Code for replicating the results in the Matlab packaged

described in Kirby (2017) is available from https://github.com/vfitoolkit/vfitoolkit-

matlab-replication.

24 niqlow has a LiquidAsset state variable that generalizes a lagged action to account for difference actual

values and approximate continuous states. That is, both  and  are thought of as discrete approximations to

continuous variables. The actual values are not necessarily evenly spread out in order to have higher

resolution in some segment of the distribution. If  and  take on the same actual values then  reduces to a

simple LaggedAction variable. Otherwise, the resolution in  may be different than  so the grid points

do not match up. In this case  will have a random transition, taking on its grid values above and below

AV(s) with probabilities equal to where  falls in the interval. This is a stochastic equivalent to a piecewise

linear approximation for a continuous state variable.
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APPENDIX: SOLUTION ALGORITHMS

These algorithms are explained in Section (4.2). Aguirregabiria and Mira (2011) review several methods in

more detail.

Algorithm A7. Newton-Kantorovich Iteration

Initialization

Initialize as in Bellman iteration above. Set a threshold  for switching to N-K iteration. Since the model is

stationary SetP is initially FALSE. A new flag, SetPtrans also starts as FALSE.

Iteration

Begin with Bellman iteration, inserting a check for 

When this occurs. set SetP=TRUE and SetPtrans=TRUE to compute the state-to-state transition  on each

iteration.

Replace step c in the Bellman Iteration that computes  with:

c. Compute

Algorithm A8. Hotz-Miller Inversion

Initialization

Construct empirical conditional choice probabilities, , where  and  are empirical observations of each

combination of 

Inversion

At each point  construct

Compute the vector of values consistent with empirical CCPs

ϵNK

Δt < ϵNK.

(10)

V0 = Emax(V1)

→
Δ t ≡ Emax(V1) − V1

g ≡ (I − δP(θ ′; θ))−1 [→
Δ t]

V0 = V1 − g

P̂ (a; q) a q

(α, θ).

θ

Q(θ) = P̂ (α; θ) [U(α; θ) + γE − ln(P̂ (α; θ))] (38)

g ≡ (I − δP(θ ′; θ))−1 [→
Δ t]

V0 ≡ g ∗ Q

(39)
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Algorithm A9. Keane and Wolpin Approximation

Initialization

Create a random subsample of states for each , denoted  This sampling can be controlled so no sampling

takes place for some  and minimum and maximum counts are enforced.

Iteration

Follow these steps at each 

1. For all :

Store action values at a single  (the median or mean vector):  and maxE 

if , compute Emax  , averaging over all values of the IID state vector :

2. Approximate  on  as a function of values computed at . The default runs the regression:

That is, the difference Emax-maxE is a non-linear function of the differences in action values at the median

shock.

3. For  compute  extrapolate the approximation:

Carry out update conditions for  as in Algorithm 2.

Notes: The user can provide a replacement for the regression specification or the approximation

method by replacing virtual method of the KeaneWolpin class.

t ΘS
t .

t

t.

θ ∈ Θt

ϵ0 v0(α, θ) = v(α; ϵ0, θ)

= V0(θ) = max v0(α, θ).

θ ∈ ΘS
t = V ϵ

V (θ) = ∑
ϵ
 [max α∈A(θ)  U (α; ϵ, θ) + δE α,θ V (θ ′)]  f (ϵ) .

V ΘS
t ϵ0

V̂ − V0 = Xβt = ( (V0 − v0) √V0 − v0 )βt.

θ ∉ ΘS
t , v0(θ),

V (θ) = max{V0(θ),V0(θ) + Xβ̂ t}.

t
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Algorithm A10. Aguirregabiria Mira Iteration

Initialization

Estimate transition-specific parameters using step 1 of Two-Stage Estimation.

Carry out Hotz-Miller inversion to compute initial CCPs and value function, denoted  and  These are the

stage  of AM iteration.

Iteration

Estimate utility-specific parameters ( ) using the full path likelihood.

At stage , compute  as  from  to evaluate the likelihood. Current values of  enter  and

interact with prior values of  and  enter 

Iteration is complete when  is less than tolerance. Otherwise, use the Hotz-Miller inversion in 

to update  based on the new choice probabilities.

Reservation Values
For a binary choice , there is a single  at each (implicit) state that solves  Let 

denote . After some rearranging  satisfies

The differences between current and future values balance, and  are solved as a non-linear equation. The

condition that future expected values cannot depend on current  avoids a more complicated condition. Each

additional choice beyond binary adds another equation between adjacent values to be solved simultaneously.

Once  has been found, Bellman iteration requires calculation of the expected value of arriving at the

(now explicit) state 

These conditions are illustrated in Figure A1. Conditions -  include three additional objects that the

user's code must provide. The first condition for  needs  a vector of utilities for candidate values

o f  while solving for  The second includes  and the vector of expected conditional utilities, 

 and  To use the ReservationValues solution method the user derives

their model from the OneDimensionalChoice class. This class adds two virtual functions that other classes

do not. the two functions are Uz() and EUtility(). At  the difference in current utility equals the

discounted difference in future values. The user codes Uz(z) to return utility of all choices at . The

reservation value solution method uses that to solve for  Backward induction requires the expected utility of

each option conditional given the optimal value , hence the need to provide EUtility().

P̂ 0 V0.

k = 0

ψu

k > 0 P̂ k P ⋆ (7) ψu U()

Vk P̂ k v (α, θ) .

∥Pk − Pk−1∥ (39)

Vk

a z⋆ v(1, z⋆) − v(0, z⋆) = 0. EVi

EV (θ ′ | a = i) z⋆

U(1, z⋆) − U(0, z⋆) = δ [EV0 − EV1] . (40)

(40)

z,

z⋆

θ :

EV (θ) = G(z⋆) (E [U|a = 0, z < z⋆] + δEV0)

+ (1 − G(z⋆)) (E [U|a = 1, z ≥ z⋆] + δEV1) .
(41)

(40) (41)

z⋆ U (A(θ), z) ,

z z⋆. F(z⋆)

E [U (0) |z < z⋆] E [U (1) |z ≥ z⋆] .

z⋆

z

z⋆.

z⋆
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Algorithm A11. Reservation Wage Iteration

Initialization

Categorize each  as an element of  if reservation values are needed there. The default is yes unless the user

provides a Continuous() method. If so, create storage for  at 

Iteration

Follow these steps at each 

1. At each  initialize  solve for  based on the user-provided  When completed store  at 

Use EUtility() that provides  and  to compute  based on .

2. For  not in  compute  as in Bellman iteration but with a single action available.

Carry out update conditions for  as in Algorithm 2.

Figure A1. Conditions for Reservation Values

Converting the labor supply model to a reservation value model

For the basic labor supply model, the earnings shock  is a discretized normal. Change that assumption so it is a

continuous standard normal random variable, re-labeled  The class created for this version will be named LSz.

Earnings are now written

θ ΘZ

z⋆ θ.

t.

θ ∈ ΘZ z z⋆ Uz(A(θ); z). z⋆ θ.

F(z⋆) E[U|A(θ), z⋆] V (θ) (41)

θ ΘZ V (θ) = U(α; θ) + δEV (θ ′)

t

e

z.

2
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Since  exceeds the value of not working ( ) for large enough values of  there is a reservation value for the

choice  Since LSz must be a one-dimensional choice model it cannot be derived from LS as was done

earlier with LSext.

However, code from the basic model can be reused because most elements of LS are static. The only non-

static member was Utility(). By using the static elements a change to LS will still be reflected

automatically in LSz. In particular, LSz::Uz() can use LS::Earn() to utility at . First set the value of

LS::e to z then calls LS::Earn().

In the model expected utility of not working is simply . For working, expected utility involves 

. The Mills-ratio formula for log-normality gives expected utility conditional of acceptance as

The constant factor includes , because it is coefficient on the normal random variable  (and hence the

variance of the model shock). The ratio of  values is new to the continuous specification and can't be

borrowed from the discretized LS.

However, note that only the constant term includes the Mincer equation, and it is the same as the original

earnings function if  So again the base LS::Earn() function can be used by setting the value of e

first. Thus, even though LS was coded for a completely different approach its specification is still synchronized

with the reservation wage version. Only elements specific to the new version need to be coded.

This code segment converts the labor supply model to a continuous choice reservation value problem.

E = exp{β0 + β1M + β2M
2 + β3z}.

E π z

m = 1.

z

π

E[eβ3z|z > z⋆]

E[U|m = 1, z > z⋆] = exp{β0 + β1M + β2M
2 + } . (42)

β2
3

2

Φ (z⋆/β3 − β3)

Φ (z⋆)

β2
3 /2 z

Φ()

e = β3/2.
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[V]
#include "LS.ox"

class LSz : OneDimensionalChoice {

    static Run();

    EUtility();

    Uz(z);

    }

LSz::Run() {

    Initialize(new LSz());

    LS::Build(d);

    CreateSpaces();

    RVSolve();

    ComputePredictions();

    }

LSz::Uz(z) {

    LS::e = z;

    return LS::pi | LS::Earn(); 

    }

LSz::EUtility()    {

    decl pstar = 1-probn(zstar),

         sig   = LS::beta[3];

    LS::e = sig/2;

 return {  ( LS::pi | LS::Earn()*probn((zstar/sig-sig)/pstar))

              , (1-pstar)~pstar

            };

 } 
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