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Abstract

This paper addresses a multi-period portfolio selection problem when the number of

assets in the financial market is large. Using an exponential utility function, the optimal

solution is shown to be a function of the inverse of the covariance matrix of asset returns.

Nonetheless, when the number of assets grows, this inverse becomes unreliable, yielding

a selected portfolio that is far from the optimal one. We propose two solutions to this

problem. First, we penalize the norm of the portfolio weights in the dynamic problem and

show that the selected strategy is asymptotically efficient. Second, we penalize the norm

of the difference of successive portfolio weights in the dynamic problem to guarantee that

the optimal portfolio composition does not fluctuate widely between periods. This second

method helps investors to avoid high trading costs in the financial market by selecting

stable strategies over time. Extensive simulations and empirical results confirm that our

procedures considerably improve the performance of the dynamic portfolio.
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1 Introduction

Understanding investors’ behavior in a dynamic setting is very important for preventing losses

from unexpected market downturns in the financial market. Therefore, several papers1 have

been interested in the multi-period portfolio selection problem since the seminal work of Markowitz

(1959), who extends the mean-variance paradigm to the dynamic setting. In this paper, we also

address a multi-period portfolio selection problem by developing a novel econometric method

to consistently estimate the optimal solution of this dynamic problem. We use exponential

utility functions as did Bodnar et al. (2015b) and Bauder et al. (2020), who derive a closed

form solution to the dynamic portfolio problem. This optimal solution is shown to be a func-

tion of the inverse of the covariance matrix and the expected return, which are unknown and

need to be estimated. When the number of assets grows, the inverse of the covariance matrix

becomes unreliable, yielding a selected portfolio that is far from the optimal one. This problem

is amplified by estimation errors in the financial market2.

Hence, this paper proposes two solutions to stabilize the inverse of the covariance matrix in

the optimal solution. These methods are particularly useful when the number of assets in the

financial market increases considerably compared with the estimation window.

First, we penalize the norm of the portfolio weights in the dynamic problem and derive a

closed-form solution to this new optimization problem. This optimal solution is closely related

to a Ridge regularization, which consists of adding a diagonal matrix to the volatility’s matrix

to reduce estimation errors. Under appropriate regularity conditions, we show the consistency

of the selected strategy by this procedure3. More importantly, we demonstrate that this regu-

larized portfolio is asymptotically efficient in terms of the Sharpe ratio. However, this method

partially controls the estimation error in the optimal solution because it ignores the estimation

error in the expected return, which may also be important when the number of assets in the

financial market increases considerably.

Second, we propose an alternative method that consists of penalizing the norm of the dif-

ference of successive portfolio weights in the dynamic problem to guarantee that the optimal

portfolio composition does not fluctuate widely between periods. We show, under appropriate

regularity conditions, that we better control the estimation error in the optimal portfolio with

this new procedure. In fact, this procedure introduces a second level of regularization to control

for the estimation error in the expected return. Moreover, this second method helps investors

to avoid high trading costs in the financial market by selecting stable strategies over time.

Each strategy involves an unknown tuning parameter that needs to be selected in an optimal

way at each time point. We propose, for each method, a data-driven method for selecting this

parameter.

To evaluate the performance of our procedures, we implement a simulation exercise based

on a three-factor model calibrated on real data from the US financial market. We obtain by

1See, for instance, the studies by Merton (1969), Samuelson (1975), Elton and Gruber (1974), Brandt and
Santa-Clara (2006), Basak and Chabakauri (2010), Li and Ng (2000), Bodnar et al. (2015a), Penev et al. (2019),
Ma et al. (2019) among others

2The estimation error in the expected return might be important, especially in a large financial market. Stein
(1956) and Brown et al. (2012) even argue that the usual estimator of the expected return should be inadmissible
if the dimension is sufficiently large.

3With respect to the norm induced by the inner product in R
N .
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simulation that by imposing an appropriate constraint on the dynamic problem we significantly

improve the performance of the selected strategy with respect to the Sharpe ratio, the turnover

that can be seen as a measure of transaction costs, the ability to predict the default probability

and the dynamic of the optimal wealth. Moreover, our methods outperform the Bayesian

procedure proposed by Bauder et al. (2020) in the large financial market. To confirm our

simulations, we do an empirical analysis using Kenneth R. French’s 30 industry portfolios and

100 portfolios formed on size and book-to-market. We considerably reduce the turnover as

a measure of transaction costs by imposing a temporal stability constraint on the dynamic

portfolio selection problem.

This paper is related to the large literature on high dimensional estimation problems in the

financial market. Ledoit and Wolf (2003, 2004) propose to replace the covariance matrix by

a weighted average of the sample covariance matrix and some structured matrix. Moreover,

Ledoit and Wolf (2017) propose a nonlinear shrinkage estimator which is more flexible than the

linear one by modifying each eigenvalue of the sample covariance matrix under the framework

of Markowitz’s portfolio selection. Brodie et al. (2009) use the lasso method which consists of

imposing a constraint on the sum of the absolute value of the portfolio weights. Brandt et al.

(2009) and DeMiguel et al. (2020) model the portfolio weights directly as a function of the assets’

characteristics to avoid the difficulties in the estimation of asset return moments. Carrasco et al.

(2019) investigate various regularization techniques found in the inverse problem literature to

stabilize the inverse of the sample covariance matrix. Recently, Ao et al. (2019) introduce a new

way to estimate the mean-variance portfolio based on an unconstrained regression representation

of the optimization problem combined with high dimensional sparse regression method. Other

procedures have been proposed by Touloumis (2015), and Bodnar et al. (2016) to estimate

the asset volatility matrix. Jorion (1986) and Bodnar et al. (2019) propose to use a shrinkage

estimation for the expected return, which seems to be more appropriate than the sample mean.

Moreover, in a recent paper, Bauder et al. (2020) propose a Bayesian method to estimate a

multi-period portfolio but their method is not designed to handle a large number of assets. Our

contribution to this literature is to provide a new method to consistently select the optimal

portfolio in a dynamic setting with many assets.

Our work is also related to the vast literature on linear inverse problems. Carrasco et al.

(2007), and Carrasco et al. (2014) use various regularization techniques for estimation issues in

linear inverse problems. Carrasco (2012), and Carrasco and Tchuente (2015) handle the many

instruments problem in linear models by regularization. Instead of using regularization, we

propose a new way to stabilize the inverse of the covariance matrix by penalizing the norm of

the difference of successive portfolio weights in the dynamic portfolio selection problem.

The rest of the paper is organized as follows. Section 2 presents the economy and shows

that the dynamic portfolio selection problem can be seen as a linear inverse problem. Section 3

imposes a constraint on the portfolio weights in the dynamic problem and derives a closed-form

solution to this new problem. In Section 4, we impose a temporal stability constraint on the

dynamic portfolio optimization. Section 5 gives some asymptotic properties of the selected

strategy and proposes data-driven methods to select the optimal tuning parameter. Section 6

presents some simulation results and an empirical study. Section 7 concludes the paper.
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2 The model and an empirical fact

2.1 The economic environment

We consider a simple economy with N risky assets with random returns vector R̄t+1 and a

risk-free asset where N is assumed to be large. We assume that the return on the risk-free

asset is constant over the investment horizon. Let Rf denote the gross return on this risk-free

asset. Empirically, with monthly data, Rf will be calibrated to be the mean of the one-month

Treasury-Bill (T-B) rate observed in the data.

Let rt+1 = R̄t+1 − Rf1N be the vector of excess returns on the set of risky assets in the

economy with 1N the N -dimensional vector of ones.

We assume that the excess returns are independent over time with the mean and the co-

variance matrix given by µt and Σt respectively. This conditional distribution is assumed to

be a normal distribution as in Croessmann (2017) and Bauder et al. (2020). This means that

rt ∼ N (µt,Σt). Let us assume also that the population covariance matrix Σ is positive definite

such that the true and unknown optimal solutions are well defined.

We consider an investor with a finite life horizon (T ) who can trade on a basket of assets

available in the financial market. The investor has an initial wealth given by A0. Without loss

of generality we assume that A0 = 1.

Let ωt = (ωt,1, ..., ωt,N )
′

be the vector of portfolio weights determined at the time point t.

Definition. In our economy a portfolio is defined as a list of weights ωt and 1− ω
′

t1N that

represent the amount of the capital to be invested in the risky assets and the risk-free asset

respectively.

Short-selling is allowed in the financial market, i.e. the optimal weights could also be

negative or could contain negative weights for some assets.

The return on the optimal portfolio is given by

Rp,t+1 = ω
′

tR̄t+1 +Rf

(
1− ω

′

t1N

)
= Rf + ω

′

trt+1. (1)

We assume in our model that the investor does not receive other sources of income. Hence, the

law of motion of the investor’s total wealth is given by

At+1 = AtRp,t+1 = At(Rf + ω
′

trt+1) (2)

for t = 0, ..., T − 1 with A0 = 1.

Moreover, let us assume that Rf > 1. This assumption implies that at each time point t we

have that At ≥ 0.

The investor has to select a sequence of portfolio weights {ωs}T−1
0 in order to maximize

the expected utility of final wealth, i.e. E0(U(AT )). Here we choose U(x) = − exp(−γx) to

be an exponential utility function with γ > 0, which represents the CARA and determines

the investor’s attitude towards risk. Note that the normality of the excess return could be

abandoned in favor of a quadratic utility function, which seems to be less adapted than the

exponential utility (which uses normality to find the closed-form solution) in a portfolio selection

framework. In fact, according to Pratt (1964), the coefficient of absolute risk aversion (ARA)

should decrease or at least should not increase with wealth. Therefore, because the quadratic

utility function implies that the ARA is increasing in wealth, the exponential utility function

(with a constant ARA) becomes a better choice than the quadratic utility function in the

4



portfolio selection problem. Hence, there is a certain trade-off between using a less adapted

utility function without the normality assumption and using an exponential utility function

combined with the normality of the excess return.

The investor’s optimization problem is then given by

V (0, A0) = max
{ωs}T−1

0

E0(U(AT )), (3)

where V (0, A0) represents the value function. The solution of this problem is obtained recur-

sively starting from the last period using the following Bellman equation associated with the

optimization problem:

V (t, At) = max
ωt

Et {V (t, At+1)} = max
ωt

Et

{
V (t+ 1, At(R

f
t + rt+1ω

′

t))
}
, (4)

t = 0, ..., T − 1 with the following terminal condition V (T,AT ) = − exp(−γAT ). Following

Bauder et al. (2020) the solution of the optimization problem in Equation (4) is given by

ωt = γtΣ
−1
t µt, (5)

with γt =
(
γAtR

T−t−1
f

)−1
for t = 0, ..., T − 1, which can be seen as an adjusted risk aversion

used to capture the effect of previous actions on the selected portfolio.

This optimal portfolio is very close to Markowitz’s strategy. The only difference comes from

the constant γt. Hence, the relative share of the risky assets in the optimal portfolio is the

same as in Markowitz’s portfolio but the part allocated to the risk-free asset is different. In

fact, if the investment horizon is reduced to a single period, the solution coincides with the

mean-variance portfolio given by

ω =
1

γ
Σ−1µ.

Hence, the investor’s preferences enter in the solution only through the scalar term 1/γ. In-

vestors differ only in the overall scale of their risky asset position, not in the composition of

that position. Therefore, conservative investors (with a high γ) hold more of the risk-free asset

and less of all risky assets but they do not change the relative proportions of their risky assets

determined by Σ−1µ. This is the mutual fund theorem of Tobin (1958). However, when the

investment horizon covers more than one period, the solution also depends on a time-varying

factor
(
AtR

T−t−1
f

)−1
, which is specific to each investor. The mutual fund theorem of Tobin

(1958) is no longer verified in the dynamic setting.

Equation (5) shows that the optimal portfolio cannot be directly computed in practice

since it depends on unknown parameters (Σt and µt) of the excess return distribution. As a

result, these two quantities have to be estimated before we obtain an estimation of the optimal

portfolio. The standard way to estimate the optimal portfolio consists of estimating Σt and

µt by their sample counterpart at each period after updating information. More precisely, let

rt−n+1, ..., rt be the observations of the excess returns that are considered realizations of the

corresponding random vector until the time point t. Then, the mean vector and the covariance

matrix at time t are estimated traditionally by µ̂t =
1
n

∑t
i=t−n+1 ri and Σ̂t =

1
n

∑t
i=t−n+1(ri −

µ̂t)(ri−µ̂t)′ respectively. The estimated portfolio at period t is obtained as follows ω̂t = γ̂tΣ̂
−1
t µ̂t

where γ̂t = 1/
(
γÂtR

T−t−1
f

)
. In fact, γt is also an unknown parameter because it depends on At

which is obtained as a function of {ωs}t−1
s=0. Hence, γt should be estimated from an estimation
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of the sequence {ωs}t−1
s=0. Using the traditional approach for estimating the optimal weights at

time t, we obtain that

ω̂t = F

(
γ,Rf , {µ̂s}ts=0 ,

{
Σ̂s

}t

s=0

)
. (6)

However, the choice of the sequence of sample covariance matrices
{
Σ̂s

}t

s=0
to form the opti-

mal strategy may not be appropriate. Indeed, the sample covariance matrices may be nearly

singular. Inverting them may amplify the estimation errors and affect the performance of the se-

lected strategy. Moreover, the estimation errors in the expected return might be also important,

especially when the number of assets in the financial market is large.

2.2 The multi-period problem as a sequence of linear ill-posed problems

At each period t, the optimal portfolio weights are given by the relation (5) or equivalently by

the following equation

Σtωt = γtµt. (7)

Equation (7) can be seen as an inverse problem because it can be written as follows

Σtωt = ηt, (8)

where ηt = γtµt. Equation (8) is said to be well-posed if it admits a unique and stable4 solution

ωt. When one of these conditions, such as the existence of a solution, its uniqueness and its

stability, is not satisfied, the problem is said to be ill-posed. If the population covariance matrix

is not invertible, the relation defined in Equation (7) does not admit a unique solution. To ensure

the uniqueness of the solution of Equation (7) at each period, it has been assumed in the previous

section that the true and unknown covariance matrix is not singular. More importantly, when

the number of assets in the financial market grows, even if Σt is not singular, it is likely to be

ill-conditioned5. Therefore, the inverse of this matrix becomes unreliable yielding a selected

portfolio far from optimal. Moreover, Σt and ηt are unknown and need to be estimated before

solving the linear inverse problem. Any estimation error in Σ̂t and η̂t amplifies the error in the

selected strategy. Hence, the sequence of portfolio weights {ωt} can be seen as the solution of

a sequence of ill-posed linear problems {Σtωt = ηt} over the investor’s life cycle.

According to Carrasco et al. (2007) an interesting way to solve this problem is to regularize

Equation (8) by dampening the explosive effect of the inversion of the singular values of Σ̂t.

It consists in replacing the sequence {1/λt,j} of explosive inverse singular values by a sequence

{q(α, λt,j)/λt,j} where the damping function q(α, λ) is chosen such that

1. q(α, λ)/λ remains bounded when λ→ 0,

2. for any λ, limα→0 q(α, λ) = 1

where α is the regularization parameter. The damping function is specific to each regularization.

4The solution of this problem is stable in the sense that it is continuous in ηt. In other words ωt is stable
with respect to a small change in ηt.

5The ratio of the largest eigenvalue over the smallest is large.
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2.3 Empirical case to motivate our procedure

Assume that we have an economy with a professional investment management firm that ad-

ministers a hedge fund. A hedge fund is an investment fund that pools capital from accredited

investors or institutional investors and invests it in a variety of assets, often with complex portfo-

lio construction and risk management techniques. Let us also assume that our investor is willing

to invest the capital in one of the following industry portfolios from the US financial market: the

5-industry portfolios, 10-industry portfolios, 17-industry portfolios, and 30-industry portfolios.

An industry portfolio provides information about the evolution of the shares of companies that

compose a given sector based on a composite index. Hence, each sector included in the portfo-

lio will be considered an asset in the financial market. For instance, the 5-industry portfolios

contain information on 5 sectors (see Table 2 for more details) which may be considered as five

risky assets and the Kenneth French data library provides information about the returns of

those assets.

We estimate Equation (5) for each industry portfolio using the following procedures: the

traditional method, which is based on both the sample covariance and the sample mean of

asset returns, and the Bayesian method introduced by Bauder et al. (2020). We also consider

a benchmark portfolio obtained by calibrating the covariance matrix of asset returns and the

expected return using monthly data from July 1980 to January 2019. This benchmark will be

considered as the true optimal solution. We will then evaluate the performance of the selected

portfolio using the return per unit of risk and the turnover. Tables 3 and 4 present the results

of this empirical analysis.

Note that the Bauder et al. (2020)’s procedure gives very nice results for the 5-and 10-

industry portfolios with respect to several statistics, particularly the return per unit of risk.

However, this method performs poorly for the 17-and 30-industry portfolios. This is due to the

fact that their estimator involves the inverse of the sample covariance matrix and hence is not

appropriate to handle a large number of assets.

Below we propose two methods to consistently estimate the optimal solution of the dynamic

problem in order to improve the performance of the selected strategy.

3 Imposing a constraint on the portfolio weights

In this section, we impose a constraint on the portfolio weights when solving the dynamic

problem. This new constraint may help improve the performance of the selected portfolio. In

fact, portfolios constructed using sample moments generally involve taking extreme long and

short positions, which may overestimate the optimal risk and negatively affect the performance

of the selected strategy. However, imposing such a constraint is equivalent to shrinking the

covariance matrix (toward the identity matrix) in order to avoid extreme positions in the

selected portfolio and reduce, for instance, the risk in estimating the optimal strategy. More

precisely, we impose the following constraint

‖ωt‖22 =
N∑

j=1

ω2
j,t ≤ dt

7



for t = 0, ..., T − 1 where dt is a non-random positive parameter. Hence, the new optimization

problem we have to solve becomes

V (0, A0) = max
{ωs:‖ωs‖22≤ds}T−1

0

E0(U(AT )) (9)

In the following subsection, we show that solving this problem is equivalent to solving a

simple non-constrained dynamic problem.

3.1 From a constrained portfolio problem to a non-constrained problem

We transform the constrained problem into a non-constrained optimization problem and derive

a closed-form solution.

In the recursive form the optimization problem in (9) is given by

V (t, At) = max
{ωt:‖ωt‖22≤dt}

Et {V (t+ 1, At+1)} = max
{ωt:‖ωt‖22≤dt}

Et

{
V (t+ 1, At(Rf + ω

′

trt+1))
}
(10)

We then obtain the following result for this optimization problem.

Proposition 1. Under the assumptions about the economy stated in Section 2.1, the solution

of (10) can be obtained by solving the following unconstrained problem

max
{ωt}

{
exp

(
λt ‖ωt‖2

)
Et

[
V
(
t+ 1, At

(
Rf + ω

′

trt+1

))]}
(11)

for t = 0, ..., T − 1 with the terminal condition V (T,AT ) = − exp(−γAT ) and λt the Lagrange

multiplier associated with the constraint. Moreover, the portfolio weights that solve (11) can be

written as follows

ω∗
t =

(
γAtR

T−t−1
f

)−1
(Σt + αtIN )−1 µt (12)

where αt ∈ (0, 1) is a smoothing parameter used to stabilize the optimal portfolio.

Proof. In Appendix.

The quantity
(
exp

(
λt ‖ωt‖2

))
in Equation (11) is an additional term to the original port-

folio selection problem that materializes the cost the investor has to pay in order to eliminate

the constraint we impose in the optimization problem. This non-constrained problem is ob-

tained by penalizing the objective function of the non-constrained portfolio problem in (4) with

a penalty term that can be considered the additional cost the investor has to pay in order to

reach a stable portfolio. αt in Proposition 1 is related to the Lagrange multiplier associated

with the constraint through the relation λt =
αt
2

(
γRT−t−1

f

)T−t
A2

t . This implies that to obtain

λt we need only select αt. αt can be seen as a smoothing parameter which helps us solve the

problem of ill-posedness when estimating (5). αt
2

(
γRT−t−1

f

)T−t
At ‖ωt‖2 can be interpreted as

the trading cost associated with the optimal selected portfolio. It is, in fact, a quadratic trading

cost, as Gârleanu and Pedersen (2013) assumed.

The resolution of the optimization problem is done assuming that αt is given. However, since

the portfolio depends on this parameter, we must select it in an optimal way. The main idea

behind (12) is that with an appropriate constraint on the portfolio weights, we solve the problem

of ill-posedness that arises when trying to estimate (5). Imposing such a constraint may thus
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improve the performance of the estimated portfolio. The closed-form solution of proposition

1 is in fact a particular regularized version (the Ridge regularization) of the optimal solution

obtained in (5). It consists of adding to the covariance matrix a diagonal matrix in order to

solve the problem of ill-posedness induced by the traditional method. Adding such a diagonal

matrix may be helpful to stabilize the inverse of the covariance matrix that appears in the

optimal solution.

However, the optimal solution obtained in (12) is unknown because it depends on the

unknown parameters of the excess return distribution, and needs to be estimated in practice.

We can easily estimate this solution by replacing the volatility matrix by the sample covariance

and the expected return by the sample mean. More precisely, the estimated portfolio is given

by

ω̂RdgP
αt

= γ̂t

(
Σ̂t + αtIN

)−1
µ̂t (13)

3.2 Comments on the result of the first procedure

The first thing to note about this method is that the selected strategy in (12) is closely related

to a Ridge regularization. The general idea behind this procedure is to control the effect of asset

volatility on the investment decision by stabilizing the inverse of the covariance matrix of asset

returns. In fact, ridge regularization was first used in regressions in the context where there

are too many regressors or when multicollinearity occurs (see Hoerl (1962), Hoerl and Kennard

(1970), Mason and Brown (1975)). In this context, the ordinary least squares estimator is

unbiased, but its variance is large, so it may be far from the true value. Hence, by adding a

small bias to the regression estimates (replacing X
′

X by X
′

X + αI where I is the identity

matrix), ridge regression reduces the standard errors. More precisely, assume that we want to

estimate a parameter θ from the following multiple linear regression model y = Xθ+ ǫ then the

standard OLS version of θ is given by θ̂ols =
(
X

′

X
)−1

X
′

y and Ridge regularized version of

θ is θ̂ridge =
(
X

′

X + αI
)−1

X
′

y. The Ridge regression, as well as our procedure, involves an

unknown regularization parameter αt which needs to converge to zero with the sample size at a

certain rate for the solution to converge. Moreover, a fixed αt would result in a loss of efficiency.

Hence, we need to optimally select this parameter based on a certain selection criterion.

More importantly, this procedure only controls for the estimation error in the covariance

matrix of the asset returns through Ridge regularization and ignores estimation errors in the

expected returns, which may also be important especially when the number of assets in the

financial market increases. Nonetheless, a successful investment strategy is also based on in-

vestors’ ability to well estimate the expected return.

In the next section, we propose an alternative method which imposes the temporal stability

in the investment process and helps to control for the estimation error in the expected return.
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4 Imposing a temporal stability constraint in the dynamic prob-

lem

In this section, instead of imposing a constraint on the optimal portfolio weights in the dynamic

problem, we impose a temporal stability constraint. It consists of controlling the distance

between two consecutive investment strategies. Hence, imposing such a constraint guarantees

that the optimal portfolio composition remains stable over time. This new constraint will be

very useful in the sense that it helps investors to avoid high transaction costs in their investment

process. Moreover, with this second procedure, we introduce a second level of regularization

to the sample expected return which helps to control for the estimation error in the expected

return. We propose two different temporal stability constraints in this paper.

4.1 Imposing a L2 temporal stability constraint

We impose the following L2 stability constraint in our dynamic problem

‖ωt − ωt−1‖22 =
N∑

i=1

(ωi,t − ωi,t−1)
2 ≤ dt

for t = 0, ..., T − 1 with ω−1 = 0N and dt a positive and non-random constant.

By imposing such a constraint at each period, the investor’s new optimization problem

becomes

V (0, A0) = max
{ωs:‖ωs−ωs−1‖22≤ds}T−1

0

E0(U(AT )). (14)

In the recursive form we have that

V (t, At) = max
{ωt:‖ωt−ωt−1‖22≤dt}

Et

{
V (t+ 1, At(Rf + ω

′

trt+1))
}

(15)

with the terminal condition V (T,AT ) = − exp(−γAT ). Solving this dynamic problem we obtain

the following first order condition

γ−1
t (Σt + αtIN )ωt = µt + αtωt−1. (16)

This equation gives the dynamics of the optimal portfolio over the investor’s life cycle as a

function of volatility and the expected return.

The following proposition provides an interesting way to estimate the optimal solution

through (16).

Proposition 2. The optimal solution of the optimization problem in (15) can be estimated

as follows

ω̂L2TSP
αt

= γ̂tΣ̂
−1
αt
µ̃t

for t = 1, ..., T − 1 with ω̂α0
= Σ̂−1

α0
µ̂0 where Σ̂αt = Σ̂t + αtIN , and

µ̃t = µ̂t +

t−1∑

j=0




t−1∏

i=j

γ̂iαi+1Σ̂
−1
αi


 µ̂j (17)

is a shrinkage estimation for µ at the time point t. The sample mean µ̂j and the sample
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covariance Σ̂j are obtained by rolling windows.

Proof. In Appendix.

This result implies that, instead of applying the usual estimator for the expected return

to form the optimal portfolio, we propose to use a shrinkage estimator, which may be more

appropriate than the standard one. In fact, according to Merton (1980), the expected stock

returns are very hard to estimate and the estimated values differ strongly from the true value

when using the sample mean. Therefore, the resulting estimation errors may induce a subop-

timal portfolio composition with very poor performance. Hence, using a shrinkage estimation

pioneered by Stein (1956) and James and Stein (1961) can be helpful to handle the error in

estimating the expected return, and hence improve the performance of the estimated portfolio.

According to Proposition 2, our selected strategy depends on an unknown tuning parameter

which need to be selected. We discuss the selection of this tuning parameter in Section 5.4.

4.2 Imposing a L1 temporal stability constraint in the dynamic problem

Although the L2 temporal stability constraint is helpful to better estimate the expected return

through a shrinkage estimation, it does not guarantee that assets allocation remain stable over

time (even if the tuning parameter is close to 1). In fact, this temporal stability constraint

is equivalent to assuming a quadratic trading cost in our model such that investors trade in

small quantities in each period. Moreover, as with the Ridge method, the L2 temporal stability

procedure does not have a sparsity property, which may be particularly useful to eliminate

irrelevant assets in the selected portfolio when N > n.

Instead of using a L2 stability constraint in the dynamic problem, we could use the following

L1 temporal stability constraint

‖ωt − ωt−1‖1 =
N∑

i=1

|ωi,t − ωi,t−1| ≤ dt

for t = 0, ..., T − 1 with ω−1 = 0N and dt a positive and non-random constant.

This new constraint may be appropriate in particular if investors want to hold portfolios with

a few active positions. With this L1 penalty, we will have a subset Nc ⊆ N where ωjt = ωjt−1

∀j ∈ Nc. The new optimization problem in such a situation becomes

V (t, At) = max
{ωt:‖ωt−ωt−1‖1≤dt}

Et

{
V (t+ 1, At(Rf + ω

′

trt+1))
}
. (18)

Note that, unlike what we obtained in Subsection 4.1, there is no closed-form solution to

this optimization problem. Hence, we need to solve it numerically. However, since we are in a

large dimensional setting, it will be very difficult to solve this problem numerically in practice.

Hence, in practice, we decide to use an approximation that helps us to relate this optimization

problem to a constrained OLS estimation. More precisely, let n denote the rolling window

which is the number of observations on assets returns used at each period to estimate the

unknown parameters before solving the dynamic problem. At each period t let us denote by ri
for i = t−n+1, ..., t the observations on the vector of excess returns of the n previous periods.

Rt is a n×N matrix with the ith row given by r
′

i. Let us also denote Ωt = E
(
R

′

tRt

)
/n, and

θt = Ω−1
t µt = E

(
R

′

tRt

)−1
E
(
R

′

t1n

)
. With this notation we can easily compute the optimal
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portfolio in (5 as follows)

ωt = γt
θt

1− µ
′

tθt
(19)

This decomposition of the optimal portfolio has been obtained in Carrasco et al. (2019). θt can

be obtained through the following OLS model 1n = Rtθt + ut for ∀ t. We show in Lemma 2 in

Appendix that E
(
R

′

tut

)
= 0.

A good way to estimate the optimal solution of the L1 temporal stability portfolio is by

solving the following optimization problem

θ̂αt = argmin
θt

1

n
‖1n −Rtθt‖22 + αt ‖θt − θt−1‖1 (20)

with αt ∈ (0, 1) and θt from 1n = Rtθt + ut.

Hence, this solution also depends on an unknown tuning parameter which needs to be

selected reasonably in order to obtain a solution with good properties. When the αt chosen

is too large, the estimated solution may perform poorly. Moreover, if αt is too close to zero,

the estimated solution may be close to the standard sample-based portfolio, which is known to

perform very poorly.

We can also use a generalization of this L1 penalty to include a Lasso penalty in our

optimization problem. This penalty is a variant of the fused Lasso proposed by Tibshirani et

al. (2005) and it consists of penalizing the L1-norm of both the portfolio weights and their

successive changes over time. This procedure encourages sparse and stable portfolios and it

may be particularly useful when N >> n to eliminate irrelevant assets in the selected portfolio

at each time point. With the fused Lasso method, the dynamic portfolio problem is given by

V (t, At) = max
{ωt:‖ωt‖1≤d1t,‖ωt−ωt−1‖1≤d2t}

Et

{
V (t+ 1, At(Rf + ω

′

trt+1))
}
. (21)

5 Asymptotic properties of the selected portfolio

In this section, we derive some asymptotic properties of the selected strategy obtained with our

procedures. Several asymptotic properties will be examined, such as consistency, efficiency and

asymptotic distribution.

We denote by RdgP the selected strategy with an L2 norm on the portfolio weights, L2TSP

the selected portfolio when imposing an L2 temporal stability constraint in the dynamic problem

and by L1TSP the optimal selected strategy with an L1 temporal stability constraint. We will

also need the notation in Subsection 4.2 to easily derive our asymptotic properties.

5.1 Consistency for L2 penalty

To obtain the consistency of the selected portfolio, we need to impose some regularity conditions.

Assumption A

A(i) For some τt > 0, we have that

N
∑

j

< θt, φjt >
2

λ2τtjt

< +∞

where φjt and λ
2
jt denote the eigenvectors and eigenvalues of Ωt

N .

12



A(ii) Σt
N and Ωt

N are Hilbert-Schmidt operators

The regularity condition in A(i) seems to be more restrictive than assuming that

∑

j

< θt, φjt >
2

λ2τtjt

< +∞

as in Carrasco et al. (2007) and Carrasco (2012). Nonetheless, Carrasco et al. (2019) show that

assumption A hold if the returns are generated by a factor model. Assumption A is used to

derive the rate of convergence of the mean squared error in the OLS estimator of θt. These

two assumptions imply in particular that ‖θt‖2 < +∞ such that we have the following relations

‖θt − θαt‖2 = Op(α
min(τt,2)
t ). Note that θαt = Ω−1

αt
µt with Ωαt = Ωt+αtIN the Ridge regularized

version of the covariance matrix Ωt, and αt the tuning parameter used to stabilize the inversion

of the covariance matrix at the period t.

Let us denote by Ft the set of information at the time point t before the investor selects

the optimal portfolio for period t. Using assumption A, we obtain the following result about

the consistency of the estimated portfolio.

Proposition 3. Given the set of information Ft and under assumption A, we have the

following result ∥∥∥ω̂RdgP
αt

− ωt

∥∥∥ = op (1) (22)

ω̂RdgP
αt is the estimated version of the selected portfolio obtained by imposing the L2 norm on

the portfolio weights.

Proof. In the appendix.

Proposition 3 implies the consistency of the estimated portfolio at each period with respect

to ‖.‖ under some regularity conditions. Here ‖.‖ is the norm induced by the inner product

in R
N . According to this proposition, by imposing an appropriate constraint on the dynamic

portfolio selection problem, we obtain a feasible strategy very close to the optimal portfolio if

the estimation window is large enough and under reasonable regularity conditions.

5.2 Efficiency with respect to the Sharpe ratio for L2 penalty

Let us, now look at the asymptotic property of the Sharpe ratio associated with the selected

portfolio. The Sharpe ratio measures the excess return (or the risk premium) per unit of

deviation for a given trading strategy. It is a way to examine the performance of an investment

by adjusting for its risk. The Sharpe ratio of a given portfolio allocation ωt is expressed as

follows:

st (ωt) =
µ

′

tωt(
ω

′

tΣtωt

)1/2

The Sharpe ratio of the optimal portfolio at period t as defined in Equation (5) is thus given

by

st (ωopt,t) =
(
µ

′

tΣtµt

)1/2
.

However, as mentioned in Section 2, investors cannot reach the optimal portfolio in practice

since neither µt nor Σt is known in advance. Because the optimal portfolio is estimated, the
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actual Sharpe ratio associated with this strategy may be different from the theoretical one.

Hence, this paper aims to provide the investor with a feasible strategy whose Sharpe ratio is as

close as possible to the theoretical and unknown Sharpe ratio.

The following proposition presents information about the asymptotic property of the Sharpe

ratio associated with the selected portfolio.

Proposition 4. Given the set of information Ft and under assumption A we have that

st (ω̂αt)
2 = st (ωt)

2 +Op

[(
1

αt
√
n
+ ‖θt − θαt‖

)]
, (23)

for the RdgP and the L2TSP if 1
αt

√
n
→ 0 as n goes to infinity where ωt is the optimal portfolio

at the time point t given by the equation (5) with ‖θt − θαt‖2 = Op(α
min(τt,2)
t ).

Proof. In Appendix.

The regularity condition behind proposition 4 implies that αt
√
n → ∞, which means that

the estimation window should go to infinity faster than the optimal tuning parameter goes to

zero. More importantly, under the regularity condition 1
αt

√
n
→ 0 the result of proposition 4

can be rewritten as follows

st (ω̂αt)
2 = st (ωt)

2 + op (1) (24)

since, ‖θt − θαt‖2 = O
(
α
min(τt,2)
t

)
by assumption A, and using the fact that αt goes to zero as

n goes to infinity. Hence, proposition 4 shows that the estimated portfolio is asymptotically

efficient in terms of the Sharpe ratio for a wide choice of tuning parameters. Consequently,

even if the optimal portfolio at the time point t is not practically available (due to the fact that

µt and Σt are unknown) there exists a feasible portfolio (obtained by imposing an appropriate

constraint on the dynamic problem) capable of reaching similar levels of performance in terms

of the Sharpe ratio for a large estimation window and a wide choice of the regularization

parameter. A similar result has been found by Chen and Yuan (2016) in a static mean-variance

portfolio selection problem assuming that assets returns follow a K-factor model.

To show the consistency and the efficiency of the selected portfolio with a L1 temporal

stability constraint we need an additional assumption (see assumption B in appendix).

5.3 Mean squared error

The aim of this subsection is to see if we can better control the estimation error by imposing a

temporal stability constraint in the portfolio selection problem over investors’ life cycle. For this

purpose, we derive an approximation to the estimation error in the optimal portfolio at each

period in order to understand if it could vanish asymptotically under less restrictive regularity

conditions.

Here we define the mean squared error of the selected strategy as follows

MSE (ω̂αt) =
1

Nn
E

[∥∥∥Σ̂t (ω̂αt − ωt)
∥∥∥
2

2

]
(25)

Under Assumption A we obtain the following result about the mean squared error of the

L2 temporal stability portfolio.
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Proposition 5.1 Given the set of information Ft and under assumptions A we have the

following result about the estimation error of the selected portfolio

MSE
(
ω̂L2TSP
αt

)
∼ N

n2α2
t

+
N

n
α
min(τt,2)
t (26)

which is minimized for αt of order
(
1
n

) 1

τt+2 . Moreover, we have that

MSE
(
ω̂L2TSP
αt

)
≤MSE

(
ω̂RdgP
αt

)
(27)

Proof. In Appendix.

The first point of this proposition implies that under appropriate regularity conditions, the

estimation error of the selected strategy by imposing a L2 temporal stability constraint vanishes

asymptotically. The second fact to notice about this proposition is that we better control the

estimation error when imposing an L2 temporal stability constraint compared with the Ridge

regularization procedure. Intuitively, this result can be explained by the fact that the RdgP

method ignores estimation errors in the expected return while the L2TSP introduces a second

level of regularization in the sample mean to control for estimation errors in the expected return.

To obtain a good approximation of the MSE of the selected portfolio obtained with a L1

temporal stability constraint, we need additional assumptions. More information about these

assumptions (see assumption B in Appendix) are given in Section 8.2. We obtain the following

result about the estimation error of the L1 temporal stability strategy under assumptions A

and B.

Proposition 5.2 Given the set of information Ft and under assumptions A and B we have

the following result about the estimation error of the selected portfolio

MSE
(
ω̂L1TSP
αt

)
∼ Nα2

t

(
st/ξ

2
Ωt

)
+Nαt ‖θt − θt−1‖ (28)

st and ξ
2
Ωt

are two time varying constants defined in Appendix.

Proof. In Appendix.

This proposition also implies that under appropriate regularity conditions, the estimation

error of the selected strategy by imposing a L1 temporal stability constraint vanishes asymp-

totically. In other words, under appropriate regularity conditions we have that

MSE (ω̂αt) → 0

for L1TSP and L2TSP which implies that we asymptotically control the MSE for strategies

obtained by imposing a temporal stability constraint.

We derive in appendix the asymptotic distribution of a certain linear combination of the

estimated version of the Ridge regularized portfolio (see proposition 6) useful for constructing

confidence intervals.

5.4 Data-driven Method for Selecting the Tuning Parameter

Sections 3 and 4 illustrate that the selected portfolio depends on a certain smoothing parameter

αt ∈ (0, 1). We have derived some asymptotic properties of the selected portfolio assuming that
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this tuning parameter is given. However, in practice, the regularization parameter is unknown

and needs to be selected in an optimal way. Hence, for each method, we propose a data-driven

selection procedure to obtain an approximation of this parameter.

5.4.1 Tuning parameter for the Ridge regularization

In a static mean-variance framework, Carrasco et al. (2019) propose a data-driven method to

optimally select this parameter. This method is based on a cross-validation approximation of

a loss function of the estimated portfolio.

In the dynamic setting, we base our procedure on a cross-validation approximation of the

mean square error (MSE) of the estimated portfolio. The aim is to find an optimal αt that

minimizes the approximation MSE of µ
′

ω̂t. This type of data-driven method for selecting the

tuning parameter based on the MSE of a certain linear combination of the estimated parameter

has been used by Carrasco (2012) and Carrasco and Tchuente (2015) for an arbitrary linear

combination of the estimated parameter. Here, we select αt, for which the following expected

MSE E

[(
µ

′

(ω̂t − ωt)
)′ (

µ
′

(ω̂t − ωt)
)]

is as small as possible. The idea behind this procedure

is to select the value of αt, which minimizes the distance between the expected return on the

optimal portfolio and the return obtained with the regularized portfolio.

The following result gives us a very nice equivalent of the objective function. We can easily

apply a cross-validation approximation procedure on this expression of the objective function.

Proposition 7 Given the set of information Ft and under assumption A, we obtain the

following result
(
1− µ

′

θt

)4
γ−2
t E

[(
µ

′

(ω̂t − ωt)
)′ (

µ
′

(ω̂t − ωt)
)]

∼ 1

n
E

[∥∥∥1′

nRt

(
θ̂t − θt

)∥∥∥
2
]

(29)

The proof of this proposition can be found in the Appendix.

It follows from Proposition 7 that minimizing E

[(
µ

′

(ω̂t − ωt)
)′ (

µ
′

(ω̂t − ωt)
)]

with re-

spect to αt is also equivalent to minimizing 1
nE

[∥∥∥1′

nRt

(
θ̂t − θt

)∥∥∥
2
]
with respect to αt. How-

ever, this new expression of the objective function is not feasible because it depends on βt
which is unknown. Hence, we investigate several cross-validation approximation techniques for

1
nE

[∥∥∥1′

nRt

(
θ̂t − θt

)∥∥∥
2
]
following Li (1986, 1987). See Section 8.4 for more details about these

cross-validation approximation techniques.

The optimality of this data-driven procedure can be obtained following the same techniques

as in the study by Carrasco et al. (2019).

5.4.2 Tuning parameter for the temporal stability constraint

A good way to approximate the optimal solution of the temporal stability portfolio consists of

solving the following optimization problem

θ̂αt = argmin
θt

1

n
‖1n −Rtθt‖22 + αtC (θt, θt−1) (30)
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where

C (θt, θt−1) =

{
‖θt − θt−1‖22 for L2TSP

‖θt − θt−1‖1 for L1TSP

with αt ∈ (0, 1) and θt from 1n = Rtθt + ut. To select the tuning parameter, the first thing is

to transform this optimization as follows (see proof of Lemma 4 for more details)

ˆ̃
θαt = argmin

θ̃t

1

n

∥∥∥yt −Rtθ̃t

∥∥∥
2

2
+ αtC

(
θ̃t

)
(31)

where

C
(
θ̃t

)
=





∥∥∥θ̃t
∥∥∥
2

2
for L2TSP

∥∥∥θ̃t
∥∥∥
1

for L1TSP

yt = 1n −Rtθt−1, y0 = 1n for the first period. The tuning parameter αt ∈ (0, 1) at period t can

then be selected by applying a cross validation procedure to a Ridge-type regression in (31) for

the L2TSP and to a Lasso-type regression for the L1TSP. In practice, at each period t, we will

use the following estimator ŷαt−1
= 1n −Rtθ̂αt−1

for yt in the OLS model in (31).

6 Simulations and empirical study

We start this section by a simulation exercise to set up the performance of our procedure

and compare our result to the existing methods. In particular, we compare our method to

the Bayesian procedures proposed by Bauder et al. (2020). More precisely, in this section,

we focus our attention on how our procedure performs in terms of the Sharpe ratio and the

default probability. Moreover, we are interested in how our procedure can perform in terms of

minimizing the rebalancing cost at a given period. The rebalancing cost at the time point t can

be naturally measured by

Costt =
N∑

j=1

|ωt,j − ωt−1,j |

This measure of the trading cost is, in fact, the turnover. The transaction cost can be measured

using the turnover in the sense that these costs are positively related to the turnover. Therefore,

in the rest of the paper the turnover will be called transaction costs. The average trading cost

over the investment horizon is given by

TradingCost =
1

T

T−1∑

t=0

Costt.

This quantity can be interpreted as the average percentage of wealth traded at each period. It

can be assimilated to the transaction costs faced by the investor at a given period, who takes

some positions in the financial market. By definition trading costs could be seen as all costs

incurred by investors in the process of buying or selling an asset in the financial market. In

other words trading costs include brokerage fees, cost of analysis, information cost and any

expense incurred in the process of deciding upon and placing an order. Delay in execution,

which causes prices at which one trades to be different from those at which one planned to
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trade, may be included as well.

We also analyze the out-of-sample performance of the selected portfolio from each procedure

we have proposed.

6.1 Simulations

We implement a simple simulation exercise to set up the performance of our procedure and

compare it with the existing procedures. This comparison will be done using several statistics

such as the actual Sharpe ratio, the default probability, and the rebalancing cost. Let us consider

for this purpose a simple economy with N ∈ {10, 20, 40, 60, 80, 90, 100} risky assets and a risk-

free asset. We use several values of N to see how the size of the financial market (defined by

the number of assets in the economy) could affect the performance of the selected strategy.

We also consider a finite life (T = 12, which corresponds to one year or 12 months) investors

who reallocate their portfolio monthly over their life cycle by maximizing an exponential utility

function with the CARA parameter γ = 3. Let n be the rolling window used at each period to

estimate, in particular, the covariance matrix of assets returns. So, at each simulation step, we

have to generate n+T excess returns and use them to form the dynamic portfolio over the last

T periods of the data set. To form the optimal portfolio at the first period (which is n + 1),

we use the first n generated observations to estimate unknown parameters that appear in the

optimal portfolio given in (5). For the second period (n+ 2), we also use the last n data from

t = 2, ..., n + 1 to estimate unknown parameters, and so on. Following Chen and Yuan (2016)

and Carrasco et al. (2019), we simulate the excess returns at each simulation step from the

following three-factor model for i = 1, ..., N and t = 1, ..., n+ T

rit = bi1f1t + bi2f2t + bi3f3t + ǫit (32)

ft = (f1t, f2t, f3t)
′

is the vector of common factors, bi = (bi1, bi2, bi3)
′

is the vector of factor

loading associated with the i-th asset and ǫit is the idiosyncratic component of rit satisfying

E (ǫit|ft) = 0. We assume that ft ∼ N (µf ,Σf ) where µf and Σf are calibrated on the monthly

data of the market portfolio, the Fama-French size and the book-to-market portfolio from July

1980 to June 2016. Moreover, we assume that bi ∼ N (µb,Σb) with µb and Σb calibrated

using data of 30 industry portfolios from July 1980 to June 2016. Idiosyncratic terms ǫit are

supposed to be normally distributed. The covariance matrix of the residual vector is assumed to

be diagonal and given by Σǫ=diag
(
σ21, ..., σ

2
N

)
with the diagonal elements drawn from a uniform

distribution between 0.10 and 0.30 to yield an average cross-sectional volatility of 20%.

In the compact form (32) can be written as follows:

R = BF + ǫ (33)

where B is a N × 3 matrix whose ith row is b
′

i. The covariance matrix of the vector of excess

return rt is given by

Σ = BΣfB
′

+Σǫ

The mean of the excess return is given by µ = Bµf . The return on the risk-free asset Rf is

calibrated to be the mean of the one-month Treasury-Bill (T-Bill) observed in the data from

July 1980 to June 2016.

The calibrated parameters used in our simulation process are given in Table 1. The gross

18



return on the risk-free asset calibrated on the data is given by Rf = 1.0036. Once generated,

the factor loadings are kept fixed over replications, while the factors differ from simulations and

are drawn from a trivariate normal distribution.

Table 1: Calibrated parameters

Parameters for factors loadings Parameters for factors returns

µb Σb µf Σf

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 -0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 -0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 -0.0004 -0.0003 0.0009

Let SR(ωt) be the Sharpe ratio associated with the optimal portfolio ωt, then SR(ωt) is

given as follows

SR(ωt) =
[
µ

′

Σµ
]1/2

To evaluate the performance of our procedure in terms of the Sharpe ratio, we focus our

attention on the actual Sharpe ratio associated with the selected portfolio. The actual Sharpe

ratio at time point t is given by

SR(ω̂t) =
ω̂

′

tµ[
ω̂

′

tΣω̂
′

t

]1/2

We also analyze the ability of our procedure to predict the default probability at each time

point of the investment horizon. This default probability is defined as the probability of the

event giving negative wealth. In fact, there is default at time point t if At < 0. Let DP (t)

denote the default probability at time point t. So, if B is the number of draws in our simulation,

we have that

DP (t) =
1

B

B∑

j

I (At(j) ≤ 0)

where At(j) is the wealth obtained at step j of our procedure. As we saw it in Section 2, we

have N risky assets and a risk-free asset with a constant gross return calibrated by Rf = 1.0036.

Since, A0 = 1 and Rf > 1 then DP (t) ≈ 0 ∀ t. Hence, a procedure is said to perform well

in terms of the default probability if the estimated default probability obtained using this

procedure is close to zero, which is the theoretical default probability. The estimated default

probability is given by

D̂P (t) =
1

B

B∑

j

I
(
Ât(j) ≤ 0

)

with Ât(j) being the estimated wealth obtained at time point t and step j of our procedure.

Moreover, in this simulation we assess the performance of our procedure in terms of mini-

mizing the rebalancing cost. The rebalancing cost at a given period t is estimated as follows:

ˆCostt =
1

B

B∑

i=1




N∑

j=1

|ω̂t,j (i)− ω̂t−1,j (i)|




Our procedures are compared with the Bayesian procedure introduced by Bauder et al.
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(2020). We consider the following portfolio selection procedures: the sample-based portfolio

(SbP), the naive portfolio (XoNP) which allocates a constant amount 1/N in each asset, the

Ridge regularized portfolio (RdgP) obtained by penalizing the portfolio weights, the tempo-

ral stability L2 Norm portfolio (L2TSP), the temporal stability L1 Norm portfolio (L1TSP)

obtained in Section 4 and the Bayesian portfolio (BP) proposed by Bauder et al. (2020).

In this analysis, we measure the degree of ill-posedness in our optimization problem by

the condition number and the relative condition number defined as the ratio of the empirical

condition number to the theoretical condition number. Tables 5 and 6 give the results of this

analysis as a function of the number of risky assets in the financial market over several periods.

Note that the higher the condition number, the more ill-posed our dynamic problem. As we

can see from Tables 5 and 6, the condition number increases substantially when N exceeds 20,

hence the sample-based strategy may not be appropriate to estimate the optimal solution which

involves the inverse of the covariance matrix.

Therefore, we propose a way to improve the performance of the selected strategy in such a

situation. We perform 1000 simulations and estimate our statistics over replications.

The result for the average monthly actual Sharpe ratio is given in Table 7. Several facts can

be observed from these results. Indeed, the SbP performs poorly in terms of the actual Sharpe

ratio when the number of assets in the financial market exceeds 10. For instance, we obtain

an average bias in the actual Sharpe ratio of -0.0735, -0.1029, -0.1460, -0.1709, -0.1843, and

-0.1965 for respectively 10, 20, 40, 60, 90, and 100 risky assets in the economy. In fact, when the

number of assets in the financial market increases considerably compared with the estimation

window, the estimation error resulting in the estimation of the optimal solution is amplified for

several reasons. In particular, the sample covariance matrix used to form the SbP is close to a

singular matrix. Hence, inverting such a matrix may increase the estimation error drastically

such that the selected portfolio deviates strongly from the true one. Moreover, DeMiguel et

al. (2007) show by simulation that the estimation window needed for the sample-based mean-

variance strategy and its extensions to outperform the 1/N benchmark is around 3000 months

for a portfolio with 25 assets, and about 6000 months for a portfolio with 50 assets. However,

finding such historical data seems to be unrealistic in an empirical analysis. Hence, we propose

a new way to improve the performance of the selected portfolio. The results in Table 7 show

that by imposing an appropriate constraint on the dynamic problem we significantly improve

the performance of the selected strategy compared with the SbP and Bauder et al. (2020)’s

portfolio. The performance of those procedures seems to be independent of the size of the

financial market (see Table 8, which contains the bias in the actual Sharpe ratio). In fact, with

a reasonable choice of the tuning parameter, each of those methods can achieve satisfactory

performance even if the number of assets in the economy is large. Moreover, our procedures

outperform the 1/N portfolio, which is known to be a standard benchmark in the literature.

More importantly, the L2TSP outperforms the RdgP. To explain this result, note that the

RdgP is obtained by a simple Ridge regularization on the sample covariance matrix. However,

in addition to this Ridge regularization of the sample covariance, the L2TSP introduces a

shrinkage estimator for the expected returns. Hence, the fact that the shrinkage estimator is

well known in the literature to reduce errors in estimating the expected returns can explain

why the L2TSP outperforms the RdgP in terms of the Sharpe ratio. This result implies that
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a second level of regularization applied to the expected returns may be useful in some cases to

improve the performance of the selected strategy. Similar results are obtained with the L1TSP.

We compute the Sharpe ratio as a function of the tuning parameter for the RdgP. The

result of this simulation for N = 60 is given in Figure 1. The first interesting thing we can

notice from this figure is that there is an optimal choice of the tuning parameter for which the

actual Sharpe ratio is as close as possible to the theoretical and unknown Sharpe ratio. This

implies that in a large financial market setting, this strategy can help investors to significantly

improve the performance of the selected portfolio by selecting a reasonable tuning parameter.

The second thing to point out from this graph is that the Sharpe ratio decreases faster as

the tuning parameter approaches zero. In fact, the sample-based portfolio could be seen as a

particular case of the ridge portfolio with α = 0. Therefore, as α approaches zero, the ridge

portfolio approaches the SbP and may perform poorly as mentioned. Moreover, the Sharpe

ratio also decreases when the tuning parameter is large enough. Hence, investors should select

a reasonable value of this smoothing parameter in order to obtain a performance that is as

close as possible to the performance of the optimal strategy. Therefore, we propose a data-

driven procedure based on cross-validation approximation of the mean square error to help

investors to select the tuning parameter of the RdgP portfolio. The idea behind this procedure

is to select the value of the regularization parameter that minimizes the distance between the

return of the optimal portfolio and the return obtained with the RdgP portfolio. We show by

simulations that the objective function used for this purpose is a convex function over the set

of the regularization parameters. This property of convexity of the objective function ensures

that there is a unique optimal choice of the tuning parameter that minimizes this function over

the set of regularization parameters. The results of the cross-validation approximation analysis

for N = 60 are given in Figure 2. More importantly, the cross-validation criterion increases

drastically when the tuning parameter approaches zero. This result is plausible in the sense

that the ridge procedure converges to the sample-based portfolio as α approaches zero. And

since the number of assets in the economy is large, inverting the sample covariance amplifies

the estimation error which creates a strong deviation of the selected portfolio from the true

one. The ridge procedure is also known to perform poorly in such a situation (see Figure 1).

This feature of the RdgP portfolio observed in Figure 2 gives us a new argument about the bad

properties of the sample-based portfolio when the market size is large.

We analyze the ability of each strategy to predict the default probability over the investor’s

life cycle. For this purpose, we compute by simulation the average monthly default probability

for each strategy. The result of this analysis can be found in Table 9. A strategy will be said to

perform in terms of predicting the default probability if the default probability obtained with

this strategy is as close as possible to the theoretical one. Note that the theoretical default

probability is equal to zero. According to our simulations, the SbP and the Bayesian strategy

give good results in terms of predicting the default probability only when the number of assets

in the economy does not exceed 20. However, those procedures perform poorly when N exceeds

20. The Bayesian method does not perform well for large N because the number of hyper-

parameters to be estimated with this procedure substantially increases when N is large (for

N ≥ 20). Nonetheless, by imposing an appropriate constraint in the dynamic problem, we

obtain very nice results about investors’ ability to predict the default probability. Indeed, the
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default probability obtained with those strategies is very close to the theoretical one. Moreover,

this feature seems to be independent to the number of assets in the financial market.

Other interesting statistic is the monthly re-balancing cost. We show by simulations (see

Table 10) that our procedures strongly reduce the re-balancing faced by investors over their life

cycle compared with the sample-based portfolio and the Bayesian strategy. Using an appropriate

constraint in the portfolio selection process, we obtain a more stable portfolio over time so that

investors avoid several re-balancing costs. Our procedures may be appropriate for investors

who want to take positions in the financial market in the sense that those strategies help them

to avoid high trading costs on the selected portfolio with very good performance.

We also compute in Figure 3 the average transaction costs faced by investors as a function

of the tuning parameter for the L1TSP and the L2TSP. This graph is obtained using 20 risky

assets, an estimation window of 120 and a one-year investment horizon (T = 12). The first

thing to notice about this result is that trading costs investors faced decrease as the tuning

parameter approaches 1 for both the L1TSP and the L2TSP. α can be seen as the importance

of the temporal stability constraint in the dynamic portfolio selection problem. It is, in fact,

the additional cost the investor is willing to pay to change the composition of the portfolio

between two consecutive time periods. Hence, as α increases, investors become less inclined to

change their optimal portfolio to avoid large adjustment costs. The optimal investment policy

becomes more stable over time as the tuning parameter increases. Moreover, the trading costs

obtained using the L1TSP are always less than what we obtain with the L2TSP for each tuning

parameter. This is essentially due to the fact that the L1TSP has a sparsity property that

obliges investors to hold portfolios with few active positions. This result implies in particular

that investors who fundamentally care about minimizing trading costs in the financial market

should select strategies based on the L1TSP technique. Moreover, the rebalancing cost increases

as the regularization parameter approaches zero for both the L1TSP and the L2TSP. This result

is plausible in the sense that the temporal stability portfolio converges to the SbP as the tuning

parameter goes to zero. However, the SbP generally involves taking extreme long and short

positions, which may considerably increase the rebalancing cost of this strategy.

In Figure 4, we plot the evolution of the average stability rate as a function of the tuning

parameter. Not surprisingly, the L2TSP is always non-stable over time for any α ∈ (0, 1). In

fact, this method is equivalent to assuming a quadratic trading cost in the dynamic portfolio

problem in such a way that investors trade at each period in small quantities (see Heaton and

Lucas (1996), Gârleanu and Pedersen (2013)).

We also estimate the dynamics of the optimal wealth with our procedures and compute the

bias in the optimal wealth. The results from this simulation exercise are given in Tables 11, 12

and 13. The bias in the optimal wealth at each period t is defined as follows

Bias(At) =
1

B

B∑

j

Ât(j)−At(j)

At(j)

The absolute value of this bias can be seen as the loss incurred in a dollar invested in the financial

market by selecting a given strategy instead of the true one. Once again our procedures perform

very well in terms of predicting the optimal wealth over investors’ life cycle compared with the

Bayesian method as well as the sample based portfolio. For instance, with 10 risky assets
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in the economy, we observe an average loss of 0.0422, 0.0132, 0.0104 and 0.0106 respectively

for BP, RdgP, L2TSP, and L1TSP. In other words, for a billion dollars of investment in the

financial market, the investor gains about 29, 31.8 and 31.6 million of dollars by using the RdgP,

L2TSP and L1TSP strategies respectively instead of the Bayesian procedure. Similar results

are obtained with 20 and 40 risky assets in the financial market.

Table 14 contains some results about the average bias in the actual Sharpe ratio obtained

with several estimation windows for ridge regularization. The bias in the actual Sharpe ratio

approaches 0 when the estimation window increases. For instance the bias is -0.0295 and -

0.0098 for n = 120 and n = 1000 respectively. This result implies that the actual Sharpe ratio

obtained using the ridge procedure approaches the true one as the estimation window increases.

In other words, the ridge strategy is asymptotically efficient with respect to the actual Sharpe

ratio, as mentioned in Section 5.

Our procedures involve some smoothing parameters selected using a data driven method.

For each strategy, this tuning parameter is used to reduce the effect of the sample estimation

errors on the selected portfolio performance. Table 15 and Figure 5 provide information about

the optimal selected tuning parameter for each method. An interesting thing to point out is

that the tuning parameter tends to increase over time for each strategy in order to mitigate the

negative effect of previous estimation errors on the performance of the actual optimal selected

portfolio. In fact, to obtain an estimation of the optimal portfolio in (5), we also have to

estimate γt, whose accuracy depends on the previous estimation errors. Hence, an adjustment

on the regularization parameter could help investors to reduce the effect of these estimation

errors on the properties of the selected portfolio.

We do a comparative analysis between the RdgP and the L2TSP using the evolution of the

mean squared error over the investment horizon. This analysis is done with 20 risky assets and

an estimation window of 120 over 24 months. The results of this simulation exercise are given

in Figure 6. The MSE of the selected portfolio is relatively stable for those two methods, with

a slight increase over the investment horizon. Moreover, we observe an important gap between

the MSE of the RdgP portfolio and the MSE of the L2TSP over the life cycle. Intuitively, this

gap is plausible in the sense that the L2TSP introduces a second level of regularization in the

expected return instead of using the sample mean used by the RdgP. Hence, this procedure also

controls the estimation error in the expected return. This is why the global estimation error of

the selected strategy is better controlled.

6.2 Empirical study

In this subsection, we investigate the performance of our procedures empirically. We apply our

method to several sets of portfolios from Kenneth French’s website: the monthly 30-industry

portfolios and the monthly 100 portfolios formed on size and book-to-market. We allow investors

to re-balance their portfolios every year, as did Barberis (2000). This implies that the optimal

portfolio is constructed at the end of June every year for a given estimation window n by

maximizing the expected utility. The investor holds this optimal portfolio for one year, realizes

gains and losses, updates information and then recomputes optimal portfolio weights for the

next period using the same estimation window. According to Brodie et al. (2009) this approach

can be seen as an investment exercise to evaluate the effectiveness of investors who base their

23



strategy on the last n periods. According to DeMiguel et al. (2009a,b), this procedure leads

essentially to the same results as when holding optimal strategies for one month. This procedure

is repeated each year, generating a time series of out-of-sample returns. Given a data set of

size T ∗ and an estimation window of size n, we obtain a set of T ∗−n/12 out-of-sample returns,

each generated recursively using the n previous returns. This time series can then be used to

analyze the out-of-sample performance of each strategy based on several statistics such as the

out-of-sample Sharpe ratio and the rebalancing cost. For this purpose, we use data from July

1980 to June 2018. Therefore, if we choose the estimation window to be 108 and 120 then the

first portfolio will be formed in June 1990 and June 1989 respectively and the last one in June

2017.

Table 16 contains some results of the out-of-sample analysis in terms of the Sharpe ratio

for two different data sets: the FF30 and the FF100. For each data set, we compute the out-

of-sample Sharpe ratio for two different rolling windows. We observe that the sample-based

portfolio performs poorly in terms of the out-of-sample Sharpe ratio for both the FF30 and

the FF100. The bad out-of-sample properties of this strategy are essentially due to errors in

estimating the covariance matrix and the expected return. Moreover, this estimation error is

amplified by the fact that one needs to invert the sample covariance matrix, which may be

close to a singular matrix. Nonetheless, the estimation error could be limited using a large

historical data set to estimate the unknown parameters. In fact, as seen in Tables 17 and

18, the condition number of the sample covariance matrix decreases when the rolling window

increases from n = 60 to n = 120 and from n = 120 to n = 240 for the FF30 and FF100

respectively. Therefore, by improving the condition number we partly solve the problem of

inversion of the sample covariance matrix of asset returns such that the estimation error is

reduced significantly. However, to obtain a reasonable performance with this procedure, we

need a very large historical data set in order to estimate the unknown parameters, which may

be non-realistic in practice. For a portfolio with only 25 risky assets DeMiguel et al. (2007)

show that one needs about 3000 months of historical data for the sample portfolio to achieve a

similar performance to that of the 1/N benchmark. We cannot obtain such a rolling window in

an empirical setting. Hence, to help investors to well allocate their resources, we focus on two

ways to select the optimal portfolio over the life cycle. Each of those procedures significantly

outperforms the SbP in terms of the Sharpe ratio. Nonetheless, the L2TSP and the L1TSP

outperform the ridge portfolio for both the FF30 and the FF100, for each rolling window. As

mentioned before, when the rolling window increases, we are able to estimate the unknown

parameters more efficiently. Hence, for a given data set our procedures also tend to perform

well for large estimation windows. We also compute in Table 16 the out-of-sample Sharpe ratio

for Bauder et al. (2020)’s procedure. Our methods outperform this procedure for each data set.

We obtain similar results in terms of the out-of-sample analysis of the trading cost (see Table

19). More importantly, we obtain very nice results with the L1TSP for each data set across

estimation windows. Those results imply that this procedure (the L1TSP) helps investors to

select more stable portfolios over their life cycle (in order to avoid high trading costs) with

very interesting performance compared with most existing procedures. When transaction costs

are included in computing the optimal Sharpe ratio, we clearly see the advantage of using our

method over the Bayesian portfolio and the sample based portfolio in the investment process
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(see Table 20). In particular, the L1 temporal stability portfolio gives very interesting results.

The finding in Table 20 suggests that one over estimates the out-of-sample performance of the

selected portfolio when trading costs are not included in the investment process. A similar

result has been obtained by Carrasco and Koné (2019) who argue statistically the importance

of accounting for transaction costs in the investment process.

In Figure 7, we plot the dynamic of the estimated wealth obtained with our procedures

from 1990 to 2017. This graph is obtained using the 30 industry portfolios with an estimation

window of 120. The evolution of this graph between 1990 and 2017 for each procedure reveals

the existence of a period (from 2004 to 2009) with lower financial wealth, showing the negative

effect of the financial crisis of 2007-2008 on the investment decision. This graph shows that

imposing a temporal stability constraint improves the wealth. Similar results for the trading

costs faced by the investor are obtained in Figure 8.

7 Conclusion

This paper addresses a dynamic portfolio selection problem in a large financial market by

proposing two procedures for selecting the optimal strategy. First, we penalize the norm of

the portfolio weights in the dynamic problem and derive a closed-form solution to this new

optimization problem. This optimal solution is closely related to a Ridge regularization, which

consists of adding to the volatility matrix a diagonal matrix to reduce estimation errors in the

covariance matrix. Under appropriate regularity conditions, we show the consistency of the

selected strategy and its efficiency in terms of the Sharpe ratio. This method partially controls

the estimation errors in the optimal solution because it ignores estimation errors in the expected

return which may also be important when the number of assets in the financial market increases

considerably. Hence, we propose an alternative method that consists of penalizing the norm

of the difference of successive portfolio weights in the dynamic problem to guarantee that the

optimal portfolio composition does not fluctuate widely between periods. We show, under ap-

propriate regularity conditions, that we better control estimation errors in the optimal portfolio

with this new procedure. In fact, this procedure introduces a second level of regularization to

control for the estimation error in the expected return. Moreover, this second method helps

investors avoid high trading costs in the financial market by selecting stable strategies over

time.

Each strategy involves an unknown tuning parameter that needs to be selected in an optimal

way at each time point. Hence, for each strategy we propose a data-driven method for selecting

this parameter.

To evaluate the performance of our procedures we implement a simulation exercise based

on a three-factor model calibrated on the real data from US financial market. Simulations show

that by imposing an appropriate constraint on the dynamic problem we significantly improve

the performance of the selected strategy in terms of the Sharpe ratio, the trading cost, the

ability to predict the default probability and the dynamic of the optimal wealth. To confirm

our simulations, we do an empirical analysis using Kenneth R. French’s 30 industry portfolios

and 100 portfolios formed on size and book-to-market. We considerably reduce the transaction

cost by imposing a temporal stability constraint on the dynamic portfolio selection problem.
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Therefore, our procedures are highly recommended for investors in the dynamic setting in

the sense that those procedures help to avoid high trading costs in the financial market by

selecting stable strategies that are very effective over time.
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8 Comment on the asymptotic properties of the selected port-

folio

8.1 Consistency

The result of Proposition 3 is obtained under the following regularity conditions

max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0,

√
Nα

min(
τt
2
,1)

t → 0 and 1
αt

√
n
→ 0 as n→ ∞

√
Nα

min(
τt
2
,1)

t → 0 implies that αt goes to zero faster than
√
N goes to infinity.

8.2 Mean squared error

Proposition 5.1 is derived under the assumptions that

max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0,

√
Nα

min(
τt
2
,1)

t → 0 as n→ ∞.

The result of proposition 5.2 needs additional assumption. Let us first start with the

following useful notations. For each time point t

St = {j ∈ {1, ..., N} : θjt 6= θjt−1}
with st = |St|. θt can be obtained through the following OLS model 1n = Rtθt + ut for ∀ t

with E
(
R

′

tut

)
= 0 by Lemma 2 in Appendix. St will be called the active set at the time point

t, which contains elements of θt different from their level of the previous period, and N − st
will be called the time stability index of θt. In fact, the main assumption that underlies our

L1 procedure is that only a few of θt changes compared with their level of t − 1. Hence, our

L1 procedure may help investors to select a more stable portfolio over time in order to avoid

high trading costs induced by continuous re-balancing in the optimal portfolio at each period.

Moreover, we need the following assumption to obtain a nice result about the mean square

error of the selected strategy using the L1 temporal stability constraint. In particular, with

this assumption we can easily show the consistency of the L1 strategy. The following notations

will also be used in this assumption: θSt is a vector with zeros outside the set St and coincides

with θt on St. In other words the jth element of this vector is given by:

θSt,j = θjt1 {j ∈ St}
Moreover, θSc

t
is a vector that coincides with θt outside St. It implies that

θSc
t ,j

= θjt1 {j /∈ St}
and θt = θSt + θSc

t

Assumption B.

B(i) At each time point t there is a positive constant α0
t with 2α0

t ≤ αt such that we have,

max1≤j≤N

{
2
∣∣∣u′

tR
j
t

∣∣∣ /n
}
≤ α0

t where αt is the smoothing parameter in (20).

B(ii) For some ξΩt > 0 and for all θt satisfying
∥∥θSc

t

∥∥
1
≤ κt ‖θSt − θt−1‖1 for κt > 1, we

have that

‖θSt − θt−1‖21 ≤
(
θ
′

tΩtθt

)
st/ξ

2
Ωt
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The assumption B(i) can be found in the study by Bühlmann and Van De Geer (2011). B(ii)

can be seen as a modified version of the compatibility condition in Bühlmann and Van De Geer

(2011) with ξ2Ωt
being the compatibility constant of the matrix Ωt. This assumption is useful

to obtain the consistency of the L1 strategy. According to Bühlmann and Van De Geer (2011)

is that if two matrices Σ0 and Σ1 are closed to each other, the Σ0- compatibility condition

implies the Σ1- compatibility condition. This property will be useful when Σ0 is the population

covariance and Σ1 its sample variance. For more detail about Assumption B see Bühlmann and

Van De Geer (2011).

Using assumption B combined with assumption A, we obtain the result of proposition

5.2.

8.3 Asymptotic distributions

In this subsection, we derive the asymptotic distribution of a certain linear combination of

the estimated version of the Ridge regularized portfolio. With this asymptotic distribution,

we could easily construct a confidence interval for that linear combination. In particular, we

could construct a confidence set for a given asset in the optimal selected portfolio based on this

asymptotic distribution. We need the following assumption to find the asymptotic distribution.

Assumption C for any given N × 1 vector δ with ‖δ‖ = O (1), we have that

C(i)
∥∥∥Ê
(
R

′

t1n

)
− Ω̂tθt

∥∥∥
2
= Op

(
1
n

)
with Ω̂t = RtR

′

t/n.

C(ii) rt ∼ N (µ,Σ)

C(iii) δ
′

riui is independent and identically distributed with E
[
δ
′

riui

]
= 0. Moreover

E
[
δ
′

rir
′

iu
2
i δ
]
<∞

Using this assumption combined with assumption A, we obtain the following result about

the asymptotic distribution of δ
′

ω̂αt .

Proposition 6 Given the set of information Ft and under assumptions A and C we have

the following result

〈√n [ω̂αt − ωt] , δ〉∥∥∥
(
E
[
δ′rir

′

iu
2
i δ
])1/2

Ω̂−1
αt

∥∥∥
→d N

(
0,

γ2t

(1− µ′θt)
2

)

if max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0, max

(√
N,αt

√
n√
N

)
α
min( τt

2
,1)

t → 0, and N1/4

αtn1/4 +

(Nn)1/4 α
min( τt

2
,1)

t → 0 as n goes to infinity.

Proof. In Section 9.

The result of Proposition 6 implies that under appropriate regularity conditions, the selected

portfolio by Ridge regularization is asymptotically normal. This result can then be used in

order to construct a confidence interval for δ
′

ωt or for any component of ωt. More precisely, a

confidence interval for δ
′

ωt can be obtained as follows:

Iδ′ωt
=

[
δ
′

ω̂αt −
σ̂t√
n
zϕ/2; δ

′

ω̂αt +
σ̂t√
n
zϕ/2

]
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where

σ̂t =

∥∥∥∥
(
Ê
[
δ
′

rir
′

iu
2
i δ
])1/2

Ω̂−1
αt

∥∥∥∥
1− µ̂

′

tθ̂αt

γ̂t

because 1 − µ̂
′

tθ̂αt > 0. zϕ/2 is the quantile 1 − ϕ/2 of the standard normal distribution with

ϕ ∈ (0, 1).

8.4 Tuning parameter for the Ridge regularization

Proposition 7 is obtained under the assumption that

max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0 as n→ ∞

Following Li (1986, 1987), we investigate the following cross-validation approximation tech-

niques for 1
nE

[∥∥∥1′

nRt

(
θ̂t − θt

)∥∥∥
2
]
:

(i) The generalized cross-validation (GCV) where:

α̂t = arg min
αt∈Hn

n−1 ‖(In −Mt,n (αt)) 1n‖2

(1− tr (Mt,n (αt)) /n)
2

(ii) Mallow’s CL where:

α̂t = arg min
αt∈Hn

n−1 ‖(In −Mt,n (αt)) 1n‖2 + 2σ2un
−1tr (Mt,n (αt))

with,

Mt,n (αt) v =

n∑

j=1

q(αt, λ
2
jt)

(
v
′

ψjt

n

)
ψjt

for any n-dimensional vector v and tr (Mt,n (αt)) =
∑n

j=1 q(αt, λ
2
jt) and ψjt the eigenvectors of

RtR
′

t/n.

9 Proofs

Lemma 2. We have that E(R
′

tut) = 0 in the following ols estimation model

1n = Rtθt + ut.

Proof of Lemma 2

E
(
R

′

tut

)
= E

[
R

′

t (1n −Rtθt)
]

= E
[
R

′

t1n

]
− E

[
R

′

tRtθt

]

= E
[
R

′

t1n

]
− E

[
R

′

tRt

]
θt

= E
[
R

′

t1n

]
− E

[
R

′

tRt

]
E
[
R

′

tRt

]−1
E
[
R

′

t1n

]

= E
[
R

′

t1n

]
− E

[
R

′

t1n

]
= 0.

Lemma 4. The optimization problem in (30) is equivalent to the optimization problem in
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(31) for the L2 norm.

Proof of Lemma 4 The first order condition of (30) is given as follows

FOC30 =
2

n
R

′

t (1n −Rtθt) + 2αt (θt − θt−1) = 0

=
1

n
R

′

t (1n −Rtθt) + αt (θt − θt−1) = 0.

The first order condition of (31) is

FOC31 =
2

n
R

′

t

(
yt −Rtθ̃t

)
+ 2αtθ̃t = 0

=
1

n
R

′

t {1n −Rtθt −Rt (θt − θt−1)}+ αt (θt − θt−1) = 0

=
1

n
R

′

t (1n −Rtθt) + αt (θt − θt−1) = FOC30.

Definition We denote Xn = Op(Yn) for positive sequence {Xn} and {Yn} if the sequence{
Xn
Yn

}
is bounded in probability. More precisely, it means that for all ǫ > 0 there exists a

constant Bǫ > 0 and an integer Nǫ such that P
[
Xn
Yn

≤ Bǫ

]
≥ 1− ǫ ∀n ≥ Nǫ.

9.1 Proof of Proposition 1

Let’s first look at a one period problem. Using the same assumptions as in Section 2, the

optimal selection problem will be given as follows

max
{ω:‖ω‖2≤d}

E (− exp(−γA1)) = max
{ω:‖ω‖2≤d}

E (V1) . (34)

Since A1 = A0 (Rf + ω′r1), we have that

E (V1) = E (− exp(−γA1))

= − exp(−A0γRf )E
(
exp(−γA0ω

′r1)
)

= − exp(−A0γRf ) exp

[
−γA0

(
ω′µ− A0γ

2
ω′Σω

)]

= − exp

[
−γA0

(
Rf + ω′µ− A0γ

2
ω′Σω

)]
.

where the third equality follows from the normality of r1. Hence, (34) becomes as follows

max
{ω:‖ω‖2≤d}

{
− exp

[
−γA0

(
Rf + ω′µ− A0γ

2
ω′Σω

)]}
(35)

which is equivalent of solving the following problem

max
{ω:‖ω‖2≤d}

{
γA0

(
Rf + ω′µ− A0γ

2
ω′Σω

)}
(36)

or equivalently,

max
{ω}

{
γA0

(
Rf + ω′µ− A0γ

2
ω′Σω

)
− λ ‖ω‖2

}
(37)
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because γA0 ≥ 0 by assumption, with λ > 0 the Lagrange multiplier associated with ‖ω‖2 ≤ d.

Let α be the positive constant solution of λ = α
2 γ

2A2
0, then (37) becomes as follows

max
{ω}

{
γA0

(
Rf + ω′µ− α

2
γA0 ‖ω‖2

)
− (A0γ)

2

2
ω′Σω

}
. (38)

The solution of this problem can be obtained by solving the following optimization problem

max
{ω}

E0

[
− exp

(
−γA0

(
Rf + ω′r1 −

α

2
γA0 ‖ω‖2

))]
= max

{ω}

{
exp

(α
2
γ2A2

0 ‖ω‖2
)
E0 [V1]

}

where Rf +ω
′r1− α

2 γA0 ‖ω‖2 can be seen as the gross return on the optimal portfolio net of the

trading cost with α
2 γA0 ‖ω‖2 the transaction cost associated with the selected strategy. When

solving this problem, we obtain that

ω = (γA0)
−1 (Σ + αIN )−1 µ.

Let’s now consider a two periods portfolio selection problem. At each period t = 0, 1 we solve

the following constrained optimization problem starting from the last period with a terminal

condition given in Section 2

V (t, At) = max
{ωt:‖ωt‖2≤dt}

Et {V (t+ 1, At+1)} = max
{ωt:‖ωt‖2≤dt}

Et

{
V (t+ 1, At(Rf + ω

′

trt+1))
}
.(39)

Hence,

V (1, A1) = max
{ω1:‖ω1‖2≤d1}

E1 {V (2, A2)} = max
{ω1:‖ω1‖2≤d1}

E1

{
V
(
2, A1

(
Rf + ω

′

1r2

))}
.

And it follows from the one period problem that the solution of this optimization problem can

be found by solving the following unconstrained problem

max
{ω1}

{
exp

(α1

2
γ2A2

1 ‖ω1‖2
)
E1 [V (2, A2)]

}
= max

{ω1}
E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2

)
+
α1

2
γ2A2

1 ‖ω1‖2
}]

= max
{ω1}

E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2 −
α1

2
γA1 ‖ω1‖2

)}]

= max
{ω1}

{
exp

(α1

2
γ2A2

1 ‖ω1‖2
)
E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2

)}]}

= max
{ω1}

{
exp

(α1

2
γ2A2

1 ‖ω1‖2
)[

− exp

{
−γA1

(
Rf + ω

′

1µ− γA1

2
ω

′

Σω

)}]}

= max
{ω1}

{
− exp

(
α1

2
γ2A2

1 ‖ω1‖2 − γA1

(
Rf + ω

′

1µ− γA1

2
ω

′

Σω

))}

= max
{ω1}

{
− exp

(
−γA1

[
Rf + ω

′

1µ− γA1

2
ω

′

1Σω1 −
α1

2
γA1 ‖ω1‖2

])}

where α1 is a positive and non random parameter selected in such a way that the Lagrange

multiplier λ1 associated with the constraint ‖ω1‖2 ≤ d1 is given by λ1 =
α1

2 γ
2A2

1.

Rf + ω
′

1r2 − α1

2 γA1 ‖ω1‖2 could be seen as the gross return net of the transaction cost on the

optimal selected portfolio at t = 1 where α1

2 γA1 ‖ω1‖2 is in fact the trading cost associated with

the optimal selected strategy of this period. Since γA1 ≥ 0, solving this problem is equivalent

of solving the following optimization problem

max
{ω1}

{
Rf + ω

′

1µ− γA1

2
ω

′

1Σω1 −
α1

2
γA1 ‖ω1‖2

}
.
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The first order condition associated with this optimization is given by

µ− γA1Σω1 − α1γA1ω1 = 0.

Therefore, the solution of this problem is given by

ω∗
1 = (γA1)

−1 (Σ + α1IN )−1 µ.

Now look at the problem at t = 0

V (0, A0) = max
{ω0:‖ω0‖2≤d0}

E0 {V (1, A1)}

= max
{ω0:‖ω0‖2≤d0}

E0

{
V (1, A0(Rf + ω

′

0r1))
}

= max
{ω0}

{
exp

(
λ0 ‖ω0‖2

)
E0

[
V
(
1, A0

(
Rf + ω

′

0r1

))]}
.

meaning that solving the problem at t = 0 is equivalent of solving

max
{ω0}

{
exp

(
λ0 ‖ω0‖2

)
E0

[
V
(
1, A0

(
Rf + ω

′

0r1

))]}
.

with λ0 the Lagrange multiplier associated with the constraint at this period.

Moreover, we have that

E1

[
− exp

{
−γA1

(
Rf + ω

′

1r2

)}]
= − exp {−γA1Rf}E1

[
− exp

{
−γA1ω

′

1r2

}]

= − exp {−γA1Rf} exp
{
−γA1

(
ω

′

1µ− γA1

2
ω

′

1Σω1

)}

= − exp

{
−γA1

(
Rf + ω

′

1µ− γA1

2
ω

′

1Σω1

)}
.

Therefore,

V ∗(1, A1) = − exp

{
−γA1

(
Rf + (ω∗

1)
′

µ− γA1

2
(ω∗

1)
′

Σω∗
1

)}

= − exp

{
−γA1Rf − µ

′

(Σ + α1IN )−1 µ+
1

2
µ

′

(Σ + α1IN )−1Σ (Σ + α1IN )−1 µ

}

= − exp {−γA1Rf + f1 (µ,Σ, γ, Rf , α1)}
where

f1 (µ,Σ, γ, Rf , α1) = −µ′

(Σ + α1IN )−1 µ+
1

2
µ

′

(Σ + α1IN )−1Σ (Σ + α1IN )−1 µ

We obtain the following problem at t = 0 given what is obtained at t = 1

V (0, A0) = max
{ω0:‖ω0‖2≤d0}

E0 {V ∗(1, A1)}

= max
{ω0:‖ω0‖2≤d0}

E0 {− exp {−γA1Rf + f1 (µ,Σ, γ, Rf , α1)}}

= max
{ω0:‖ω0‖2≤d0}

{− exp {f1 (µ,Σ, γ, Rf , α1)}E0 {exp {−γA1Rf}}}

= max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)} exp

(
λ0 ‖ω0‖2

)
E0 {exp {−γA1Rf}}

}

= max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)}E0

{
exp

{
−γA0Rf

(
Rf + ω

′

0r1 −
λ0

γRfA0
‖ω0‖2

)}}}
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where Rf + ω
′

0r1 − λ0

γRfA0
‖ω0‖2 can be interpreted as the gross return on the optimal portfolio

at t = 0 net of the transaction cost.

V (0, A0) = max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)}E0

{
exp

{
−γA0Rf

(
Rf + ω

′

0r1 −
λ0

γRfA0
‖ω0‖2

)}}}

= max
{ω0}

{
− exp {f1 (µ,Σ, γ, Rf , α1)} exp

{
−γA0Rf

(
Rf − λ0

γRfA0
‖ω0‖2

)}
∗Rest

}

Rest = E0

{
exp

{
−γA0Rfω

′

0r1

}}

Rest = exp

{
−γA0Rf

(
ω

′

0µ− γRfA0

2
ω

′

0Σω0

)}

V (0, A0) = max
{ω0}

{
− exp

{
f1 (µ,Σ, γ, Rf , α1)− γA0Rf

(
Rf − λ0

γRfA0
‖ω0‖2 + ω

′

0µ− γRfA0

2
ω

′

0Σω0

)}}

Solving this optimization problem is equivalent to solving

max
{ω0}

{
Rf − λ0

γRfA0
‖ω0‖2 + ω

′

0µ− γRfA0

2
ω

′

0Σω0

}

The first order conditions are given by

2
λ0

γRfA0
ω0 + γRfA0Σω0 = µ

Hence, by choosing λ0 =
(γRf)

2
A2

0
α0

2 , we obtain that

ω∗
0 = (γA0Rf )

−1 (Σ + α0IN )−1 µ.

(10) will be solved recursively starting from t = T − 1 and using the following terminal

condition V (T,AT ) = − exp(−γAT ). More precisely,

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤dT−1}

ET−1 {V (T,AT )}

= max
{ωT−1:‖ωT−1‖2≤dT−1}

ET−1

{
V (T,AT−1(Rf + ω

′

T−1rT ))
}
.

Since V (T,AT ) = − exp(−γAT ), we have that

ET−1

{
V (T,AT−1(Rf + ω

′

T−1rT ))
}

= ET−1

{
− exp

[
−γAT−1

(
Rf − ω

′

T−1rT

)]}

= − exp (−γAT−1Rf )ET−1

{
exp

[
−γAT−1ω

′

T−1rT

]}

= − exp (−γAT−1Rf ) exp

[
−γ
(
AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1

)]

= − exp

{
−γ
(
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1

)}
.

Hence,

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤dT−1}

{
− exp

{
−γ
(
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1

)}}
.(40)
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Since γ > 0, this optimization problem is also equivalent of solving the following problem

max
{ωT−1:‖ωT−1‖2≤dT−1}

{
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1

}
. (41)

If we denote by λT−1 the Lagrange multiplier associated with ‖ωT−1‖2 ≤ dT−1, we have that,

solving (41) with respect to ωT−1 is equivalent of solving the following unconstrained problem

by assuming that λT−1 is given

max
ωT−1

{
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1 − λT−1 ‖ωT−1‖2
}
. (42)

Moreover, solving (42) with respect to ωT−1 is also equivalent of solving the following uncon-

strained problem with respect to ωT−1

max
ωT−1

{
− exp

(
−γ
(
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1 −
λT−1

γ
‖ωT−1‖2

))}

= max
ωT−1

{
exp

(
λT−1 ‖ωT−1‖2

){
− exp

(
−γ
(
AT−1Rf +AT−1ω

′

T−1µ− γA2
T−1

2
ω

′

T−1ΣωT−1

))}}

= max
ωT−1

{{
exp

(
λT−1 ‖ωT−1‖2

)
ET−1 {V (T,AT )}

}}

with V (T,AT ) = − exp(−γAT ).

Therefore, the solution of

V (T − 1, AT−1) = max
{ωT−1:‖ωT−1‖2≤dT−1}

ET−1 {V (T,AT )} (43)

can be obtained by solving the following non-constrained problem

max
ωT−1

{{
exp

(
λT−1 ‖ωT−1‖2

)
ET−1 {V (T,AT )}

}}

First order conditions of the optimization problem in (42) with respect to ωT−1 are given by

AT−1µ− γA2
T−1ΣωT−1 − 2λT−1ωT−1 = 0.

Hence, we obtain the following closed form to the solution at this time point

ω∗
T−1 = (γAT−1)

−1 (Σ + αT−1IN )−1 µ

by choosing λT−1 =
γA2

T−1
αT−1

2 with αT−1 a smoothing parameter ∈ (0, 1) .

Let’s look at now the problem at T − 2. At this period, we have to solve the following

optimization problem

V (T − 2, AT−2) = max
{ωT−2:‖ωT−2‖2≤dT−2}

ET−2 {V ∗ (T − 1, AT−1)}
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with

V ∗ (T − 1, AT−1) = ET−1 {− exp (−γAT )}︸ ︷︷ ︸
ωT−1=ω∗

T−1

= − exp

{
−γAT−1Rf − γ

(
AT−1

(
ω∗
T−1

)′
µ− γA2

T−1

2

(
ω∗
T−1

)′
Σω∗

T−1

)}

= − exp

{
−γAT−1Rf − γ

(
1

γ
µ

′

(Σ + αT−1IN )−1 µ− 1

γ
µ

′

(Σ + αT−1IN )−1Σ (Σ + αT−1IN )−1 µ

)}

= − exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}
with

fT−1 (µ,Σ, γ, Rf , αT−1) = −γ
(
1

γ
µ

′

(Σ + αT−1IN )−1 µ− 1

γ
µ

′

(Σ + αT−1IN )−1Σ (Σ + αT−1IN )−1 µ

)

V (T − 2, AT−2) = max
{ωT−2:‖ωT−2‖2≤dT−2}

ET−2 {− exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}} .

Solving this problem with respect to ωT−2 is also equivalent to solve the following optimization

problem ( obtained using the same procedure as in the case with t = T − 1) with respect to

ωT−2 by also assuming that the Lagrange multiplier is given.

max
ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {− exp {−γAT−1Rf + fT−1 (µ,Σ, γ, Rf , αT−1)}}

}

= max
ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {V (T − 1, AT−1)}

}
.

Hence, since

ET−2 {V (T − 1, AT−1)} = − exp {fT−1 (µ,Σ, γ, Rf , α̃T−1)}ET−2 {exp {−γAT−1Rf}}
= − exp {fT−1 (µ,Σ, γ, Rf , α̃T−1)}ET−2

{
exp

{
−γAT−2Rf

(
Rf + ω

′

T−2rT−1

)}}

= − exp
{
fT−1 (µ,Σ, γ, Rf , α̃T−1)− γAT−2R

2
f

}
ET−2

{
exp

{
−γAT−2Rfω

′

T−2rT−1

}}

= − exp
{
fT−1 (µ,Σ, γ, Rf , αT−1)− γAT−2R

2
f

}
exp

[
−γAT−2Rf

(
ω

′

T−2µ− γAT−2Rf

2
ω

′

T−2ΣωT−2

)]

= − exp

{
fT−1 (µ,Σ, γ, Rf , α̃T−1)− γAT−2R

2
f − γAT−2Rf

(
ω

′

T−2µ− γAT−2Rf

2
ω

′

T−2ΣωT−2

)}

max
ωT−2

{
exp

(
λT−2 ‖ωT−2‖2

)
ET−2 {V (T − 1, AT−1)}

}

= − exp

{
fT−1 − γAT−2R

2
f − γAT−2Rf

(
ω

′

T−2µ− γAT−2Rf

2
ω

′

T−2ΣωT−2

)
+ λT−2 ‖ωT−2‖2

}
.

We then have that the first order conditions of the portfolio selection problem at this time point

are given as follows

γRfAT−2µ− (γRf )
2A2

T−1ΣωT−2 − 2λT−2ωT−2 = 0

which implies that

ω∗
T−2 = (γAT−2)

−1R−1
f (Σ + αT−2IN )−1 µ
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with λT−2 =
(γRf)

2
A2

T−2
αT−2

2 .

This procedure holds at each period for t = 0, ..., T − 1.

9.2 Proof of Proposition 2

Using the same procedure as in the proof of Proposition 1, one can easily show that solving

(15) is equivalent to solving the following non-constrained problem

max
{ωt}




exp

(
λt ‖ωt − ωt−1‖2

)

︸ ︷︷ ︸
B

Et

[
V
(
t+ 1, At

(
Rf + ω

′

trt+1

))]




(44)

for t = 0, ..., T−1 with the following terminal condition V (T,AT ) = − exp(−γAT ). And solving

(44) at each period from T − 1 one can easily obtain the following first order condition

Atγ (Σt + αtIN )ωt = µt + αtωt−1 (45)

for t = 1, ..., T − 1 with

A0γ (Σ0 + α0IN )ω0 = µ0. (46)

Hence, to obtain a reasonable estimation for the optimal solution, we are going to apply a

sequential estimation method. More precisely, at t = 0 ω0 will be estimated as follows

ω̂0 = γ̂0Σ̂
−1
α0
µ̂0. (47)

At the t = 1 by combining (45) and (47) we obtain that

γ̂−1
1 Σ̂α1

ω̂1 = µ̂1 + α1ω̂0

which implies that

ω̂1 = γ̂1Σ̂
−1
α1

[
µ̂1 + α1γ̂0Σ̂

−1
α0
µ̂0

]
. (48)

Using the same procedure at t = 2 we obtain that

ω̂2 = γ̂2Σ̂
−1
α2

[
µ̂2 + α2γ̂1Σ̂

−1
α1
µ̂1 + α1α2γ̂0γ̂1Σ̂

−1
α0

Σ̂−1
α1
µ̂0

]
. (49)

Therefore, we have that

ω̂t = γ̂tΣ̂
−1
αt
µ̃t (50)

for t = 1, ..., T − 1 where

Σ̂αt = Σ̂t + αtIN (51)

and

µ̃t = µ̂t +
t−1∑

j=0




t−1∏

i=j

γ̂iαi+1Σ̂
−1
αi


 µ̂j (52)

9.3 Proof of Proposition 3

To prove this result we need first to show the following preliminary results. Let’s recall that θt
is from the following OLS estimation model 1n = Rtθt + ut. θ̂αt is the regularized version of θt.
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Lemma 1 Under assumption A the following results hold∥∥∥θ̂αt − θt

∥∥∥ = op (1) (53)

∥∥∥µ′

t

(
θ̂αt − θt

)∥∥∥ = op (1) (54)

if
√
Nα

min(
τt
2
,1)

t → 0 and 1
αt

√
n
→ 0 as n→ ∞

Proof of Lemma 1

∥∥∥θ̂αt − θt

∥∥∥ =
∥∥∥θ̂αt − θαt + θαt − θt

∥∥∥ (55)

where θαt = Ω−1
αt
µt. By (55), we have that

∥∥∥θ̂αt − θt

∥∥∥ ≤
∥∥∥θ̂αt − θαt

∥∥∥
︸ ︷︷ ︸

(A)

+ ‖θαt − θt‖︸ ︷︷ ︸
(B)

. (56)

The first term on the right side of this inequality is the bias corresponding to the estimation of

the regularized solution and the second term corresponds to the regularization bias.

θ̂αt − θαt =
(
Ω̂αt

)−1
µ̂t − (Ωαt)

−1 µt

=
(
Ω̂αt

)−1
µ̂t −

(
Ω̂αt

)−1
µt +

(
Ω̂αt

)−1
µt − (Ωαt)

−1 µt

=
(
Ω̂αt

)−1
[µ̂t − µt] +

[(
Ω̂αt

)−1
− (Ωαt)

−1

]
µt

θt = Ω−1
t µt, this implies that µt = Ωtθt

θ̂αt − θαt =
(
Ω̂αt

)−1
[µ̂t − µt] +

[(
Ω̂αt

)−1
− (Ωαt)

−1

]
Ωtθt

‖µ̂t − µt‖2 = Op

(
N
n

)
and

∥∥∥∥∥∥

[(
Ω̂t

N

)

αt

]−1
∥∥∥∥∥∥

2

=

√√√√√λmax





[(
Ω̂t

N

)

αt

]−2


 = sup

j

q̂2jt

λ̂4jt
= Op

(
1

α2
t

)
.

Then,

∥∥∥∥
(
Ω̂αt

)−1
[µ̂t − µt]

∥∥∥∥
2

=

∥∥∥∥∥∥

[(
Ω̂t

N

)

αt

]−1 [
µ̂t − µt
N

]∥∥∥∥∥∥

2

= Op

(
1

nα2
t

)

[(
Ω̂αt

)−1
− (Ωαt)

−1

]
Ωtθt =

[(
Ω̂t

N

)

αt

]−1 [(
Ωt

N

)

αt

−
(
Ω̂t

N

)

αt

]
(Ωαt)

−1Ωtθt.

Moreover, by assumption A, we have that
∥∥∥Ωαt − Ω̂αt

∥∥∥ = Op

(
N2

n

)
and

∥∥∥(Ωαt)
−1Ωtθt

∥∥∥ ≤
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‖θt‖ = O
(
1
N

)
. Hence, we obtain the following relation

∥∥∥∥
[(

Ω̂αt

)−1
− (Ωαt)

−1

]
Ωtθt

∥∥∥∥ = Op

(
1

αtN
√
n

)

∥∥∥θ̂αt − θαt

∥∥∥ = Op

(
1

αt
√
n

)
.

Hence, we have that
∥∥∥θ̂αt − θt

∥∥∥ = Op

(
1

αt
√
n
+ ‖θαt − θt‖

)

where

‖θαt − θt‖2 = O
(
α
min(τt,2)
t

)
.

Therefore if 1
αt

√
n
→ 0 as n→ ∞ since αt → 0, we obtain that

∥∥∥θ̂αt − θt

∥∥∥→ 0

The proof of the second part of this lemma can be obtained using the same procedure as in

Lemma 4 of Carrasco et al. (2019). We need also the following result

Lemma 3 Under assumption A the following results hold
∥∥γ̂−1

t − γ−1
t

∥∥ = op (1) (57)

if max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0 as n→ ∞

Proof of Lemma 3

By definition we have that

γ−1
t = γRT−t−1

f At

Hence,

γ̂−1
t − γ−1

t = γRT−t−1
f

(
Ât −At

)

We will show this result by induction. Let’s consider the following statement

P (t) :
∥∥γ̂−1

t − γ−1
t

∥∥ = op (1)

This statement is trivially true for t = 0. If fact, at t = 0, γ−1
0 = γRT−1

f A0 which is known.

Therefore, P (0) holds.

We will now look at the statement at t = 1. γ−1
1 = γRT−1

f A1 = γRT−1
f A0

(
Rf + ω

′

0r1

)
. So,

γ̂−1
1 − γ−1

1 = γRT−2
f

(
Â1 −A1

)

= γRT−2
f A0 (ω̂0 − ω0)

′

r1

The quantity γRT−2
f A0 is known. As in Carrasco et al. (2019) γ−1

0 (ω̂0 − ω0) can be written as

follows
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γ−1
0 (ω̂0 − ω0) =

θ̂0

1− µ̂
′

0θ̂0
− θ0

1− µ′θ0

=
θ̂0 − θ0(

1− µ̂
′

0θ̂0

)
(1− µ′θ0)

−

[
θ̂0

(
µ

′

0θ0

)
− θ0

(
µ̂

′

0θ̂0

)]

(
1− µ̂

′

0θ̂0

) (
1− µ

′

0θ0
) .

Using the proof of Proposition 1 in Carrasco et al. (2019) combined with the proof of the first

part of Lemma 1, we can easily obtain that

∥∥γ−1
0 (ω̂0 − ω0)

∥∥ = Op

(∥∥∥θ̂0 − θ0

∥∥∥+ 1√
n

)

= Op

(
1

α0
√
n
+ α

min(
τ0
2
,1)

0 +
1√
n

)
.

Hence,

∥∥γ̂−1
1 − γ−1

1

∥∥ = Op

(
N1/2

α0
√
n
+
√
Nα

min(
τ0
2
,1)

0 +

√
N√
n

)

= Op

(
N1/2

α0
√
n
+
√
Nα

min(
τ0
2
,1)

0

)

Therefore, if N1/2

α0

√
n
+
√
Nα

min(
τ0
2
,1)

0 → 0, P (1) is true.

Let’s assume that P (t) is true for t ≥ 1. This implies that
∥∥γ̂−1

t − γ−1
t

∥∥ = op (1). We need

now to show that if P (t) is true, then P (t+ 1) is also true.

γ̂−1
t+1 − γ−1

t+1 = γRT−t−2
f

(
Ât+1 −At+1

)

= γRT−t−2
f

[
Ât

(
ω̂

′

trt+1 +Rf

)
−At

(
ω

′

trt+1 +Rf

)]

By using the fact that the statement P (t) is true, we will have that

γ̂−1
t+1 − γ−1

t+1 ≈ γRT−t−2
f At [ω̂t − ωt]

′

rt+1

∥∥γ̂−1
t+1 − γ−1

t+1

∥∥ ≈
∥∥∥γRT−t−2

f At [ω̂t − ωt]
′

rt+1

∥∥∥

≤
∥∥∥γRT−t−2

f At

∥∥∥ ‖ω̂t − ωt‖ ‖rt+1‖ .

By using the proof of Proposition 1 in Carrasco et al. (2019) combined with the proof of the

first part of Lemma 1, we can also obtain that

‖ω̂t − ωt‖ = Op

(
1

αt
√
n
+ α

min(
τt
2
,1)

t +
1√
n

)
.

Hence,

∥∥γ̂−1
t+1 − γ−1

t+1

∥∥ = Op

(
N1/2

αt
√
n
+
√
Nα

min(
τt
2
,1)

t

)

Therefore, if N1/2

αt
√
n
+
√
Nα

min(
τt
2
,1)

t → 0, P (t+ 1) is true.
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The rest of the proof of Proposition 3

Using a decomposition similar to that of Carrasco et al. (2019), we obtain that

A = γ̂−1
t ω̂t − γ−1

t ωt =
θ̂t

1− µ̂
′

tθ̂t
− θt

1− µ′θt

A =
θ̂t − θt(

1− µ̂
′

tθ̂t

)
(1− µ′θt)

︸ ︷︷ ︸
a

−

[
θ̂t

(
µ

′

θt

)
− θt

(
µ̂

′

tθ̂t

)]

(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

︸ ︷︷ ︸
b

. (58)

Note that 0 < µ′θt < 1 by construction. In fact, since Σ and Ωt are positive definite matrices,

Σ−1 and Ω−1
t are also two positive definite matrices. Therefore, µ

′

Σ−1µ > 0 and µ
′

Ω−1
t µ > 0.

Hence, µ
′

Σ−1µ > 0 implies that
µ
′

Ω−1
t µ

1−µ′Ω−1
t µ

> 0. Since µ
′

Ω−1
t µ > 0 and µ

′

Σ−1µ > 0, we have

that 1− µ
′

Ω−1
t µ > 0 which means that 0 < µ

′

Ω−1
t µ < 1 with µ

′

Ω−1
t µ = µ

′

θt.

Therefore, we can apply the Taylor expansion on 1

1−µ̂
′

tθ̂t
. Hence, we obtain that

1

1− µ̂
′

tθ̂t
=

1

1− µ′θt
+
µ

′

(
θ̂t − θt

)

(1− µ′θt)
2 + o

(
µ

′

(
θ̂t − θt

))

θ̂t − θt(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

=
θ̂t − θt

(1− µ′θt)
2 +Op

((
θ̂t − θt

)
µ

′

(
θ̂t − θt

))
. (59)

The second terms in (58) can be developed according to Carrasco et al. (2019) as follows

θ̂t

(
µ

′

θt

)
− θt

(
µ̂

′

tθ̂t

)

(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

=

(
θ̂t − θt

)
µ

′

θt − θt (µ̂t − µ)
′

(
θ̂t − θt

)
− θt (µ̂t − µ)

′

θt − θtµ
′

(
θ̂t − θt

)

(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

.(60)

By (59) and because
∣∣∣µ′

θt

∣∣∣ < 1, we have that

(
θ̂t − θt

)
µ

′

θt
(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

=

(
θ̂t − θt

)
µ

′

θt

(1− µ′θt)
2 +Op

((
θ̂t − θt

)
µ

′

(
θ̂t − θt

))
(61)

θtµ
′

(
θ̂t − θt

)

(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

=
θtµ

′

(
θ̂t − θt

)

(1− µ′θt)
2 +Op

((
θ̂t − θt

)
µ

′

(
θ̂t − θt

))
(62)

∣∣∣(µ̂t − µ)
′

(
θ̂t − θt

)∣∣∣
2
≤ ‖µ̂t − µ‖2

∥∥∥θ̂t − θt

∥∥∥
2

∣∣∣(µ̂t − µ)
′

θt

∣∣∣
2
≤ ‖µ̂t − µ‖2 ‖θt‖2

θ̂t

(
µ

′

θt

)
− θt

(
µ̂

′

tθ̂t

)

(
1− µ̂

′

tθ̂t

)
(1− µ′θt)

=

(
θ̂t − θt

)
µ

′

θt

(1− µ′θt)
2 −

θtµ
′

(
θ̂t − θt

)

(1− µ′θt)
2 +Op

((
θ̂t − θt

)
µ

′

(
θ̂t − θt

))
(63)

+Op

[
1√
n
+
∥∥∥θ̂t − θt

∥∥∥
√
N

n

]
(64)
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Hence, by assumption A, we obtain that

A =
θ̂t − θt

(1− µ′θt)
+
θtµ

′

(
θ̂t − θt

)

(1− µ′θt)
2 +Op

((
θ̂t − θt

)
µ

′

(
θ̂t − θt

))
+ op (1) (65)

Therefore, using the result of Lemma 3, we obtain that

γtA ≈ (ω̂t − ωt) =
γt

(
θ̂t − θt

)

(1− µ′θt)
+
γtθtµ

′

(
θ̂t − θt

)

(1− µ′θt)
2 + op (1) (66)

‖ω̂t − ωt‖ ≤

∥∥∥∥∥∥

γt

(
θ̂t − θt

)

(1− µ′θt)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

γtθtµ
′

(
θ̂t − θt

)

(1− µ′θt)
2

∥∥∥∥∥∥
+ op (1) (67)

∥∥∥∥∥∥

γt

(
θ̂t − θt

)

(1− µ′θt)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

γtθtµ
′

(
θ̂t − θt

)

(1− µ′θt)
2

∥∥∥∥∥∥
=

γt
(1− µ′θt)

∥∥∥θ̂t − θt

∥∥∥+ γt

(1− µ′θt)
2

∥∥∥θtµ
′

(
θ̂t − θt

)∥∥∥ (68)

≤ γt
(1− µ′θt)

∥∥∥θ̂t − θt

∥∥∥+ γt

(1− µ′θt)
2 ‖θt‖

∥∥∥µ′

(
θ̂t − θt

)∥∥∥ . (69)

Because ‖θt‖ < ∞ by assumption A,
∥∥∥θ̂t − θt

∥∥∥ = op (1) and
∥∥∥µ′

(
θ̂t − θt

)∥∥∥ = op (1) by Lemma

1, we obtain that

‖ω̂t − ωt‖ = op (1) . (70)

9.4 Proof of Proposition 4

The actual Sharpe ratio associated with the estimated portfolio is given by

s (ω̂αt) =
µ

′

θ̂t(
θ̂
′

tΣθ̂t

)1/2 . (71)

(1) What about µ
′

θ̂t?

Let us notice that, we have,∥∥∥µ′

(
θ̂αt − θt

)∥∥∥ ≤ ‖µ‖
∥∥∥θ̂αt − θt

∥∥∥
∥∥∥θ̂αt − θt

∥∥∥ ≤
∥∥∥θ̂αt − θαt

∥∥∥+ ‖θαt − θt‖ .
Then, ∥∥∥µ′

(
θ̂αt − θt

)∥∥∥ ≤ ‖µ‖
[∥∥∥θ̂αt − θαt

∥∥∥+ ‖θαt − θt‖
]
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θ̂αt − θαt =
(
Ω̂αt

)−1
µ̂t − (Ωαt)

−1 µ

=
(
Ω̂αt

)−1
µ̂t −

(
Ω̂αt

)−1
µ+

(
Ω̂αt

)−1
µ− (Ωαt)

−1 µ

=
(
Ω̂αt

)−1
[µ̂t − µ] +

[(
Ω̂αt

)−1
− (Ωαt)

−1

]
µ

=
(
Ω̂αt

)−1
[µ̂t − µ] +

[(
Ω̂αt

)−1
− (Ωαt)

−1

]
Ωtθt.

This implies that
∥∥∥θ̂αt − θαt

∥∥∥ ≤
∥∥∥∥
(
Ω̂αt

)−1
[µ̂t − µ]

∥∥∥∥+
∥∥∥∥
[(

Ω̂αt

)−1
− (Ωαt)

−1

]
Ωtθt

∥∥∥∥ .

Therefore,
∥∥∥θ̂αt − θαt

∥∥∥ == Op

(
1

αt
√
n

)
.

Since ‖µ‖2 = O (N), we have that

∥∥∥µ′

(
θ̂αt − θt

)∥∥∥ = Op

( √
N

αt
√
n
+

√
N ‖θαt − θt‖

)

which implies that

µ
′

θ̂αt = µ
′

θt +Op

[√
N

(
1

αt
√
n
+ ‖θαt − θt‖

)]
. (72)

(2) What about θ̂
′

tΣθ̂t?

We know that

θ̂t = θ̂t − θt + θt

then,

θ̂
′

tΣθ̂t =
(
θ̂t − θt + θt

)′

Σ
(
θ̂t − θt + θt

)

=
(
θ̂t − θt

)′

Σ
(
θ̂t − θt

)
+
(
θ̂t − θt

)′

Σθt + θ
′

tΣ
(
θ̂t − θt

)
+ θ

′

tΣθt

=
(
θ̂t − θt

)′

Σ
(
θ̂t − θt

)
+ 2

(
θ̂t − θt

)′

Σθt + θ
′

tΣθt

θ̂
′

tΣθ̂t − θ
′

tΣθt =
(
θ̂t − θt

)′

Σ
(
θ̂t − θt

)
+ 2

(
θ̂t − θt

)′

Σθt

(
θ̂t − θt

)′

Σ
(
θ̂t − θt

)
≤ ‖Σ‖

∥∥∥θ̂t − θt

∥∥∥
2
.

By assumption A we have that ‖Σ‖ = O (N). Moreover, we have that,
∥∥∥θ̂αt − θt

∥∥∥ = Op

(
1

αt
√
n
+ ‖θαt − θt‖

)
.

Hence,

(
θ̂t − θt

)′

Σ
(
θ̂t − θt

)
= Op

[
N

(
1

αt
√
n
+ ‖θαt − θt‖

)2
]
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∥∥∥∥
(
θ̂t − θt

)′

Σθt

∥∥∥∥ ≤ ‖θt‖ ‖Σ‖
∥∥∥θ̂t − θt

∥∥∥ .

Hence, by assumption A we obtain that
∥∥∥∥
(
θ̂t − θt

)′

Σθt

∥∥∥∥ = Op

[
N

(
1

αt
√
n
+ ‖θαt − θt‖

)]
.

If 1
αt

√
n
+ ‖θαt − θt‖ → 0 then we have that

Op

[
N

(
N

αt
√
n
+ ‖θαt − θt‖

)2
]
= Op

[
N

(
1

αt
√
n
+ ‖θαt − θt‖

)]
.

Therefore,

θ̂
′

tΣθ̂t = θ
′

tΣθt +Op

[
N

(
1

αt
√
n
+ ‖θαt − θt‖

)]
. (73)

Combining (72) and (73) we obtain that,

s (ω̂αt)
2 =

(
µ

′

θ̂t

)2

θ̂
′

tΣθ̂t
=

(
µ

′

θt

)2

θ
′

tΣθt
+Op

[(
1

αt
√
n
+ ‖θαt − θt‖

)]
(74)

= s (ωt)
2 +Op

[(
1

αt
√
n
+ ‖θαt − θt‖

)]
(75)

9.5 Proof of Proposition 5.1

ω̂αt − ωt = (ω̂αt − ωαt) + (ωαt − ωt)

where ωαt = γtΣ
−1
αt
µ.

ω̂αt − ωαt = γ̂tΣ̂
−1
αt
µ̃t − γtΣ

−1
αt
µ.

Using the fact that Σ̂−1
αt

= Σ̂−1
αt

− Σ−1
αt

+Σ−1
αt

, µ̃t = µ̃t − µ+ µ we obtain that

ω̂αt − ωαt = γ̂t

(
Σ̂−1
αt

− Σ−1
αt

)
µ̃t + γ̂tΣ

−1
αt
µ̃t − γtΣ

−1
αt
µ

= γ̂t

(
Σ̂−1
αt

− Σ−1
αt

)
(µ̃t − µ) + γ̂t

(
Σ̂−1
αt

− Σ−1
αt

)
µ+ γ̂tΣ

−1
αt
µ̃t − γtΣ

−1
αt
µ.

Moreover, using Lemma 3 we obtain that

ω̂αt − ωαt ≈ γt

(
Σ̂−1
αt

− Σ−1
αt

)
(µ̃t − µ) + γt

(
Σ̂−1
αt

− Σ−1
αt

)
µ+ γtΣ

−1
αt
µ̃t − γtΣ

−1
αt
µ

≈ γt

(
Σ̂−1
αt

− Σ−1
αt

)
(µ̃t − µ) + γt

(
Σ̂−1
αt

− Σ−1
αt

)
µ+ γtΣ

−1
αt

(µ̃t − µ) .

Using the following identity B−1 − C−1 = B−1 (C −B)C−1, we have that

ω̂αt − ωαt ≈ γtΣ̂
−1
αt

(
Σ− Σ̂t

)
Σ−1
αt

(µ̃t − µ) + γtΣ̂
−1
αt

(
Σ− Σ̂t

)
Σ−1
αt
µ+ γtΣ

−1
αt

(µ̃t − µ)

Σ̂t (ω̂αt − ωαt) ≈ γtΣ̂tΣ̂
−1
αt

(
Σ− Σ̂t

)
Σ−1
αt

(µ̃t − µ) + γtΣ̂tΣ̂
−1
αt

(
Σ− Σ̂t

)
Σ−1
αt
µ+ γtΣ̂tΣ

−1
αt

(µ̃t − µ)
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∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥
2
≤
∥∥∥γtΣ̂tΣ̂

−1
αt

(
Σ− Σ̂t

)
Σ−1
αt

(µ̃t − µ)
∥∥∥
2
+
∥∥∥γtΣ̂tΣ̂

−1
αt

(
Σ− Σ̂t

)
Σ−1
αt
µ
∥∥∥
2

+
∥∥∥γtΣ̂tΣ

−1
αt

(µ̃t − µ)
∥∥∥
2

Since
∥∥∥Σ̂tΣ̂

−1
αt

∥∥∥
2
≤ 1, we have that

∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥
2
≤ γt

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥Σ−1
αt

(µ̃t − µ)
∥∥
2
+ γt

∥∥∥Σ− Σ̂t

∥∥∥
2

∥∥Σ−1
αt
µ
∥∥
2
+ γt ‖µ̃t − µ‖2

‖µ‖ = O
(√

N
)
,
∥∥∥Σ̂−1

αt

∥∥∥ = Op

(
1
αt

)
, ‖µ̃t − µ‖2 = Op

(√
N
n

)
,
∥∥∥Σ− Σ̂t

∥∥∥
2
= Op

(
N√
n

)
by

Assumption A. Hence, we obtain that

∥∥∥Σ̂t (ω̂αt − ωαt)
∥∥∥
2

= Op

(
γt
N√
n
.
1

αt
.
1√
n
+ γt.

N√
n
.
1

αt
+ γt.

√
N

n

)

= Op

(
N

αt
√
n

)
.

∥∥∥Σ̂t (ωt − ωαt)
∥∥∥
2
≤ γt

∥∥∥Σ̂t

∥∥∥
∥∥Σ−1µ− Σ−1

αt
µ
∥∥
2

since
∥∥Σ−1µ− Σ−1

αt
µ
∥∥
2
= O

(
α
min( τt

2
,1)

t

)
hence,

∥∥∥Σ̂t (ωt − ωαt)
∥∥∥
2
= Op

(
Nα

min( τt
2
,1)

t

)
.

Let’s now recall the prediction error

MSE (ω̂αt) =
1

Nn
E

[∥∥∥Σ̂t (ω̂αt − ωt)
∥∥∥
2

2

]
.

Using this definition of the prediction error, we obtain that

MSE (ω̂αt) ∼
N

n2α2
t

+
N

n
α
min(τt,2)
t

9.6 Proof of Proposition 5.2

Let’s first start with a simple example that verifies B(ii).

Example: Let us consider the following case where N = 2 with θ1t = θ1t−1 6= 0 and

θ2t 6= θ2t−2

Ωt =

(
σ2 ρ

ρ σ2

)

∥∥θSc
t

∥∥
1
= |θ1t| = |θ1t−1|

‖θSt − θt−1‖1 = |θ2t − θ2t−1|+ |θ1t−1|
Hence, we have that

∥∥θSc
t

∥∥
1
≤ ‖θSt − θt−1‖1 for any θt which implies that for any positive
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constant κt > 1
∥∥θSc

t

∥∥
1
≤ κt ‖θSt − θt−1‖1.

‖θSt − θt−1‖21 = [|θ2t − θ2t−1|+ |θ1t−1|]2

= (θ2t − θ2t−1)
2 + θ21t−1 + 2 |θ1t−1 (θ2t − θ2t−1)|

= θ22t + θ22t−1 + θ21t−1 − 2θ2tθ2t−1 + 2 |θ1t−1 (θ2t − θ2t−1)|
= θ22t + θ22t−1 + θ21t−1 − 2θ2tθ2t−1 + 2θ1t−1θ2t − 2θ1t−1θ2t−1

θ
′

tΩtθt = σ2
(
θ21t + θ22t

)
+ 2ρθ1tθ2t

Let us now select ξ2Ωt
to be as follow

ξ2Ωt
=

det(Ωt)
σ2 θ21t−1

Ξ2 + θ22t−1 + θ21t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1
> 0

where Ξ is a positive constant selected in such a way that |θ2t| ≤ Ξ. In fact, it may be possible

to find such a positive constant which verifies |θ2t| ≤ Ξ because the assumption A implies in

particular that ‖θt‖ < +∞.

(
θ
′

tΩtθt

)
st/ξ

2
Ωt

=
Ξ2 + θ22t−1 + θ21t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

det(Ωt)
σ2 θ21t−1

θ
′

tΩtθt

=
θ
′

tΩtθt
det(Ωt)

σ2 θ21t−1

(
Ξ2 + θ22t−1 + θ21t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

)

Moreover, since det(Ωt)
σ2 θ21t−1 ≤ θ

′

tΩtθt,

θ
′

tΩtθt
det(Ωt)

σ2 θ21t−1

≥ 1

Hence,
(
θ
′

tΩtθt

)
st/ξ

2
Ωt

≥ Ξ2 + θ22t−1 + θ21t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1

Therefore,
(
θ
′

tΩtθt

)
st/ξ

2
Ωt

≥ ‖θSt − θt−1‖21
because, ‖θSt − θt−1‖21 ≤ Ξ2 + θ22t−1 + θ21t−1 + 2 |Ξθ2t−1|+ 2 |Ξθ1t−1| − 2θ1t−1θ2t−1.

Now we are going to look at the MSE of the selected portfolio by imposing a L1 temporal

stability constraint.

Σ̂t (ω̂αt − ωt) =


R

′

tRt

n
− R

′

t1n
n

(
R

′

t1n
n

)′

 (ω̂αt − ωt)

= R
′

t

(
In
n

− 1n1
′

n

n2

)
Rt (ω̂αt − ωt)
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∥∥∥Σ̂t (ω̂αt − ωt)
∥∥∥ =

∥∥∥∥∥R
′

t

(
In
n

− 1n1
′

n

n2

)
Rt (ω̂αt − ωt)

∥∥∥∥∥

≤
∥∥∥∥∥R

′

t

(
In
n

− 1n1
′

n

n2

)∥∥∥∥∥ ‖Rt (ω̂αt − ωt)‖

∥∥∥∥∥R
′

t

(
In
n

− 1n1
′

n

n2

)∥∥∥∥∥ ≤
∥∥∥R′

t

∥∥∥
∥∥∥∥∥
In
n

− 1n1
′

n

n2

∥∥∥∥∥

≤
∥∥∥R′

t

∥∥∥
(∥∥∥∥

In
n

∥∥∥∥+
∥∥∥∥∥
1n1

′

n

n2

∥∥∥∥∥

)

≤ 2

n

∥∥∥R′

t

∥∥∥ =
2

n
Op (nN) = Op (N)

The last quantity is obtained using the same matrix norm definition as in Carrasco and Rossi

(2016). Moreover, under appropriate regularity conditions we have that

Rt (ω̂αt − ωt) = RtΨt

(
θ̂αt − θt

)
+ op(1)

where

Ψt = γt

[
IN

1− µ
′

tθt
+

θtµ
′

t(
1− µ

′

tθt
)2

]

Hence,

‖Rt (ω̂αt − ωt)‖ ∼
∥∥∥RtΨt

(
θ̂αt − θt

)∥∥∥

≤ ‖Ψt‖
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
Moreover,

‖Ψt‖ ≤
∥∥∥∥

γtIN

1− µ
′

tθt

∥∥∥∥+
∥∥∥∥∥

γtθtµ
′

t(
1− µ

′

tθt
)2

∥∥∥∥∥

≤ γt

1− µ
′

tθt
‖IN‖+ γt(

1− µ
′

tθt
)2
∥∥∥θtµ

′

t

∥∥∥

≤ γt

1− µ
′

tθt
+

γt(
1− µ

′

tθt
)2 = πt = O(1)

‖Rt (ω̂αt − ωt)‖ ≤ πt

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
1

nN
E
[
‖Rt (ω̂αt − ωt)‖2

]
≤ π2t

nN
E

[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2
]

Let us now look at 1
nNE

[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2
]
.

We want first to show the following inequality.
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤

2u
′

tRt

(
θ̂αt − θt

)

n
+ αt ‖θt − θt−1‖1 (76)
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We have that
∥∥∥Rtθ̂αt −Rtθt

∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2

n
u

′

t

(
Rtθ̂αt −Rtθt

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥Rtθ̂αt −Rtθt − ut + ut

∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2

n
u

′

t

(
Rtθ̂αt −Rtθt − ut + ut

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥1n −Rtθ̂αt − ut

∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ 2

n
u

′

t

(
Rtθ̂αt − 1n + ut

)
+ αt ‖θt − θt−1‖1 ⇔

∥∥∥1n −Rtθ̂αt

∥∥∥
2

n
+

‖ut‖2
n

− 2

n
u

′

t

(
1n −Rtθ̂αt

)
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1

≤ − 2

n
u

′

t

(
1n −Rtθ̂αt

)
+

2

n
u

′

tut

+ αt ‖θt − θt−1‖1 ⇔
∥∥∥1n −Rtθ̂αt

∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ u

′

tut
n

+ αt ‖θt − θt−1‖1

and using the fact that ut = 1n − Rtθt, we obtain that
u
′

tut

n + αt ‖θt − θt−1‖1 = ‖1n−Rtθt‖2
n +

αt ‖θt − θt−1‖1, hence,
∥∥∥1n −Rtθ̂αt

∥∥∥
2

n
+ αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
≤ ‖1n −Rtθt‖2

n
+ αt ‖θt − θt−1‖1 (77)

which is always true because we have that

θ̂αt = argmin
θt

‖1n −Rtθt‖2
n

+ αt ‖θt − θt−1‖1
Therefore, (76) and (77) are equivalent. Then, using (76), we have that

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤

2u
′

tRt

(
θ̂αt − θt

)

n
+ αt

[
‖θt − θt−1‖1 −

∥∥∥θ̂αt − θt−1

∥∥∥
1

]

Since, ‖θt − θt−1‖1−
∥∥∥θ̂αt − θt−1

∥∥∥
1
≤
∣∣∣‖θt − θt−1‖1 −

∥∥∥θ̂αt − θt−1

∥∥∥
1

∣∣∣ ≤
∥∥∥θ̂αt − θt

∥∥∥
1
we have that,

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤

2u
′

tRt

(
θ̂αt − θt

)

n
+ αt

∥∥∥θ̂αt − θt

∥∥∥
1

≤
{

max
1≤j≤N

2
∣∣∣u′

jR
(j)
t

∣∣∣ /n
}∥∥∥θ̂αt − θt

∥∥∥
1
+ αt

∥∥∥θ̂αt − θt

∥∥∥
1

≤
[
max

1≤j≤N
2
∣∣∣u′

jR
(j)
t

∣∣∣ /n+ αt

] ∥∥∥θ̂αt − θt

∥∥∥
1
.

And using B(i), we obtain that
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤ 3

2
αt

∥∥∥θ̂αt − θt

∥∥∥
1
.
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Let’s now look at
∥∥∥θ̂αt − θt

∥∥∥
1
.

∥∥∥θ̂αt − θt

∥∥∥
1
=
∥∥∥θ̂αt − θt−1 + θt−1 − θt

∥∥∥
1∥∥∥θ̂αt − θt

∥∥∥
1
≤
∥∥∥θ̂αt − θt−1

∥∥∥
1
+ ‖θt − θt−1‖1

by triangular inequality. Hence,
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤ 3

2
αt

∥∥∥θ̂αt − θt−1

∥∥∥
1
+

3

2
αt ‖θt − θt−1‖1 .

Moreover, we have that θ̂αt = θ̂St
αt

+ θ̂
Sc
t

αt which implies that
∥∥∥θ̂αt − θt−1

∥∥∥
1
=
∥∥∥θ̂St

αt
+ θ̂

Sc
t

αt − θt−1

∥∥∥
1
≤
∥∥∥θ̂St

αt
− θt−1

∥∥∥
1
+
∥∥∥θ̂S

c
t

αt

∥∥∥
1

by triangular inequality. And using Assumption B(ii) we obtain that
∥∥∥θ̂αt − θt−1

∥∥∥
1

≤ κ̃t

∥∥∥θ̂St
αt

− θt−1

∥∥∥
1

≤ κ̃t

√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

see Bühlmann and Van De Geer (2011) p.105-106 for more details about the last inequality.

Therefore,

3

2
αt

∥∥∥θ̂αt − θt−1

∥∥∥
1

≤ 3

2
αtκ̃t

√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

.

Using the fact that 4uv ≤ u2 + 4v2, we have that,

3

2
αtκ̃t

√
st

ξΩ̂t

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
√
n

≤ 1

4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
+

9

4
α2
t κ̃

2
t

st
ξ2
Ω̂t

which implies,
∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤ 1

4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
+

9

4
α2
t κ̃

2
t

st
ξ2
Ω̂t

+
3

2
αt ‖θt − θt−1‖1 ⇒

3

4

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤ 9

4
α2
t κ̃

2
t

st
ξ2
Ω̂t

+
3

2
αt ‖θt − θt−1‖1 ⇒

∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2

n
≤ 3α2

t κ̃
2
t

st
ξ2
Ω̂t

+ 2αt ‖θt − θt−1‖1 .

Therefore,

1

n
E

[∥∥∥Rt

(
θ̂αt − θt

)∥∥∥
2
]
= O

[
α2
t

(
st/ξ

2
Ωt

)
+ αt ‖θt − θt−1‖1

]
.⇒
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1

nN
E

[∥∥∥Σ̂t (ω̂αt − ωt)
∥∥∥
2

2

]
= O

[
Nα2

t

(
st/ξ

2
Ωt

)
+Nαt ‖θt − θt−1‖1

]
.

9.7 Proof of proposition 6

We need some intermediate results to show this proposition.

Proposition 6.1 Given the set of information Ft and under assumptions A, and B, we

have the following result

√
nδ

′

(ω̂αt − ωt) =
γt
√
nδ

′

(
θ̂αt − θt

)

(1− µ′θt)
+Op

[
√
nN

(
1

αt
√
n
+ ‖θαt − θt‖

)2
]

if max0≤j≤t−1

{
N1/2

αj
√
n
+
√
Nα

min(
τj
2
,1)

j

}
→ 0 as n→ ∞

Proposition 6.1 implies that under some regularity conditions δ
′

ω̂αt and
γtδ

′

θ̂αt

(1−µ′θt)
may have

the same asymptotic distribution. Hence, in this situation, we need only to derive the asymp-

totic distribution of
γtδ

′

θ̂αt

(1−µ′θt)
which depends only on the asymptotic distribution of δ

′

θ̂αt .

9.7.1 Proof of proposition 6.1

B = γ̂−1
t δ

′

ω̂t − γ−1
t δ

′

ωt =
δ
′

θ̂t

1− µ̂
′

tθ̂t
− δ

′

θt
1− µ′θt

1(
1− µ̂′tθ̂αt

) ≡ 1

1− β̂
≃ 1

1− β
+

1

(1− β)2

(
β − β̂

)

=
1

1− µ′θt
−
µ′
(
θ̂αt − θt

)

(1− µ′θt)
2 + o

(
µ′
(
θ̂αt − θt

))

since µ
′

θt ∈ (0, 1). We then obtain that

B =
δ
′

θ̂αt − δ
′

θt
1− µ′θt

−
δ
′

θ̂αtµ
′
(
θ̂αt − θt

)

(1− µ′θt)
2 +Op

[
δ
′

θ̂αtµ
′
(
θ̂αt − θt

)]

=
δ
′

θ̂αt − δ
′

θt
1− µ′θt

+Op

[
δ
′

(
θ̂αt − θt

)
µ′
(
θ̂αt − θt

)]
.

Since we assume that ‖δ‖ = O (1)
∥∥∥δ′
(
θ̂αt − θt

)∥∥∥ = O
(∥∥∥θ̂αt − θt

∥∥∥
)
.

Because,
∥∥∥θ̂αt − θt

∥∥∥ = Op

(
1

αt
√
n
+ ‖θαt − θt‖

)

we have that,
∥∥∥δ′
(
θ̂αt − θt

)∥∥∥ = Op

(
1

αt
√
n
+ ‖θαt − θt‖

)
.
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Using Proof of Lemma 1, we have the following result

∥∥∥µ′

(
θ̂αt − θt

)∥∥∥ = Op

( √
N

αt
√
n
+

√
N ‖θαt − θt‖

)

Hence, using those two relations we obtain that

Op

[
δ
′

(
θ̂αt − θt

)
µ′
(
θ̂αt − θt

)]
= Op

[
√
N

(
1

αt
√
n
+ ‖θαt − θt‖

)2
]

Using Lemma 3 we obtain that

γt
√
nB ≈ √

nδ
′

(ω̂αt − ωt) =
γt
√
nδ

′

(
θ̂αt − θt

)

(1− µ′θt)
+Op

[
√
nN

(
1

αt
√
n
+ ‖θαt − θt‖

)2
]
.

Using assumption C, we obtain the following Lemma based on the standard central limit

theorem.

Lemma 4 Under assumption C, we have the following result
〈√

n
[
Ê
(
R

′

t1n

)
− Ω̂tθt

]
, δ
〉
→d N

(
0, E

[
δ
′

rir
′

iu
2
i δ
])

9.7.2 Proof of Lemma 4

In fact, Ê
(
R

′

t1n

)
=

R
′

t1n
n with 1n = Rtθt + ut. This implies that,

Ê
(
R

′

t1n

)
=

R
′

t

n
(Rtθt + ut)

=
R

′

tRt

n
θt +

R
′

tut
n

= Ω̂tθt +
R

′

tut
n

Hence,

〈√
n
[
Ê
(
R

′

t1n

)
− Ω̂tθt

]
, δ
〉

=

〈
R

′

tut√
n
, δ

〉

=
1√
n

n∑

i=1

δ
′

riui.

Therefore, using assumption C, the standard central limit theorem can be applied to obtain

the result of lemma 4.

Proposition 6.2 Given the set of information Ft and under assumptions A and C, we have

the following result
〈√

n
[
θ̂αt − θt

]
, δ
〉

∥∥∥
(
E
[
δ′rir

′

iu
2
i δ
])1/2

Ω̂−1
αt

∥∥∥
→d N (0, 1)

if max
(√

N,αt

√
n√
N

)
α
min( τt

2
,1)

t → 0 as n goes to infinity.
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9.7.3 Proof of proposition 6.2

θ̂αt − θt = θ̂αt − θαt + θαt − θt
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)−1 R
′

n1n
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Ω̂αt

)−1 R
′

n1n
n

−
(
Ω̂αt

)−1
Ω̂tθt +

(
Ω̂αt

)−1
Ω̂tθt − Ω−1

αt
Ωtθt + θαt − θt

=
(
Ω̂αt

)−1
[
R

′

n1n
n

− Ω̂tθt

]
+

[(
Ω̂αt

)−1
Ω̂t − Ω−1

αt
Ωt

]
θt + θαt − θt

δ
′

(
θ̂αt − θt

)
= δ

′

(
Ω̂αt

)−1
[
R

′

n1n
n

− Ω̂tθt

]
+ δ

′

[(
Ω̂αt

)−1
Ω̂t − Ω−1

αt
Ωt

]
θt + δ

′

(θαt − θt)

[(
Ω̂αt

)−1
Ω̂t − Ω−1

αt
Ωt

]
θt =

(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

[(
Ω̂αt

)−1
− Ω−1

αt

]
Ωtθt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωαt − Ω̂αt

]
Ω−1
αt

Ωtθt︸ ︷︷ ︸
θαt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωαt − Ω̂αt

]
θαt

=
(
Ω̂αt

)−1 {
Ω̂t − Ωt

}
θt +

(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
θαt

=
(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt)

δ
′

(
θ̂αt − θt

)
= δ

′

(
Ω̂αt

)−1
[
R

′

n1n
n

− Ω̂tθt

]
+ δ

′

(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt) + δ

′

(θαt − θt)

√
nδ

′

(
θ̂αt − θt

)
=

√
nδ

′

(
Ω̂αt

)−1
[
R

′

n1n
n

− Ω̂tθt

]
+
√
nδ

′

(
Ω̂αt

)−1 [
Ωt − Ω̂t

]
(θαt − θt) +

√
nδ

′

(θαt − θt)

√
nδ

′

(
θ̂αt − θt

)

∥∥∥
(
E
[
δ′rir

′

iu
2
i δ
])1/2

Ω̂−1
αt

∥∥∥
=

√
nδ

′

(
Ω̂αt

)−1
[
R

′

n1n
n − Ω̂tθt

]

∥∥∥
(
E
[
δ′rir

′

iu
2
i δ
])1/2

Ω̂−1
αt

∥∥∥
︸ ︷︷ ︸

(a)

+
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(
E
[
δ′rir

′
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2
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By assumption C and using Lemma 4, we have that,

(a) →d N (0, 1)

‖(b)‖ =
1∥∥∥

(
E
[
δ′rir

′

iu
2
i δ
])1/2
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∥∥∥∥
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Since,
(
E
[
δ
′
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′
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2
i δ
])1/2

is of order of N1/2 then,

‖(b)‖ = Op

(√
Nα

min( τt
2
,1)

t

)

‖(c)‖ = Op

(
αt

√
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N
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min( τt

2
,1)

t

)
.

Therefore, if max
(√

N,αt

√
n√
N

)
α
min( τt

2
,1)

t → 0, we obtain the result of proposition 6.2.

Combining the result of lemma 4 with proposition 6.1 and 6.2, we obtain the asymptotic

distribution of δ
′

ω̂αt .

9.8 Proof of Proposition 7

We start by the fact that

ω̂t − ωt =
γt

(
θ̂t − θt
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′
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θ̂t − θt

)′

µ
′

(
θ̂t − θt

)]
+Op

[
1√
n
+

√
N

n
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This result is obtained using a similar decomposition as in Carrasco et al. (2019) combined with

Lemma 3. Hence, we obtain that
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′

(
θ̂t − θt

)

(1− µ′θt)
2 +

γ2t

(
θ̂t − θt

)′

µθ
′

tµµ
′

θtµ
′

(
θ̂t − θt

)

(1− µ′θt)
4

+ 2
γ2t

(
θ̂t − θt

)′

µµ
′

θtµ
′

(
θ̂t − θt

)

(1− µ′θt)
3 +Op

[(
θ̂t − θt

)′

µµ
′

(
1√
n
+

√
N

n

∥∥∥θ̂t − θt

∥∥∥
)]

+ Op

[(
θ̂t − θt

)′

µµ
′

(
θ̂t − θt

)′

µ
′

(
θ̂t − θt

)]
.

56



We know that µ
′

θt = θ
′

µ and using the assumption A, we obtain that
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The last quantity is obtained using the proof of Lemma 4 in Carrasco et al. (2019).

(k1) = Op

[(
θ̂t − θt

)′

µµ
′

(
1√
n
+

√
N

n

∥∥∥θ̂t − θt

∥∥∥
)]

= Op

[∥∥∥µ′

(
θ̂αt − θt

)∥∥∥ ‖µ‖
(

1√
n
+

√
N

n

∥∥∥θ̂t − θt

∥∥∥
)]

.

‖µ‖ = O
(√

N
)
. Moreover, in the proof of Lemma 1, we obtain that

∥∥∥θ̂t − θt

∥∥∥ = Op

(
1

αt
√
n
+ α

min(
τt
2
,1)

t

)
.

Hence,

(k1) = Op

[( √
N

αt
√
n
+
√
Nα

min(
τt
2
,1)

t

)(√
N√
n

+
N

αtn
+

N√
n
α
min(

τt
2
,1)

t

)]
.

Therefore,

rest (αt) = Op

[( √
N

αt
√
n
+
√
Nα

min(
τt
2
,1)

t

)(√
N√
n

+
N

αtn
+

N√
n
α
min(

τt
2
,1)

t

)]

+ Op

[√
N

(
1

αt
√
n
+ α

min(
τt
2
,1)

t

)]
.

58



10 Tables and Figures

Table 2: Information about the 5 industry portfolios
Code Composition of the sector

Cnsmr
Consumer Durables, NonDurables,

Wholesale, Retail, and Some Services
(Laundries, Repair Shops)

Manuf Manufacturing, Energy, and Utilities

Hitec
Business Equipment, Telephone and

Television Transmission

Hlth Healthcare, Medical Equipment, and Drugs

Other
Mines, Constr, BldMt, Trans, Hotels, Bus

Serv, Entertainment, Finance

Table 3: Out-of sample performance with an estimation window of 120 for 5 and 10 industry
portfolios

5 Industry Portfolios 10 Industry Portfolios

Risk
Return per
unit of risk

Turnover Risk
Return per
unit of risk

Turnover

Sample based
strategy

0.0509 0.0936 2.4937 0.0515 0.0747 2.7224

Bauder et al
bayesian strategy

0.0451 0.1177 1.0866 0.0465 0.1107 1.2841

Approximation of
the true solution

0.0441 0.1276 0.9812 0.0417 0.1765 1.0034

Table 4: Out-of sample performance with an estimation window of 120 for 17 and 30 industry
portfolios

17 Industry Portfolios 30 Industry Portfolios

Risk
Return per
unit of risk

Turnover Risk
Return per
unit of risk

Turnover

Sample based
strategy

0.5332 0.0462 15.2736 0.2703 0.0620 21.2963

Bauder et al
bayesian strategy

0.0552 0.1089 2.3971 0.0726 0.0822 4.4491

Approximation of
the true solution

0.0410 0.3152 0.9402 0.0501 0.3536 0.9168
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Table 5: The condition number of the sample covariance matrix as a function of the number
of assets in the economy. The sample size is given by n = 120 over 1000 replications. The
investment horizon is T = 12. Standard errors of those statistics are given in bracket.

period/N
λ̂max/λ̂min

10 20 40 60 80 90 100

0
219.3835
(29.1304)

622.9837
(76.1754)

1629.7
(202.0158)

3346.2
(461.6792)

15842
(3019.2)

27065
(6250.2)

72148
(21181)

2
220.8378
(29.3274)

616.1889
(73.7110)

1629.6
(199.8609)

3376.7
(459.1104)

15545
(2896.0)

25885
(5797.1)

72336
(21344)

5
221.7853
(29.3883)

627.2623
(75.0828)

1621.9
(200.7195)

3382.3
(466.2505)

15233
(2844.9)

26193
(5791.3)

69306
(19456)

7
222.2615
(29.3190)

641.9389
(75.9786)

1621.8
(202.5438)

3260.8
(457.5931)

15043
(2836.5)

26714
(5720.8)

68237
(19483)

9
220.6481
(29.0634)

632.5309
(74.0857)

1628.0
(200.7087)

3271.2
(461.0739)

14895
(2773.8)

26274
(5662.3)

66849
(19114)

11
218.7989
(29.1129)

626.0016
(73.3732)

1602.1
(193.5361)

3266.8
(461.2739)

15451
(2840.9)

26382
(5790.8)

66520
(18701)

Table 6: The relative condition number of the sample covariance matrix as a function of the
number of assets in the economy. The sample size is given by n = 120 over 1000 replications.
The investment horizon is T = 12. Standard errors of those statistics are given in bracket.

Period/N

(
λ̂max/λ̂min

)
/ (λmax/λmin)

10 20 40 60 80 90 100

0
1.1479
(0.1524)

1.6661
(0.2037)

2.4038
(0.2980)

2.9609
(0.4085)

9.8419
(1.8757)

16.4828
(3.8064)

37.7055
(11.0693)

2
1.1555
(0.1534)

1.16479
(0.1971)

2.0437
(0.2948)

2.9879
(0.4062)

9.6575
(1.7991)

15.7643
(3.5305)

37.8039
(11.1548)

5
1.1604
(0.1538)

1.6775
(0.2008)

2.3923
(0.2961)

2.9928
(0.4126)

9.4638
(1.7674)

15.9516
(3.5269)

36.2205
(10.1681)

7
1.1629
(0.1534)

1.7168
(0.2032)

2.3922
(0.2988)

2.8853
(0.4049)

9.3455
(1.7622)

16.2693
(3.4840)

35.6716
(10.1819)

9
1.1545
(0.1521)

1.6916
(0.1981)

2.4012
(0.2960)

2.8946
(0.4080)

9.2538
(1.7232)

16.0013
(3.4484)

34.9365
(9.9892)

11
1.1448
(0.1523)

1.6741
(0.1962)

2.3630
(0.2855)

2.8906
(0.4082)

9.5993
(1.7649)

16.0667
(3.5266)

34.7646
(9.7735)

60



Table 7: The average monthly Actual Sharpe ratio from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 120, the
investment horizon given by T = 12 over 1000 replications. TSR is the true actual Sharpe ratio.

Strategy/N 10 20 40 60 80 90 100

SbP 0.1218 0.0878 0.0568 0.0341 0.0346 0.0213 0.0093
XoNP 0.1509 0.1554 0.1652 0.1559 0.1638 0.1639 0.1591
RdgP 0.1517 0.1777 0.1626 0.1736 0.1668 0.1800 0.1763
L2TSP 0.1625 0.1830 0.1742 0.1779 0.1706 0.1832 0.1769
L1TSP 0.1640 0.1791 0.1729 0.1838 0.1735 0.1817 0.1789
BP 0.1575 0.1195 0.0816 0.0769 0.0368 0.0266 0.0113
TSR 0.1953 0.1907 0.2028 0.2050 0.2052 0.2056 0.2058

Table 8: The average monthly bias in the Actual Sharpe ratio from optimal strategies using a
three-factor model as a function of the number of assets in the economy with the sample size
n = 120, the investment horizon given by T = 12 over 1000 replications.

Strategies
Number of risky assets

10 20 40 60 80 90 100

SbP -0.0735 -0.1029 -0.1460 -0.1709 -0.1706 -0.1843 -0.1965
XoNP -0.0444 -0.0353 -0.0376 -0.0491 -0.0417 -0.0417 -0.0467
RdgP -0.0436 -0.013 -0.0402 -0.0314 -0.0384 -0.0256 -0.0295
L2TSP -0.0313 -0.0077 -0.0286 -0.0271 -0.0346 -0.0224 -0.0289
L1TSP -0.0313 -0.0116 -0.0299 -0.0212 -0.0317 -0.0239 -0.0269
BP -0.0378 -0.0712 -0.1212 -0.1281 -0.1684 -0.1790 -0.1945

Table 9: The average monthly default probability from optimal strategies using a three-factor
model as a function of the number of assets in the economy with the sample size n = 120, the
investment horizon given by T = 12 over 1000 replications.

Strategy/N 10 20 40 60 80 90 100

SbP 0.0617 0.0763 0.1255 0.0816 0.1283 0.1291 0.1525
RdgP 0.0008 0.0001 0.0082 0.0065 0.0056 0.0000 0.0000
L2TSP 0.0002 0.0030 0.0036 0.0047 0.0065 0.0001 0.0000
L1TSP 0.0001 0.0025 0.0013 0.002 0.0011 0.0000 0.0000
BP 0.0000 0.0111 0.0631 0.0881 0.1133 0.1005 0.1232

Table 10: The average monthly Turnover from optimal strategies using a three-factor model as
a function of the number of assets in the economy with the sample size n = 120, the investment
horizon given by T = 12 over 1000 replications.

Strategy/N 10 20 40 60 80 90 100

SbP 8.4517 11.5957 11.7088 13.0296 13.5274 18.9334 21.3356
RdgP 0.7532 0.7689 0.7919 0.8067 0.9140 0.9317 0.989
L2TSP 0.6539 0.656 0.6350 0.7192 0.910 0.8845 0.9352
L1TSP 0.1648 0.1737 0.204 0.2774 0.2943 0.2668 0.2874
BP 0.4161 3.8001 6.1319 6.4807 7.0534 9.0807 9.3808

61



Table 11: The absolute bias in the optimal wealth using a three-factor model with the sample
size n = 120, the investment horizon given by T = 12 over 1000 replications when N = 10.

Periods
Strategies

SbP BP RdgP L2TSP L1TSP

0 0.1538 0.0207 0.0043 0.0093 0.0007
2 0.12830 0.0129 0.0026 0.0031 0.0038
4 1.0379 0.0116 0.0154 0.0226 0.0284
6 0.3918 0.0180 0.0279 0.0246 0.0267
8 4.7723 0.0255 0.0199 0.0100 0.0052
10 9.9473 0.0753 0.0093 0.0010 0.0014
11 22.9089 0.1311 0.0130 0.0021 0.0082

Table 12: The absolute bias in the optimal wealth using a three-factor model with the sample
size n = 120, the investment horizon given by T = 12 over 1000 replications when N = 20.

Periods
Strategies

SbP BP RdgP L2TSP L1TSP

0 0.0251 0.0237 0.0024 0.0017 0.0141
2 1.8049 0.3319 0.0071 0.0030 0.0153
4 2.9541 0.8699 0.0561 0.0145 0.0191
6 8.7675 3.0255 0.8404 0.6176 0.4716
8 10.4564 3.7632 0.8057 0.9080 0.7161
10 12.5781 6.9093 1.0164 0.8796 0.7369
11 31.0841 8.6879 1.0744 0.9373 0.8380

Table 13: The absolute bias in the optimal wealth using a three-factor model with the sample
size n = 120, the investment horizon given by T = 12 over 1000 replications when N = 40.

Periods
Strategies

SbP BP RdgP L2TSP L1TSP

0 0.0588 0.0299 0.0185 0.0105 0.0077
2 32.5544 0.5531 0.0330 0.0263 0.0199
4 38.8939 1.3677 0.0463 0.0289 0.0679
6 38.5641 2.8210 0.0569 0.0569 0.006
8 57.8871 36.9814 0.0782 0.0625 0.0271
10 65.7681 47.7400 0.0983 0.0639 0.0127
11 153.7881 94.3946 0.1441 0.1181 0.0619
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Table 14: The average bias in the actual Sharpe ratio and the average deviation between the
true and the estimated portfolio for several sample sizes.

Sample size
120 300 1000 2000

Average bias in the
actual Sharpe ratio

-0.0295 -0.0259 -0.0098 -0.0084

Deviation between the
estimated strategy and the true one

3.0303 2.9496 2.8107 2.8103

Table 15: The average tuning parameter using a three-factor model with the sample size n =
120, the investment horizon given by T = 12 over 1000 replications when N = 40.

Periods
Strategies

RdgP L2TSP L1TSP

0
0.0160
(0.0123)

0.0188
(0.0082)

0.0070
(0.0026)

4
0.0168
(0.0125)

0.0170
(0.0083)

0.0198
(0.0074)

8
0.0215
(0.0120)

0.0178
(0.0081)

0.0205
(0.0071)

11
0.0249
(0.0104)

0.0183
(0.0079)

0.0205
(0.0074)

Table 16: Out-of-sample performance in terms of Sharpe ratio applied on the 30 industry
portfolios (FF30) and the 100 portfolios formed on size and book-to-market (FF100) for two
different rolling windows.

Portfolios
Estimation
Window

Strategies
SbP BP RdgP L2TSP L1TSP

FF30
60 0.0195 0.05195 0.0767 0.0963 0.1836
120 0.0496 0.0822 0.1715 0.1878 0.1876

FF100
120 0.0569 0.1025 0.1697 0.1996 0.2424
240 0.0973 0.1550 0.2050 0.2637 0.2837

Table 17: Some statistics on eigenvalues and condition number of the sample covariance matrix
of the 30 industry portfolios for two different rolling windows.

Rolling
window

Statistics λmin λmax λmax/λmin

60
mean 5.6976E-05 0.0707 1.4073E+03
std 2.5506E-05 0.0329 813.5847

median 5.0329E-05 0.0636 1.2490E+03

120
mean 1.5189E-04 0.0696 510.4563
std 4.553E-05 0.0174 217.2946

median 1.2842E-04 0.0689 544.0167
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Table 18: Some statistics on eigenvalues and condition number of the sample covariance matrix
of the 100 industry portfolios for two different rolling windows.

Rolling
window

Statistics λmin λmax λmax/λmin

120
mean 3.3854E-06 0.2636 8.3722E+04
std 9.4620E-07 0.0534 2.7365E+04

median 3.2609E-06 0.2635 8.2893E+04

240
mean 4.4466E-05 0.2551 5.7491E+03
std 3.6914E-06 0.0253 497.8610

median 4.4371E-05 0.2522 5.7621E+03

Table 19: Out-of-sample performance in terms of re-balancing cost (turnover) applied on the 30
industry portfolios (FF30) and the 100 portfolios formed on size and book-to-market (FF100)
for two different rolling windows.

Portfolios
Estimation
Window

Strategies
SbP BP RdgP L2TSP L1TSP

FF30
60 4.6060 3.6181 1.9035 1.5590 0.2747
120 2.1302 2.0560 1.770 1.2700 0.1916

FF100
120 7.9407 5.9596 3.9402 1.4065 0.6456
240 5.6427 3.9562 2.7195 1.2516 0.5744

Table 20: Out-of-sample performance in terms of Sharpe ratio ( when transaction costs are
included) applied on the 30 industry portfolios (FF30) and the 100 portfolios formed on size
and book-to-market (FF100) for two different rolling windows.

Portfolios
Estimation
Window

Strategies
SbP BP RdgP L2TSP L1TSP

FF30
60 -0.0784 0.0328 0.0638 0.0783 0.1780
120 -0.0325 0.0508 0.1610 0.1730 0.1748

FF100
120 -0.0880 0.0848 0.1303 0.1804 0.2301
240 -0.0330 0.1156 0.1789 0.2484 0.2735
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Figure 1: The Sharpe ratio as a function of the tuning parameter for the Ridge. We obtain this
figure using a single sample when N = 60 and N = 100 and n = 120.

0 0.1 0.2
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sh
ar

pe
 R

ati
o

t=0

0 0.1 0.2
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sh
ar

pe
 R

ati
o

t=4

0 0.1 0.2
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sh
ar

pe
 R

ati
o

t=11

Figure 2: The GCV criterion as a function of the tuning parameter for the Ridge regularization
using a single sample when N = 60 and n = 120.
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Figure 3: The transaction cost as a function of the tuning parameter for the L1TSP and L2TSP.
We obtain this figure for N = 20, T = 12 with an estimation window of n = 120.
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Figure 4: The average stability rate as a function of the tuning parameter for the L1TSP and
L2TSP. We obtain this figure for N = 20, T = 12 with an estimation window of n = 120.
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Figure 5: The Average Optimal selected tuning parameter for the RdgP, the L2TSP and the
L1TSP over the life cycle when N = 60 and n = 120.
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Figure 6: The Mean Squared Error of the selected strategy over the life cycle for the RdgP and
the L2TSP with N = 20, T = 24 month and an estimation window of n = 120.
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Figure 7: The optimal wealth over the life cycle for our procedures. We obtain this figure using
the 30 industry portfolios with an estimation window of n = 120.
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Figure 8: The re-balancing cost over the life cycle. We obtain this figure using the 30 industry
portfolios with an estimation window of n = 120.
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