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1. Introduction

While the concept of human capital theory can be traced to the writings of Adam Smith, John
Stuart Mill, Alfred Marshall and Irving Fisher, until the late 1950’s the key factors of production
in standard economic models consisted of labor, physical capital, and land (Becker, 1993). Not
until Mincer (1958) leveraged human capital to examine inequality in personal incomes did the
field of human capital theory begin to take on scientific import.1 Mincer’s work, and subsequent
research from the Chicago School and others, unlocked crucial early insights using the human
capital approach, including the underpinnings of the growth residual factor, why the ratio of capital
to income had decreased over time, and why labor earnings had risen recently despite its stagnation
for much of human history (e.g. Schultz, 1961).

This early work set in motion two streams of literature. The first estimates the internal rate of
return using variation in human capital based on Becker (1964). The second, based on Ben-Porath
(1967), deals with the life-cycle of earnings as individuals trade-off building new human capital
versus renting their stock of human capital on the labor market. As these two strands of work
make clear, the literature generally considers human capital from the labor market perspective:
individuals make investments that develop their skills, and this stock of skills is optimized for
generation of income. Empirically, human capital is typically operationalized as being measured in
years of schooling completed.

Related research on education production functions complements the human capital literature by
investigating the determinants of human capital (e.g. Cunha & Heckman, 2007; Heckman, 2008;
Currie, 2009). In this literature, standardized test scores, or some other survey-based measure of
cognitive and/or executive function skills, are interpreted as proxies for skills that are valued on the
labor market (see Hanushek, 2020). This body of work can be divided into two distinct periods.
The first, following the famous Coleman Report (1966), examined the impact of specific measures
of school inputs—e.g., student-teacher ratios, teacher experience, overall school spending, etc.—on
student learning (for early contributions see Katzman, 1967; Kiesling, 1968; Bowles, 1970).

The literature has evolved more recently in a second period to focus on an examination of specific
aspects of education production, often using data generated via field experiments (e.g. Fryer,
Levitt, & List, 2015) or methods concentrating on the effects of teacher quality or school quality
on academic outcomes (e.g., test scores, graduation rates, etc.) (e.g. Chetty, Friedman, & Rockoff,
2014; Mountjoy & Hickman, 2020). As Hanushek (2020) points out, this body of research formally
links the human capital literature with social science on education production functions. Thus, there
is now a useful rationale for interpreting education production estimates as reflecting the long-run
economic impacts of educational inputs.

Of course, the field of economics does not have a monopoly on insights concerning skill formation.
The study of learning can be traced as far back as Plato and Aristotle. According to Schunk (2020),
the psychology of learning, influenced by early philosophical work, began in earnest late in the 19th

century with James (1890), Dewey (1896), and Titchener (1909) (among others) actively engaged

1Interestingly, Becker quips that he was quite cautious in using the term “human capital” for the title of his book and
thus opted for a long subtitle to avoid criticism (Goldin, 2016).
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in structuralism and functionalism. The study of learning expanded during the 20th century, with
Bandura (1986, 1997), Bruner (1961, 1966, 1985), Vygotsky (1962, 1978), and others.

In contemporary psychology of education the classical approaches have been replaced by a more
sophisticated cognitive model that stresses the influences of a student’s perceptions and beliefs on
behavior (Carroll, 1962, 1963; Bloom, 1968; Eccles et al., 1983; Wigfield & Eccles, 2000; Eccles &
Wigfield, 2002). One particularly influential qualitative framework by Carroll (1962, 1963) began
as a modeling exercise on learning foreign languages, and highlighted how aptitude, ability, and
instruction type interacted to influence a student’s choices, and in turn, her level of mastery of
a new language (Carroll, 1962). Carroll (1963) extended the model to general learning of any
cognitive skill or subject matter. The model postulates five basic classes of variables that account
for individual variations in school achievement: aptitude, opportunity, perseverance, instructor
quality, and innate ability. Interestingly, while Carroll’s qualitative model has been a basis for
major programs of scientific innovation in the fields of education (see Denham & Leiberman, 1980)
and psychology of learning (Bloom, 1968; Eccles et al., 1983; Carroll, 1989; Wigfield & Eccles, 2000;
Eccles & Wigfield, 2002), the economics literature to our knowledge has made no attempt to test
or build upon the framework for quantitative research.

A major goal of our study is to draw inspiration from the contemporary learning model in
Carroll (1963), as well as its predecessors and successors (e.g. Morrison, 1926; Skinner, 1954;
Bruner, 1966; Eccles et al., 1983; Wigfield, 1994; Wigfield & Eccles, 2000), to speak to the human
capital and education production function literatures. Our starting point is the emphasis on time
as an important variable in skill formation/learning. A focal point of the educational psychology
literature is the idea that a child’s learning is a function of the time needed to learn and the time
actually spent on learning. Under this formulation, Carroll (1963) famously proposed that students
accumulate skill by increasing the ratio

learning =
time spent on mastering a concept

time needed to master the concept
,

either by increasing time spent (numerator) or by reducing time needed to learn (denominator),
or both. Carroll described the two key parts of the model as “aptitude” (the amount of time a
student needs to learn a given task) and “perseverance” (how willing she is to spend time learning
the task). Since these two terms have come to hold very different meanings in various social science
literatures, we rename the two unobservable student characteristics as “academic efficiency” and
“time preference.”

We propose a quantitative model of learning that provides direction into the exogenous variation
necessary to quantify these two unobservable student characteristics. Our model and experimental
design draw upon a novel identification framework proposed by D’Haultfoeuille and Février (2015)
and Torgovitsky (2015). Our approach to quantifying academic efficiency relies on standard panel-
data methods applied to a remarkably rich dataset on children’s time inputs and learning task
accomplishment. Following this step, the identification argument for time preferences consists of
using exogenous piece-rate incentive variation to derive an empirical mapping between observable
student hours worked and their underlying type. This mapping allows us to reverse-engineer a
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student’s cost schedule for supply of would-be leisure time to study, and the distribution of childrens’
individual work-time supply costs.

Our research leverages piece-rate incentives since these are the dominant forms of external moti-
vation in academic life: a child is rewarded (or punished) based on how many homework assignments
she completes or how many test questions she correctly answers, and not on how much time her
homework took or how long she studied for an exam.2 After structurally estimating the two-
dimensional unobserved heterogeneity, we analyze the relationship between the estimated student
type parameters and observable factors, including school district, neighborhood characteristics, and
demographic variables. This approach allows us to explore how differences in motivation or study
efficiency may contribute to academic performance gaps between different demographic groups. We
can also examine how student traits differ across the diverse school districts in our sample.

Finally, we estimate two models of math skill production technology: one focused on short-term
learning and one on medium- to long-run learning. This exercise sheds light on how observable
factors interact with students’ traits to determine learning gains and overall human capital accu-
mulation. This analysis relies on the quantified student unobservables from our structural model
in order to solve a classic identification problem of omitted variables and selection bias: do high-
performing schools have better outcomes because the school inputs are inherently better, or because
more academically adept children tend to self-select onto their rolls? Our estimates facilitate coun-
terfactual analyses of the link between racial achievement gaps and distributions of school quality,
which are highly correlated with race in our sample, and in the American population more broadly.

To create the experimental control, data, and variation needed to identify the model and provide
relevant policy insights, we must satisfy two necessary conditions: (i) secure a diverse set of school
district partners and (ii) design a tool that meticulously tracks student choices and effort under var-
ious piece-rate incentive levels. For the first, after months of negotiations we concluded agreements
with three diverse school districts in the Chicagoland area that hosted nearly 1, 700 adolescent stu-
dents in grades 5 and 6 (roughly ages 10 and 11). Importantly, the students come from one high
performing/wealthy school district, one middling school district, and one school district that has
substantial poverty, lags in operating budget, and where nearly every student metric is well below
state averages.

In terms of the second necessary condition, a key feature of our field experiment is that we built
a website, accessible only through a login credential assigned to each student, wherein the stu-
dents could complete up to 80 mathematics modules that we constructed based on professionally
developed, age-appropriate math materials. Students had access to the website for 10 days and
throughout the process our web server monitored students’ activities and tallied successful com-
pletion of math modules. Our web-based platform, with its automated, non-invasive tracking and
Common Core math materials, was carefully crafted to parallel day-to-day homework activities and
a child’s associated effort choices. A key to our identification strategy is that we randomized piece-
rate incentives for task completion across students, based on the number of modules they completed

2In a sense, this idea is implicit in the Carroll model, though education psychologists focus on learning task accom-
plishment rather than on piece-rate incentives per se.
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successfully. Combining this information with pre- and post-experiment measured proficiency us-
ing in-classroom mathematics assessments, and a host of other student covariates, we are able to
identify the model.

We report several unique insights, which we gather into 3 areas: the student time allocation
model, the skill production technology models, and counterfactual analyses. First, our quantitative
analog of the Carroll (1963) model contributes 3 novel empirical results to the science of learning.
(I) We estimate a remarkably high degree of curvature in a child’s utility costs of giving up would-be
leisure time for study activity. The key insight is that study-time supply is quite inelastic for all
but roughly the 10% most academically inclined students. As a specific policy insight, this result
suggests that altering the numerator of Carroll’s learning ratio may be a very costly prospect for
the average middle-schooler. (II) We observe a remarkable degree of heterogeneity across students
in unobserved traits. Monetized utility costs of 3 and 6 hours of foregone leisure time differ by
a factor of nearly 7 across the 25th and 75th percentiles among students who were active on our
website. In terms of academic efficiency, average time-to-success differed by a factor of 2.7 across
the 25th and 75th percentiles among students who were active on our website.3 (III) Related to
the first two results, willingness to forego leisure time is not the most important determinant of a
student’s study effort and learning task accomplishment. Rather, a student’s academic efficiency,
which determines how effectively he can turn inputs into outputs, played a relatively dominant role
in shaping academic choices among students in our sample. As a policy insight for an official wishing
to increase human capital production, this points to the denominator of Carroll’s equation as the
location of the proverbial low-lying fruit.

The level of empirical heterogeneity in time preference and academic efficiency also permits an
exploration of how these traits relate to observable factors. In the raw data we find racial and
gender achievement gaps in standardized math test scores across all 3 school districts. The gaps
for race are largely consistent with the literature (e.g. Fryer & Levitt, 2004; Clotfelter, Ladd, &
Vigdor, 2009; Hanushek & Rivkin, 2006, 2009; NAEP, 2019) with an interesting data pattern:
observed racial gaps are largest in the poorest school district and smallest in the wealthiest school
district. The middling school district shows an intermediate gap. Importantly, the race gap in
performance is driven by differences in academic efficiency, not time preferences. Indeed, we find
either no significant difference in time preferences across racial groups (i.e., between Hispanic and
White/Asian students) or differences in time preferences that suggest minority students are more
motivated than non-minority students (i.e., Black students are more willing to put in time studying
than White/Asian students, all else equal).

Considering gender gaps, consonant with the literature (e.g. Hyde et al., 1990; Guiso et al., 2008;
Hyde & Mertz, 2009; Fryer & Levitt, 2010; OECD, 2015) we find that males outperform females on
standardized math tests, on average, but again there is an interesting trend across school districts.
While the gender gap is not evident in the poorest and middling school districts, we find a large
gender gap in the wealthiest school district. In terms of its underpinnings, we find that females
tend to require less incentive to spend time studying than their male counterparts: their time

3Half of our test subjects declined any activity on the website, due to time preference being too high, academic
efficiency being too low, or both. Thus, these numbers likely understate the heterogeneity across the overall sample
population.



PRODUCTIVITY VS MOTIVATION IN ADOLESCENT HC PRODUCTION 5

preference is such that they are willing to spend hours studying, holding external incentives fixed.
This difference, by itself, leads to higher academic performance. Yet, in contrast, males tend to have
higher academic efficiency, and in net the relative size of this effect compared to observed differences
in time preference yields the gender gap observed.

Finally, we find considerable selection on unobservables across the three school districts. Even
after controlling for observable student characteristics, there is a 0.76 standard deviation gap in
academic efficiency between District 1 and District 3, which is 1.8 times the gap between grade 5
and grade 6 students. Similar patterns are not observed across districts in regards to student time
preference. Yet, interestingly, while neighborhood income has little impact on average, we do find
that deprivation of non-school developmental resources (e.g., health insurance) is a statistically and
economically significant predictor of a child being less motivated for academic pursuits.

A second area of results we report pertains to human capital accumulation and skill formation.
We find that both academic efficiency and time preference are important determinants of human
capital production, with academic efficiency being roughly three times more important than time
preference in determining the initial math proficiency of students. In terms of total factor produc-
tivity, we find strong evidence that school quality alters input productivity in an interesting manner:
high-performing school districts have higher total factor productivity and lean more heavily on a
child’s academic efficiency trait, whereas middle- and low-performing schools have lower total factor
productivity and lean more heavily on a child’s motivation trait in order to generate math skill over
time. Furthermore, we find evidence that school quality plays an important role in conversion of
learning-by-doing activities into improvements in demonstrated math proficiency.

An important lesson emerges when we pair the first and second area of results. Together, they
suggest that educational interventions aiming to decrease gender or racial performance gaps in math-
ematics by motivating students through incentives or information about the returns to education
(such as in Angrist et al., 2009; Fryer, 2011; Fryer et al., 2015; Levitt, List, & Sadoff, 2016; Levitt,
List, Neckermann, & Sadoff, 2016; Seo, 2020) might be misguided. This is because such students
already tend to be more motivated than their male or White/Asian peers, suggesting that motiva-
tion is not the primary barrier limiting their performance. In this spirit, a policy approach based on
incentivizing higher effort from such students will struggle to overcome their relative disadvantage.

Our final area of results pertains to counterfactual exercises aimed at investigating the role of
access to high-quality education services in explaining racial achievement gaps within our sample
population, as well as the potential for incentive-based interventions to ameliorate these gaps. Sev-
eral interesting insights emerge. First, conditional on key student characteristics, racial differences in
school quality account for roughly 45% of the achievement gap between Blacks and Whites/Asians,
and roughly 85% of the achievement gap between the Hispanics and Whites/Asians in our sample.
Moreover, our model predicts that a leveling of the playing field (in terms of bringing Black/Hispanic
school quality up to the same level of White/Asian school assignment) would cause the academi-
cally most talented 5% of Black and Hispanic students to actually overtake their 5% most talented
White/Asian counterparts in terms of exam score performance.

Second, for policy purposes, we explore two distinct approaches to achieving equality: affirmative
action and pecuniary incentives to close the achievement gap. We find that the incentive channel
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is relatively weak, requiring large amounts of resources to affect outcomes materially. These results
strongly suggest that programs or policies to increase the motivation of struggling learners are
unlikely to be a cost-effective means of substantially closing demographic performance gaps, since
the main driver of these gaps is not a difference in motivation, but rather differences in academic
efficiency (driven by factors such as differences in school quality). Moreover, we find that a narrowly-
tailored affirmative action scheme that merely un-did the systemically uneven distribution of school
quality by race would have to be quite substantial relative to the so-called “color-blind” alternative.

Overall, our results speak to several strands of the literature. First, we clarify and define exactly
what is meant by the important unobservable elements, time preference and academic efficiency, in
the skill formation context. While the broader literature has used perseverance (e.g. Carroll, 1963),
grit (e.g. Duckworth et al., 2007), intrinsic motivation, self-motivation, and other executive function
skills (such as in Cunha et al., 2010; Gneezy et al., 2019; Kosse et al., 2020; Cappelen et al., 2020),
to describe time preference, our metric is theoretically-driven, clearly defined, and quantifiable.
Likewise, while aptitude, cognitive ability, and innate ability have been used to measure academic
efficiency, we develop a theoretically-consistent metric that is easily obtained and correlates with
key observables. Measuring the two unobserved characteristic types of students is important to both
the theorist and policymaker. If the theoretical arguments as to the relative efficiency of different
instruments are to be subjected to empirical testing, it is essential to make actual measurements
of them. Equally, if education policies are to concern themselves with particular student types or
school districts, it is important to understand the optimal approaches and how far a given student
can be expected to increase their output by simply increasing time allocation or enhancing academic
efficiency. We are unaware of any attempts that have solved this problem, likely because while others
have produced careful measurements of some or all of the inputs and outputs, they failed to combine
these measurements into any satisfactory measure of efficiency.

Second, the empirical results sharpen our understanding of a number of crucial concepts in
the education literature. For example, we often hear descriptions of unsuccessful students being
“unmotivated.” Usually in such cases, the criticizer is referring to the fact that the student does
not complete homework assignments, show competency on tests, or engage completely within the
classroom. Our results and accompanying model call into question the traditional notion of what a
“motivated” student is by showing that this logic naively confounds two very different aspects of the
child’s experience. He may be highly willing to devote an hour (low time preference) to study, or
on homework, test prep, and classroom engagement, but if he expects that hour to be unproductive
(low academic efficiency) due to lack of high-quality instruction or other resources, then it still may
not be rational to exert high effort in response to external incentives because the time needed to
perform well is unreasonably high. Or, he might be very motivated, putting forth high effort, but
because of low academic efficiency he appears unmotivated.

In addition, our view that academic efficiency is the amount of time required by the student to
develop skills means that given enough time all students can conceivably obtain key skills. Under
this reasoning, learning is available to all, we just need to find the means to help each student.
Our formulation has fundamental implications for education, and guides us to recast the education
problem from one of a goal of equal achievement for all to one of equal opportunity for all, ensuring
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that anyone who is willing to put in the time and work hard has the potential to succeed. Under
this view, we need to understand what policy approaches provide such student equality, rather than
focus primarily on equity considerations. A related literature in this spirit is that on school district
quality and moving to opportunity. Much of this literature focuses on interventions that result in
children relocating to new schools at some time during their studies, and is therefore often focused
on the disruptive effects of moving or changing school environments (e.g. Katz, Kling, & Liebman,
2001; Hanushek, Kain, & Rivkin, 2004; Rumberger, 2015; Chetty, Hendren, & Katz, 2016; Schwartz,
Stiefel, & Cordes, 2017; Cordes, Schwartz, & Stiefel, 2019; Schwartz, Horn, Ellen, & Cordes, 2020).

In an immediate policy sense, our findings have implications for the design of programs to close
achievement gaps across demographic groups. By pinpointing the underpinnings of skill deficiencies,
we learn that many students who appear unmotivated and do not complete assignments are likely
no less willing to put in time studying than their more-successful peers, but that academic success
(or even progress) is difficult for them to achieve. This low academic inefficiency in turn discourages
them from investing time in their studies. When we consider performance gaps across demographic
groups more broadly, we show how these gaps are not due to differences in motivation—in fact, the
motivation gap either plays no role or even points in the opposite direction—but rather, are due to
differences in how efficiently students in different demographic groups convert study time into the
successful completion of academic assignments and learning gains.

This insight highlights that under-represented minority students are struggling compared to their
peers, not because they are unwilling to spend time studying, but because they are more likely
to lack the foundation (e.g., literacy and numeracy skills, study skills, high-quality school inputs,
support at home) on which academic progress can be built more easily. This means that initiatives to
close performance gaps by increasing motivation among under-performing groups, whether through
information or incentives, are very much not addressing the primary barriers holding these groups
back. Programs that encourage greater effort from marginalized groups, who we show are already at
least as willing to put in time studying than others, is unlikely to substantially close any performance
gaps. Real change will more likely come from efforts to better understand and address the reasons
why these groups are less able to effectively convert their study efforts into learning gains. We show
that much of the racial performance gap in mathematics comes from differences in school quality and
resource deprivation due to poverty, which may influence their foundational literacy and numeracy
skills, limiting learning and discouraging effort, even among those eager to learn.

The remainder of our study is structured as follows. Section 2 outlines the quantitative theoreti-
cal framework that underpins our research design and empirical strategy. Section 3 discusses model
identification, with an emphasis on how experimental variation can enable us to generate the requi-
site set of observables to uniquely quantify unobserved student characteristics and other structural
primitives. The identification argument provides a number of insights regarding how the experiment
must be designed to achieve the proper variation in the data. Section 3 also presents our research
design, focusing on the crafting of an organic learning scenario, incentives variation, and how sub-
jects were chosen. Section 4 presents estimator details. Section 5 presents both reduced-form and
structural results. Section 6 presents a counterfactual simulation exercise to explore variation in
school quality as well as two distinct public policies that have been used to lessen racial and gender
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achievement gaps: affirmative action and pecuniary incentives. Section 7 concludes. An appendix
contains additional technical details, graphs, and tables.

2. Theoretical Framework

Causal inference on educational outcomes has always been impeded by the canonical identifi-
cation dilemma of unobserved student characteristics. It is well documented that students who
attend better-resourced primary, secondary, and post-secondary schools have better academic out-
comes such as grades, exam scores, college placement, jobs, etc. What is much less understood
is the extent to which these better outcomes are driven by selection of students who would have
been high achievers anywhere, or whether differences in actual school quality are responsible for
observed achievement gaps. In the United States, with K-12 education financed primarily by local
property taxes, this confounding of selection and treatment effects is particularly daunting from a
researcher’s perspective, and yet particularly important to understand for policymakers. We take
a novel approach to solving this problem by developing an empirical framework that allows the re-
searcher to individually quantify students’ unobservable characteristics related to both motivation
and underlying learning ability. This advance, in turn, allows for these characteristics to be included
as explicit controls when investigating the role of school quality in shaping student proficiency.

Our quantitative model of knowledge and skill formation is closely related to the qualitative
expectancy-value theory used extensively to assess study effort in the education and psychology
literatures (e.g., Carroll, 1963; Eccles et al., 1983; Wigfield, 1994; Eccles & Wigfield, 2002; Wang
& Degol, 2013). The two key components of the expectancy-value model of achievement are (i) a
student’s perceptions about her ability at a particular task, and (ii) a combination of the intrinsic
value and cost they experience while engaging in the task (Wigfield & Eccles, 2000). This literature
typically assesses these characteristics using Likert-scale survey questions about how good a student
is at learning new concepts in math and how much they enjoy working on math relative to other ac-
tivities. Here we propose a framework for estimating these characteristics from observable behavior
using the principle of revealed preference. The two primary parameters in our model are similar to
the expectancy-value model: students’ achievement in math is a function of their ability to complete
learning tasks and their perception of the costs/benefits of allocating time to math relative to other
activities. Our contribution is in formalizing a quantitative model of student choice and proposing
a new method to elicit these parameters in a way that is more closely tied to individual decisions,
thus enabling informative counterfactual analysis.

2.1. Unobserved Student Heterogeneity. Our model formalizes adolescent skill formation as
the result of a production process whose form may vary by school attended or other environmental
factors. Individual student characteristics serve as the principal productive inputs in this pro-
cess. For simplicity of discussion we focus on subject-specific proficiency in mathematics, though
it is straightforward to generalize beyond a single subject. Each student is characterized by two
unobserved traits: academic efficiency, denoted θe—which governs the idiosyncratic rate at which
learning-by-doing tasks are accomplished—and time preference, denoted θl—which governs a child’s
motivation or willingness to substitute a fixed unit of time away from the next best option and to-
ward math activities. Both characteristics represent costs in either the time or utility dimension,
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so that higher values of θe imply more time required to complete a given learning task, and higher
values of θl imply greater dis-utility of spending time practicing math.

When formalizing the roles of these two characteristics it is important to recognize that piece-rate
incentives are the predominant mode of reward and punishment in real-world educational settings.
For example, students are rewarded with good grades or exam scores based on how many homework
assignments they complete, or how many questions they answer correctly in a timed examination.
Conditional on homework completion or exam performance, these rewards are unaffected by how
many hours of homework or study time it required. As such, academic labor-leisure choices are not
dictated solely by time preferences: holding θl and external piece-rate incentives fixed, a reduction
in θe implies that each unit of a student’s time is more valuable. Therefore, both student traits play
a central role in decision making.

Idiosyncratic differences in θl may be driven by either opportunity costs of foregone leisure time,
the quality and variety of outside options, or by direct psychic costs of working on mathematics
problems. Heterogeneity in θe may reflect either differences in a child’s initial proficiency level,
or differences in a child’s study process, academic support network, or innate ability that affect
how quickly she regularly completes assignments. Since both traits are a mixture of innate and
environmental components, for each student i we allow them to evolve with changing circumstances
according to the following

log(θei) = Xeiβe + ηei, and log(θli) = X liβl + ηli, (1)

where Xei = [1, xe1i, . . . , xekei] and X li = [1, xl1i, . . . , xlkli] are vectors of environmental character-
istics including school quality, family academic support, socioeconomic variables and other factors.
The ηei and ηli terms represent the truly idiosyncratic portions of student i’s unobserved traits
(θei, θli). We assume the following about the joint distribution of unobserved student traits:

Assumption 1. The two idiosyncratic components follow a bivariate normal distribution (ηei, ηli) ∼
BVN (0,Σi), where Σi may potentially vary by observable student characteristics.

It is important to understand that the notion of human capital itself has several distinct aspects.
While (θei, θli) may be considered forms of human capital themselves, they represent a collection
of factors outside of the student’s control, at least over a short-run horizon. However, (θei, θli)

govern decisions and rate of progress in the short-run which are under a child’s control, and over
time accumulate into her stock of invested human capital. Forms of invested human capital are
often measured by or reflected in demonstrated ability on standardized assessments. Measured
mathematics proficiency, θei, and θli are all different aspects of human capital: the first reflects one’s
current stock of task-specific skill and the latter two govern one’s ability to acquire new task-specific
skill. Moving forward, we describe this distinction by using the terms math skill or proficiency to
refer to demonstrated performance on standardized assessments, and the term characteristics to
refer to a student’s underlying type variables, (θei, θli). The maintained assumption behind our
framework and research design is that characteristics can be treated as fixed over the short-run,
while skills and proficiency are malleable over relatively shorter periods of time.
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2.2. Student Choice Model. Consider child i’s choice of study time and the resulting volume of
learning tasks that are successfully completed with that time investment. These are endogenously
determined by a decision process that hinges on both θl and θe in the presence of piece-rate incen-
tives. Formally, achieving gains in math proficiency over the short-run is a process of performing
repeated, discrete, learning-by-doing tasks (e.g., homework assignments). Each student chooses Qi,
representing how many learning activities to complete. Since Qi is a means to an end (i.e., expand-
ing one’s permanent skill set in mathematics), we will sometimes refer to it as interim output. A
piece-rate payoff function Pi(q) represents the external benefits received by student i from complet-
ing q units of learning activities. Of course, producing interim output requires that the student give
up some quantity of her time Ti, which could otherwise be used for the best outside option (e.g.,
video games, sports, other tasks, socializing with friends, etc.). Academic efficiency θei shapes the
mapping between Ti and Qi through the following relation: Ti(Qi) =

∑Qi
qi=1 τi(qi; θei), where

τi(qi; θei) = θei × τ0 × q−γi × uqi , θei, τ0, γ, uqi > 0. (2)

In equation (2), τi(qi; θei) represents the time spent by student i on completing her qthi unit of
interim output. τi(·) has several components: τ0 is the mean initial production time on the first unit
across all individuals, while the term q−γi is an experience curve that allows for a student’s rate of
progress to increase with additional work (when γ > 0) or for it to deteriorate through exhaustion
(when γ < 0). The student’s academic efficiency θei scales this mean production curve up or down,
relative to her average classmate, and uqi is a transitory iid shock to production time, representing
unpredictable fluctuations in difficulty level across tasks, mental state, distractions, etc.

Assumption 2. The (potentially heteroskedastic) unit-specific production shock Uqi follows distribu-
tion Fu|θei(u|θei) with continuous density fu|θei that is bounded away from zero on support [u, u] ⊂
R+.

Finally, student i experiences dis-utility of shifting time from the outside option to math study
according to the following differentiable cost function

C(Ti; θli) = θlic (Ti) , θli > 0, (3)

where dis-utility is denominated in the same units as the piece-rate payoff schedule Pi(q). Note
that multiplicative separability is a non-trivial assumption in the model, as it will be central to our
identification strategy (see Section 3 below). We also assume the following regularity conditions to
ensure a well-behaved decision problem for student i:

Assumption 3. Costs and marginal costs are increasing, c′(t) > 0, and c′′(t) > 0 ∀t ∈ R+; marginal
costs c′(t) are unbounded, and we impose scale and location normalizations of c(0) = 0 and c′(0) = 1.

Combining the costs and benefits of practice activities implies an optimal stopping problem. After
successfully completing (q− 1) learning tasks, a student decides the maximum time t∗ she is willing
to spend on the qth unit of interim output, according to

t∗ ≡ argmax
t≥0

{
Pr
(
qth success|t, (q−1)

)[
Pi(q)−Pi(q−1)

]
−
[
θlic(Ti(q−1)+ t)−θlic(Ti(q))

]}
. (4)
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In words, after completing each unit of interim output, student i makes a mental calculation of
how much additional work would cause the marginal cost of additional time to swamp the marginal
benefit of one more successfully completed learning task. Here, the probability that she succeeds
on task q given t units of time spent depends on the distribution of the production shock Uqi :
Pr
(
qth success|t, (q − 1)

)
= Fu|θei

(
t

θeiτ0(q−1)−γ

∣∣∣θei). If she is able to achieve the qth success with
some work time t < t∗, then she re-optimizes decision rule (4) with a comparison of q versus (q+ 1)

achieved successes, and continues on. Otherwise, she discontinues effort and the final values of Ti
and Qi are determined by her optimal stopping point.

The above model makes it clear why both student traits θe and θl contribute to a students’ supply
of her time to math studies. Academic efficiency θe determines how burdensome a given level of
achievement is in the time dimension, and θl determines how costly the expended time and effort
are in the utility dimension. In public debate about academic policy, students are often labeled
as “more motivated” when they complete more homework assignments on time, but the model
illustrates how this way of thinking actually conflates two very different aspects of the student
experience when piece-rate incentives are in play. Student i may be highly motivated relative to
student j in the sense of willingness to re-allocate leisure time toward math activities (i.e., θli < θlj),
and yet may still complete fewer homework assignments if the academic efficiency difference between
them (θlj − θli > 0) is large enough, due to asymmetric resource allocations, such as school quality,
tutors, support network, etc.

From a policy perspective, when we observe a student performing poorly on an exam, this may
be due to either high time costs (i.e., high θl), a lack of foundational math and study skills (i.e.,
high θe), or some combination of the two. A deeper understanding of how these two factors interact
at the student level may help practitioners to achieve more efficient, individually-tailored allocation
of scarce resources: do Bobby or Suzie need tutors, or do they simply need someone to convince
them that math is enjoyable, relevant, or at least not onerous? At the group level, understanding
the distributions of these two characteristics and their relation to educational resources can produce
crucial insights for policymakers interested in remediation of demographic achievement gaps.

2.3. Initial Math Skill. Since (θe, θl) determine a child’s short-run choices and task accomplish-
ment which accumulate into long-run outcomes, we model a student’s initial math proficiency level
Si as the outcome of a Cobb-Douglass production process with θei and θli as its principal inputs,

Si = Ai × θαeiei × θ
αli
li × εi, (5)

where Ai is total factor productivity (TFP), and εi is an idiosyncratic, multiplicative shock. Total
factor productivity and the Cobb-Douglas production shares (αei, αli) are allowed to be idiosyn-
cratic, depending on observable student covariates:

log(Ai) = W iα0, αei = W iαe, and αli = W iαl, (6)

with W i = [1, w1i, . . . , wki] including school quality, family learning support, socioeconomic vari-
ables, and other factors.4 The error term εi accounts for the cumulative impact of transitory shocks

4Substituting equation (6) into equation (5), the long-run production model is equivalent to a regression of log(Si)
on θei, θli, W i, and a complete set of pair-wise interactions between (θei, θli) and the variables in W i.
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to the production process over time as well as noise in the exam instrument used to measure a
student’s math proficiency level.

2.4. Incremental Gains in Math Skill. Over a short-run horizon—a period spanning weeks—we
propose a separate but related production model in which student i’s study time Ti and successful
completion of learning tasks Qi contribute to gains in her mathematics proficiency level. Let ∆Si

denote the short-run improvement in a student’s measured math proficiency,

∆Si = ∆0i + ∆1iTi + ∆2iT
2
i + ∆3iQi + ∆4iQ

2
i + ∆5i(Ti ×Qi) + εi, (7)

where εi is an idiosyncratic, transitory shock. Similarly as in initial math skill production, the
short-run production parameters depend on a vector of individual covariates,

∆ji = V iδj , j = 0, . . . , 5, (8)

where V i = [W i, Si, θei, θli]. By including unobserved student traits in V i we are allowing them to
play a dual role in shaping a child’s ability to acquire new skill: first, they underlay choices of Ti and
Qi, and second, they may alter the rate at which learning activities translate into knowledge gains.
Including Si as a control allows for possible decreasing-returns-to-scale technology where incremental
gains of a fixed size become more difficult as a student achieves greater subject mastery.

Note that our student choice model provides a micro-foundation for our model of short-run skill
formation, where (θei, θli) determine (Ti, Qi), which in turn drive incremental gains in i’s measured
mathematics proficiency. The short-run skill formation technology is also consistent with the long-
run technology for initial math skill: both are fundamentally driven by the interplay between indi-
vidual student inputs and developmental resources of various types. The biggest difference between
model (5) and model (7) is that fine-grained information on time inputs and task accomplishment
are feasible for researchers to collect over short-run horizons, but much more difficult over longer
spans of time. In absence of ideal observables, model (5) uses student traits (θei, θli) as a stand-in
for the terms (θei, θli, Ti, Qi) in model (7). Of principal interest for policymakers is the question
of school quality, which may impact student outcomes through three distinct channels: (i) it may
influence the long-run evolution of student characteristics θei and θli, (ii) school quality may have a
direct impact on the level of math skill development (through the intercept terms in equations (5)
and (7)), and (iii) it may indirectly alter the manner in which the production technology converts
its primary inputs into new learning (through the slope terms in equations (5) and (7)).

3. Research Design

3.1. Experimental Motivation and Causal Identification Overview. Our research design
builds on our study-choice and skill-formation framework to bring together experimental and struc-
tural methods to quantify unobserved student characteristics. Our strategy uses the student choice
model as a basis for an econometric framework, where field experimental methods shape a data-
generating process with the requisite sets of observables and variation to enable identification of the
structural parameters (θe, θl) at the individual level. This data-generating process is also carefully
crafted to be as true to students’ everyday academic choices and experiences as possible. With this
in mind, we conducted the field experiment among 5th- and 6th-grade students in three Illinois school
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districts. We offered varying monetary incentives for completion of extra-curricular learning activi-
ties on a math study website that we developed. Our approach to quantifying unobserved student
traits builds on standard panel-data methods (for θe), and on recent advances by Torgovitsky (2015)
and D’Haultfoeuille and Février (2015) on the use of discrete instruments to identify continuous,
individual-level heterogeneity (for θl).

To develop basic intuition for how our method quantifies two-dimensional student traits, consider
a hypothetical “ideal” experiment (from a research perspective) where feasibility constraints are non-
existent. Consider two students, Bobby and Suzie, who perform poorly on a standardized math
exam. The exam score alone indicates that each student is struggling, but it does not offer insights
as to why. To answer this question, the researcher first obtains identical copies of the two students,
call them Bobby∗ and Suzie∗—i.e., identical in biology, ability, preferences, attitudes, etc.—and
places each of the 4 students into individual observation rooms for a period of two weeks.

Inside each room is a desk with a notepad, pencil, and mathematics textbook, and there is also a
couch with a TV and a video gaming system, a smart phone connected to social media, and other
leisure opportunities. Upon entering the observation room, the researcher presents piece-rate wage
offer p to Bobby and Suzie and p∗ > p to Bobby∗ and Suzie∗ for working through a series of discrete
math assignments and demonstrating proficiency in each according to some well-defined criterion.
The researcher explains that the children are free to allocate their time in any way, working through
as many or as few math exercises as they wish, with piece-rate payments to be delivered for the
number of exercises successfully completed at the end of two weeks.

Suppose further that over 2 weeks Bobby and Suzie complete 5 and 10 math assignments, respec-
tively, whereas Bobby∗ and Suzie∗ complete 7 and 13. The research team measures average rates
of progress across math assignments for each child, and can infer θe,Bobby and θe,Suzie as student
fixed effects. This information implies effective mean hourly wage rates for each of the four children.
For example, suppose that, given Bobby’s average rate of progress, his effective hourly wage rate is
$15/hour, whereas Suzie works somewhat slower and has an effective hourly wage rate of $12/hour
instead. Note that all differences in mean hourly wage between Suzie and Suzie∗ are due solely
to their piece-rate offers p < p∗, since they are identical and have the same θe,Suzie trait. Since
Suzie/Suzie∗ produced more output than their same-piece-rate counterparts Bobby/Bobby∗, this
is an indication that Suzie is more easily motivated to allocate time from other activities to math
than Bobby (i.e., θl,Suzie < θl,Bobby).

More concretely, the hourly wage differences under p and p∗ can be used to compute labor-supply
elasticities for Bobby and Suzie, respectively. With this information in hand, and since θl,Bobby and
θl,Suzie both interact with a common cost schedule c(t), differences across the children’s choices and
labor-supply elasticities can be used to make inference about its form, independent of Bobby’s and
Suzie’s idiosyncratic traits. For example, Bobby’s output increased by 40% while Suzie’s output
under the same proportional wage increase rose by only 30%, indicating that marginal costs must be
higher from Suzie’s baseline output of 10 assignments, relative to Bobby’s baseline of 5 assignments.
Moreover, feasible inference on the form of the common cost schedule become richer as the experi-
ment is repeated with an increasingly larger set of Bobby’s and Suzie’s classmates, Jill, Tommy,
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etc. With a complete picture of the shape of the common cost schedule c(t), the researcher can then
separately infer each child’s individual leisure preference {θl,Bobby, θl,Suzie, θl,Jill, θl,T ommy, . . .}.

While informative as a thought exercise, much is obviously infeasible or unethical about the above
“ideal” experiment. However, using field experimental methods and modern web-based technologies,
one can capture the essential elements of the above scenario while maintaining a level of realism and
familiarity that would be impossible within a controlled laboratory setting. Rather than cloning stu-
dents, one can easily clone groups of students through individual-level randomization. This ensures
that, while no two groups will contain identical copies of the same child, the overall distributions of
unobserved characteristics will be the same.

Similarly, rather than sealing students into observation rooms, one can move extra-curricular
learning materials online, where a web server can meticulously monitor activities in a much less
invasive way. One challenge to this web-based alternative is that the researcher cannot control for
the role of a student’s regular educational activities such as classroom instruction and graded home-
work assignments for school. However, this does not threaten model identification per se, provided
that the distributions of regular educational activities are uncorrelated with treatment assignment.5

Rather, it merely changes the interpretation of the structural parameters somewhat. In the hypo-
thetical, infeasible experiment above, a child’s willingness to allocate time toward math activity is
judged relative to the baseline of zero activity, while in our web-based setup θli represents marginal
willingness to allocate extra time on the margin, above and beyond their regular schoolwork.

The web-based tracking setup has two considerable advantages as well. It allows students to
engage in academic decision-making against the backdrop of the myriad outside options for their
time—sports, clubs, music activities, informal play with friends, chores, etc.—that form a natural
part of their normal life routine. Our web-based research design also provides a general proof of
concept for powerful new diagnostic tools cheaply available to education practitioners at scale given
recent, dramatic increases in K-12 educational materials being moved to online formats.

In what follows we provide specific detail on the design of our field experiment, including recruit-
ment, incentive variation, math proficiency assessment, website structure, and data collection. Our
intuitive discussion above also glosses over an important issue of sample selection: how would iden-
tification be affected if Bobby spent no time on math under p, while his alter-ego Bobby∗ produced
positive interim output under p∗? Holding piece-rate incentives fixed, there will be a region of 2-
dimensional characteristic space where either θl or θe (or both) are prohibitively large to rationalize
any amount of positive effort. To solve this problem, we use Assumption 1 on joint log-normality,
further discussed in Section 4 below, to perform a sample-selection correction which extrapolates
into the unidentified region similarly as the traditional method pioneered by Heckman (1979).

3.2. Study Sample. We partnered with three public school districts in the Chicago-Naperville-
Elgin MSA during academic year 2013-2014. A total of 1,676 5th- and 6th-grade students partic-
ipated in the experiment, with 46% of them drawn from District 1, and 27% each coming from

5Individual randomization ensures that treatments are independent of school. A possible threat to identification would
be if students responded to extra-curricular incentives by neglecting regular schoolwork. We could not access children’s
academic records due to privacy concerns, but in multiple conversations administrators and teachers universally
expressed a strong impression that no reduction in homework completion rates occurred during the sample period.
We also find evidence in our survey data consistent with their reports (see Section 3.4 below).
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Table 1. SCHOOL DISTRICT CHARACTERISTICS, AY2013-14
Variable STATE OF ILLINOIS DISTRICT 1 DISTRICT 2 DISTRICT 3

FINANCES
% Revenue from Local Property Tax 61.7% 85% 70% 35%

Operating Budget Per Pupil $12,521 $14,500 $12,500 $13,500

% Spending on Instruction 48.7% 52% 48% 48%

FACULTY
Avg. Administrator Salary $100,720 $130,000 $105,000 $100,000

Avg. Teacher Salary $62,609 $75,000 $60,000 $60,000

% Teachers w/Master’s & Above: 61.1% 80% 65% 55%

Pupil-Teacher Ratio: 18.5 17 16 17

Pupil-Administrator Ratio: 173.3 210 140 130

STUDENT POPULATION & OUTCOMES
% Low Income: 54.2% 0% 50% 90%

% Limited English Proficient: 10.3% 2% 4% 24%

% Meeting/Exceeding Expectations
on State Standardized Math Exam (AY2014-15): 27.1% 60% 30% 10%

Notes: Data retrieved from the Illinois District Report Cards archive, 2015. District-specific numbers are rounded to preserve
anonymity. %Revenue from Local Property Tax is rounded to the nearest 5 pp. Operating Budget Per Pupil is rounded
to the nearest $500. %Spending on Instruction is rounded to the nearest 2 pp. Avg. Teacher Salary and Avg. Administrator
Salary are rounded to the nearest $5K. %Teachers with Master’s & Above is rounded to the nearest 5 pp. Pupil-Teacher Ratio
is rounded to the nearest full number. Pupil-Administrator Ratio is rounded to the nearest 10. %Low Income is rounded to
the nearest 10 pp and primarily represents students who are either from families receiving public aid or are eligible to receive free or
reduced-price lunches. %Limited English Proficient is rounded to the nearest 2 pp. %Meeting Expectations is rounded to the
nearest 10 pp and represents the average percentage across 5thand 6thgrades.

District 2 and District 3.6 The three districts differed widely by local population and administra-
tive characteristics. These differences are described in Table 1. Relative to the state of Illinois,
which is demographically most representative of the national population among all 50 U.S. states,
District 1 was above-average on faculty compensation, teacher qualifications, fraction of budget
spent on instruction, and student performance. District 1 was also well above the rest of the state
in terms of its overall financial resources per pupil. District 2 was remarkably close to the state
averages on these dimensions, while District 3 lagged considerably in terms of student academic
performance. This was despite District 3 having higher than average per-student operating budget,
but this budget also includes spending on social workers, guidance counselors, building maintenance,
lunch subsidies, non-instructional support programs, etc.

The populations these three districts serve are similarly ordered in terms of socioeconomics.
District 1’s student population is substantially more affluent by both income and wealth—with all
but 15% of its operating budget derived from local property taxes—and has only a negligible burden
of teaching curriculum to children with limited English language proficiency. District 2 is once again
closest to the state means, while District 3 is considerably less affluent by income and wealth, and
has a relatively large fraction of students with limited English language proficiency (including many
Hispanic immigrant families). Finally, the other striking difference across the districts is the racial
profiles of the communities they serve (see Table 2 below). District 2 has a racially diverse student
body, while District 1 has few Black or Hispanic students and District 3 is almost entirely comprised
of Blacks and Hispanics.

6Our data exclude children in special education, though all were permitted to participate in the incentives program.
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3.3. Field Experiment Details. We worked closely with 5th- and 6th-grade math teachers across
the three participating school districts to implement the field experiment. The major research
advantage to this partnership was that participation in the study was on an opt-out basis, allowing
the research team to achieve a sample that was much more representative of the local populations
our partner schools serve.7 A primary feature of the experiment was a website on which the students
could complete up to 80 mathematics modules, referred to as “quizzes,” across five general topics.
Students had access to the website for 10 days and could complete as many of the quizzes as they
chose. Throughout the process, our web server monitored students’ activities and tallied successful
completion of quizzes. Piece-rate incentives were offered for task completion on the website, based
on the number of quizzes completed successfully, rather than on time spent. We also measured
proficiency using in-classroom mathematics assessments. This section provides more specific details
about the experimental process.

3.3.1. Math Proficiency Assessment and Other Student-Level Data. Prior to randomized treatment
assignment, students were given a standardized math pre-test by their teachers during regular
classroom time to obtain a baseline measure of proficiency. Teachers administered a similar post-test
following the experiment to gauge learning progress over the course of the study. Both assessments
were designed by our research team from professionally developed, age-appropriate math materials.
We obtained copies of 46 different standardized exams used by various U.S. states over the preceding
decade, of which 30 were developed for 5th-graders and 16 were developed for 6th-graders.8 The
exams were then split into individual math problems, resulting in a bank of 370 unique grade-5
problems and 302 unique grade-6 problems. All 672 problems were pooled to expose both 5th- and
6th-graders to the same materials. This facilitated an even comparison between age groups, allowing
us to cleanly estimate the effect of an additional year of schooling on skill formation.

We used Common Core Math Standards definitions to categorize each problem into one of 5
subject categories: (i) equations and algebraic thinking, (ii) fractions, proportions, and ratios, (iii)

geometry, (iv) measurement and probability, and (v) number system.9 For the pre-test and post-
test, we randomly selected a large subset of problems from the math question bank and further
categorized them as easy, medium, or hard, depending on their complexity level or number of steps
required to solve. Finally, to ensure uniformity of subject content and difficulty level, both the
pre-test and post-test were populated with similar sets of 36 questions: 8 each from subjects (i),
(iii), and (v), and 6 each from subjects (ii) and (iv). Of the 36 questions, 20 were selected from
6th-grade materials and the other 16 from 5th-grade materials, and the easy, medium, and hard

7Prior to the study, parents were informed and given the opportunity to opt their child out of participation. On
the first day of the study, when a diagnostic math pre-test was given in class, individual students were also given
opportunity to opt themselves out of participation. Parents and students appeared generally enthusiastic about the
study, and opt-out rates were negligible (< 5%) across all schools and classrooms partnering in the study.
8These state standardized math exams included the California Standards Test (2009), Illinois Standards Achieve-
ment Test (2003, 2006-2011, 2013), Minnesota Comprehensive Assessments-Series III, New York State Testing Pro-
gram (2005-2010), Ohio Achievement Test (2005), State of Texas Assessments of Academic Readiness (2011, 2013),
Texas Assessment of Knowledge and Skills (2009), and Wisconsin Knowledge and Concepts Examinations Criterion-
Referenced Test (2005).
9Common Core subject definitions for 5thand 6thgrades (http://www.corestandards.org/wp-content/uploads/Math accessible
as of September 2020) differ slightly; our 5-subject classification represents a merging of the two.

http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
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categories were represented by 15, 12, and 9 questions respectively, spread evenly across each exam.
We computed pre-test scores S1i and post-test scores S2i by awarding one point for each correct
answer, subtracting one quarter point for each incorrect answer (questions all had four possible
choices), and neither adding nor subtracting points for answers left blank.

The exams were coupled with surveys to collect additional relevant information about students.
Class periods were 45 minutes long; students were given 35 minutes to complete as much of the
exam as they could (and the scoring rule was explained in intuitive terms), with the remainder
of the time allocated to filling out a survey. Survey questions covered a child’s attitudes and
preferences (most/least favorite academic subjects and extrinsic vs. intrinsic motivation); family
learning environment (# of academic helpers in the child’s family/friend network and parental
permissiveness for weekday video gaming and recreational internet use); and consumption/leisure
options (# of video gaming systems at the child’s home, fraction of peer social time under adult
supervision, and enrollment in organized sports, music activities, and/or clubs). We also gathered
socioeconomic indicators from the American Community Survey for each of the ≈160 (rounded to
nearest 10 to preserve anonymity) US Census block groups where our test subjects resided, each of
which can be thought of as a neighborhood. Within each neighborhood we collected mean household
income (a proxy for affluence), and the fraction of minors with no private health insurance (a proxy
for deprivation of non-school developmental resources).10

3.3.2. Website Structure. Our website was accessible through a login credential assigned to each
student.11 This meant that our web server could automatically track activities and measure progress
for each child without affecting user experience in any perceivable way. The primary component of
the website was a set of 80 math modules, each consisting of a set of 6 multiple-choice questions from
our bank of age-apropriate materials.12 The passing criterion for successful completion of each quiz
was at least 5 out of 6 questions answered correctly. Each student was allowed unlimited attempts
at each quiz, but for each new attempt the ordering of the questions and the ordering of the choices
was randomly perturbed. Adolescent pilot study participants reported a feeling that these measures
were enough to make attempts at gaming the system (i.e., repeatedly guessing in rapid succession)
unprofitable, and that either thinking through questions or giving up were relatively better options.

Incentivized modules on the website were organized into 55 general-topic quizzes (with balanced
portfolios of the 5 math topics mentioned above), and 25 topic-specific quizzes (5 per topic). Aside
from balancing topical content, math questions were selected at random from our bank of math
problems, so that relative difficulty was impossible to predict from one quiz to the next. After
each quiz attempt, an automated, interactive feature provided optional feedback, which the student

10The ACS contains many other socioeconomic indicators (e.g., mean home values) but when reported at the neigh-
borhood level, multicollinearity problems arise due to high correlations of within-neighborhood means across different
measures. We included mean neighborhood income and uninsured minor rate because the two seemed most different
in what they represent and had the lowest pair-wise correlation among available indicators.
11Usernames and passwords were based on the child’s first name, last name, grade level, and/or teacher’s name. The
research team maintained a tech support email throughout the study, with someone on-call 24/7 to quickly resolve
any login problems. These turned out to be few, given the intuitive nature of the login credentials.
12Six was chosen because adolescent pilot study participants generally expressed the feeling that more than 6 was
too much for the piece-rates we had in mind.
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could choose to skip through or learn from.13 The web server tracked time spent on each quiz
(across all attempts) by recording a timestamp for each unique page view. Since only one math
problem appears per page view within each quiz, this resulted in a high-frequency log of work
times for each child.14 The website logged successful completions into a database, and visually
tracked current earnings and progress for the user by color-coding passed quizzes differently from
those not passed. The site also included a prominent reminder of the child’s piece-rate incentives.
Through a combination of these capabilities and students’ labor-leisure choices, we were able to
derive our principal observables: Qi, total quizzes passed by student i; Ti, total time worked; and{
{τqi}

Qi
qi=1

}N
i=1

, a panel of student-unit work times.
Some important distinctions between our website data and our in-class mathematics assessment

data are worth emphasizing. Although information collected from both sources measures some
aspect of a child’s rate of task progress through time, exam scores reflect proficiency in a controlled
(i.e., subject to time constraints) and un-monitored (i.e., with no real-time feedback) environment
whereas website data reflect rate of progress through quality-monitored practice activities in absence
of binding time constraints. Thus, the measures derived from these two data sources—current skill
stock versus academic efficiency—represent distinct aspects of a child’s learning process.

3.3.3. Piece-Rate Incentives and Randomization. We adopted a linear piece-rate schedule Pi(q) =

(bi + piq)1(q ≥ 2) with a constant marginal piece-rate that would be easy for adolescents to under-
stand. We varied both the base payment bi, for showing up and completing the minimum amount
of work, and the marginal piece-rate payment pi. No payments are offered until a child has passed
2 quizzes, which ensures a within-student panel for each individual i. Each student was randomly
assigned to one of three possible contract groups: (b∗1, p

∗
1) = ($15, $0.75), (b∗2, p

∗
2) = ($10, $1.00),

and (b∗3, p
∗
3) = ($5, $1.25).15 Assignment was at the individual level, resulting in treatment variation

within school, grades, and classrooms.
More specifically, our randomization algorithm first separated students into race-gender-school-

grade bins. Within each bin it balanced on pre-test scores by ordering students according to their
score and randomly assigning consecutive blocks of 3 similar-score students to contract groups 1,
2, and 3. The algorithm then repeated this process thousands of times, and selected the candidate
assignment that minimized overall correlations between treatment status and balance variables. A
balance table (Table 9) in the Online Appendix presents correlations between gender, individual race
groups, grade level, and pre-test score. This table verifies that our final treatment assignment was

13The website also included an instructive component built from math textbook glossaries (generously furnished
by the University of Chicago School Math Project, ucsmp.uchicago.edu) and practice materials by state boards
of education. It contained glossary terms organized by math topic and a number of guided, interactive examples
chosen to be representative of the paid materials on the site. This instructive component was clearly marked as non-
incentivized to users, but it provided an option for students to invest in their income generation capability. However,
less than 2% of overall page-view time was logged on the instructive portion of the website.
14One technical concern was how to deal with a small number of spurious page-view times that resulted when a
child closed her web browser in the middle of a quiz attempt without logging off. We truncate this small number of
spurious work time observations using a simple adjustment proposed by (Cotton, Hickman, & Price, 2020a, Online
Appendix) based on failures of a full support condition in the subject-specific work-time distributions.
15Base payments varied inversely with marginal wage only to mitigate possible concerns of fairness on the part of
participant households. A pilot study indicated an expected average output of ≈ 20 quizzes per student, at which
point total payments across all three contracts are equal.

ucsmp.uchicago.edu
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independent of all balancing variables. Although not reported in the table, treatment assignments
were also independent of school district, by construction, as explained above.

Our pre-exam materials were produced and organized in such a way that they could be collected
from teachers and rapidly processed so as to allow for balancing on initial math proficiency during
randomization. Exams were administered to students toward the end of the school week, and they
were processed, randomization executed, and personalized instruction materials for each student
were produced over the weekend for in-classroom delivery by math teachers the following Monday.
Each student participant received a personalized letter in a sealed envelope, containing login creden-
tials, instructions for accessing the website, and their individual piece-rate incentive contract. They
were also promised prompt delivery of payments within 2 weeks following the end of the experiment
(which actually happened).

The structure of our incentives had several advantages that encouraged effort from the students
so we could better infer the two central parameters of our model (θe, θl). First, we incentivized
successful completion of learning tasks rather than the time spent on these tasks. This is consis-
tent with actual school environments where students are typically rewarded or punished based on
whether they complete assignments. Furthermore, we incentivized short-run tasks (analogous to a
short homework assignment) rather than long-term outcomes such as year-end grades, making the
decisions faced by students in our sample more consistent with their frequent decisions day-to-day.

Second, we kept the window of effort short, in terms of both the size of incentivized tasks and in
terms of payment delivery, to minimize the temporal gap between effort and reward. Our website
continually reported total earnings increases each time a student passed a new quiz, and promised
payments followed promptly after the post-exam. Incentives are more effective when rewards follow
actions as soon as possible.16 Third, we allow students multiple opportunities to attempt to pass
each quiz. Thus, failed attempts can still motivate students to exert additional effort to achieve the
intended result (Berger & Pope, 2011). High-frequency feedback on performance is also a key aspect
of helping students learn about their own ability to convert time on task into academic achievement.

3.3.4. Experiment Timeline. In summary, the experiment took place as follows.

(1) Students took a pre-test and survey administered by their teachers in class.
(2) Students were randomly assigned a wage contract, and provided with information about the

experiment, including the website and their earnings potential.
(3) For the next 10 days, student work on the website counted towards their compensation.

Following the 10 day period, they were paid based on the number of quizzes successfully
completed during that time.

(4) Students took a post-test and a second survey administered by their teachers in class.

16Bettinger (2012) found evidence that incentives announced at the start of the year for performance on the end-of-
year test have little impact, while Levitt, List, and Sadoff (2016) found that incentives offered immediately before
students take a test have a large impact (and, likewise, delaying payment after the test can have large effects on effort).
Minimizing temporal distance between the required effort and the delivered reward can be particularly helpful for
groups that have high discount rates according to Bettinger and Slonim (2007).
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Table 2. DESCRIPTIVE STATISTICS: SURVEY & SOCIOECONOMICS BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/
HEADCOUNT/ ASIAN
FRACTION OF TOTAL: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394

SCHOOL DISTRICT & NEIGHBORHOOD SOCIOECONOMICS
Nbhd Mean Income $108,917 $108,917 $108,917 $80,774 $45,687 $132,038
(std. dev.) (41,470) (41,107) (41,871) (32,390) (23,175) (24,602)
Nbhd Uninsured Minors 0.252 0.253 0.252 0.378 0.616 0.072
(std. dev.) (0.297) (0.297) (0.297) (0.293) (0.231) (0.129)
District 1 0.465 0.475 0.455 0.007 0.044 0.843
(std. dev.) (0.499) (0.500) (0.499) (0.081) (0.205) (0.364)
District 2 0.268 0.260 0.276 0.650 0.103 0.136
(std. dev.) (0.443) (0.439) (0.447) (0.478) (0.304) (0.343)
District 3 0.267 0.266 0.269 0.344 0.854 0.021
(std. dev.) (0.443) (0.442) (0.444) (0.475) (0.354) (0.144)

FAMILY & RECREATIONAL TIME-USE VARIABLES
# Adult Academic Helpers 1.140 1.163 1.117 1.128 0.615 1.328
(std. dev.) (0.848) (0.821) (0.875) (0.892) (0.724) (0.789)
# Peer Academic Helpers 0.789 0.907 0.666 0.852 0.887 0.728
(std. dev.) (0.783) (0.792) (0.756) (0.825) (0.766) (0.765)
# Gaming Systems at Home 1.570 1.474 1.660 1.648 1.480 1.554
(std. dev.) (1.135) (1.130) (1.133) (1.299) (1.096) (1.056)
Parental Permission for
Video Gaming on Weekdays 0.878 0.882 0.874 0.809 0.888 0.909
(std. dev.) (0.327) (0.322) (0.332) (0.393) (0.316) (0.287)
Weekday Daily Recreational
Internet Use (hrs) 1.766 1.790 1.740 1.908 1.788 1.694
(std. dev.) (1.201) (1.166) (1.236) (1.290) (1.210) (1.150)
Enrollment in Sports 0.669 0.639 0.700 0.548 0.455 0.807
(std. dev.) (0.471) (0.481) (0.458) (0.498) (0.499) (0.395)
Enrollment in Music 0.383 0.462 0.302 0.295 0.196 0.493
(std. dev.) (0.487) (0.499) (0.459) (0.457) (0.398) (0.500)
Enrollment in Clubs/
Other Activities 0.410 0.438 0.381 0.337 0.315 0.480
(std. dev.) (0.492) (0.496) (0.486) (0.473) (0.465) (0.500)
Fraction of Peer Social Time
In Adult-Supervised Activities 0.351 0.356 0.345 0.317 0.274 0.392
(std. dev.) (0.172) (0.172) (0.171) (0.167) (0.181) (0.158)

ACADEMIC PREFERENCES & ATTITUDE VARIABLES
Math Favorite Subj. 0.361 0.319 0.404 0.431 0.439 0.302
(std. dev.) (0.480) (0.466) (0.491) (0.496) (0.497) (0.460)
Math Least Favorite Subj. 0.216 0.254 0.176 0.277 0.212 0.189
(std. dev.) (0.411) (0.435) (0.381) (0.448) (0.410) (0.392)
Extrinsic Motiv. Score 0 -0.023 0.024 -0.222 -0.030 0.122
(std. dev.) (1) (0.989) (1.011) (1.016) (1.005) (0.971)
Intrinsic Motiv. Score 0 0.056 -0.058 0.010 0.150 -0.059
(std. dev.) (1) (1.005) (0.992) (1.047) (1.057) (0.949)

EXAM SCORES
Pre-Test Score 13.40 12.71 14.11 7.93 7.94 18.07
(std. dev.) (8.96) (8.23) (9.62) (6.13) (6.10) (8.35)
Change in Score (Post-Pre) 1.55 1.94 1.14 0.88 0.49 2.20
(std. dev.) (5.00) (5.03) (4.94) (5.01) (4.89) (4.94)

Notes: Adult Academic Helpers included parents, grandparents, and tutors; Peer Academic Helpers included siblings and
friends. Numbers reported for Neighborhood Mean Income represent the median across all students in the sample. Extrinsic
Motivation Score and Intrinsic Motivation Score both exist on a scale of 0-4, but have been standardized for this table. All other
figures represent sample means, with sample standard deviations in parentheses and italics. Fifth-graders make up 47.3% of the total
sample, with 6th-graders comprising the other 52.7%. Sub-sample proportions are close to that ratio for all gender and race groups.

3.4. Descriptive Statistics. Table 2 presents descriptive statistics by demographic sub-group. In
what follows, we adopt the terminology of referring to Blacks and Hispanics collectively as “under-
represented minorities” (URMs). This convention follows the higher education literature, where
Blacks and Hispanics are known to be proportionally under-represented at post-secondary educa-
tion institutions generally, and especially under-represented at elite colleges and universities. By
contrast, Asian students, although a statistical demographic minority group, are proportionally
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Figure 1. Mathematics Pre-Test Scores by Gender and Race
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over-represented at colleges generally, and particularly so at elite colleges, like their White counter-
parts. Thus, Asians do not satisfy the definition of a “URM” group. For ease of discussion, we will
often refer to URMs as simply “minorities” for short, while recognizing this important caveat.

On average, Black students in our sample live in neighborhoods with mean incomes moderately
above that of the average student in Illinois ($71,602; see Online Appendix A), and Hispanic students
in our sample live in neighborhoods with significantly lower mean incomes. White and Asian
students in our sample live in neighborhoods with significantly higher incomes than the state average.
The correlation between socioeconomics and race is also starkly apparent in uninsured minor rates,
being higher among Blacks than Whites/Asians by a factor of 5.3, and higher among Hispanics by
a factor of 8.6.

From survey responses we also see racial differences in terms of access to homework help, video
game/internet usage, and participation in extra-curricular activities. Whites/Asians have access to
more adult academic helpers (including parents, grandparents, and tutors) and were more likely
to be enrolled in sports and music. Black and Hispanic students are more likely to report that
math is either their favorite or least favorite subject relative to their White/Asian peers. Minority
students also self-reported higher levels of intrinsic motivation when completing school work, while
White/Asian students are more likely to report being motivated by extrinsic factors such as satis-
fying parental or teacher expectations, or to earn a reward for satisfactory performance.17 Females
in our sample also self-reported higher levels of intrinsic motivation, and lower levels of extrinsic
motivation, relative to males.

Finally, Table 2 shows average pre-test scores by sub-group. The average male student correctly
answered 1.4 additional questions on the assessment compared to the average female student. This
corresponds to 0.16 SD higher score for males. The gender gap is relatively small compared to
racial gaps in scores. White/Asian students performed substantially higher on the standardized
mathematics pre-assessment than their Black and Hispanic peers, with the average White/Asian
student correctly answering more than 10 additional questions, as compared to the mean minority
student. This is roughly a 1.13 SD higher score for the mean White/Asian student.

Figure 1 illustrates the pre-test score distributions by gender and race. In the left panel we ob-
serve that low-achieving females slightly outperform low-achieving males (approximately the lowest
quartile). Among high achievers the gender gap favors males, with a more-substantial gap among
those who perform above average on the pre-test. There is little difference in the initial proficiency

17For intrinsic/extrinsic motivation indexes, we included two questions each on the pre-survey and post-survey asking
students about their biggest motivations for completing school-related work. Two external motivations were listed
alongside two intrinsic motivations, along with a fifth “none of the above” option. We then counted the number of
corresponding responses across the four questions and standardize the score by subtracting means and dividing by
standard deviations.
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distributions of Black and Hispanic students (right panel), but there is a substantial gap between
them and their White/Asian peers. These observed performance gaps in our pre-test scores col-
lected during the experiment are consistent with evidence of substantial demographic achievement
gaps from other studies (e.g. Clotfelter et al., 2009; Hanushek & Rivkin, 2006, 2009; NAEP, 2019).

Finally, Table 3 displays descriptive statistics of students’ logged activities on our math website.
Moving forward it will be helpful to define “workers” as the group of students who completed at
least Qi ≥ 2 modules on the math website, and “non-workers” as students who did not. Workers
constituted roughly half of the sample population (see Figure 2 below), though it is important to
keep in mind that selection into worker status is a function of both θe and θl. The top panel of Table
3 pertains to all students, and the middle panel to workers only. The table depicts considerable
raw differences across students in terms of willingness to spend time on math, rate of progress, and
volume of learning tasks completed. Half of students logged no time on the website, while 4% of
them completed all 80 learning modules. The highly skewed distributions of different measures have
medians all being well below the means, and standard deviations generally being near or well above
the means.

To place these figures in context, first note that website activity was above and beyond a child’s
regular schoolwork regimen. For a basis of comparison, we compiled data on school homework time
per-day in our pre-survey and post-survey.18 Importantly, the daily homework measure covers time
spent on all school subjects, not just math. One possible threat to our identification strategy would
be if students responded to our financial incentives by neglecting their schoolwork in proportion to
the strength of the incentives offered. However, in multiple conversations with administrators and
teachers they universally reported back to us a firm impression that the kids displayed no change
in how much homework they were actually turning in during our study period. Our survey data
appear to corroborate this claim: for the sub-sample of worker students the homework time reports
across the pre- and post-survey differed on average by a small (≈1%) and statistically insignificant
amount (p−value=0.765).

Aside from providing a robustness check, this result allows us to use daily homework time as a
useful benchmark for judging the magnitude of logged website activity. If we assume that math-
ematics accounted for between 25% and 50% of daily homework time, then among workers the
average (median) website math time would have represented an increase of between 41% and 83%
(26% and 51%), relative to regular math homework. Of course, this number would understate
the magnitude of learning task volume increase relative to the average student, since non-workers
have systematically lower academic efficiencies. This can be seen in that mean time per passed

18To obtain this information, we asked students on the pre-survey: “How many hours do you usually spend on
homework on a typical weekday (Monday through Thursday)?,” and then we asked the same question applied to
“...a typical weekend day (Friday-Sunday)?”. To make it easy for children to think about the appropriate answer
to this question, available responses were multiple choice: “a. None; b. Less than one hour per day; c. Between
one hour and two hours per day; d. Between two and three hours per day; e. More than three hours per day,”
and we coded a.– e. as 0, 1, 2, 3, and 4 hours, respectively. We repeated both questions on the post-survey as
well, but there we asked students to think about the previous two weeks, specifically. We then averaged across
responses on the pre- and post-surveys. Finally, for a child’s average daily time spent, we used the formula (4/7)×
weekday avg. daily homework time+ (3/7)× weekend avg. daily homework time.
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Table 3. DESCRIPTIVE STATISTICS: WEBSITE ACTIVITY & DAILY HOME-
WORK TIME

Contract Contract Contract
Group 1 Group 2 Group 3

Variable Mean Median Std. Dev. N Mean Mean Mean

WEBSITE ACTIVITY: ALL STUDENTS
Quizzes Passed 10.04 1 19.64 1,676 7.55 10.41 12.16
Math Problems Solved 60.25 6 117.86 1,676 45.29 62.47 72.93
Website Time (min.) 82.63 16.79 154.48 1,676 61.89 82.55 103.34
Total Pay $14.77 $0.00 $23.80 1,676 $11.94 $14.89 $17.46

WEBSITE ACTIVITY: “WORKERS” ONLY
Quizzes Passed 22.34 12 24.29 749 17.72 22.91 25.96
Math Problems Solved 134.07 72 145.73 749 106.31 137.45 155.77
Website Time (min.) 176.61 109.66 192.26 749 135.81 176.01 213.93
Within-Child Time
Per Passed Quiz (min.) 11.11 8.08 9.62 749 10.47 11.32 11.49
Total Pay $33.04 $21.75 $25.77 749 $28.29 $32.91 $37.45

SELF-REPORTED AVG. DAILY HOMEWORK TIME ACROSS ALL ACADEMIC SUBJECTS
All Students (hrs) 1.248 1.214 0.681 1,676 — — —
Workers Only (hrs) 1.424 1.429 0.647 749 — — —

Notes: “Workers” are the set of all students who passed at least 2 quizzes on the website and received a positive payout.

quiz trends upward between contract groups 1, 2, and 3: as offered piece-rate incentives increase, a
marginal group of students having higher θe’s self-selects into the worker group.

For an alternate benchmark of math work volume, we discussed the figures on website activity
for workers (middle panel) with a mathematics education consultant employed by a state board of
education for a mid-western U.S. state. Although volume of math problems assigned varies from
classroom to classroom, the consultant expressed the opinion that 72 extra math problems solved
within a 10-day period (the median for the worker group) would be an increase of between 50%
and 100% in terms of regularly assigned homework volume for an average 5th- or 6th-grade student.
Thus, overall we see that for some students our incentives induced substantial increases of learning
task volume, though the distribution of the increase is heavily skewed.

4. Estimation Methodology

4.1. Student Time Allocation Model. Estimation of student time allocation concentrates on
quantifying three model primitives: individual-level academic efficiency, θei, individual-level time
preference, θli, and the common cost function c(t). Along the way we also estimate several param-
eters of secondary interest, such as τ0, γ, and the distributions of work-time shocks.

4.1.1. Academic Efficiency and Work-Time Shock Distributions. Estimation of the academic effi-
ciency parameter hinges on panel-data methods using the within-child series of observed work times,{
{τqi}

Qi
qi=1

}
i=1

. Taking logs of both sides of equation (2) provides the following equality

log(τqi) = log(τ0) + log(θei)− γ log(qi) + log(uqi), qi = 1, . . . , Qi,
{
i
∣∣i = 1, . . . , N, Qi ≥ 0

}
.

This constitutes a linear-in-parameters regression equation where individual heterogeneity enters as
a student fixed-effect and τ0 and γ, serve as an intercept and slope term. We estimate regression
parameters and fixed effects through a standard differencing approach.19 A key complication is that

19Note that the θ̂ei estimates have differing variances due to the unbalanced panel (i.e., Qi varies across students).



24 PRODUCTIVITY VS MOTIVATION IN ADOLESCENT HC PRODUCTION

Figure 2. Math Website Output and Work Time by Contract Group
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student fixed effects can only be inferred for the set of workers. This issue will be addressed in the
next two sections.

Using regression estimates we can back out the distribution of production time shocks from
the fitted residuals ûqi = τqi/(τ̂0θ̂eiq

−γ̂
i ). We allow for heteroskedastic shocks by partitioning the

support of θ̂ei into 5 sub-intervals of equal length Ij=
[
min(θ̂ei) + (j − 1)h,min(θ̂ei) + jh

]
, where

h=(max(θ̂ei)−min(θ̂ei))/5 is the length of each interval j=1, . . . , 5.20 Then, we estimate conditional
shock distributions by splitting the sample of fitted residuals into 5 sub-samples

{
ûqi |θ̂ei ∈ Ij

}
,

and smoothing the corresponding empirical CDFs using flexible B-splines Fu(u|θei∈Ij ;πuj) with
parameters πuj .21

4.1.2. Labor-Supply. We estimate the time preference trait and labor-supply cost function through
a simulated GMM approach. The identification framework proposed by Torgovitsky (2015) and
D’Haultfoeuille and Février (2015) relies on discrete instruments to create shifts in observable dis-
tributions of incentivized actions across groups of agents that are otherwise identical in their dis-
tributions of unobservables. Figure 2 demonstrates that these conditions are satisfied by our field
experimental controls: contract variation induced stochastic dominance shifts in the CDFs of T and
Q, while individual-level randomization ensures that students receiving those contracts are otherwise
the same. Under these conditions, Torgovitsky (2015) and D’Haultfoeuille and Février (2015) show
that counterfactual comparisons across similar agents working under different incentives are enough
to uniquely disentangle the shape of the common utility function from idiosyncratic agent-level
heterogeneity. Our simulated GMM estimator is explicitly built upon functional representations of
these counterfactual comparisons. In order to facilitate this undertaking we start with a flexible,
parametric, B-Spline specification of the common cost function c(t;πc), having parameter vector
πc (to be estimated) which uniquely determines its shape.22 With this parametric form, individual
choices of Ti and Qi are the basis for inference on the shape of the cost function, which in turn
uniquely determines each individual’s time preference parameter θli.

20We also tried a finer partition of 10 sub-intervals of the support of θe, but it made little difference in the following
stage of estimation, relative to the specification with 5 sub-intervals, while increasing computational requirements.
21We chose 4 knots, uniformly placed in quantile rank space. After constraining the endpoints—a CDF must equal
0 and 1 at the extremes of the support—this left 5 free parameters, (πu2j , . . . , πu6j), to fit the empirical CDFs of
residuals. The tight fit between the two is depicted in Figure 16 in the online supplemental appendix.
22For the common cost function we chose 6 knots, placed evenly at the quintiles and endpoints of the sample of
time worked. We then added three extra knots, uniformly spaced in the upper quintile to target extra flexibility and
deal with a long, skewed upper tail. After imposing the two boundary conditions in Assumption 3, this left 10 free
parameters to allow the model-generated CDFs of Qi to fit their empirical analogs.
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To fix ideas, consider individual i, whose quiz output Qi was at quantile rank ri in contract
group 1. Holding fixed the cost function parameters πc, we can reverse-engineer time preference
by repeatedly simulating sequences of work times using θei and Fu(u|θei). We choose the value of
θli such that, given her actual assignment to contract (b∗1, p

∗
1), optimal stopping choices in Q space

(under decision problem (4)) imply mean production time across all simulated outputs equal to i’s
observed choice Ti. Moreover, i’s choice of work volume Qi can inform us about the shape of the cost
function. Specifically, Qi first contributes to the empirical CDF of work volume under assignment
to contract 1:

F̂q(q|b∗1, p∗1) =

N∑
j=1

1 [Qj ≤ q & pj = p∗1]∑N
j=1 1 [pj = p∗1]

.

Second, with the value of θli known, we can further simulate a sequence of counterfactual work
volume choices {Q∗2is}Ss=1 under contract 2, and {Q∗3is}Ss=1 under contract 3. These simulated
values depend on θei and Fu(u|θei), which are both fixed at this stage, and on the shape of the cost
function c(·;πc) (which also determines θli). They contribute to the model-generated CDFs of work
volume under assignment to contracts 2 and 3 through the following relationship:

F̃q(q|b∗k, p∗k;πc) =
N∑
j=1

S∑
s=1

1

[
Q∗kjs ≤ q & pj 6= p∗k

]
∑N

j=1 1
[
pj 6= p∗k

]
×S

, k = 2, 3.

Thus, child i’s observed choices contribute to the empirical CDF for her actual contract assignment
1, and they also contribute indirectly (by determining θli) to the model-generated CDFs under
counterfactual contract assignments 2 and 3. Intuitively, cost function parameters πc are then
chosen to match child i’s counterfactual projections to those of children at quantile rank ri in
contract groups 2 and 3.

Although this is the basic intuitive form of the GMM estimator, there are two complications
regarding mass points at the extremes of the sample. First, we have a small mass of students
who achieve full output Qi = 80 on the website, as can be seen in Figure 2. This means that
their academic efficiency trait, θei, is known, but without extra structure their time preference
trait, θli, can only be bounded from above. This is because it is impossible to know whether a
given individual would have optimally chosen exactly Qi = 80, or Qi > 80 if given the chance.
We deal with this problem by estimating a constrained quantile function using a low-dimensional
B-spline to extrapolate into the missing upper tails of the empirical CDFs of Q. After discretizing
the upper tail (for computational tractability), for each individual with full output this renders up
to 5 possibilities for optimal stopping points {Q̂i1, . . . , Q̂i5}, all being at or above 80.23 For each
(θei, Q̂im) pair, m = 1, . . . , 5, we back out a time preference trait θli(Q̂im) to match Q̂im as the

23The extrapolating B-spline quantile functions overlapped their empirical counterparts to the 85th percentile. We
assumed that no student would choose to more than double the available workload on the website, so tails were
bounded from above by Q=160. We chose a low-dimensional B-spline with 3 knots so that all parameters for the
extrapolating quantile functions could be informed by the available data. We discretized the extrapolated tails by
selecting no more than 5 uniform steps (in quantile rank space), and also requiring each step (except possibly the last
one) to represent at least 5 observations of Qi = 80. The resulting frequency tables included 3 steps under contract
1 (with the smallest upper mass point), and 5 steps each for contracts 2 and 3. Figure 17 in the online supplement
plots the extrapolated upper tails against the empirical CDFs of Q.
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optimal stopping point, and we run counterfactual simulations for each (θei, θli(Q̂im)) pair. However,
we give each of these (1/5)th weight when incorporating them into the model-generated CDFs F̃q.

The second and more challenging mass-point problem pertains to the sizeable fraction of students
who chose not to complete the minimum output for pay: those with Qi < 2. For these individuals
we can only infer that their 2-dimensional traits are within a contract-specific region bounded by
a decreasing function Θl(θe; b

∗
k, p
∗
k,πc) for k = 1, 2, 3, where to the northwest of this boundary

either θei was too high or θli was too high (or both) to rationalize positive output in response to
their contract (b∗k, p

∗
k). For most of these individuals, their counterfactual outputs under alternate

contract assignments would likely be zero as well. However, some fraction of them may be marginal
agents where counterfactual assignment to one of the alternative contracts k′ might induce a change
to positive output. This we must correct for when computing the simulated CDFs F̃q. To do so,
we use our distributional Assumption 1 to integrate over the non-identified portion of the space for
counterfactual output simulations.

Essentially, this procedure is a 2-dimensional variant of Heckman’s (1979) classic sample-selection
correction, where the selection locus Θl(θe; b

∗
k, p
∗
k,πc) is known. More concretely, holding πc fixed,

all (θei, θli) pairs can be inferred for students with Qi ≥ 2, and the upper bound Θl(θe; b
∗
k, p
∗
k,πc)

on the identified set can be computed as the northwest boundary of the convex hull of the set
{(θei, θli)|Qi ≥ 2, pi = p∗k}. Next, the parameters of the bivariate log-normal distribution, (θe, θl) ∼
BV lN(µ̃, Σ̃), are pinned down by matching the selection frequency as well as the selected means,
variances, and covariance of (θe, θl), conditional on Q ≥ 2, which adds some additional moment
conditions to the GMM objective function.24 For contract k, we denote the selected empirical
moments by

M̂(πc, k) =
[
P̂ (k), Ê1

e (πc, k), Ê1
l (πc, k), Ê2

e (πc, k), Ê2
l (πc, k), Ê3

el(πc, k)
]>
,

(selection frequency) P̂ (k) =
∑N

i=1 1[Qi≥2 & pi=p
∗
k]∑N

i=1 1[pi=p∗k]
,

(selected raw moments) Êrj (πc, k) =
∑N

i=1 log(θji)
r
1[Qi≥2 & pi=p

∗
k]∑N

i=1 1[pi=p∗k]
, j=e, l, r=1, 2,

(selected product moment) Ê3
el(πc, k) =

∑N
i=1 log(θei)×log(θli)1[Qi≥2 & pi=p

∗
k]∑N

i=1 1[pi=p∗k]
,

and we denote their model-generated analogs by

M̃(µ̃, Σ̃,πc, k) =
[
P̃ (µ̃, Σ̃,πc, k), Ẽ1

e (µ̃, Σ̃,πc, k), Ẽ1
l (µ̃, Σ̃,πc, k), Ẽ2

e (µ̃, Σ̃,πc, k), Ẽ2
l (µ̃, Σ̃,πc, k), Ẽ3

el(µ̃, Σ̃,πc, k)
]>
.

These last moments are determined by computing the analogous integrals (using the bivariate log-
normal density) over the selected-in region. This is the reason for the dependence on the cost
function parameters πc (through their influence on the selection thresholds).

Finally, for tractability we perform stochastic integration when computing M̃(µ̃, Σ̃,πc, k). We
also perform stochastic integration over the non-identified region (i.e., to the northwest of the
selection loci Θl(θe; b

∗
k, p
∗
k,πc), k = 1, 2, 3) when simulating counterfactual choices for individuals

24Note that the bivariate log-normal parameters mentioned here, µ̃ and Σ̃, are different from those referenced in
Assumption 1, where the means are zero and Σ is the covariance matrix of the idiosyncratic components (ηei, ηli).
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who chose Qi < 2 under their actual contract assignment. For stochastic integration, we simulate
a sample of independent standard normal draws, Z = [Ze, Zl], where Zm = [zm1, . . . , zmT ]> and
m = e, l. At each iteration of the solver, these can be transformed into bivariate log-normal random
variables through the following formula

(θe,θl) = exp (V Z + µ̃) , (9)

where V is the lower-triangular component of the Cholesky decomposition of the covariance ma-
trix Σ̃. Finally, for each k = 1, 2, 3 we discard all resulting (θe, θl) pairs to the southwest of the
selection locus for contract k, and for each remaining pair we repeatedly simulate optimal coun-
terfactual choices under the other two contracts, as was done for other students. This sample of
simulated choices under counterfactual contract k′ is then appropriately scaled when computing
F̃q(q|b∗k′ , p∗k′ ;πc) according to the mass of contract-k students who chose Qi = 0.

Bringing all of the above steps together, we obtain the following GMM objective function[
π̂c, ̂̃µ, ̂̃Σ]=argmin

{
ρ0

80∑
q=2

3∑
k=1

ωkc (q)
(
F̂q(q|b∗k, p∗k)− F̃q(q|b∗k, p∗k;πc)

)2
+

3∑
k=1

(
M̂(πc, k)− M̃(µ̃, Σ̃,πc, k)

)
>ρ
(
M̂(πc, k)− M̃(µ̃, Σ̃,πc, k)

)}
s.t. c(0;πc) = 0, c′(0;πc) = 1,

(10)

Some final comments on implementation are in order. First, we used an inverse-variance weighting
scheme ωkc (q) ≡ F̂q(q|b∗k, p∗k)(1 − F̂q(q|b∗k, p∗k)), k = 1, 2, 3, that places more emphasis on matching
segments of the empirical CDFs that are more precisely estimated. Second, we implemented our
GMM estimator using the mathematical programming with equilibrium constraints, or MPEC ap-
proach pioneered in the economics literature by Su and Judd (2012). This proved to be much faster
and numerically stable than the alternative nested fixed-point approach, which would require serially
optimizing the second set of moments in equation (10) for each iteration of the cost function param-
eter vector. Instead, the MPEC approach allows both πc and (µ̃, Σ̃) to update independently along
the path to convergence, at which point both sets of moment conditions are mutually optimized.
The purpose of the penalty parameters ρ0 and ρ is to ensure that both sets of moment conditions
are roughly on the same order of magnitude, and that sufficient attention is paid to crucial aspects
of the selection equations.25

4.2. Decomposition of Student Characteristics. We now turn to the decomposition of student
traits into a predictable component and an idiosyncratic component:

log(θei) = Xeiβe + ηei, i = 1, . . . , N, (11)

log(θli) = X liβl + ηli, i = 1, . . . , N. (12)

The covariate vector, Xei, for the academic efficiency equation contains an intercept term and
the following variables: indicators for gender, race, grade level, and school district ; the # of adult

25We set ρ0=100 so that the primary moments are on the same order of magnitude as the selection moments, and
ρ{1,1}=10, ρ{i,j}=1, i=j >1, and ρ{i,j}=0, i 6=j, i=1, . . . , 6, j = 1, . . . , 6 in order to place particular emphasis on
matching the empirical selection frequency.
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academic helpers in a child’s social network; the # of peer academic helpers; and two socioeconomic
proxies specific to the child’s neighborhood of residence: mean household income (a proxy for
affluence) and fraction of minors with no private health insurance (a proxy for deprivation of non-
school developmental resources). The covariate vector X li for time preferences contains these same
variables and adds an additional set of variables pertaining specifically to attitudes, preferences, and
outside options for time use, including indicators for whether math is a favorite academic subject
or math is a least favorite subject; extrinsic motivation score; intrinsic motivation score; indicators
for enrollment in organized sports, organized music activities, other organized clubs; fraction of
peer social time under adult supervision; # of video gaming systems at a child’s home; parental
permission for video gaming on weekdays; and weekday time spent on recreational internet use.
The idea in adding these additional factors to equation (12) is that θli represents a child’s level of
motivation for shifting an hour of her time away from the best outside option (e.g., gaming, internet
surfing, playing with friends) and toward math activity, which may be influenced by her attitude
toward math or her responsiveness to different forms of incentives, holding her academic efficiency
θei fixed. These variables are all summarized in Table 2.

The challenge here is a basic sample truncation problem: while (Xei,X li) is known for all
i = 1, . . . , N , the outcome variables (log(θei), log(θli)) are known only for students who chose Qi ≥ 2.
By adopting Assumption 1, (ηe, ηl)∼BV N(0,Σ), we can implement a 2-dimensional Maximum Like-
lihood Tobit strategy, using the known, contract-specific selection thresholds Θl(θe; b

∗
k, p
∗
k, π̂c), k =

1, 2, 3, uncovered in the previous stage of estimation. Moreover, we allow for our covariance structure

to depend on race and gender by adopting the following specification for Σi =

[
σ2ei σeli

σeli σ2li

]
:

σei =σei0 + σei1femi + σei2blacki + σei3hispanici

σli =σli0 + σli1femi + σli2blacki + σli3hispanici

σeli =σeli0 + σeli1femi + σeli2blacki + σeli3hispanici.

Our Tobit estimator is thus defined by optimizing the following log-likelihood function:[
β̂e, β̂l, Σ̂

]
=argmax

{
N∑
i=1

1(Qi ≥ 2)ωdi log (fηe,ηl(Xeiβe,Xeiβe;Σi))

+ 1(Qi < 2)ωdi log
(

Pr
[
log(θl) > log [Θl(θe; bi, pi, π̂c)]

∣∣∣Xei,Xli;βe,βl,Σi

])}
,

(13)

where the ωdi terms are inverse-variance weights: ωdi = 1/V ar(θ̂ei)+1/V ar(θ̂li)
2 whenever Qi ≥ 2, and

ωdi=min{ωdj |Qj ≥ 2} whenever Qi<2. For computational tractability, we compute the probability
in the Tobit term above by simulation, similarly as we did above (see equation (9)).

4.3. Skill formation Models. The final stage of our empirical analysis is the estimation of the
skill formation technology. For initial math skill, taking logs of both sides of equation (5) renders
the following:

log(Si) = W iα0 + θeiW iαe + θliW iαl + log(εi). (14)
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For the production technology of gains in math skill, we can re-write equation (7) as:

∆Si = V iδ0 + TiV iδ1 + T 2
i V iδ2 +QiV iδ3 +Q2

iV iδ4 + (Ti ×Qi)V iδ5 + εi, (15)

where V i = [W i, Si, θei, θli].26 The covariate vector, W i, contains an intercept term and the
following variables: indicators for gender, race, grade level, and school district ; neighborhood-level
socioeconomic indicators mean household income (a proxy for affluence) and fraction of minors with
no private health insurance (a proxy for deprivation of non-school developmental resources); and
total # of academic helpers in a child’s social network. Note that both in the model of initial math
skill and in the model of incremental skill gains, each of these factors is allowed to have a direct
impact (through the intercept terms) and also to have an indirect impact (through the slope terms)
of altering the map between the principal inputs and the final outputs.

While it has long been known that students attending schools with greater resources produce
better outcomes (e.g., standardized test scores), it is unclear whether this is due to better school
inputs per se, or whether it is attributable to selection of more academically adept students into
those higher-performing schools. In short, to what extent are higher performing schools truly
adding value versus merely shepherding gifted students through the academic pipeline? The figures
in Table 1 suggest that making this distinction is far from obvious. In terms of studying the role
of school quality in skill formation technology, a major advantage of our research design is that
it first quantifies unobserved student traits, θe and θl, and thereby solves the classic endogeneity
problem of omitted variable bias. The assumption that we require to attach a causal interpretation
to estimates of parameters in the two production function equations above is the following:

Assumption 4. E[W>
i log(εi)|θei, θli] = 0 and E[V >i εi|θei, θli] = 0.

There remain two final challenges to be addressed. First, since the empirical model of time
allocation can only infer unique values of (θei, θli) for students who chose minimal output Qi ≥ 2

on our website, we have a missing regressors problem in equations (14) and (15). This is fairly
straightforward to address: using the Tobit maximum likelihood results from the previous section,
for each student i with Qi<2 we can compute the conditional expectations,27(

θ̂ei, θ̂li

)
= E

[(
log(θe), log(θl)

)∣∣∣Xei, X li, Qi < 2, pi; β̂e, β̂l, Σ̂i

]
.

The second challenge is that since student traits play the role of regressors in equations (14)
and (15), sampling variability induces an errors-in-variables problem. We compute empirical Bayes
(EB) estimates of (θe, θl) in order to reduce attenuation bias by shrinking each fixed effect toward
the mean in proportion to the individual noise in each fixed effect. This approach has a long
history in the literatures on school quality (e.g. Kane & Staiger, 2002), and teacher value-added
(e.g. Jacob & Lefgren, 2008). One standard procedure (e.g. Morrix, 1983; Abdulkadiroglu, Pathak,
Schellenberg, & Walters, 2020) is to assume a normal prior over the true fixed effect, log(θji), and
the estimation residual, rji for j=e, l. This implies a shrinkage factor of λji = ν2j

/(
ν2j +ν2rji

)
, where

ν2j is the estimated variance of true log(θji), and ν2rji is the estimated sampling residual variance

26For numerical stability in our short-run production function analysis, we normalize T (practice time in minutes)
and initial test score S1 by subtracting means and dividing by standard deviation.
27This approach is in the spirit of standard methods for regression with X’s surveyed by Little (1992, Section 4.2).
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on ̂log(θji) for individual i’s trait j = e, l.28 This results in the following EB estimates for student
characteristics to be used as regressors for estimation of skill production technology:

log(θei)EB=λei ̂log(θei)+(1−λei)
∑N
i=1

̂log(θei)

N
and log(θli)EB=λli ̂log(θli)+(1−λli)

∑N
i=1

̂log(θli)
N

.

Finally, the imputation of student traits for non-workers suggests that the error terms in equations
(14) and (15) may exhibit heteroskedasticity. We formally test for this and find that the null
hypothesis of homoskedastic errors is strongly rejected. We estimate the production parameters via
feasible generalized least squares in the familiar way as outlined in Wooldridge (2016).

4.4. Standard Errors. For the empirical model of student time allocation and for the Tobit ML
decomposition of student traits, we bootstrap all standard errors. Our block-bootstrap procedure is
designed to mimic our randomized sampling procedure (discussed in Section 3.3.3) which balanced
on race, gender, school district, grade level, and pre-test score. We begin by arranging all test
subjects into race-gender-district-grade bins.29 Suppose that there are K such bins in total, and
that within contract j = 1, 2, 3 the bins each have N1j , N2j , . . . , NKj subjects in them, respectively.
Then, in order to construct a single block-bootstrap sample, for each bin, k = 1, . . . ,K, we do the
following:

(1) Randomly draw a test subject (with replacement), call her “subject1,” and record which
contract j she was assigned.

(2) Select subjects from the other two contracts j′ and j′′ in that same race-gender-district-grade
bin (with replacement) whose pre-test scores are closest to subject1’s pre-test score. Break
ties randomly if multiple subjects fit that description within contract groups j′ and/or j′′.
Call these two selected individuals “subject2” and “subject3,”respectively.

(3) Add the triple (subject1, subject2, subject3) to the bootstrap sample.
(4) Repeat steps (1)–(3) above, until full bootstrap samples of size Nk1, Nk2, and Nk3 have been

constructed for bin k under contracts 1, 2, and 3, respectively.
(5) Repeat steps (1)–(4) above for each race-gender-district-grade bin, k = 1, . . . ,K.

The final remaining question is how many bootstrap samples on which to generate and re-estimate
the model. The main consideration here is a trade-off between simulation error and computational
cost. Estimates of the student time allocation model generally took between 10 and 30 minutes
each, including an adaptive multiple re-starts algorithm to ensure quality of the final solution. The
Tobit ML estimator took a similar amount of time to converge for each bootstrap iterate. We chose
1,600 bootstrap samples for the time allocation model, and 500 bootstraps for the Tobit ML model,
due to a necessity of estimating multiple specifications of the latter.

28An alternative approach is to restrict the shrinkage forecast of log(θji), given ̂log(θji), to linear projections (e.g.
Chetty et al., 2014), which implies the same shrinkage factor λji. Bootstrap estimation of ν2j and ν2rji are discussed
in Section 4.4.
29Due to a sparsity of Blacks and Hispanics in District 1 and a sparsity of Whites and Asians in District 3, we only
arrange students into gender-district-grade bins in those two districts. District 2 subjects, who exhibit a more diverse
racial mix, are fully partitioned into race-gender-district-grade bins.
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Figure 3. Time Supply Cost & Marginal Cost Estimates

For standard errors on student fixed effects, we first bootstrap all common parameters. Then, we

combine the bootstrapped parameter samples,
{
τ
(s)
0 , γ(s), π

(s)
c

}1,600

s=1
, etc., with an individual’s ob-

servables,
{
{τQiqi=1}, Ti, Qi,Xei,X li

}
, to compute bootstrapped fixed effect estimates

{
θ
(s)
ei , θ

(s)
li

}S
s=1

.
These within-student bootstrap samples of fixed effects are then used to compute standard errors,
inverse variance weights, and EB shrinkage forecasts. We compute heteroskedasticity-consistent
standard errors and hypothesis tests for production technology parameters in the usual way.

5. Empirical Results

5.1. Cost Schedule, Time Preference, and Academic Efficiency Estimates. Figure 3 il-
lustrates the estimated cost function C(T ; θ̂l; π̂c) and marginal cost function, both scaled to the
median value of θl among workers. The lower panel of the figure plots the histogram and density of
total time worked Ti for context. Costs and marginal costs are precisely estimated for relatively low
values of time expenditure, while the 95% confidence bands widen for higher values where the data
are sparse. We find that a remarkably high degree of curvature in the common cost function c (t; π̂c)

is required to rationalize the observed distributions of work time and quiz outputs. The top panel
of the figure labels cost levels at regular intervals to illustrate this point. Relative to a 90-minute
time commitment, the depicted child’s costs roughly quadruple with a doubling to 3 hours, and an
additional doubling of time commitment slightly more than quadruples costs again (Figure 18 in the
online appendix displays the goodness of fit that our flexible B-spline cost specification achieved).
Overall, the structural model does remarkably well at matching patterns in the data, especially for
contract group 2 where the richest set of counterfactual comparisons are available (i.e., students
being offered both higher and lower incentives).
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Figure 4. Time Supply Cost Function Estimates
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Figure 5. Effective Hourly Wage Rates
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(total piece− rate payments to child i)/(total time worked by child i).

Figure 4 illustrates the degree of cost variation across students. The figure depicts cost schedules
scaled to θl types at the 25th percentile, median, and 75th percentile of workers. Here we see
dramatic heterogeneity in willingness to supply time to math learning activity: costs of 3-6 hours of
foregone leisure differ by a factor of roughly 7 across the inter-quartile range of worker types. Since
the figure restricts attention to workers only, who have higher θl values, on average, the comparison
across the 25th and 75th percentiles of the overall student distribution would be even more stark.
Note, however, that Figures 3 and 4 consider costs of effort in the time dimension only.

As the model suggests, time costs θl do not determine a student’s study effort choices alone; how
productive they expect to be with their time, academic efficiency, plays a central role too. Figure 5
illustrates of heterogeneity across students in terms of θe. The figure plots two curves: the overall
“mean hourly wage” gives the CDF of (total payments to child i)/(total time worked by child i) and the “mean
marginal hourly wage” is the CDF of (total piece−rate payments to child i)/(total time worked by child i). This
second measure is more conservative and ignores the fact that the first hour or so is most lucrative
due to the one-time base wage payment. The median of “mean hourly wage” is $13.98/hour and
the median of “mean marginal hourly wage” is $7.22/hour. Since test subjects are 9-11 years old,
our offered piece-rate contracts translate into fairly strong incentives, on average, for children with
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Table 4. TOBIT REGRESSION RESULTS: ACADEMIC EFFICIENCY

SPECIFICATION: (1) (2) (3)

DEPENDENT VARIABLE: log (θe) Estimate St. Dev. Effect Estimate St. Dev. Effect Estimate St. Dev. Effect

Female (β̂1) 0.2188*** 0.3278 0.1760*** 0.2551 0.1563*** 0.2411
(std. err.) (0.0515) (0.0499) (0.0488)

Black (β̂2) 0.7810*** 1.1702 0.6248*** 0.9054 0.5623*** 0.8677
(std. err.) (0.1093) (0.1185) (0.1037)

Hispanic (β̂3) 0.7873*** 1.1797 0.4045** 0.5863 0.3655** 0.5639
(std. err.) (0.1710) (0.1543) (0.1364)

Grade 5 (β̂4) 0.3096*** 0.438 0.2940*** 0.4620 0.2666*** 0.4114
(std. err.) (0.0562) (0.0514) (0.0517)

District 2 (β̂5) — — 0.2231** 0.3234 0.1333* 0.2057
(std. err.) (0.1038) (0.0808)

District 3 (β̂6) — — 0.7829*** 1.1346 0.4919*** 0.7590
(std. err.) (0.2031) (0.1298)

Constant (β̂0) -0.3145*** -0.3926*** -0.3359***
(std. err.) (0.0661) (0.0856) (0.0632)

Neighborhood SES Controls yes yes yes
Family Academic Support Controls no no yes
N 1, 676 1, 676 1, 676
Pseudo-R2 0.378 0.397 0.370
log-Likelihood -3684 -3664.8 -3560.6

Notes: Higher values of log(θe) imply lower academic efficiency. Neighborhood SES Controls contain log of
mean income and fraction of minors with no private health insurance. Family Academic Support Controls
include (self-reported) counts of how many adults (e.g., parent, tutor, etc.), and how many peers (e.g., friend,
sibling, etc.) regularly help the student with his/her math homework. In all model specifications, Neighborhood
SES Controls individually play no statistically significant role, and Academic Support Controls individually
play no economically significant role in explaining math academic efficiency. St. Dev. Effect represents the
change in standard deviation units of log (θe) from switching the value of a binary regressor from 0 to 1. Note that
due to joint Tobit Estimation Pseudo-R2 for log(θe) need not increase monotonically with model richness, though
the sum of Pseudo-R2 for both log(θe) and log(θl) will generally rise.

academic efficiencies that are not too low. In fact, worker students above the 90th percentile (i.e.,
in the lower decile of θe) were making a comparable or better hourly wage to what many economics
graduate students receive for teaching duties. Note that the majority of cross-student heterogeneity
in Figure 5 derives from variation in academic efficiency, but once again, keep in mind that this
figure does not incorporate a child’s time preference θl. Our subsequent analyses will combine these
two characteristics in various ways.

5.2. Decompositions of Time Preferences and Academic Efficiency. The most-substantial
demographic differences in test scores are between Black/Hispanic andWhite/Asian students, driven
by underlying differences in the distributions of θe by demographic group. Tables 4 and 5 report
results from Tobit regressions exploring relationships between observable characteristics of students
and their neighborhoods, and the type parameters we estimated using the structural model.

From Table 4, θe tends to be higher (i.e., lower academic efficiency) for females, Black students,
and Hispanic students, compared to their male or White/Asian peers after conrolling for socioe-
conomic proxies. This means that males require less time to complete math learning activities,
conditional on attempting them. Unsurprisingly, 6th-grade students are more efficient than 5th-
grade students. In specification (1) females have average values of log(θe) that are 0.33 SD below
the values of their male peers, which is a little less than 3/4 of the gap in log(θe) between 5th-
and 6th-graders. Blacks and Hispanics tend to have values of log(θe) that are 1.2 SD below their
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Table 5. TOBIT REGRESSION RESULTS: TIME PREFERENCES

SPECIFICATION: (1) (2) (3)

DEPENDENT VARIABLE: log (θl) Estimate St. Dev. Effect Estimate St. Dev. Effect Estimate St. Dev. Effect

log(Mean Nbhd Income) (β̂1) 0.2148* 0.1285 0.0051 0.0032 0.0898 0.0534
(std. err.) (0.1430) (0.1795) (0.1072)

Nbhd Uninsured Minors (β̂2) 0.8052*** 0.4855 0.8061*** 0.5105 0.3677*** 0.2204
(std. err.) (0.1873) (0.2416) (0.1362)

Female (β̂3) -0.9766*** -0.5882 -0.8750*** -0.5535 -0.6953*** -0.4163
(std. err.) (0.1781) (0.1588) (0.1098)

Black (β̂4) -0.7971** -0.4801 -0.5637 -0.3566 -0.6419** -0.3843
(std. err.) (0.3413) (0.3434) (0.2620)

Hispanic (β̂5) -0.4691 -0.2826 -0.0842 -0.0532 -0.0862 -0.0516
(std. err.) (0.5038) (0.5101) (0.4682)

Grade 5 (β̂6) -0.3145** -0.1894 -0.3186** -0.2015 -0.2461*** -0.1474
(std. err.) (0.1389) (0.1330) (0.0936)

District 2 (β̂7) — — -0.4204 -0.2660 -0.0864 -0.0517
(std. err.) (0.2925) (0.1732)

District 3 (β̂8) — — -1.1065 -0.7000 0.0037 0.0022
(std. err.) (0.7464) (0.4119)

Math Favorite (β̂9) — — — — -0.2535*** -0.1518
(std. err.) (0.0934)

Math Least Favorite (β̂10) — — — — 0.0411 0.0246
(std. err.) (0.1550)

Extrinsic Motiv. Score (β̂11) — — — — -0.6172*** -0.3094
(std. err.) (0.0881)

Intrinsic Motiv. Score (β̂12) — — — — -0.5469*** -0.2938
(std. err.) (0.0735)

Constant (β̂0) -6.3750*** — -6.2422*** — -4.7812*** —
(std. err.) (0.2688) (0.3475) (0.4924)

Family Academic Support Controls no no yes
Extra-Curricular Controls no no yes
Gaming & Internet Use Controls no no yes
N 1, 676 1, 676 1, 676
Pseudo-R2 0.061 0.076 0.206
log-Likelihood -3684 -3664.8 -3560.6

Notes: Higher values of log(θl) imply higher utility costs (lower willingness) of allocating time to extra math activity. The outcome
variable log(θl) represents a child’s idiosyncratic willingness to substitute away from spending time on the outside option and toward
extra study of mathematics. log(Mean Nbhd Income) and Nbhd Uninsured Minors rate are both standardized. Academic
Support Controls include self-reported tally of adults (e.g., parent, grandparent, tutor, etc.), and tally of peers (e.g., friend, sibling,
etc.) that regularly help the student with his/her math homework. Extra-Curricular Controls (dummies for enrollment in sports,
music, and clubs; and fraction of social time in structured, adult-supervised activities) individually do not play a statistically
significant role in explaining leisure preferences. Family Academic Support Controls do not play an economically significant role.
Gaming & Internet Use Controls (# of video gaming systems at a student’s home, and parental permission for playing video
games or recreational internet use on weekdays) collectively play a small role in explaining leisure preferences. Adding gender-race
interactions and gender-school-district interactions to specification 3 does not meaningfully change point estimates. St. Dev. Effect
represents the change in standard deviation units of log (θl) from switching the value of a binary regressor from 0 to 1 or from
increasing the value of a continuous regressor by one standard deviation.

White/Asian peers, or approximately 2.7 times as large as an additional year of schooling. When
we extend this analysis to control for a student’s school district and their adult or peer support
network, we still observe substantial differences due to gender and race. Females now lag males by
0.24 SD, which is 0.59 times the increase in log(θe) due to an extra year of school. For the average
Black (Hispanic) student in the sample log(θe) tends to be 0.87 SD (0.56 SD) higher than the aver-
age White/Asian student, meaning their academic efficiency disadvantages are 2.1 (1.4) times the
average effect of an additional year of schooling.

Alternatively, from Table 5 we observe that θl tends to be lower (i.e., higher motivation level for
math) for females and Black students compared to their male and White/Asian peers. Hispanics also
have lower mean θl, though the difference is not significant. Thus, on average females and minority
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students require fewer incentives to spend extra time working on math problems, compared to
males and Whites/Asians. Similarly, 6th-grade students require greater incentive than 5th-graders
to engage in extra math activity. This difference by grade, however, is relatively small compared to
the differences due to gender or race. In model specification (1), females tend to have values of log(θl)

that are 0.59 SD below their male peers, and Black and Hispanic students tend to have values of
log(θl) that are 0.48 SD and 0.28 SD below their White/Asian peers, respectively. When we extend
this analysis (specification (3)) to control for a student’s school district, attitudes, preferences,
time-use and consumption variables, and family/peer support network, we still observe substantial
differences due to gender and race. The average female log(θl) tends to be 0.42 SD lower than the
average male log(θl), and the average Black student log(θl) tends to be 0.38 SD below that of the
average White/Asian student. With these other controls, the effect for Hispanic students falls to
only 0.05 SD below and remains insignificant.

Now we turn to the role of school quality in determining student ability and performance. In Ta-
ble 4, even after controlling for observable student characteristics, attendance at a high-performing
district induces lower values of θe. In other words, one’s school enrollment predicts significant
reductions in the time required for a student to complete learning tasks. Interestingly, from the
descriptive evidence in Table 1, one might have suspected that District 1’s inputs are more advanta-
geous to the student than District 2’s, which are in turn more advantageous than District 3’s. This
pattern plays out in the value-added estimates from the Tobit model: switching from District 1 to
District 2 or District 3 induces a reduction in a child’s academic efficiency by 0.21 SD or 0.76 SD,
respectively. The latter result is roughly 1.8 times the gap between grade-5 and grade 6-students,
holding school district and all other student observables fixed.

Similar patterns do not emerge for motivation level θl, with school district having no significant
effect on time preferences beyond what is predicted by other factors such as gender, race, neigh-
borhood socioeconomic traits, and a rich set of covariates on preferences, attitudes, consumption
level, and outside options for time use. Finally, our Tobit results also speak to a classic question
of whether better outcomes at higher-performing schools are due primarily to treatment by more
advantageous school inputs or to selection of more academically adept students onto their rolls. We
indeed find that higher-performing schools benefit from significant advantageous selection on both
θe and θl (see Figure 19, Online Appendix A). Below we further investigate whether/how schools
produce value added in the learning process.

There are several other insights that emerge from our decomposition of unobserved student char-
acteristics. Reporting math as a favorite subject is unsurprisingly predictive of a significant increase
in willingness to spend time on math, though it is also interesting, and perhaps reassuring, that list-
ing math as one’s least favorite subject is not a significant predictor of lack of motivation. We also
find that being either more intrinsically motivated or more extrinsically motivated are both strong
indicators of responsiveness to our extrinsic financial incentives for students to divert extra leisure
time toward math activity. This forms part of a recent body of empirical work finding evidence
of a synergistic role for intrinsic and extrinsic incentives (e.g., Kremer, Miguel, & Thornton, 2009;
Hedblom, Hickman, & List, 2019), rather than a conflicting role as previously thought (e.g., Gneezy
& Rustichini, 2000; Bénabou & Tirole, 2003; Leuven, Oosterbeek, & van der Klaauw, 2010).
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We also assess the relationship between socioeconomics and the current values of θe and θl. We
have two measures of the socioeconomic well-being of a student’s census block group, including
the log of mean neighborhood income and the share of minors without private health insurance.
The first is a measure of affluence, while the second is a measure of resource deprivation. While
affluence plays no meaningful role in determining θe and θl, resource deprivation is a statistically
and economically significant predictor of a child being less motivated for academic pursuits.30

Figure 6 displays the selection-corrected distributions of θl and θe by gender for the entire sample
population (regardless of worker status), using Tobit model estimates. The CDFs graphically depict
the gender differences explained above; namely, that females tend to have lower academic efficiency
but also lower time preference with regard to math activity, relative to males. Interestingly, in
the case of the gender comparison, the motivation factor dominates in terms of total work volume
on our website. While the average for males is 8.5 quizzes completed, females completed 35%
more (11.5 quizzes), despite taking longer on each. This difference is significant at conventional
levels (p−value = 0.001). A similar pattern emerges in survey data on daily homework times (all
academic subjects) as well: females self-report 1.31 hours per day on homework activities, which
constitutes a significant (p−value = 0.0004) increase of 10% relative to males, at 1.19 hours per day.
In short, our descriptive and causal results all indicate that, conditional on environmental factors,
attitudes, and preferences, while males seem to have a comparative advantage of academic efficiency
in mathematics, females have a mathematics comparative advantage in terms of work ethic.

Figure 7 depicts the selection-corrected distributions of θe and θl by race. The distribution of
log(θe) is strikingly shifted to the right for Black and Hispanic students compared to Whites/Asians;
the gap being several times larger than the analogous gender gap. The most motivated (i.e., lowest
θl) Black and Hispanic students require fewer incentives to engage in extra math study, relative to
the most motivated White/Asian students. Among the least motivated, Blacks and Whites/Asians
look very similar, but the least motivated (i.e., highest θl) two-thirds of Hispanics lag significantly
behind the other two groups in responsiveness to external incentives, for a given academic efficiency
level. Two facts from Tables 1 and 2 provide a possible explanation for why: first, within our sample
population Hispanics are most heavily represented in District 3; second, District 3 has the highest
proportion of students with limited English proficiency. This is suggestive that linguistic barriers
may play a significant role in reducing academic motivation for children from Hispanic immigrant
families. An exploration of linguistic barriers is beyond the scope of this project, but it underscores
an important consideration when interpreting the race parameters in Tables 4 and 5: these terms
need not represent anything innate about a child due to his/her race, but may instead be a proxy
for other cultural, social, or linguistic factors not captured by our model. All of these considerations
are important questions deserving further attention in future research.31

30A note of caution regarding interpretation: our socioeconmic controls are measured at the neighborhood (i.e.,
Census block group) level rather than at the household level, so this result may not represent the causal impact of
health insurance per se, but should be regarded as a stand-in for general deprivation of non-school developmental
resources.
31Bodoh-Creed and Hickman (2017) structurally estimate unobserved student traits using observational data on
college admissions. In their data, race no longer retains predictive power for unobserved student characteristics,
conditional on parents’ income, wealth, education, and marital status.
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Figure 6. Distributions of Characteristics by Gender
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Figure 7. Distributions of Characteristics by Race
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5.3. Determinants of initial math skill. In Sections 2.3 and 4.3, we formalize long-run devel-
opment of math skill (measured by a standardized pre-test) as a Cobb-Douglass production process
(equation (14)) where the principal inputs that schools use to produce new learning are student
traits (θe,θl). The total factor productivity (TFP) term and the production shares of the two main
inputs are idiosyncratic to each student i, depending on a vector of external factors W i which
include school quality, gender, race, family support controls, and socioeconomic proxies. Intuitively,
holding a child’s traits (θei, θli) fixed, each of these external factors is allowed to play a direct role
in the production process—through altering TFP Ai—as well as an indirect role—by altering the
effectiveness of the primary inputs through the production shares αei and αli.32

Empirical results are presented in Table 6. For ease of interpretation, rather than reporting
coefficient values the table reports standard deviation effects, defined as the mean size (averaged
across all students i) of a shift in log(S1) that is induced (in standard deviation units of log(S1))
by an increase in a control variable of one standard deviation (for continuous controls) or a 0-to-
1 change (for binary controls). These standard deviation effects encapsulate influence through all
channels, both direct and indirect, but the lower caption of the table provides additional information
to separate out effects on slopes.

Table 6 provides several interesting insights. First, we find that both θe and θl are important
determinants of initial math skill, but θe plays a clearly dominant role between the two. This
insight should be considered alongside our earlier findings that females and Black students may be

32When interpreting empirical results, recall that θe and θl are both inversely related to efficiency and motivation.
Therefore, when a production share is larger in the negative direction, that is a good thing for skill development.
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Table 6. COBB-DOUGLAS PRODUCTION OF INITIAL MATH PROFICIENCY

SPECIFICATION: (1) (2) (3) (4)
DEP. VARIABLE: log (S1) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.)

TFP ( ̂log(Ai)) (2.973; 0) (2.910; 0.149) (2.872; 0.207) (2.871; 0.214)

θe Prod. Share (α̂ei) (−0.453; 0) (−0.327; 0.107) (−0.283; 0.106) (−0.283; 0.105)

θl Prod. Share (α̂li) (−0.043; 0) (−0.037; 0.007) (−0.040; 0.020) (−0.040; 0.020)

Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect

log(TFP ) N/A 0.3543*** 0.4935*** 0.5085***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
log(θe) -0.6435*** -0.4648*** -0.4030*** -0.4030***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
log(θl) -0.1562*** -0.1338*** -0.1448*** -0.1465***
(joint p-value)

(
3 .1 × 10−16

) (
4 .2 × 10−15

) (
<10−16

) (
8 .8 × 10−11

)
CONTROL VARIABLES:
District 2 (α̂01, α̂e1, α̂l1) — -0.3922*** -0.3063*** -0.2952***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
District 3 (α̂02, α̂e2, α̂l2) — -0.7704*** -0.7526*** -0.6618***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
Grade 5 (α̂03, α̂e3, α̂l3) — — -0.2267*** -0.2250***
(joint p-value)

(
4 .8 × 10−11

) (
1 .1 × 10−10

)
Female (α̂04, α̂e4, α̂l4) — — -0.0383*** -0.0649***
(joint p-value)

(
8 .5 × 10−6

)
(0.0001)

Black (α̂05, α̂e5, α̂l5) — — -0.2316*** -0.2157***
(joint p-value) (0.0018) (0.0026)

Hispanic (α̂06, α̂e6, α̂l6) — — -0.0555** -0.0508*
(joint p-value) (0.0263) (0.0576)

log(Mean Nbhd Income) no no no yes
Nbhd Uninsured Minor Rate no no no yes
# Peer & Adult Helper no no no yes
N 1, 676 1, 676 1, 676 1, 676
R2 0.406 0.487 0.512 0.514
Adjusted R2 0.405 0.485 0.506 0.506

Notes: Mean St. Dev. Effect is the total impact of a variable through both TFP (direct effect) and production shares of student
inputs (interactions). For discrete variables Mean St. Dev. Effect is the mean impact (across all students) of switching value from
0 to 1 (all else fixed), in standard deviation units of log(S1). For a continuous variable Mean St. Dev. Effect is the mean impact
(across all students) of a one standard deviation increase (all else fixed), in standard deviations of log(S1). Reported joint p-values
are for the joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95% and 90% levels are
denoted by three stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e., (α̂ek, α̂lk),
k=1,. . . ,6) have the following joint p-values: 5.1× 10−6 for District 2; 1.7× 10−7 for District 3; 0.2412 for Grade 5; 0.0026 for
Female; 0.1305 for Black; and 0.0343 for Hispanic.
The p-value for a joint exclusion of all neighborhood socioeconomic terms and helper terms is 0.6302.

considered more motivated compared to other groups, having relatively more advantageous levels of
θl, on average. Together, these results suggest that educational interventions, such as Fryer (2011),
Levitt et al. (2016), and Fryer et al. (2020), that aim to decrease gender or racial performance
gaps in mathematics by motivating students through incentives or information about the returns to
education may be misguided.33 These groups already tend to be more motivated than their male
or White/Asian peers, suggesting that motivation is not the primary barrier limiting their progress.
Moreover, (in specification (4)) since TFP is 3.5 times as important as θl, and θe is 2.8 times as
important, efforts to further incentivize marginal groups (further decreasing θl) will struggle to

33Gneezy et. al. (2019) also adds important insights for inducing effort on one-off tests.
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Figure 8. Idiosyncratic Cobb-Douglas Production Parameters by School District
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overcome the relative disadvantages these groups face.34 We explore these considerations in more
detail through counterfactual analyses in Section 6.

Second, we find strong evidence that school quality influences the production technology in im-
portant ways. The magnitudes of the school district effects again strongly conform to the pattern
one might suspect from the suggestive evidence in Table 1: the difference between District 1 (the
high performing district) and District 2 (the middling school district) in terms of standard devia-
tion effects is roughly half the difference between District 1 and District 3 (the struggling school
district). Furthermore, the nature of the differences across school districts is not merely one of
levels, but of the fundamental shapes of the production processes employed. Figure 8, which plots
empirical CDFs of student-specific production parameters, illustrates an interesting and novel find-
ing: high-performing school districts have higher TFP and lean more heavily on academic efficiency,
whereas middle- and low-performing schools have lower TFP and lean more heavily on a student’s
motivation level to generate improvements in math skill.

34These insights may help explain why conditional cash transfers to students or families for increases in academic
performance have often resulted in limited returns to learning (e.g., Fryer, 2011). Similarly, Levitt, List, and Sadoff
(2016) find limited returns to such conditional transfers in Chicago-area schools, which is the setting of our experiment.
Leuven et al. (2010) show evidence among university students that those who are already performing well tend to
respond most to financial incentives. Levitt, List, Neckermann, and Sadoff (2016) show that incentives are more
effective when delivered immediately. Cotton, Nanowski, Nordstrom, and Richert (2020) estimate returns from an
intervention in developing countries providing girls, their families, and communities with information about the
benefits of girls’ education, while motivating the academic efforts of the girls. They find that such interventions can
have significant effects on academic progress, but at potentially prohibitive costs.
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Third, we also find evidence of decreasing returns to scale production technology in the sense that
−(αe+αl) is well below a value of 1 (which would indicate constant returns to scale) for all students in
the sample. This means that the extra benefit in math skill development from improving a student’s
underlying characteristics declines as those characteristics become more and more favorable.

5.4. Determinants of incremental gains in math skill. In Sections 2.4 and 4.3, we formalize
improvements in math skill over the short run as a flexible quadratic polynomial (see equation (15))
in time spent on math activity (T ) and volume of learning task completion (Q). Importantly, T and
Q are also chosen by the student as functions of incentives and underlying characteristics (θe, θl),
being micro-founded by the student choice model at the core of the field experimental design. The
outcome variable of the short-run production function is the change in exam score ∆S between
the post-exam and the pre-test (separated by 2 weeks of calendar time). Once again, we allow
the intercept term and the slope coefficients on the primary productive inputs T and Q to be
idiosyncratic, varying by the factors in W i, plus initial math skill S1, academic efficiency θe, and
time preference θl. Thus, in addition to the interactions from before we are allowing for student
traits to play a dual role of determining (T,Q), and altering the rate at which learning task volume
is converted into new math skill. The results of this analysis are presented in Table 7.

We again summarize results as standard deviation effects rather than reporting long lists of (up
to 78) parameter estimates, though an adjustment is in order. In regression analysis standard
deviations are commonly used as units of “typical” shift for a random variable, but they lose that
intuitive meaning as the distribution becomes more skewed.35 Such is the case for T and Q (Table
3, Figure 2) where standard deviations exceed the respective 80th percentiles. The usual standard
deviation would constitute an especially extreme hypothetical shift in behavior for the 50% of
students who did no work on the website. Thus, we define pseudo-standard deviation (pStDev)
as pStDevj ≡ F−1j (0.5|worker) − F−1j (0.159|worker), j = t, q, for computing standard deviation
effects. The pStDev is defined this way because for normally-distributed data it reduces to the
usual standard deviation, and it provides a more meaningful measure of a “typical” unit of shift for
the average child in the sample. Pseudo-standard deviations for T and Q (relative to all students,
not just workers) are roughly 76 minutes of focused problem solving time and 8.4 website modules
completed (i.e., 50.4 practice problems solved).

In Table 7 we find that completion of learning-by-doing tasks (and not simply time spent studying)
is primarily responsible for short-term gains in mathematics proficiency. Notably, for inputs of time
larger than the pStDev, T actually begins to play a negative role of tempering (but never swamping)
the conversion rate of task completion into short-term gains in measured math proficiency. For
example, the mean standard deviation effect of T , when computed relative to the usual standard
deviation of time spent—at 154.5 minutes, being slightly more than double the pStDev—is -0.36
SD of ∆S.36 These results are suggestive once again of a decreasing-returns-to-scale pattern in
learning activity volume. We also see further evidence of a decreasing returns to scale production

35As an extreme but illustrative counterexample, one would hesitate to interpret standard deviation as a typical unit
of shift for a Pareto-distributed random variable, which may exhibit large or infinite variance due to a small mass of
extreme values.
36Importantly, one should keep in mind that all results in Table 7 are measured relative to extra-curricular math
study over a fixed time window. Thus, the interpretation is that between 1.25 and 2.6 extra hours of math problem
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Table 7. PRODUCTION OF INCREMENTAL GAINS IN MATH SKILL

SPECIFICATION: (1) (2) (3) (4)
DEP. VARIABLE: ∆S (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.)

Baseline 2-Week Gains

w/Ti = Qi = 0
(

∆̂0i

)
(0.495; 0) (−0.217; 1.459) (0.039; 1.903) (0.0028; 1.933)

Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect

T (standardized)†
(

∆̂1i, ∆̂2i, ∆̂5i

)
-0.0013*** 0.0187*** 0.0151*** 0.0165***

(joint p-value)
(
5 .5 × 10−5

) (
<10−16

) (
<10−16

) (
<10−16

)
Q†

(
∆̂3i, ∆̂4i, ∆̂5i

)
0.1950*** 0.4385*** 0.5048*** 0.5378***

(joint p-value)
(
5 .4 × 10−8

) (
<10−16

) (
<10−16

) (
<10−16

)
S1 (standardized) (δ̂0,1, . . . , δ̂5,1) — -0.4255*** -0.4461*** -0.4401***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
log(θe) (δ̂0,2, . . . , δ̂5,2) — -0.2142*** -0.1776*** -0.1613***
(joint p-value)

(
7 .6 × 10−8

) (
3 .4 × 10−10

)
(0.0004)

log(θl) (δ̂0,3, . . . , δ̂5,3) — 0.0284 0.0505 0.0601*
(joint p-value) (0.1393) (0.3714) (0.0956)

District 2 (δ̂0,4, . . . , δ̂5,4) — -0.2036*** -0.2210*** -0.1286***
(joint p-value) (0.0064)

(
1 .0 × 10−6

)
(0.0026)

District 3 (δ̂0,5, . . . , δ̂5,5) — -0.4733*** -0.5340*** -0.4271***
(joint p-value)

(
<10−16

) (
<10−16

)
(0.0094)

Grade 5 (δ̂0,6, . . . , δ̂5,6) — — -0.2401*** -0.2430***
(joint p-value)

(
6 .5 × 10−7

) (
1 .0 × 10−6

)
Female (δ̂0,7, . . . , δ̂5,7) — — 0.0508* 0.1042**
(joint p-value) (0.0530) (0.0362)

Black (δ̂0,8, . . . , δ̂5,8) — — 0.0287*** 0.0308***
(joint p-value)

(
1 .6 × 10−14

) (
4 .3 × 10−6

)
Hispanic (δ̂0,9, . . . , δ̂5,9) — — -0.0207* 0.0051**
(joint p-value) (0.0696) (0.0152)

log(Mean Nbhd Income) no no no yes
Nbhd Uninsured Minor Rate no no no yes
# Peer & Adult Helper no no no yes
N 1, 494 1, 494 1, 494 1, 494
R2 0.095 0.200 0.222 0.230
Adjusted R2 0.092 0.181 0.190 0.188

Notes: Mean St. Dev. Effect is the total impact of a variable through the intercept ∆0i (direct effect) and slope terms
(∆1i, . . . ,∆5i) (interactions). For discrete variables Mean St. Dev. Effect is the mean impact (across all students) of switching
from 0 to 1 (all else fixed), in standard deviation units of ∆S. For a continuous variable Mean St. Dev. Effect is the mean impact
(across all students) of a one standard deviation increase (all else fixed), in standard deviations of ∆S.
Reported joint p-values are for the joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95%
and 90% levels are denoted by three stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e.,
(δ̂1k, . . . , δ̂5k), k=1,. . . ,9) have the following joint p-values:
9.7× 10−7 for S1 (standardized pre-test score); 0.0031 for log(θe); 0.0812 for log(θl); 0.0092 for District 2; 0.0587 for District 3;
0.0005 for Grade 5; 0.0458 for Female; 1.9× 10−6 for Black; and 0.0135 for Hispanic.
Neighborhood socioeconomic proxies are statistically significant (joint p-values of (0.0031) and (0.0437), respectively) but play a
small role: a simultaneous one-standard-deviation improvement in both log(Mean Nbhd Income) and Nbhd Uninsured Minor
Rate is predicted to result in only a 5.88% standard deviation increase in ∆S.
†Due to heavily skewed distributions of T and Q, rather than using their standard deviations to compute Mean St. Dev. Effect, we
use the pseudo-standard deviation, (defined above) instead. For normally distributed data, pStDev=standard deviation.

technology, but in a slightly different sense: the estimated standard deviation impact of pre-test
score is significant (both economically and statistically) and negative. In words, as students reach
a higher level of mastery of math concepts, achieving further improvements of a fixed size (in test
score space) becomes more and more difficult. Note that the decreasing returns to scale insights
from both long-run and short-run production technologies are also consistent with the remarkable
degree of curvature that we find in the cost function: progress takes a lot of work (especially for

problem solving time within a two-week window, the role of time expenditure on learning progress switches from
positive to negative.
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high-θe types), and the increasing marginal costs of foregoing leisure time (due to θl and curvature
in c(·)) can very quickly become prohibitive.

We find that θe also alters the shape of the short-run learning technology in an economically
meaningful way. That is, students with a more advantageous academic efficiency trait tend to not
only accomplish more learning tasks per unit of time, but they also tend to derive more progress
from those tasks in terms of measured math proficiency gains. This effect comes both directly
through the intercept, and indirectly through the slope terms. Finally, we find once again that
after controlling for the rich set of student covariates, school quality plays an important role in
conversion of learning-by-doing activities into improvements in math proficiency over a short-run
horizon. Moreover, the ordering among the three school districts is consistent with results from
the previous two sections, though the difference between District 1 and District 2 is a bit smaller,
relative to the District 1-District 3 comparison.

In interpreting the results from Table 7 regarding standard deviation effects of T and Q, one
should keep in mind that they involve many complicated interactions between variables. For ex-
ample, the mean (across all students) predicted standard deviation effect of Q is roughly 2.7 exam
score points (on a 40-point scale), or roughly 19 practice problems solved (with interactive feed-
back) per exam score point of improvement. However, for children at different school districts, with
different initial proficiency, with different unobserved traits, and/or with different home background
and demographic variables, the personalized prediction can vary somewhat. One encouraging as-
pect of model estimates for policymakers and education practitioners is that following pStDev=8.4
completed modules of extra math activity, the raw, pair-wise Kendall’s rank correlations between
the predicted shift ∆S and θe/θl are actually positive (0.4 and 0.3, respectively), and for pre-test
score the rank correlation is negative (-0.31). In plain English, we learn an important lesson from
this exercise: learning mathematics is accessible to anyone in the sense that there are enough other
mitigating factors so that having a less advantageous latent characteristic θe or θl, or low initial
math skill, need not bar any student from making progress.

6. Counterfactual Analysis

In this penultimate section, we execute counterfactual experiments to investigate the role of access
to high-quality education services in explaining racial achievement gaps within our sample popula-
tion. For Black and Hispanic students, the profile of schools attended is heavily tilted toward middle-
and low-performing schools and away from the highest-performing school district. Holding school
assignment fixed for White/Asian students, we alter school assignment for Blacks and Hispanics
by repeatedly re-sampling (with replacement) from the distribution of school assignment among
Whites and Asians. Intuitively, this exercise levels the playing field by bringing Black/Hispanic
school quality allocation up to the empirical level of White/Asian school assignment, while leaving
the latter fixed.37 We then use model estimates to compute adjusted θ∗e under the new school
assignments, and we simulate counterfactual distributions of pre-exam scores and choices of T and

37An alternative exercise would be to simply re-allocate all existing school seats via a lottery. Both methods would
hypothetically level the playing field, though the one we adopted—interpretable as a new infusion of resources
targeted at the Black/Hispanic communities—doesn’t require grappling with re-distribution concerns and also has
an interesting interpretation in terms of implications for affirmative action in college admissions.
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Figure 9. Counterfactual Achievement Gaps: Black vs White/Asian

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

WITHIN-GROUP PERCENTILE

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
R

E
-E

X
A

M
 S

C
O

R
E

 G
A

P

(i
n

 s
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

s
 o

f 
S

1
)

WAO-Black Gap (empirical)

WAO-Black Gap (model)

WAO-Black Gap - Equalized School Quality (full)

WAO-Black Gap - Equalized School Quality (fixed 
e
, 

l
)

Figure 10. Counterfactual Achievement Gaps: Hispanic vs White/Asian
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Notes: for r ∈ (0.05, 0.95) Figure 9 (Figure 10) depicts the empirical and counterfactual differences in exam scores between a

child at the rth percentile within the White/Asian group and a child at the rth percentile within the Black (Hispanic) group.

Q under our existing incentive schemes. For each minority student we re-simulate counterfactual
school assignment many times to wash out the role of simulation error in driving our results.

Table 8. SCHOOL-QUALITY EQUALIZATION: LONG-RUN ACHIEVEMENT GAPS

PERCENT CHANGE IN ACHIEVEMENT GAPS AT:

10th Pctl 25th Pctl Median 75th Pctl 90th Pctl Mean Integrated
% Change

Black −36.8% −37.3% −44.7% −57.0% −84.2% −45.0%

(full schl. qual. equalization)

Black −19.2% −25.4% −36.6% −54.3% −91.9% −38.9%

(fixed (θe, θl))

Hispanic Students −83.6% −78.6% −85.8% −105.2% −137.4% −85.8%

(full schl. qual. equalization)

Hispanic Students −40.9% −44.9% −59.8% −81.2% −124.3% −60.7%

(fixed (θe, θl))

6.1. Racial Achievement Gaps. The model predicts complex changes to racial achievement gaps
that vary by a child’s percentile rank within her demographic group. These are depicted graphically
in Figures 9 and 10, and numerically in Table 8. Generally, the closure of the racial achievement gaps
from academic resource equalization becomes more pronounced among higher achieving students.
Indeed, our model predicts that bringing Black/Hispanic school quality up to the same level as em-
pirically exists for Whites/Asians would cause the highest performing Black and Hispanic students



44 PRODUCTIVITY VS MOTIVATION IN ADOLESCENT HC PRODUCTION

Figure 11. School-Quality-Equalized Affirmative Action
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Notes: The figure considers a hypothetical, many-to-many college admissions contest among students in the sample. For

r ∈ (0.05, 0.95) the solid line plots an rth-percentile-specific exam score bonus needed to exactly offset handicaps for minority

students due to less advantageous school quality assignment relative to their rth-percentile counterparts in the White/Asian

group. The dashed line plots the score bonus schedule under a so-called “color-blind” admissions scheme for comparison.

to actually overtake their White/Asian counterparts in terms of exam score performance. Integrat-
ing over gap closure magnitudes at different percentiles generates a single aggregate summary value:
holding all other student characteristics fixed, racial differences in school quality account for roughly
45% of the achievement gap between Blacks and Whites/Asians in our sample, and roughly 85% of
the achievement gap between Hispanics and Whites/Asians. We also ran an alternate specification
of this counterfactual achievement gap calculation, where we held underlying θe fixed, and only vary
the production technology with the counterfactual school assignment profile. This decomposition
reveals that most of the achievement gap narrowing for Blacks and Hispanics (86% and 71% of
the narrowing, respectively) is due to changes in the long-run production technology that exist at
higher-quality schools, holding student traits fixed.

6.1.1. Using Affirmative Action to Offset School Quality Differences in Academic Contests. Building
on the results of the previous exercise, we also consider a hypothetical head-to-head academic
competition between all students in our sample. This hypothetical competition assumes a large-
market, many-to-many, contest structure familiar to college admissions models in Bodoh-Creed
and Hickman (2018), and Cotton, Hickman, and Price (2020a, 2020b), in which students compete
for admissions to an array of vertically-differentiated universities by investing in their observable
human capital (as measured by grades/test scores). We use the simulation results from the first
counterfactual to ask, “What would the Affirmative Action scheme have to be in order to exactly
wipe out the ex-ante advantage to White/Asian students which comes not from having better
household or individual characteristics, but from simply attending better schools?”

Intuitively, in rank-order contests like college admissions, there may exist systemic, arbitrary
disadvantages to some competitors before the competitive human capital investment game begins.
Using our results, we can quantify the precise affirmative action scheme that would ex-post remove
that systemic disadvantage, and nothing more. The results of this calculation are displayed in Figure
11. For this exercise we combine Blacks and Hispanics into a single, composite, underrepresented
minority group for simplicity. The horizontal axis displays URM percentiles, and the vertical axis
is a point-specific score bonus (in standard deviation units of the original pre-test scores). For
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comparison, the plot also depicts a baseline rule, commonly referred to as “color-blind” admissions,
which is simply a constant zero-bonus for all minority students.38 Note that the plot zooms in on
the 5-95 range since behavior in the extreme tails for model simulations can be less reliable. The
salient features of the equal-school-equivalent AA scheme are (I) the score bonus is substantially
above the race-blind alternative along the entire distribution of URM students; and (II) it trends
steadily upward for the highest achievers. This novel result based on our causal estimates of student
characteristics and value-added estimates of school inputs may have important implications for the
ongoing legal debate surrounding affirmative action in college admissions.

6.2. Incentive response counterfactuals. Finally, we seek to better understand the extent to
which a policy-maker could lean on the incentive channel alone to close achievement gaps by inducing
Black and Hispanic students to increase math activity. We also ran a similar analysis to see how
hypothetical school quality equalization would impact the answer to this question. The general take-
home lesson from this section is that, without getting more serious about equalizing the quality of
public education inputs accessible to Black and Hispanic students, the incentive lever does not
appear as a terribly promising option for a policymaker.

More concretely, Figures 12 and 13 explore what we refer to as Incentive Response Gaps. To
define that term, first note that an Incentive Response Function (IRF) is defined as the difference
in the quantile functions of Q (or T alternatively) under different contracts. For example, the
White/Asian Incentive Response Function for a contract 1-to-contract 2 shift would be

IRF (j,W/A, 1, 2) ≡ F−1j (r|W/A, contract 2)− F−1j (r|W/A, contract 1), j = q, t, r ∈ [0, 1], (16)

or the quantile function of Q or T for Whites/Asians under contract 2, minus the corresponding
quantile function for Whites/Asians under contract 1. This measures, at various percentiles of the
student distribution, how students respond to an increase in piece-rate incentives. With that defini-
tion in mind, the Black-White/Asian Incentive Response Gap (IRG) is the IRF for Whites/Asians
under a contract 1-to-contract 2 shift, minus the IRF for Black students under the same contract
1-to-contract 2 shift. The IRG therefore measures the difference across race groups in their respon-
siveness to piece-rate incentives. For example, if IRG(0.5|j, Black,White/Asian, 1, 2) = 5, that
would mean that when the median White/Asian student is switched from contract 1 to contract 2,
she increases her total output on dimension j = q, t by 5 units more than the median Black student
under the same shift in incentives.

From our earlier analysis, one might believe that since Black students have systematically lower
values of time preference θl, that they would be more responsive to incentives. However, such
intuition is incomplete, and it is important to recognize that one’s study effort is determined by
the interaction between a student’s time value and how much time is needed for task completion,
which is a function of θe. While it is true that a lower θl makes it less burdensome for a student
to give up an hour of would-be leisure time, higher values of θe work in the opposite direction and
make a student’s time less valuable for earning rewards of time spent working. Moreover, due to
38It is worth mentioning that the results in this section call into question the appropriateness of the common label
“color-blind admissions” for the baseline rule, given that it ignores a large asymmetry of causal value-added resources
delineated by a child’s race. We maintain the common label here simply for its familiarity within the public debate
on affirmative action.
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Figure 12. Incentive Response Gaps in Learning Activities: Black vs White/Asian
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Figure 13. Incentive Response Gaps in Learning Activities: Hispanic vs White/Asian
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Notes: Incentive Response Gaps depict differences across race groups in marginal learning activities under strengthening of

incentives from contract 1 to contract 2 or contract 3. For each r ∈ (0.05, 0.95), the Figure 12 (Figure 13) depicts the

difference between increased output for a student at the rth percentile within the White/Asian group, and a student at the

rth percentile within the Black (Hispanic) group. Thin lines depict IRGs under the status quo and thick lines represent IRGs

under the school-quality equalization counterfactual.

the dramatic curvature in the utility cost function, it turns out that θe is quite crucial for inducing
students to respond to incentives and increase learning task accomplishment.

With these ideas in mind, Figures 12 and 13 plot the IRGs under the status-quo and under
school quality equalization. The left panels shows quiz output Q and the right panels show time
worked T . Incentive responses and response gaps are fairly low until the 75th percentile (i.e., most
studious) students. In that upper region the response gaps in terms of Q are quite substantial, but
are reduced significantly by equalizing school quality, with its implied increase of academic efficiency
(i.e., reduction in θe). Note also that the incentive response gaps are smaller in terms of T , and also
change less in terms of T . This reflects the fact that because of the huge curvature of the utility
cost function c(t; π̂c), learning gains under optimal labor-leisure choice are primarily accomplished
through increases in the productivity of time, rather than through large re-allocations of a child’s
time from leisure toward math.

Figures 14 and 15 consider a somewhat more drastic experimentation with piece-rate incentives.
On the horizontal axis are different simulated contract offerings, this time with no lump-sum base
wages for simplicity. Once again, the left panels plot simulated quiz output and the right panels
plot labor supply. Thin lines represent the status-quo school assignment and thick lines represent
the re-sampled, equalized, school quality regime. Each of the plots in Figures 14 and 15 depict
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Figure 14. Incentive Response in Learning Activities: Black
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Figure 15. Incentive Response in Learning Activities: Hispanic

0 2 4 6 8 10 12 14 16

PIECE-RATE WAGE OFFER ($USD)

0

5

10

15

20

25

30

H
IS

P
A

N
IC

 S
T

U
D

E
N

T
S

C
O

U
N

T
E

R
F

A
C

T
U

A
L

 Q
U

IZ
 O

U
T

P
U

T

25th Percentile

Median

75th Percentile

25th Percentile - Equal Schl. Qual.

Median - Equal Schl. Qual.

75th Percentile - Equal Schl. Qual.

0 2 4 6 8 10 12 14 16

PIECE-RATE WAGE OFFER ($USD)

0

0.5

1

1.5

2

2.5

3

3.5

4

H
IS

P
A

N
IC

 S
T

U
D

E
N

T
S

C
O

U
N

T
E

R
F

A
C

T
U

A
L

 L
A

B
O

R
 S

U
P

P
L

Y
 (

h
o

u
rs

)

25th Percentile

Median

75th Percentile

25th Percentile - Equal Schl. Qual.

Median - Equal Schl. Qual.

75th Percentile - Equal Schl. Qual.

the behavior of the median most studious student, and the 25th (less studious) and 75th (more
studious) percentiles for all students, including both workers and non-workers in the experimental
data. These figures provide the clearest illustration of why the incentive channel is relatively weak.
For example, in order to induce the 75th percentile most studious Hispanic student (Figure 15)
to produce roughly 12 units of learning-by-doing tasks (under status-quo school assignment) the
policy-maker would have to offer an outlandishly high piece rate of $16 per quiz.

To be clear, θl does matter: the 75th percentile most studious Black student (Figure 14) would
produce about 35 units of learning-by-doing tasks at $16 per quiz, and the biggest difference between
the two groups is the distribution of θl. However, for both groups overcoming their disadvantage
in terms of θe through the incentive channel alone requires very large financial incentives. Now,
consider a comparison of this outcome for the status quo setting, in which the current distribution
of students across school districts is held constant, to the outcomes from a counterfactual setting
in which minority groups have identical access to school quality as Whites/Asians. For minority
students, such a shift in school district produces large improvements in academic efficiency θe

while leaving θl largely untouched. In such a scenario, under-served minority students become
dramatically more responsive to piece-rate incentives (thick lines), as depicted in Figures 14 and 15.

7. Conclusion

Since the 1960s, one would be hard pressed to find two disciplines within economics that have
grown more and established as many deep insights as the study of the role of human capital on
economic growth and the study of how education, learning, and skills are produced. Likewise, a
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perusal of the popular press suggests that most have accepted James Mill’s dictum that "if education
cannot do everything, there is hardly anything it cannot do." Yet, even with these movements,
modern economies continue to seek ways to increase the proportion of their citizens completing
higher education.

Gone are the days when societies can invest in only a small number of highly educated persons,
where the primary goal of education is to pinpoint the few students who can succeed. Such systems
historically invest a great deal more in the selection, rather than development, of students. These
days, however, investment in the development of a broader set of students is important both for
creating opportunities for the economic success and stability of individuals, and for innovation and
growth within society. Quality education is no longer a luxury for a select few elite, but rather
increasingly a necessity for anyone hoping to secure comfortable employment, let alone upward
mobility within an economy.

A lesson gleaned from the work of Heckman and colleagues, as well as many others, is that
investment in human capital pays off at a greater rate than does investment in physical capital,
which suggests that we must move from an economy of scarcity of educational opportunity to one
of promoting and developing all students over the life-cycle. A troubling observation from our
raw data that underscores the current state of developmental resource scarcity is that, while Black
and Hispanic students in our sample self-report higher preferences for studying math and science
relative to other academic subjects, they are vastly less affluent, much more likely to lack health
insurance coverage, and are almost entirely relegated to schools with average or below-average
instructional budgets, faculty salaries, and teacher degree qualifications. Their standardized test
scores unsurprisingly lag far behind their White/Asian counterparts—slightly more than a full
standard deviation in our math pre-test, on average—whose corresponding resource allocations on
all the above dimensions are almost entirely at average or above-average levels, relative to the rest
of the State of Illinois. These facts together suggest adults are successfully advertising to Black
and Hispanic children that math and science education are the way out of poverty. However, their
communities, schools, and society at large are failing to follow up on the marketing campaign by
equipping them with the tools to effectively act upon this perception.

Our study contributes to the literature by providing insights into human capital formation and
its determinants during one phase of the education process. Our approach is unique in that it uses
a field experiment to identify key components of a structural model that illuminate the relationship
between time and adolescent skill formation. By designing and operating our own web-based learning
platform we are not only able to expose students to controlled variation in incentives, but we also
gain a unique window into the temporal profile of study time supplied, volume of learning task
completion, and how these inputs map into measured subject proficiency. In doing so, we discuss new
interpretations of motivation, provide a novel view of policies that are geared toward opportunity
versus achievement, and develop a contemporary view of optimal approaches to lessen racial and
gender achievement gaps during the adolescent years (see Kautz et al., 2017; Joensen & Nielsen,
2016; Joensen et al., 2020, for other work on skill formation in the adolescent years).

There are several important lessons for education policy to come out of our analysis. At the
most fundamental level, we show that programs or policies that aim to close performance gaps by
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better motivating under-performing groups, either through information or incentives, may not be
addressing the main barriers that constrain their performance. We show that groups of students,
whether defined by race, gender, or school district, who are under-performing in mathematics tend
not to be any less motivated (and several are more motivated) compared to groups who on average
perform better. Rather, these under-performing groups tend to have lower academic efficiency,
meaning that even when they put in time studying, they struggle more than others to convert this
time into academic success. Further increasing their motivation to put in time does not address this
issue, as the amount of additional time that is required to close the performance gap is very costly
to the student and likely infeasible to achieve. The effective closure of performance gaps between
under-represented minority students and their counterparts, for example, cannot feasibly rely on
efforts to better motivate students, but would rather need to address the differences in academic
efficiency, which are driven by factors such as school quality and resource deprivation/poverty.

Of course, any particular exercise leaves much on the sidelines. In our case, we should be clear
that we believe academic efficiency and time preference are not completely stable over the long run.
There is ample evidence (Bloom, 1964; Hunt, 1961) that academic efficiency may be modified by
appropriate environmental conditions in the school and in the home. Factors such as the amount
of time allowed for learning, quality of teacher or parent instruction, and the student’s ability
to understand instruction are important in determining the arc of learning alongside our studied
characteristics. Indeed, they may serve as important complements. For example, an improvement in
the quality of instruction yields important temporal returns: the student now must commit less time
for learning the same amount of materials. Likewise, if the student lacks ability to understand the
teacher instruction (which could be due to poor previous investment), the amount of time needed to
learn increases. These are the dynamic complementarities that are a key aspect in the development
of human capital (Cunha & Heckman, 2007). We reserve these discussions for another occasion but
note that they are ripe for further theoretical and empirical inquiry.
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Appendix A. ONLINE SUPPLEMENT: Additional Tables and Figures

Table 9. BALANCE TABLE

TREATMENT FEMALE HISPANIC Black ASIAN GRADE-5 PRE-TEST #ASSIGNED
SUBJECTS

CONTRACT 1: 0.0005 -0.0054 0.0003 0.0032 -0.0014 -0.0021 557

(p-val) (0.99) (0.82) (0.99) (0.90) (0.95) (0.93)

CONTRACT 2: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 559

(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

CONTRACT 3: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 560

(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

Notes: This table displays correlations between treatment assignment and the demographic and academic variables
that were used for randomization. Treatment assignment randomization used balancing on gender, race, grade-level
cohort, and pre-test score (via stratification). P-values (for the null hypothesis of zero correlation) are listed in
parentheses.

Table 10. DEMOGRAPHICS BY CENSUS BLOCK GROUP

Variable EXPERIMENTAL SAMPLE ILLINOIS STATE

Mean Nbhd Hshld Income:

weighted mean $101,698 $71,602

weighted 5-95 range [$35K,$156K] [$30K,$128K]

Mean Nbhd Home Value:

weighted mean $361,935 $198,786

weighted 5-95 range [$94K,$723K] [$69K,$432K]

HS Graduation Rate (Adults 25+):

weighted mean 0.9149 0.857

weighted 5-95 range [0.58,1] [.57,0.99]

Col Grad Rate (Adults 25+):

weighted mean 0.5364 0.294

weighted 5-95 range [0.05,0.92] [0.04,0.72]

Notes: There are 9691 block groups in the state of Illinois. Our study sample consists of 161 census block groups in total.
All variables described in this table are measured at the neighborhood (Census block group) level. Means are weighted by
headcount of students residing in each Census block group. 5-95 range is weighted by headcount of students residing in each
Census block group.
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Figure 16. Conditionally Heteroskedastic Work Time Shocks
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Figure 17. Upper Tail Extrapolation
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Figure 18. Cost Model Fit
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Figure 19
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