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“It is conceivable - and may even in a way be more realistic - to allow for

cases where the individual is neither able to state which of two alterna-

tives he prefers nor that they are equally desirable.” von Neumann and

Morgenstern

1 Introduction

There are situations in which the inability of decision makers to state a clear pref-

erence is undeniable. For example, having to decide between two treatments of a

disease, one that is expected to expand your life span by 20 years at 70 percent

quality of life and another that is expected to expand your life span by 15 years at

90 percent quality of life, a decision maker might have difficulty expressing a clear

preference between the two treatments.1 Incompleteness of preferences is a prevalent

feature of actual choice behavior and to assume otherwise does not seem justified

on either positive or normative grounds. “Of all the axioms of utility theory, the

completeness axiom is perhaps the most questionable. Like others of the axioms, it

is inaccurate as a description of real life; but unlike them, we find it hard to accept

even from a normative viewpoint.” (Aumann [1962], p. 446).

During the last couple of decades, there has been growing appreciation of the

significance of incomplete preferences and recognition of the potential behavioral im-

plications thereof. As a result, there has been an increasing interest in the modeling,

analysis and study of economic applications of incomplete preferences.2 However,

to the best of our knowledge, measures that would allow comparisons of the incom-

pleteness of distinct preference relations have not yet been provided. In view of the

role of measurement in scientific inquiry, the lack of measures of incompleteness is a

significant lacuna in decision theory.

1See Attema, Bleichrodt, l’Haridon, and Lipman (2020) for an experimental investigation.
2The study of the representation of incomplete preferences under risk and under uncertainty was

pioneerd by Aumann (1962) and Bewley (2002). More recently, the issue has been addressed in the

works of Dubra, Maccheroni and Ok (2004), Baucells and Shapley (2006), Nau (2006), Seidenfeld,

Schervish and Kadane (1995), Galaabaatar and Karni (2013), Ortoleva, Ok and Riella (2013), Riella

(2015), and Karni (2020a). For an analysis of the implications of incomplete beliefs for equilibrium

in financial markets see Rigotti and Shanon (2005).
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In this paper we propose measures of incompleteness of preferences under risk

and under uncertainty. These include measures of incompleteness of beliefs, incom-

pleteness of risk attitudes, and overall incompleteness of preference relations under

uncertainty. When preferences have multi-prior subjective expected multi-utility

representations, we show how these measures of incompleteness capture the sets of

subjective probabilities and utilities that constitute the representations of decision

makers’ preferences. The local properties, or “incompleteness in the small,” are

investigated as well.

We proceed to introduce measures of comparative incompleteness. We define

what it means for one preference relation to be more incomplete than another, both in

terms of beliefs, risk attitudes, and overall. We also show how greater incompleteness

manifests itself in the representation of preferences.

We illustrate the behavioral implications of greater incompleteness in the context

of a simple portfolio choice model. The behavioral manifestations of incompleteness

include the range of unpredictability of the decision maker’s portfolio position and

the level of inertia exhibited in response to changes in security prices. We show that

greater incompleteness according to our measures corresponds to both greater inertia

and greater unpredictability.

A natural and intuitive idea is to regard one preference relation as displaying

greater incompleteness than another if all alternatives that are non-comparable ac-

cording to the latter are non-comparable according to the former, but not necessarily

vice versa. Our definitions of comparative incompleteness are based on this direct

ranking of incompleteness. The result is binary relations “more incomplete than” on

the set of preference relations that are themselves partial orders.

We complete the “more incomplete than” relations using our measures by ex-

panding on the following idea. Consider a situation where one preference relation is

complete, while another relation is incomplete. Clearly, the complete relation will be

able to compare any two alternatives, and we can comfortably state that the complete

relation is less incomplete, even when the two decision makers are not necessarily

comparing the same alternatives.

Finally, we introduce incentive compatible mechanisms – modified scoring rules

– by which the proposed measures of incompleteness may be elicited.
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The paper is structured as follows: Section 2 introduces our measures of incom-

pleteness, connects them to properties of multi-prior subjective expected multi-utility

representations, and investigates local behavior of the measures. Section 3 defines

comparative incompleteness, shows how it manifests itself in the representation of

preferences, illustrates its behavioral implications in the context of a simple portfolio

choice problem, and completes the comparative incompleteness relations. Section 4

introduces incentive compatible mechanisms by which the measures of incomplete-

ness may be elicited. Concluding remarks appear in Section 5. The proofs are

collected in the Appendix.

2 Measuring Incompleteness

2.1 Preliminaries

Let S be a finite set of states and denote by ∆R the set of simple probability distri-

butions, dubbed lotteries, on a set of real numbers representing monetary payoffs.3

Assume that ∆R is endowed by the topology of weak convergence. Subsets of S are

events and S is the universal event. Maps from S to ∆R are acts . Let the set of

acts, (∆R)S, be denoted by F and endowed with the product topology. Constant

acts are identified with the corresponding elements of ∆R. Denote by δx ∈ ∆R the

constant act whose payoff is the outcome x in every state. Henceforth, we identify

x ∈ R with the constant act δx . Hence, R ⊂ ∆R. A bet on an event E is the act

xEy ∈ F such that (xEy)(s) = x for all s ∈ E, and (xEy)(s) = y otherwise, where

x > y. A lottery `(r;x, y) ∈ ∆R, is a constant act that pays x with probability r

and y with probability (1− r).
A strict preference relation is an irreflexive and transitive binary relation � on

F . We assume throughout that the strict preference relation is not empty, and we

do not impose that it is negatively transitive. Taking the strict preference relation as

primitive we define several induced binary relations on F.4 The indecisive preference

3A simple probability distribution is a probability distribution with finite support.
4The advantage of using the strict preference relation is that it has a clear choice meaning while

the weak preference relation does not. More importantly, a theorem by Schmeidler (1971) shows
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relation � on F is defined as follows: For all f, g ∈ F,

f � g if ¬(f � g) and ¬(g � f). (1)

Then, � is symmetric, reflexive and, in the case of incomplete preferences, intransi-

tive.5 Following Galaabaatar and Karni (2013), define the weak preference relation

3 on F as follows: For all f, g ∈ F,

f 3 g if h � f implies h � g.

Define also the indifference relation:6 For all f, g ∈ F,

f ≈ g if f 3 g and g 3 f.

Finally, define the noncomparable relation: For all f, g ∈ F,

f ./ g if f � g and ¬ (g ≈ f) .

The strict preference relation is continuous if the upper and lower contour sets,

{f ∈ F | f � g} and {f ∈ F | g � f}, are open for all g ∈ F. Note that if �
is continuous then, for all g ∈ F, the indecisiveness subsets, {f ∈ F | f � g} are

closed. We assume throughout that the strict preference relation is continuous. We

also assume that it is monotonic with respect to first-order stochastic dominance:

For all p, q ∈ ∆(R), if p first-order stochastically dominates q, then p � q.7

that if a weak-order on a connected topological space is continuous in the two usual definitions (i.e.,

closed upper and lower contour sets according to the weak preference and open upper and lower

contour sets according to the strict preference relation) then it is complete. Thus, incompleteness

requires that one of the continuity conditions must not hold. Karni (2011) showed that this puzzling

result is due to the definition of the weak preference relation as the negation of the strict preference

relation. Taking the strict preference relation as primitive and invoking the weak preference relation

a la Galaabaatar and Karni (2013), the weak order relation may be continuous in both senses and

yet incomplete.
5The intransitivity of � of F is an implication of � not being negatively transitive.
6This definition is equivalent to Eliaz and Ok (2006).
7The lottery p first-order stochastically dominates the lottery q if, for all x ∈ X,

∑
z≤x p(z) ≤∑

z≤x q(z) with strict inequality for some x ∈ X.
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An event E is null if ¬(xEy � y), for all x, y ∈ R such that x � y. An event E

is nonnull if it is not null. Thus, if there are x, y ∈ R for which xEy � y, then E is

nonnull.

Incomplete preferences under uncertainty stem from two sources: incomplete

beliefs and incomplete tastes. The former source expresses the decision makers’ am-

biguous beliefs concerning the likelihoods of events. The latter source expresses the

decision makers’ indecisiveness regarding the appropriate criterion for the evaluation

of risky prospects. When both sources are present, they generally interact. Corre-

spondingly, we develop measures of the incompleteness of beliefs and of tastes as well

as measures of the overall degree of incompleteness.

2.2 Measure of belief incompleteness

Borel (1924), Ramsey (1931) and de Finetti (1937) were the first to propose the

idea that subjective probabilities may be inferred from the odds a decision maker

is just willing to offer when betting on events. To the extent that the subjective

probabilities reflect the decision makers’ beliefs about the likelihood of the events, the

corresponding betting odds measure these beliefs. In the case of incomplete beliefs

a decision maker may entertain a set of possible beliefs about the likelihood of an

event. Building on the aforementioned idea, we define a measure of incompleteness

of a decision maker’s beliefs about an event by the range of the odds she considers

possible when betting on the said event.

For each E ∈ 2S such that neither E nor its complement Ec = S\E are null

events, and for any x, y ∈ R, define

R�(xEy) = {r ∈ [0, 1] | xEy � `(r;x, y)}. (2)

The elements of R�(xEy) are the winning probabilities of lotteries for which � is

indecisive between the lottery and a bet on the event E with the same stakes.

Since � is monotone with respect to first-order stochastic dominance and contin-

uous,

R�(xEy) = [r�(xEy), r̄�(xEy)],
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where r�(xEy) = sup{r | xEy � `(r;x, y)} and r̄�(xEy) = inf{r | `(r;x, y) � xEy}.
That r�(xEy) and r̄�(xEy) exist is an implication of the boundedness (that is, r ∈
[0, 1]) and the fact that the sets are non-empty, (that is, 0 ∈ {r | xEy � `(r;x, y)}
and 1 ∈ {r | `(r;x, y) � xEy}). Hence, R�(xEy) is a compact interval.

Since � is irreflexive, we have that for every null E, R�(xEy) = {0} and for

every E, for which S\E is either null or empty, we have that R�(xEy) = {1}, for

all x, y ∈ R. For null events E, we thus define r�(xEy) = r̄�(xEy) = 0, while for

events E for which S\E is null or empty, we define r�(xEy) = r̄�(xEy) = 1, for all

x, y ∈ R. With this in mind we make the following definition.

Definition 1 For every E ∈ 2S, and x, y ∈ R, the measure of belief incomplete-

ness of � at xEy is mb(xEy;�) = r̄�(xEy)− r�(xEy).

Definition 1 captures the preference relation’s incompleteness that arises from

the decision maker being unsure of how a subjective bet on event E compares to

objective lotteries. Hence the name “belief incompleteness” is natural. The payoffs

of the bet, x and y, constitute a “measuring rod” of the incompleteness of beliefs.

If E is null or the empty set then mb(xEy;�) = 0. If � is negatively transitive then

mb(xEy;�) = 0 for all E. Clearly, mb(xEy;�) = mb(xECy;�), for all E ∈ 2S and

x, y ∈ R.

2.3 Measure of taste incompleteness

Consider next the measurement of incompleteness of preference relations under risk,8

by restricting � to ∆R. For every p ∈ ∆R, define

C�(p) = {c ∈ R | p � δc}. (3)

The elements of C�(p) are certain amounts for which � is indecisive between the

amount and the lottery p. Then

C�(p) = [c� (p) , c̄� (p)] , (4)

8See Dubra, Maccheroni and Ok (2004) and Baucells and Shapley (2006) for an axiomatic

characterization of expected utility representations with incomplete preferences under risk.
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where c̄� (p) = inf{c ∈ R | δc � p} and c� (p) = sup{c ∈ R | p � δc}. That c̄� (p) and

c� (p) exist is an implication of C�(p) being closed (it is the complement of an open

set), the support of p being finite and, hence, bounded, and the fact that � satisfies

first-order stochastic dominance. We use these notations to define a measure of taste

incompleteness (i.e. of the incompleteness of the decision maker’s risk attitudes).

Definition 2 For every lottery p ∈ ∆R, the measure of taste incompleteness of

� at p is mt(p;�) = c̄�(p)− c�(p).

The measure in Definition 2 captures the degree to which a decision maker is

unsure of how a lottery compares to certain amounts. In other words, it captures

the degree to which a decision maker is unable to evaluate the riskiness of p. Since

no subjective uncertainty is involved for the objects under comparison, we view it as

a measure of taste incompleteness.

Let µ(p) denote the expected value, or mean, of p. Define

ξ̄� (p) := µ(p)− c�(p) (5)

and

ξ�(p) := µ(p)− c̄�(p), (6)

which are, respectively, the highest and lowest risk premiums of the lottery p accord-

ing to �. Then,

mt (p;�) = ξ̄� (p)− ξ� (p) . (7)

2.4 Measure of overall incompleteness

The overall degree of incompleteness of a preference relation at E amalgamates the

incompleteness of beliefs and of tastes. A decision maker may be unsure of how

a subjective bet on E compares to objective lotteries, and also of how to assess

the risk represented by these lotteries. That is, for a subjective bet on E, there is

a set of non-comparable lotteries, and for each of these non-comparable lotteries,

there is a range of sure payoffs that are non-comparable to the lottery. Because

a bet on E corresponds to a set of non-comparable lotteries the question arises
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how to incorporate the values of the certain payoffs into the measure of the overall

incompleteness of the preference relation at E.

For each event, E ∈ 2S and x, y ∈ R, define

O�(xEy) = {c ∈ R | xEy � δc}. (8)

The elements of O�(xEy) are certain payoffs for which � is indecisive between the

payoff and the bet xEy. Then,

O�(xEy) = [c(xEy;�), c̄(xEy;�)],

where c̄(xEy;�) = inf{c ∈ R | δc � xEy} and c�(xEy;�) = sup{c ∈ R | xEy � δc}.
That c̄(xEy;�) and c(xEy;�) exist when neither E nor its complement is null follows

from the fact that, by first-order stochastic dominance {c ∈ R | δc � xEy} is non-

empty and bounded below by y and, similarly, {c ∈ R | xEy � δc} is non-empty and

bounded above by x. If E is the universal event, define c̄(xEy;�) = c(xEy;�) = x,

and if E is null, define c̄(xEy;�) = c(xEy;�) = y. Using these notations we make

the following definition:

Definition 3 For every E ∈ 2S, the measure of overall incompleteness of � at

xEy is M(xEy;�) = c̄(xEy;�)− c(xEy;�).

The measure of overall incompleteness at xEy is illustrated in Figure 1.

If E is either a null event or the universal event then M(xEy;�) = 0 for all x, y.

If � is negatively transitive then, M(xEy;�) = 0 for all E and for all x, y.

2.5 Manifestations in the representation of preferences

If preferences have a multi-prior expected multi-utility (MPEMU) representation,

axiomatized in Galaabaatar and Karni (2013), our measures of incompleteness have

specific manifestations in the representation. The incomplete preference relation �
on F has a MPEMU product representation if the following holds: For all f, g ∈ F,

f � g ⇔ Σs∈SU(f(s))π(s) > Σs∈SU(g(s))π(s),∀(π, U) ∈ Π× U , (9)
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Figure 1: Illustration of the Measure of Overall Incompleteness at xEy
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where Π a unique closed convex set of subjective probability measures on S and U is

a set of real-valued, affine, functions on ∆R. This representation in (9) includes two

special cases: (a) Bewley’s (2020) Knightian uncertainty in which � on the subset

of constant acts (that is, on ∆R) is negatively transitive and, consequently, U is a

singleton set, and (b) the case of complete beliefs in which Π is a singleton set.

Definition 1 does not rule out that the measure mb(xEy;�) depends on the “mea-

suring rod” being used, that is, on the payoffs x and y. However, as we show in

Theorem 1 below, if the decision maker’s preferences admit MPEMU representation

then mb(xEy;�) is independent of the choice of x and y, and of the decision maker’s

risk attitudes.

For each E ∈ 2S, let π̄(E) := maxπ∈Π π(E) and π(E) := minπ∈Π π(E). Then

π̄(E)− π(E) represents the range of beliefs that, according to �, the true state is in

E.9 We show next that, for MPEMU preferences, the probability measure of belief-

incompleteness in Definition 1 is equal to the length of the interval of subjective

9That π̄(E) and π(E) exist is an implication of the compactness of Π(E) and the linearity of

the preference functional.
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probabilities of E.

Theorem 1 If an incomplete preference relation � on F has MPEMU representa-

tion, then the measure of belief incompleteness at E, mb(xEy;�), is independent of

the outcomes x and y and of the set of utility functions U in the representation.

Furthermore, mb(xEy;�) := mb(E;�) = π̄(E)− π(E).

The proof is in the Appendix. It worth underscoring that this result also holds

if instead of MPEMU preferences the decision maker’s preference relation displays

probabilistic sophistication a la Machina and Schmeidler (1995).

Unlike the measure of incomplete beliefs, the measure of the overall incomplete-

ness of a preference relation at xEy depends on the “measuring rod”, that is, the

payoffs x and y that are used to construct it. This dependence is a consequence

of the fact that the magnitudes of the payoffs determine the riskiness of the bet.

Because the measure of overall incompleteness incorporates the decision maker’s risk

attitudes, it must be sensitive to the risk of the bet.

2.6 Measures of incompleteness in the small

Consider next the local version of our measures of incompleteness. This analysis

allows us to express the measures of incompleteness in terms of the properties of

the subjective probabilities and the utility functions that figure in the MPEMU

representation. Fix a probability r and consider a lottery `(r;x, y). Denote its mean

by µr(x, y) and its variance by σ2
r(x, y). Let u denote the Bernoulli utility function

corresponding to U , so that U(p) =
∑

x∈supp(p) p(x)u(x) for all p ∈ ∆(R). We assume

that the functions u are twice differentiable.

We first consider our measure of taste incompleteness as σ2
r(x, y) → 0 while

keeping the mean of the lottery constant. We show that, locally around µr(x, y),

the measure of taste incompleteness is proportional to the largest difference in the

Arrow-Pratt measure of absolute risk-aversion, evaluated at µr(x, y), displayed by

the utility functions that figure in the representation. Formally,
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Proposition 1 The measure of taste incompleteness of � at `(r;x, y) satisfies

mt(`(r;x, y);�) =

[
max
U∈U

(
−u

′′(µr(x, y))

u′(µr(x, y))

)
−min

U∈U

(
−u

′′(µr(x, y))

u′(µr(x, y))

)]
σ2
r(x, y)

2

+ o(σ2
r(x, y)).

Note that σ2
r(x, y) = r(1−r)(x−y)2. Hence, o(σ2

r(x, y)) = o((x−y)2). Therefore,

the difference in the Arrow-Prat measure between the utility functions in the repre-

sentation is a good approximation of taste incompleteness for low-variance lotteries.

Recall that the measure of taste incompleteness captures the degree to which a

decision maker is unable to evaluate the riskiness of lotteries. Proposition 1 shows

that this inability is reflected in the range of risk attitudes the decision maker may

have at the mean of the lottery.

When preferences exhibit both taste and belief incompleteness, the mean of a

bet xEy is not uniquely defined, nor is the Arrow-Pratt coefficient of risk aversion.

Proposition 2 below shows that the measure of overall incompleteness can still be

approximated by well-known measures for small stake bets on E.

Proposition 2 The measure of overall incompleteness of � at xEy satisfies

M(xEy;�) = (π̄(E)− π(E))(x− y)

+
1

2

[
max
U∈U

(
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

)
σ2
π(E)(x, y)−min

U∈U

(
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

)
σ2
π̄(E)(x, y)

]
+ o((x− y)2).

The first term in the square brackets is the variance of the bet according to the

DM’s belief assigning lowest probability to E times the largest Arrow-Pratt coefficient

of absolute risk aversion at the mean of the bet according to that belief. The second

term in the square brackets is the variance of the bet according to the belief assigning

highest probability to E times the smallest Arrow-Pratt coefficient of absolute risk

aversion at the mean of the bet according to that belief. Proposition 2 states that,

locally the measure of overall incompleteness can be decomposed into the difference

between these terms and the measure of belief incompleteness weighted by the stakes

12



of the bet. Formally, by Theorem 1,10 π̄(E)− π(E) = r̄�(E)− r�(E) and, by Pratt

(1964),

ξ̄�(`(r�(E);x, y))− ξ�(`(r̄�(E);x, y))

= max
U∈U

(
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

)
σ2
π(E)(x, y)

2
−min

U∈U

(
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

)
σ2
π̄(E)(x, y)

2
.

Hence, we have that

M(xEy;�) = (r̄�(E)− r�(E))(x− y) + (ξ̄�(`(r�(E);x, y))− ξ�(`(r̄�(E);x, y))).

That is, the measure of overall incompleteness at a bet is given by the dispersion of

the beliefs weighted by the stakes of the bet and the difference between the highest

risk-premium of the lottery corresponding to the lowest beliefs and the smallest risk-

premium of the lottery corresponding to the highest beliefs.

In the case of complete beliefs, π(E) = π̄(E) and σ2
π(E)(x, y) = σ2

π̄(E)(x, y) . Hence,

the term in the square brackets in Proposition 2 equals the local measure of taste

incompleteness in Proposition 1. When beliefs are incomplete and π�(E) 6= π̄�(E),

the term in the square brackets can be positive or negative depending on the local

curvature of the utility functions at the highest and lowest mean of the bet. Thus,

while M(xEy;�) measures the combined effect of incomplete beliefs and tastes, even

locally and with the measure of belief incompleteness weighted by the stakes of the

bet, it is not additive in the measures of belief and taste incompleteness. This is

because the belief and taste incompleteness interact. Taste incompleteness is defined

at a particular lottery, and belief incompleteness means that two different lotteries

are evaluated. The exact nature of the interaction is described in Proposition 2.

We have the following corollary of Proposition 2:

Corollary 1 The derivative of the measure of overall incompleteness of � at xEy,

evaluated at y = x, equals the measure of belief incompleteness of � at E. That is,

lim
y→x

M(xEy;�)

x− y
= r̄�(E)− r�(E) = mb(E;�).

10We have shown that when preferences have MPEMU representation, mb(xEy,�) is independent

of x, y, therefore we can write r̄�(xEy) = r̄�(E) and r�(xEy) = r�(E).
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The result in Corollary 1 is intuitive, since when the stakes of the bet are zero, the

preference relation displays risk neutrality and, consequently, the decision maker’s

risk attitudes are unambiguous. Consequently, in the limit the tastes are complete,

and the only source of incompleteness is the belief. Thus, in the limit the model

reduces to Knightian uncertainty.11

3 Comparative Incompleteness: Measurement and

Behavioral Manifestations

We now return to general (model free) incomplete preference relations and define

binary relations “more incomplete than” on the set of preference relations. There

is a similarity between measuring risk aversion and measuring incompleteness. The

Arrow-Pratt measures of absolute and relative risk aversion are local (at every level

of wealth). Consequently, interpersonal comparisons of risk attitudes are defined

locally and if the local relationship “more risk averse” holds at every level of wealth,

then the comparison is global. Our measures of incompleteness are also defined lo-

cally. In the case of incomplete beliefs the measure is defined locally at events and in

the case of incomplete tastes it is defined locally at lotteries. Interpersonal compar-

isons of the degree of incompleteness are defined locally and if the local relationship

“more incomplete” holds at each event (for beliefs) or lottery (for tastes) then the

comparison is global.

3.1 Definitions of Comparative Incompleteness

The comparative measures that we introduce here are set-inclusion concepts of “more

incomplete than.” They are partial binary relations on the set of preference relations

on F , and consequently do not rank all preference relations, even locally. However,

if two relations are comparable according to these measures, it has clear behavioral

implications, which we illustrate in subsection 3.2.

11This result is obtianed by dividing by (x−y) on both sides of the equation in Propositon 2 and

taking the limit as y → x.
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Definition 4 below states that one preference relation is “more belief incomplete”

than another at E if for every lottery for which the latter is indecisive between the

lottery and a bet on E, the former is also indecisive between the lottery and the

same bet on E. We later relate comparative incompleteness to our measures of

incompleteness.

Definition 4 A preference relation �1 displays greater belief incompleteness

at E than preference relation �2 if xEy �2 `(r;x, y) implies xEy �1 `(r;x, y), for

all bets on E. It displays strictly greater belief-incompleteness at E if it displays

greater belief-incompleteness and, in addition, for some `(r;x, y), xEy �1 `(r;x, y)

and ¬(xEy �2 `(r;x, y)). It displays greater (strictly greater) belief incompleteness

on F if it displays greater (strictly greater) belief incompleteness at E for all nonnull

E ∈ 2S \ S.

Applying the same idea to the preference relations on ∆(R), Definition 5 states

that one preference relation is “more taste incomplete” than another at p if every

certain amount for which the latter is indecisive between the amount and p, the

former is also indecisive between the amount and p.

Definition 5 On ∆R, a preference relation �1 displays greater taste incom-

pleteness at p than preference relation �2 if p �2 δc implies p �1 δc. It displays

strictly greater taste incompleteness at p if it displays greater taste incompleteness

and, in addition, for some δc, p �1 δc and ¬(p �2 δc). It displays greater (strictly

greater) taste incompleteness on ∆R if it displays greater (strictly greater) taste in-

completeness at all nondegenerate p ∈ ∆R.

Similarly, one preference relation is “more incomplete overall” than another at E

if every certain amount for which the latter is indecisive between the amount and a

bet on E, the former is also indecisive between the amount and the same bet on E.

Definition 6 A preference relation �1 displays greater overall incompleteness

at E than preference relation �2 if xEy �2 δc implies xEy �1 δc for all x, y, such that

x > y. It displays strictly greater overall incompleteness at E if it displays greater

overall incompleteness at E and, in addition, for some δc, x, y such that x > y,
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xEy �1 δc and ¬(xEy �2 δc). It displays greater (strictly greater) overall incomplete-

ness on F if it displays greater (strictly greater) incompleteness at E for all nonnull

E ∈ 2S \ S.

The following are immediate implications of Definitions 4, 5, and 6, respectively:

1. The preference relation �1 on F displays greater belief-incompleteness at E

than �2 if and only if R�2(E) ⊆ R�1(E).

2. The preference relation �1 displays greater taste incompleteness at p than �2

if and only if C�2(p) ⊆ C�1(p).

3. The preference relation �1 displays greater overall incompleteness than �2 at

E if and only if O�2 (xEy) ⊆ O�1(xEy) for all x, y, such that x > y.

The notions of comparative incompleteness defined above therefore translate to

our measures of incompleteness as described in Corollary 2.

Corollary 2 The following relations hold:

1. If the preference relation �1 on F displays greater belief-incompleteness at E

than �2, then mb(xEy;�1) ≥ mb(xEy;�2) for all x, y such that x > y.

2. If the preference relation �1 displays greater taste incompleteness at p than �2,

then mt(p;�1) ≥ mt(p;�2).

3. If the preference relation �1 displays greater overall incompleteness than �2 at

E, then M(xEy;�1) ≥M(xEy;�2) for all x, y such that x > y.

As Corollary 2 shows, the implications go in one direction. This is because the

comparative incompleteness relations as defined above are themselves incomplete

relations.

In general, one decision maker may display greater belief incompleteness but

smaller taste incompleteness than another or vice versa. This makes the comparison

of the overall incompleteness depend on the relative magnitudes of the incompleteness

of beliefs and tastes (or risk attitudes) of the decision makers being compared. If
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one decision maker displays greater incompleteness of both beliefs and tastes then,

not surprisingly, she displays greater overall incompleteness. Formally, we have the

following result:

Proposition 3 If a preference relation �1 displays greater belief and taste incom-

pleteness than preference relation �2 then it displays greater overall incompleteness.

The following result links the measure of greater belief incompleteness and the

beliefs in the MPEMU representations:

Corollary 3 Suppose preference relations �1 and �2 on F both admit MPEMU

representations. The preference relation �1 on F displays greater (strictly greater)

belief incompleteness at E than �2 if and only if [π2(E), π̄2(E)] ⊆ [π1(E), π̄1(E)].

According to Corollary 3, �1 displays greater belief incompleteness than �2 if

and only if the set of prior beliefs for �2 is a subset of the set of prior beliefs for �1.

Incomplete beliefs and tastes have distinct effects on the overall measure of in-

completeness. This can be easily grasped by considering two decision makers with

MPEMU preferences and complete tastes. Even if the beliefs of the two decision mak-

ers are incomplete to the same degree, unless their Bernoulli utility functions belong

to the same equivalence class (i.e., display the same risk attitudes), the overall mea-

sure of incompleteness may be different due to possible distinct risk attitudes. For

example, fix a bet xEy on E, and consider preference relations �i, i = 1, 2 exhibiting

Knightian uncertainty. Assume that Π1 = Π2 and suppose that �1 displays greater

absolute risk aversion at µ(π;x, y) and smaller absolute risk aversion at µ(π̄;x, y) than

�2 . Then, ξ(l(π̄;x, y);�1) < ξ(l(π̄;x, y);�2) and ξ(l(π;x, y);�1) > ξ(l(π;x, y);�2).

3.2 Portfolio choice

The behavioral manifestations of incomplete preferences are inertia and unpredictabil-

ity. Loosely speaking, inertia means that to take an action, a decision maker must be

persuaded that the action dominates not taking it (i.e. sticking to the status quo) ac-

cording to all the possible values he may attribute to the outcomes of the action and

the beliefs he entertains about the likelihoods of these outcomes. Unpredictability
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means that when a decision maker decides that a change is called for, it is impossible

to predict which of a set of feasible actions he will take.

Invoking the definitions of comparative incompleteness in subsection 3.1, we study

the levels of inertia and unpredictability in the context of a simple portfolio selection

model. More specifically, we show how comparative incompleteness translates to the

level of unpredictability of a decision maker’s portfolio choice behavior (that is, the

size of the set of portfolio positions she may choose) and the level of inertia she

displays.

Let S = {1, 2}, then an act is depicted by the point in R2
+ whose coordinates are

the payoffs in the two states. Consider a decision maker whose preference relation

� on R2
+ is incomplete and has a multi-prior expected multi-utility representation.

With slight abuse of notation, let the decision maker’s set of priors be Π = {(π, 1−π) |
π ∈ [π, π̄]}, where [π, π̄] denotes the range of subjective probabilities of state 1, and

denote by U the set of Bernoulli utility functions corresponding to �. We assume

that the decision maker displays risk aversion. Formally, assume that the elements

of U are monotonic increasing, concave, real-valued functions on R+.

Let there be two Arrow securities, a1 and a2, with as paying one dollar contingent

on the realization of state s ∈ {1, 2}. Denote by q the relative price of a1 in terms

of a2, (i.e., a2 is the numeraire Arrow security). Suppose that the decision maker’s

initial endowment consists of an equal number, w0, of the two Arrow securities and

denote the corresponding budget set {(w1,w2) ∈ R2 | qw1 + w2 ≤ qw0 + w0} by

B(w0,q).

The decision maker’s problem is to choose a portfolio (w∗1, w
∗
2) ∈ B(w0,q) of Arrow

securities such that, for no other (w1,w2) ∈ B(w0,q),

πu(w1) + (1− π)u(w2) > πu(w∗1) + (1− π)u(w∗2),∀(π, u) ∈ [π, π̄]× U . (10)

That is, there is no feasible portfolio that is strictly preferred to (w∗1, w
∗
2).

To find the set of portfolios that solve the decision maker’s problem, consider the

following: Given the budget set B(w0,q), there corresponds to each (π, u) ∈ Π × U
an optimal portfolio position given by the solution to(

w
(π,u)
1 (w0,q), w

(π,u)
2 (w0,q)

)
:= arg max

(w1,w2)∈B(w0,q)
[πu(w1) + (1− π)u(w2)] .
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Denote the set of solutions by

W (w0,q) =
{(
w

(π,u)
1 (w0,q), w

(π,u)
2 (w0,q

)
) | (π, u) ∈ [π, π̄]× U

}
.

The set W (w0,q) captures the unpredictability corresponding to a decision maker

characterized by [π, π̄]× U .

The necessary and sufficient condition for (w1, w2) ∈ W (w0,q) is:

πu′(w1)

(1− π)u′(w2)
= q

for some (π, u) ∈ [π, π̄] × U . Let (w̄1(w0,q), w2(w0,q)) and (w1(w0,q), w̄2(w0,q)) be

implicitly defined by the equations

π̄

1− π̄
sup
u∈U

u′(w̄1(w0,q))

u′(w2(w0,q))
= q

and
π

1− π
inf
u∈U

u′(w1(w0,q))

u′(w̄2(w0,q))
= q.

Thus, (w̄1(w0,q), w2(w0,q)) is the point on the budget line at which the decision

maker’s largest marginal rate of substitution equals the slope of the budget line.

Likewise, (w1(w0,q), w̄2(w0,q)) is the point on the budget line at which the decision

maker’s smallest marginal rate of substitution equals the slope of the budget line.

Therefore, given B(w0,q), (w̄1(w0,q), w2(w0,q)) and (w1(w0,q), w̄2(w0,q)) are the ex-

treme points of the set of portfolio positions in the set W (w0, q) that may be chosen

by a preference relation � with MPEMU representation [π, π̄]× U .

If π̄/(1− π̄) < q then w1 < w0 < w2, for all (w1, w2) ∈ W (w0, q) (that is, W (w0, q)

is contained in the cone above the certainty line). If π̄/(1− π̄) > q > π/(1− π) then

(w0, w0) ∈ W (w0, q). If π/(1 − π) > q then w1 > w0 > w2, for all (w1, w2) ∈
W (w0, q) (that is, W (w0, q) is contained in the cone below the certainty line). Figure

2 illustrates the unpredictability set for the case in which π̄/(1− π̄) > q > π/(1− π)

so that (w0, w0) ∈ W (w0, q).

Proposition 4 shows that the level of unpredictability is higher the more incom-

plete a preference relation is.
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Figure 2: Illustration of the Unpredictability Set W (w0, q) when (w0, w0) ∈ W (w0, q)
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Proposition 4 If preference relation �1 on F displays greater belief and taste in-

completeness than preference relation �2 then W2(w0,q) ⊆ W1(w0,q), for all (w0,q) ∈
R2

++.

Now consider the effect of a change in relative prices to q̂. Starting from (w∗1, w
∗
2),

the decision maker will change his portfolio position to some other (ŵ∗1, ŵ
∗
2) ∈

B(w∗1, w
∗
2, q̂) if and only if

πu(ŵ∗1) + (1− π)u(ŵ∗2) > πu(w∗1) + (1− π)u(w∗2),∀ (π, u) ∈ [π, π̄]× U .

Let
ū′(w∗1)

ū′(w∗2)
:= sup

u∈U

{
u′(w∗1)

u′(w∗2)

}
and

u′(w∗1)

u′(w∗2)
:= inf

u∈U

{
u′(w∗1)

u′(w∗2)

}
.

It is easy to verify that if

q̂ ∈
[

π

1− π
u′(w∗1)

u′(w∗2)
,

π̄

1− π̄
ū′(w∗1)

ū′(w∗2)

]
(11)

then the decision maker will hold on to her position (w∗1, w
∗
2). To see this, note that

the left endpoint of the interval in (11) is the slope of the flattest of the decision
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maker’s indifference curves through (w∗1, w
∗
2), while the right endpoint of the inter-

val is the slope of the steepest of the decision maker’s indifference curves through

(w∗1, w
∗
2). The decision maker will hold on to his portfolio (w∗1, w

∗
2) as long as the

slope of the budget line, given by q̂, falls within this range.

Define the measure of inertia for � at (w∗1, w
∗
2) by the interval of prices at which

the portfolio position is maintained. Formally,

I�(w∗1, w
∗
2) =

[
π

1− π
u′(w∗1)

u′(w∗2)
,

π̄

1− π̄
ū′(w∗1)

ū′(w∗2)

]
.

In particular, if the initial endowment (w0, w0) is the status quo, or default, portfolio

then the measure of inertia at (w0, w0) is:

I�(w0, w0) =

[
π

1− π
,

π̄

1− π̄

]
. (12)

With only two states, if E = {s1}, then EC = {s2}. Thus, if �1 displays greater

incompleteness than �2 at {s1} then it displays greater incompleteness. Therefore, in

this two-state economy the measure of inertia need not be indexed by the conditioning

event.

We now investigate the comparative statics properties of the measure of inertia

I�(w∗1, w
∗
2).

Proposition 5 Let �1 and �2 be preference relations on R2
+. If �1 displays greater

belief and taste incompleteness than �2 then I�1(w∗1, w
∗
2) ⊇ I�2(w∗1, w

∗
2), for all

(w∗1, w
∗
2). Moreover, if I�1(w∗1, w

∗
2) ⊇ I�2(w∗1, w

∗
2) for all (w∗1, w

∗
2), then �1 displays

greater belief incompleteness than �2 .

Proposition 5 shows that a preference relation displaying greater belief and taste

incompleteness exhibits a higher level of inertia. Thus, the portfolio position of

a decision maker displaying greater belief and taste incomplete preferences is less

sensitive to price fluctuations. If a preference relation �1 displays either greater

belief incompleteness or greater taste incompleteness than �2, but not both, then

it is possible that �2 displays greater overall incompleteness than �1, and thus it

is possible for �2 to display greater inertia than �1. However, if �1 exhibits a
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higher level of inertia than �2 at (w0, w0), then it must be the case that it displays

greater belief incompleteness. An immediate implication of Proposition 5 is that if

the preference relations �1 and �2 display the same level of belief-incompleteness,

then �1 exhibits greater taste-incompleteness than �2 if and only if I�1(w∗1, w
∗
2) ⊇

I�2(w∗1, w
∗
2), for all (w∗1, w

∗
2).

Remark: The analysis of portfolio choice bears some similarities to that of Dow

and Werlang’s (1992) analysis of portfolio choice under maxmin preferences of Gilboa

and Schmeidler (1989). However, as they note, while the empirical implications of

the Gilboa-Schmeidler model are broadly similar to those of Bewley’s Knightian

uncertainty model, there is an important difference. For the incomplete preferences

there is a “tendency not to trade, whereas in Gilboa-Schmeidler there is a tendency

not to hold a position.”(Dow and Werlang [1992] p. 198.) Put differently, whereas

the maxmin preferences are complete and display inertia on the certainty line, i.e. at

the switching points of the ranking of the payoffs, in the general case of incomplete

preferences, and in the particular case of Knightian uncertainty, the inertia, or “status

quo bias” is displayed everywhere.

3.3 Completing the comparative incompleteness relations

Since our measures of incompleteness in Section 2 quantify incompleteness, they can

be applied to rank the incompleteness of any two preference relations regardless of

whether the noncompable sets are ranked by set inclusion. The resulting “greater

quantitative belief incompleteness” relations are themselves complete binary relations

on the set of preference relations on F . Formally, we have the following definition:12

Definition 7

1. Preference relation �1 displays greater quantitative belief incompleteness at E

than preference relation �2 if mb(E;�1) ≥ mb(E;�2).

2. On ∆R preference relation �1 displays greater quantitative taste incompleteness

at p than preference relation �2 if mt(p;�1) ≥ mt(p;�2).

12The definitions of “strictly greater” incompleteness in this subsection are analogous to those in

subsection 3.1 and thus omitted.
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3. Preference relation �1 displays greater quantitative overall incompleteness at

xEy than preference relation �2 if M(xEy;�1) ≥M(xEy;�2).

The comparative measure in part 1 of Definition 7 has the following intuitive

interpretation: For a preference relation �i, i = 1, 2, a bet on event E is non-

comparable to lotteries with odds in R�i(E). However, if the odds in the lottery are

improved sufficiently, the lottery would become so attractive that a strict preference

would emerge in favour of the lottery and the decision maker would no longer find the

bet and the lottery incomparable. Now, consider any of the lotteries that are incom-

parable to the bet according to the preference relation �1, and consider an increase

ε in the odds of winning, which is large enough to always break incomparability for

all r1 ∈ R�1(E). If the same increase in odds will also always break incomparability

for a preference relation �2, we conclude that �2 is less incomplete than �1. In

other words, it takes a smaller increase in odds for the preference relation �2 to be

able to compare the lottery and the bet and state a strict preference between the

two objects than it does for the preference relation �1. The intuition behind parts 2

and 3 is similar: if any change in the certain monetary payoff that is large enough to

break incomparability for preference relation �1 always breaks incomparability for

preference relation �2, then �1 is more incomplete than �2.

Clearly, if a preference relation is more incomplete than another according to

a set-inclusion definition of comparative incompleteness, it is also more incomplete

according to the corresponding quantitative definition.

An immediate consequence of Definition 7 and Theorem 1 is that if preference

relations �1 and �2 on F both admit MPEMU representations, then �1 displays

greater quantitative belief incompleteness at E than�2 if and only if π̄1(E)−π1(E) ≥
π̄2(E)− π2(E). It displays strictly greater quantitative belief incompleteness at E if

and only if the inequality is strict.

Theorem 2 below states that for low-variance lotteries p, �1 displays greater

quantitative taste incompleteness at p than �2 if and only if, when evaluated at the

mean of p, the largest difference in the Arrow-Pratt coefficient of risk aversion among

the utility functions representing �1 is greater than among the utility functions

representing �2.
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Theorem 2 Suppose preference relations �1 and �2 on ∆R both admit expected

multi-utility representations. Then there exists ε > 0 such that if σ2(p) ∈ (0, ε), then

�1 displays greater quantitative taste incompleteness at p than �2 if and only if

max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
−min
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
≥ max

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
−min
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
.

It displays strictly greater quantitative taste incompleteness at p if and only if the

inequality is strict.

Theorem 2 highlights the intuition that greater taste incompleteness is reflected

in a larger range of risk attitudes.

4 Elicitation

The elicitation of the measures of incomplete beliefs mb(E;�), incomplete tastes

mt(p;�), and overall incompleteness of preferences M(xEy;�) requires a formal

model depicting the process of choosing among non-comparable alternatives. The

elicitation mechanisms to be described and analyzed below presume that choice

among non-comparable alternatives is random. More specifically, imagine a deci-

sion maker facing a choice among non-comparable alternatives and suppose that,

before choosing, the decision maker receives a signal – a subconscious impulse or

some exogenous information – drawn at random from a distribution function whose

support is [r, r̄] in the case of incomplete beliefs and [c, c̄] in the case of incomplete

tastes or overall incomplete preferences. In either case the merits of the alternatives

are reassessed according to the value of the signal and the choice is made accord-

ingly.13 In what follows, we denote the signal’s cumulative distribution function by

η. We begin with a discussion of an elicitation mechanism of mb(E;�) invoking a

scheme due to Karni (2020b). We then extend this scheme to construct mechanisms

for the elicitation of M(xEy;�) and mt(p;�).

13This idea was formalized and the existence of such random selection process was proved in

Karni and Safra (2016).
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4.1 Elicitation under Knightian uncertainty

There is a substantial body of literature dealing with incentive compatible mecha-

nisms designed to elicit experts’ subjective probabilities of uncertain events. Begin-

ning with the work of Brier (1950) and Good (1952) it was followed by Savage (1971),

Kadane and Winkler (1988), Grether (1981), Karni (2009) and others.14 Underlying

all these mechanisms is the presumption that the experts’ beliefs are depicted by

a unique probability measure. Recently, however, incentive compatible mechanisms

designed to elicit sets of priors or posterior probabilities have been proposed. Karni

(2020b) proposed a modified proper scoring rule for the elicitation of the range, R(E),

of the probabilities of an event E. This mechanism allows a direct elicitation of the

range of the beliefs of any preference relation that admits MPEMU representation.

To see how this mechanism works, fix an event E and let [π(E), π̄(E)] denote

the range of the subjective probabilities representing a subject’s beliefs about the

likelihood of E. At time t = 0 the subject is asked to report two numbers, r, r̄ ∈ [0, 1]

with r < r̄. Then a random number, r, is drawn from a uniform distribution on [0, 1].

In the interim period, t = 1, the subject is awarded the bet xEy if r ≤ r and the

lottery `(r;x, y) if r ≥ r̄, where x > y. If r ∈ (r, r̄), then the subject is allowed

to choose between the bet (x − θ)E(y − θ) and the lottery `(r;x − θ, y − θ), where

θ > 0. In the last period, t = 2, after it is verified whether or not the event E

occured and the outcome of the lottery is revealed, all payments are made. Denote

this mechanism Mb.

Karni (2020b) proves an elicitation theorem that implies the following result:

Theorem 3 Given the mechanism Mb, there is ε > 0 such that, for all θ ∈ [0, ε),

the subject’s unique dominant strategy is to report r(E) = π(E) and r̄(E) = π̄ (E).

Theorem 3 implies that this scheme elicits the measure, mb(E;�), of incomplete-

ness of the subject’s beliefs. Moreover, the elicitation procedure does not depend on

the values of x and y or the decision maker’s utility function.

14For a recent review, see Chambers and Lambert (2017).
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4.2 Elicitation of the measure of overall incompleteness

Fix a bet xEy on E, and recall that M(xEy;�) = c̄(xEy;�) − c(xEy;�). At time

t = 0, the subject is asked to report two numbers, z, z̄ ∈ [x, x̄] ⊃ [x, y] such that

z < z̄. Then a random number, z, is drawn from a uniform distribution on [x, x̄].

In the interim period, t = 1, the subject is awarded the bet xEy if z ≤ z and the

outcome z if z ≥ z̄. If z ∈ (z, z̄), then the subject is allowed to choose between the

bet (x−θ)E(y−θ) and the outcome z−θ, where θ > 0. In the last period, t = 2, after

it is verified whether or not the event E obtained, all payments are made. Denote

this mechanism Mo.

Theorem 4 Given Mo, there is ε > 0 such that, for all θ ∈ [0, ε), the subject’s

unique dominant strategy is to report z = c(xEy;�) and z̄ = c̄(xEy;�).

4.3 Elicitation of the measure of incomplete risk attitudes

Given� on ∆R and p = (x1, p1; ..., xn, pn) ∈ ∆R, recall thatmt(p,�) = c̄�(p)−c�(p).

The mechanism requires the subject to report, at time t = 0, two numbers, z, z̄ ∈
[x, x̄] ⊃ {x1, ...xn} such that z ≤ z̄. A random number, z, is drawn from a uniform

distribution on [x, x̄]. In the interim period, t = 1, the subject is awarded the lottery

p if z ≤ z and the outcome z if z ≥ z̄. If z < z̄ and z ∈ (z, z̄), then the subject is

allowed to choose between the lottery p′ = (x1−θ, p1; ..., xn−θ, pn) and the outcome

z− θ, where min{x1, ...xn} > θ > 0. In the last period, the outcome of the lottery is

revealed, and all payments are made. Denote this mechanism Mt.

Theorem 5 Given Mt, there is ε > 0 such that, for all θ ∈ [0, ε), the subject’s

unique dominant strategy is to report z = c(p) and z̄ = c̄ (p).

The proof is by the same argument as the proof of the preceding theorem.

5 Concluding Remarks

Whether it is belief, taste, or overall incompleteness, our characterizations of the

relation “more incomplete than” are preference-based. Invoking these measures, the

26



simple portfolio choice problem in Section 3.2 illustrates the usefulness of the mea-

sures in deriving comparative statics implications. The behavioral implications of the

greater quantitative incompleteness measures in subsection 3.3 are somewhat weaker.

For instance, in the case of portfolio selection, under Knightian uncertainty, the level

of inertia and unpredictability displayed by �1 exceeds that displayed by �2 but not

necessarily in response to the same price variations or over the same price range,

respectively. Similar observations apply to risk-attitude and overall incompleteness.

Greater incompleteness according to our quantitative measures imply higher levels

of inertia and unpredictability, but not necessarily over the same price range. One

advantage of the quantitative measures of comparative incompleteness is that, for a

given event, bet, or lottery, the quantitative “more incomplete than” relation is itself

a complete relation, as opposed to the corresponding set inclusion relation, which is

incomplete.

Let Υ1 and Υ2 be two sets of priors representing the incompleteness of preference

relations �1 and �2, respectively. It is worth emphasizing that our definition of

the degree of belief incompleteness does not imply that if �1 and �2 display equal

degrees of belief incompleteness then Υ1 = Υ2. To see this, consider the following

example of Amarante and Maccheroni (2006). Let Υ1 = co{
(

1
2
, 1

2
, 0
)
,
(

4
6
, 1

6
, 1

6

)
} and

Υ2 = {
(

3+t
6
, 3−t−s

6
, s

6

)
| s, t ∈ [0, 1]}. Then, it is easy to verify that π̄1(E)− π1(E) =

π̄2(E)− π2(E) for all E ∈ 2S. Thus, according to our definition, the two preference

relations display the same degree of belief incompleteness and yet Υ1 6= Υ2.

An important question that is beyond the scope of this work is how information

affects the level of incompleteness. Here, the preference relations being compared are

the prior and posterior preference relations. Addressing this issue requires a proce-

dure for updating the set of priors. The example below illustrates that, updating all

the priors in the set using Bayes’ rule, becoming better informed about an event E

makes the beliefs at E more complete but may or may not make the beliefs at some

other event become more complete.

Example: An urn contains balls that come in three colors, blue, green, and yellow

denotedB, G, and Y , respectively. Consider a decision maker who displays Knightian

uncertainty and suppose that she holds the following set of beliefs: {(πB, πG, πY )|πB ∈
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[1
3
, 2

3
], πG ∈ [0, 1

3
], πY ∈ [1

3
, 2

3
], πB + πG + πY = 1}. The measure of belief incomplete-

ness of the decision maker’s prior preferences at event B is mb(B,�) = 1
3
. Assume

that when she receives new information, the decision maker updates her beliefs prior

by prior, using Bayes’ rule.

Suppose now that the decision maker is informed that the urn contains no yellow

balls. Applying Bayesian updating, the posterior range of probabilities of the event

B is [1
2
, 1]. Hence, mb(B,�′) = 1

2
, where �′ denotes the updated preferences given

the information ¬Y . If, instead the decision maker learns that the urn contains

no green balls, the range of her posterior probabilities that a ball is blue is [1
3
, 2

3
], so

mb(B,�′′) = 1
3
, where �′′ denotes the updated preferences given the information ¬G.

Hence, according to our quantitative measure of belief incompleteness, information

that the ball is not yellow makes the decision maker’s beliefs more incomplete at B,

while information that the ball is not green does not change her belief incompleteness

at B. In either case, however, the information about an event makes the beliefs about

that event more complete.

As the example above and the asset market application in Section 3.2 show,

both the set inclusion and quantitative measures of comparative incompleteness have

their merits. Also, when preferences have MPEMU representations, our measures of

incompleteness have intuitive interpretations in terms of the decision makers’ beliefs

and risk attitudes. To the exent to which measurement paves the road to knowledge

as expressed by Lord Kelvin, “When you can measure what you are speaking about,

and express it in numbers, you know something about it, when you cannot express

it in numbers, your knowledge is of a meager and unsatisfactory kind,” this paper,

by suggesting measures of incompleteness, is a contribution towards the analysis of

a variety of questions that have to do with the behavioral implications of incomplete

preferences in a manner analogous to the use of measures of risk aversion.
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6 Appendix

6.1 Proof of Theorem 1:

Applied to bets and the constant lottery acts, the representation in (9) implies that,

xEy � `(r;x, y)

if and only if

U(δx)π(E) + U(δy)(1− π(E)) > U(δx)r + U(δy)(1− r),∀ (π, U) ∈ Π× U .

By definition of the set R�(E) in (2), it is the case that for any r ∈ R�(E),

∃ (π̃, U) ∈ Π× U such that (π̃(E)− r) [U(δx)− U(δy)] ≤ 0, (13)

and

∃ (π̂, U) ∈ Π× U such that (π̂(E)− r) [U(δx)− U(δy)] ≥ 0. (14)

But x > y. Hence, monotonicity with respect to first-order stochastic dominance

implies that U(δx)− U(δy) > 0. Thus, the expression in (13) is equivalent to

∃π̃ ∈ Π such that π̃(E) ≤ r, (15)

while the expression in (16) is equivalent to

∃π̂ ∈ Π such that π̂(E) ≥ r. (16)

Since (15) holds for all r ∈ R�(E), π(E) ≤ r�(E). Suppose π(E) < r�(E).

Then (π(E)− r�(E)) [U(δx)− U(δy)] < 0, for all U ∈ U . This contradicts that

xEy � `(r;x, y) for r < r�(E). It follows that π(E) = r�(E). A similar argument

shows that π̄(E) = r̄�(E). Therefore,

[π(E), π̄(E)] = [r�, r̄�]. (17)

It follows that mb(E;�) = π̄(E) − π(E). Since x, y, and U do not figure in this

expression, mb(E;�) is independent of x, y, and U . �
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6.2 Proof of Proposition 1

The proof follows the idea of Pratt (1964). Let Ũ be the utility function in U
associated with the smallest risk premium ξ�(`(r;x, y)) ≡ ξ�

r;x,y
and let ũ be the

corresponding Bernoulli utility function. For ease of notation, we suppress the de-

pendency of µr(x, y) on x and y in the intermediate steps below and simply write

µr. By definition of the risk premium,

Ũ(δµr−ξ�r;x,y
) = Ũ(δc̄�(`(r;x,y))) = Ũ(`(r;x, y)).

Written in terms of the Bernoulli utility function ũ, we have that

ũ(µr − ξ�r;x,y) = E`(r;x,y))[ũ(z)], (18)

where E`(r;x,y)) denotes the expectation w.r.t. the distribution `(r;x, y)). Expanding

the left-hand-side of (18) around µr gives

ũ
(
µr − ξ�r;x,y

)
= ũ(µr)− ũ′(µr)ξ�r;x,y +O((ξ�

r;x,y
)2) (19)

while expanding the right-hand-side of (18) around µr gives

E`(r;x,y))[ũ(z)] = E`(r;x,y))

[
ũ(µr) + ũ′(µr)(z − µr) +

1

2
ũ′′(µr)(z − µr)2

]
+ o(σ2

r(x, y))

(20)

By (18), the right-hand-sides of (19) and (20) are equal, which results in

ξ�(`(r;x, y)) = −1

2

ũ′′(µr(x, y))

ũ′(µr(x, y))
σ2
r(x, y) + o(σ2

r(x, y)) (21)

Now, let Û be the utility function in U associated with the largest risk premium

ξ̄�(`(r;x, y)) and let û be the corresponding Bernoulli utility function. By steps

similar to those for ξ�(`(r;x, y)), we obtain

ξ̄�(`(r;x, y)) = −1

2

û′′(µr(x, y))

û′(µr(x, y))
σ2
r(x, y) + o(σ2

r(x, y)) (22)

Note that we must have that

Û = arg max
U∈U
−u

′′(µr(x, y))

u′(µr(x, y))
and Ũ = arg min

U∈U
−u

′′(µr(x, y))

u′(µr(x, y))
.
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Hence, using the expressions in (21) and (22) the definition of mt(p;�) gives that

for small x− y, the measure of taste incompleteness of � at `(r;x, y) satisfies

mt(`(r;x, y);�) =

[
max
U∈U

{
−u

′′(µr(x, y))

u′(µr(x, y))

}
−min

U∈U

{
−u

′′(µr(x, y))

u′(µr(x, y))

}]
σ2
r(x, y)

2

+ o(σ2
r(x, y)).

Claim: max
(
−u′′(µr(x,y))

u′(µr(x,y))
∈ R | U ∈ U

)
and min

(
−u′′(µr(x,y))

u′(µr(x,y))
∈ R | U ∈ U

)
exist.

Proof of claim: Fix µr(x, y) = w, then for any U ∈ U ,

−u′′(w)/u′(w) = 2ξu(l(r;x, y))/σ2
r(x, y).+ o(σ2

r(x, y)).

By monotonicity of preferences, ξu(l(r;x, y)) = w − cr(x, y) ∈ [y − x, x − y] for all

U ∈ U . Thus, {−u′′(w)/u′(w) | U ∈ U} is a bounded nonempty subset of R. Hence,

sup{−u′′(w)/u′(w) | U ∈ U} and inf{−u′′(w)/u′(w) | U ∈ U} exist.

To show that U is closed observe that U ∈ U if and only if u ·(p− q) = 0 for some

p, q ∈ ∆R. By the expected multi-utility representation the last equality implies

that p � q. Consider a sequence (Un) ⊂ U , which converges pointwise to U . The

corresponding sequence of Bernoulli utility functions un converges pointwise to u.

Fix p ∈ ∆R. Then, since Un ∈ U for all n, we have that for every un there

exists qn ∈ ∆R such that un · (p − qn) = 0. Note that the latter expression implies

that p � qn. Let (qn) ⊂ ∆R be a convergent sequence with limit q 6= p, for which

un · (p− qn) = 0 for all n ∈ N . Since p � qn for all n and the set {q ∈ ∆R | q � p} is

closed, we have limn→∞ q
n = q � p. Then, limn→∞ u

n · (p− qn) = u · (p− q) = 0. But

u·(p−q) = 0 implies that U ∈ U and it is a limit point of U . Since U ∈ U is arbitrary,

U includes all it limit points and is closed. It follows that {−u′′(w)/u′(w) | U ∈ U}
is closed. Hence the sup is attained and equals the max.

By the same argument the min also exists. �

6.3 Proof of Proposition 2

By definition, c̄�(`(r;x, y) ≥ c�(`(r;x, y))) for any r ∈ [0, 1], and r̄�(E) ≥ r�(E) for

any E. By first order stochastic dominance, c̄�(`(r̄�(E);x, y)) ≥ c̄�(`(r�(E);x, y))
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and c�(`(r̄�(E);x, y)) ≥ c�(`(r�(E);x, y)). Therefore, we must have that

c̄(xEy;�) = c̄�(`(r̄�(E);x, y))

and

c(xEy;�) = c�(`(r�(E);x, y)).

To ease notation in the derivations below, let µ = r�(E)x+(1−r�(E))y, that is,

the expected value of the bet according to the least favourable distribution in R�(E)

and let µ̄ = r̄�(E)x+ (1− r̄�(E))y, that is, the expected value of the bet according

to the most favourable distribution in R�(E).

Let Ũ be the utility function in U associated with the smallest risk premium at

`(r̄�(E);x, y)) and let ũ be the corresponding Bernoulli utility function. By definition

of the risk premium,

Ũ(δµ̄−ξ�
r̄�(E);x,y

) = Ũ(δc̄�(`(r̄�(E);x,y))) = Ũ(`(r̄�(E);x, y)).

Similar to expression (18) in the proof of Proposition1, we can rewrite the expression

in terms of ũ. Expanding around µ̄ and following the steps as in (19) through (21)

we obtain that

ξ�(`(r̄�(E);x, y)) = −1

2

ũ′′(µ̄)

ũ′(µ̄)
σ2
r̄�(E)(x, y) + o(σ2

r̄�(E)(x, y)) (23)

Now, let Û be the utility function in U associated with the largest risk premium

at `(r�(E);x, y)) and let û be the corresponding Bernoulli utility function. By

expanding around µ and equating terms as in the steps above, we obtain

ξ̄�(`(r�(E);x, y)) = −1

2

û′′(µ)

û′(µ)
σ2
r�(E)(x, y) + o(σ2

r�(E)(x, y)). (24)

Note that we must have that

Û = arg max
U∈U
−
u′′(µ)

u′(µ)
and Ũ = arg min

U∈U
−u

′′(µ̄)

u′(µ̄)
.

By definition,

M(xEy;�) = c̄(xEy;�)−c(xEy;�) = µ̄−µ+ ξ̄�(`(r�(E);x, y))−ξ�(`(r̄�(E);x, y)).
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Note that σ2
r(x, y) = r(1− r)(x− y)2, so o(σ2

r(x, y)) = o((x− y)2).

By Theorem 1, π(E) = r�(E) and π̄(E) = r̄�(E). Hence, plugging in expressions

(23) and (24) gives that for small x− y, the measure of overall incompleteness of �
at xEy satisfies

M(xEy;�) = (π̄(E)− π(E))(x− y)

+
1

2

[
max
U∈U

{
−
u′′(µπ(E)(x, y))

u′(µπ(E)(x, y))

}
σ2
π(E)(x, y)−min

U∈U

{
−
u′′(µπ̄(E)(x, y))

u′(µπ̄(E)(x, y))

}
σ2
π̄(E)(x, y)

]
+ o((x− y)2). (25)

�

6.4 Proof of Proposition 3:

Consider a bet xEy. Since �1 displays greater belief incompleteness than �2, we

have that for any E, [π2(E), π̄2(E)] ⊆ [π1(E), π̄1(E)]. Since �1 displays greater taste

incompleteness than �2, we have that for any p, [c�2(p), c̄�2(p)] ⊆ [c�1(p), c̄�1(p)].

It follows that

c̄�1(π̄1(E)) ≥ c�2(π2(E)). (26)

As argued in the beginning of the proof of Proposition 2, it must be that for any �,

c̄(xEy;�) = c̄�(`(r̄�(E);x, y))

and

c(xEy;�) = c�(`(r�(E);x, y)).

Thus, O�2(xEy) ⊆ O�1(xEy). �

6.5 Proof of Proposition 4:

Suppose that a preference relation �1 displays greater belief and taste incompleteness

than preference relation �2. Greater belief incompleteness equivalent to Π2 ⊆ Π1.

Therefore,

π1 ≤ π2 ≤ π̄2 ≤ π̄1. (27)
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For i = 1, 2, define ūi and ui, respectively by

arg max
u∈Ui

π̄i
1− π̄i

u′(w̄i1(w0,q))

u′(wi2(w0,q))
(28)

and

arg min
u∈Ui

πi
1− πi

u′(wi1(w0,q))

u′(w̄i2(w0,q))
. (29)

Greater taste incompleteness implies that C�2(p) ⊆ C�1(p), for all p ∈ ∆(X).

Therefore, c�1(p) ≤ c�2(p) ≤ c̄�2(p) ≤ c̄�1(p) for all p ∈ ∆(R). Thus, by definition,

ξ�1(p) ≤ ξ�2(p) and ξ̄�2(p) ≤ ξ̄�1(p) for all p ∈ ∆R. By Theorem 1 in Pratt (1964),

there exist monotonic increasing and concave functions T̄ and T such that ū2 = T̄ ◦ū1

and u1 = T ◦ u2.

Note that if w̄i1(w0,q) ≥ wi2(w0,q), then (w̄i1(w0,q), w
i
2(w0,q)) is a bet on state 1 and

c̄(w̄i1(w0,q)Ew
i
2(w0,q);�i) = c̄(π̄i;�i), while c(w̄i1(w0,q)Ew

i
2(w0,q);�i) = c(πi;�i).

By definition of (w̄i1(w0,q)), w
i
2(w0,q))), the expression in (28) equals q for i = 1, 2.

Using this and that ū2 = T̄ ◦ ū1, we have

π̄1

1− π̄1

ū′1(w̄1
1(w0,q))

ū′1(w1
2(w0,q))

=
π̄2

1− π̄2

ū′2(w̄2
1(w0,q))

ū′2(w2
2(w0,q))

=
π̄2

1− π̄2

T̄ ′(ū1(w̄2
1(w0,q)))ū

′
1(w̄2

1(w0,q))

T̄ ′(ū1(w2
2(w0,q)))ū′1(w2

2(w0,q))
.

(30)

By (27), π̄2

1−π̄2
≤ π̄1

1−π̄1
. If w̄2

1(w0,q) ≥ w2
2(w0,q), then the monotonicity of u1

and the concavity of T̄ imply that T̄ ′(ū1(w̄2
1(w0,q))) ≤ T ′(ū1(w2

2(w0,q))). Hence, the

equality in (30) implies that

ū′1(w̄1
1(w0,q))

ū′1(w1
2(w0,q))

≤ ū′1(w̄2
1(w0,q))

ū′1(w2
2(w0,q))

.

That is, the marginal rate of substitution corresponding to ū1 is larger at (w̄2
1(w0,q), w

2
2(w0,q))

than it is at (w̄1
1(w0,q), w

1
2(w0,q)). Hence, w̄1

1(w0,q) ≥ w̄2
1(w0,q) and w1

2(w0,q) ≤
w2

2(w0,q).

By definition of (wi1(w0,q), w̄
i
2(w0,q)), the expression in (29) equals q for i = 1, 2.

Using this and that u1 = T ◦ u2, we have

π2

1− π2

u′2(w2
1(w0,q))

u′2(w̄2
2(w0,q))

=
π1

1− π1

u′1(w1
1(w0,q))

u′1(w̄1
2(w0,q))

=
π1

1− π1

T ′(u2(w1
1(w0,q)))u

′
2(w1

1(w0,q))

T ′(u2(w̄1
2(w0,q)))u′2(w̄1

2(w0,q))
.

(31)
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By (27),
π2

1−π2
≥ π1

1−π1
. If w̄1

2(w0,q) ≤ w1
1(w0,q), then the monotonicity of and the

concavity of T imply that T ′(u2(w1
1(w0,q))) ≤ T ′(u2(w̄1

2(w0,q))). Hence, equality in

(31) implies that
u′2(w2

1(w0,q))

u′2(w̄2
2(w0,q))

≤ u′2(w1
1(w0,q))

u′2(w̄1
2(w0,q))

.

That is, the marginal rate of substitution corresponding to ū1 is larger at (w1
1(w0,q), w̄

1
2(w0,q))

than at (w2
1(w0,q), w̄

2
2(w0,q)). It follows that w1

1(w0,q) ≤ w2
1(w0,q) and w̄1

2(w0,q) ≥
w̄2

2(w0,q).

Apply the same logic to the case in which w2
1(w0,q) ≤ w̄2

2(w0,q) and w1
2(w0,q) ≥

w̄1
1(w0,q), and use that if w̄i1(w0,q) ≤ wi2(w0,q), then (w̄i1(w0,q), w

i
2(w0,q)) is a bet on

state 2 so c̄(w̄i1(w0,q)Ew
i
2(w0,q);�i) = c̄(1−πi;�i), while c(w̄i1(w0,q)Ew

i
2(w0,q);�i) =

c(1− π̄i;�i). Then we get w1
1(w0,q) ≥ w2

1(w0,q) and w̄1
1(w0,q) ≥ w̄2

1(w0,q). �

6.6 Proof of proposition 5:

Suppose that �1 displays greater incompleteness than �2 . Let ūi and ui be given by

(28) and (29), respectively, for i = 1, 2. By greater belief incompleteness, (27) holds.

Assume that w∗1 > w∗2. Greater taste incompleteness implies that C�2(p) ⊆
C�1(p), for all p ∈ ∆R. Thus, c�1(p) ≤ c�2(p) ≤ c̄�2(p) ≤ c̄�1(p), for all p ∈ ∆R.

Hence, by definition, ξ�1(p) ≤ ξ�2(p) and ξ̄�2(p) ≤ ξ̄�1(p), for all p ∈ ∆(R). There-

fore, by Theorem 1 in Pratt (1964), there exist monotonic increasing and concave

functions T̄ and T such that ū2 = T̄ ◦ ū1 and u1 = T ◦ u2. Therefore,

π̄2

1− π̄2

ū′2(w∗1)

ū′2(w∗2)
=

π̄2

1− π̄2

T̄ ′(ū1(w∗1)ū′1(w∗1)

T̄ ′(ū1(w∗2))ū′1(w∗2)
≤ π̄1

1− π̄1

ū′1(w∗1)

u′1(w∗2))
. (32)

and
π1

1− π1

u′1(w∗1)

u′1(w∗2)
=

π1

1− π1

T ′(u2(w∗1))u′2(w∗1)

T ′(u2(w̄∗2))u′2(w̄∗2)
≤ π2

1− π2

u′2(w∗1)

u′2(w̄∗2)
, (33)

where concavity of T̄ and T is used to conclude that
T ′(u2(w∗1))

T ′(u2(w̄∗2))
≤ 1 and

T̄ ′(ū1(w∗1)

T̄ ′(ū1(w∗2))
≤ 1

and using the relationships in (27). It follows from (32) and (33) that I�1(w∗1, w
∗
2) ⊇

I�2(w∗1, w
∗
2).

The proof for the case in which w∗1 ≤ w∗2 is by a similar argument, noting that

when w∗1 ≤ w∗2, we are considering a bet on state 2.
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To show that if I�1(w∗1, w
∗
2) ⊇ I�2(w∗1, w

∗
2) for all (w∗1, w

∗
2) then �1 displays greater

belief incompleteness than �2, suffices it to observe that I�i
(w0, w0) =

[
πi

1−πi
, π̄i

1−π̄i

]
for i = 1, 2. Thus, if (w∗1, w

∗
2) = (w0, w0), then ¬

([
π2

1−π2
, π̄2

1−π̄2

]
⊆
[

π1

1−π1
, π̄1

1−π̄1

])
im-

plies ¬ (I�1(w0, w0) ⊇ I�2(w0, w0)) . �

6.7 Proof of Theorem 2:

Observe that the proof of Proposition 1 does not hinge on the support of the lottery

being binary, with the understanding that for a general p the local requirement is

that we let all values in the support be close to the mean. We therefore have that

mt(p;�i) =

[
max
U∈Ui

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈Ui

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2
+ o(σ2(p)), (34)

for i = 1, 2. Suppose now that mt(p;�1) > mt(p;�2). By (34),[
max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2

−
[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]
σ2(p)

2

= mt(p;�1)−mt(p;�2) + o(σ2(p)) (35)

Therefore, for any positive value of mt(p;�1) − mt(p;�2), there exists ε > 0 such

that for all 0 < σ2(p) < ε, o(σ2(p)) < mt(p;�1)−mt(p;�2). Then (35) implies that[[
max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
−
[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]]
σ2(p)

2

is also positive. Since σ2(p) > 0, it then follows that[
max
U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U1

{
−u

′′(µ(p))

u′(µ(p))

}]
>

[
max
U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}
− min

U∈U2

{
−u

′′(µ(p))

u′(µ(p))

}]
.

A similar argument can be used to show the other direction as well. �

6.8 Proof of Theorem 4

Given xEy and θ > 0, suppose that the subject reports z̄ > c̄ (xEy;�) . If r ≤
c (xEy;�) or r ≥ z̄ then the subject’s payoffs are the same regardless of whether
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he reports z̄ or c̄ (xEy;�). If r ∈ (c̄ (xEy;�) , z̄), the subject’s payoff is a choice

between the bet (x− θ)E (y − θ) and the outcome r − θ; had he reported c̄ (xEy;�)

instead of z̄ his payoff would have been r. But r > r − θ implies that δr � δr−θ and,

since r > c̄ (xEy;�) , implies δr � xEy � (x− θ)E (y − θ) , the subject is worse off

reporting z̄ instead of c̄ (xEy;�) .

Suppose that the subject reports z < c(xEy;�). If r ≤ z or r ≥ c(xEy;�) the

subject’s payoffs are the same regardless of whether he reports z or c(xEy;�). If

r ∈ (z, c(xEy;�)), the subject’s payoff is a choice between (x − θ)E(y − θ) and the

outcome r − θ; had he reported c(xEy;�) instead of z his payoff would have been

xEy. By stochastic dominance, xEy � (x − θ)E(y − θ), and r < c(xEy;�) implies

that xEy � δr � δr−θ. Thus the subject is worse off reporting z instead of c(xEy;�).

Suppose that the subject reports z̄ ∈ (c(xEy;�), c̄(xEy;�)). If r ∈ [z̄, c̄(xEy;�
)], the subject’s payoff is r, whereas had he reported c̄(xEy;�) he would have the

opportunity to choose between the bet (x − θ)E(y − θ) and the outcome r − θ. If

the signal, c, indicates that (x − θ)E(y − θ) ≺ δc, where c ≤ r − θ, the subject

would choose the outcome r− θ and if the signal indicates that (x− θ)E(y− θ) � δc,

c ≥ r − θ, indicating that the value of the bet (x − θ)E(y − θ) exceeds r − θ, the

subject would choose the bet. Thus, the subject’s payoff is

Ψ(θ) := η(r − θ)u(r − θ) +

c̄(xEy;�)∫
r−θ

u(c)dη(c).

But

η(r)u(r) +

c̄(xEy;�)∫
r

u(c)dη(c) > u(r).

Hence, by continuity of Ψ(θ), there is ε > 0 such that, for all θ ∈ [0, ε),Ψ(θ) > u(r).

Thus, reporting z̄ < c̄(xEy;�) is dominated by reporting truthfully, z̄ = c̄(xEy;�).

By similar argument, z ≯ c(xEy;�). Hence, the dominant strategy is to report

truthfully, that is, z = c(xEy;�). �
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