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Abstract

This paper addresses the estimation issue that exists when estimating the tra-

ditional mean-variance portfolio. More precisely, the efficient mean-variance is

estimated by a double regularization. These regularization techniques namely the

ridge, the spectral cut-off, and Landweber-Fridman involve a regularization pa-

rameter or penalty term whose optimal value needs to be selected efficiently. A

data-driven method has been proposed to select the tuning parameter. We show

that the double regularized portfolio guarantees to investors the maximum ex-

pected return with the lowest risk. In empirical and Monte Carlo experiments, our

double regularized rules are compared to several strategies, such as the traditional

regularized portfolios, the new Lasso strategy of Ao, Yingying, and Zheng (2019),

and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ra-

tio performance, and it is shown that our method yields significant Sharpe ratio

improvements and a reduction in the expected utility loss.

Keywords: Portfolio selection, efficient mean-variance analysis, double regularization.
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1 Introduction

In his seminal work, Markowitz (1952) stated that the optimal portfolio should be se-

lected by an optimal trade-off between return and risk instead of an expected return

maximization only. This principle continues to play a significant role in the financial

market. The optimal solution obtained using this principle has a simple closed form that

depends on the expected return and the inverse of the covariance matrix of asset returns.

Nonetheless, these two quantities are unknown and need to be estimated in practice to ob-

tain a feasible solution. The standard way to estimate this optimal solution is to replace

the unknown parameters by their empirical counterpart. The plug-in portfolio obtained

using the sample moments has been shown to give very poor in-sample and out-of-sample

performance in the literature. This observed performance is essentially due to the large

number of assets in the financial market compared with the sample size (see Kan and

Zhou (2007), Bai, Liu, and Wong (2009) and El Karoui (2010) for instance). In fact,

when the number of assets grows compared with the sample size, the sample covariance

matrix used in the plug-in strategy is not appropriate because nearly singular. Hence,

inverting such a matrix in the investment process may generate a strategy which is fare

from the optimal one with very poor performance. This problem is amplified when using

the sample mean to estimate the expected return in the optimal portfolio. Indeed, the

estimation error in the expected return might be important, especially in a large financial

market. Stein (1956) and Brown, Zhao, et al. (2012) even argue that the usual estimator

of the expected return should be inadmissible if the dimension is sufficiently large.

Several methods have been proposed in the literature to deal with these issues in

order to improve the performance of the selected strategy.

Some papers in the literature are focus on regularizing the covariance matrix of asset

distribution or its inverse. Indeed, Ledoit and Wolf (2003, 2004a,b) propose to replace the

covariance matrix by a weighted average of the sample covariance and some structured

matrix. Ledoit and Wolf (2017, 2018) propose a nonlinear shrinkage estimator which is
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more flexible than the linear one by modifying each eigenvalue of the sample covariance

matrix under the framework of Markowitz’s portfolio selection. Several other papers

are focus on estimating efficiently the covariance matrix or its inverse (see Rothman,

Bickel, Levina, Zhu, et al. (2008), Fan, Liao, and Mincheva (2011, 2013), Fan, Fan,

and Lv (2008), Touloumis (2015), Bodnar, Gupta, and Parolya (2016), Bauder, Bodnar,

Parolya, and Schmid (2020), Koné (2021) among others). Recently, Carrasco, Koné,

and Noumon (2019) investigate various regularization techniques from the literature of

inverse problems to stabilize the inverse of the sample covariance matrix.

Jorion (1986) and Bodnar, Okhrin, and Parolya (2019) propose to use a shrinkage

estimation for the expected return which seems to be more appropriate than the sample

mean.

One other way to improve the performance of the selected strategy consists of im-

posing appropriate constraint in the optimization problem. Jagannathan and Ma (2003)

impose a short-sale constraint in the investment process. They argue that this constraint

could help to improve the performance by reducing the estimation risk in estimating

the optimal portfolio. Brodie, Daubechies, De Mol, Giannone, and Loris (2009) and Fan,

Zhang, and Yu (2008) generalize the short-sale constraint by using a method called Lasso

which consists in imposing a constraint on the sum of the absolute values (l1 norm) of

the portfolio weights. This method generates sparse portfolios which degree of sparsity

depends on a tuning parameter. This sparsity property should be very useful when try-

ing to reduce transaction costs in the investment process. DeMiguel, Garlappi, Nogales,

and Uppal (2009) propose a general method in terms of norm-constrained minimum-

variance portfolio. They find that the norm-constrained portfolios often have a higher

Sharpe ratio than the portfolio strategies in Jagannathan and Ma (2003), Ledoit and Wolf

(2003, 2004a,b), the 1/N portfolio, and other strategies in the literature, such as factor

portfolios. Fastrich, Paterlini, and Winker (2015) propose a new penalty that explicitly

considers financial information to improve the l1-regularization approach. Recently, Ao,
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Yingying, and Zheng (2019) introduce a new way to estimate the mean-variance portfolio

based on an unconstrained regression representation of the optimization problem com-

bined with high dimensional sparse regression method. Moreover, Kone (2020) proposes,

in a dynamic setting, a temporal stability constraint in the investment process to guar-

antee that the optimal portfolio composition does not fluctuate wildly between periods.

In addition to stabilize the inverse of the covariance matrix in the investment process,

this constraint introduces a second level of regularization to control for the estimation

errors in the expected return.

Brandt, Santa-Clara, and Valkanov (2009) and DeMiguel, Martin-Utrera, Nogales,

and Uppal (2020) model directly the portfolio weights as a function of the assets charac-

teristics to avoid the difficulties in the estimation of asset returns moments.

Our paper contributes to this vast literature by estimating the optimal portfolio in

Proposition 1 of Ao, Yingying, and Zheng (2019) by a double regularization. This work

is then related to the vast literature of linear invert problem (see Carrasco, Florens, and

Renault (2007), Carrasco, Florens, and Renault (2014), Carrasco (2012), Carrasco and

Tchuente (2015) among others).

Estimating this optimal solution involves a first step estimation of the square of the

maximum Sharpe ratio of the optimal portfolio. The standard way to estimate this

quantity will be to replace it by its empirical counterpart as it has to be done with the

traditional regularization techniques of Carrasco, Koné, and Noumon (2019). Nonethe-

less, this estimation implies also estimating the covariance matrix of asset return and take

its inverse. The sample covariance matrix used for this purpose in not an appropriate

choice because nearly singular. Hence, the resulting estimation error by using the sample

counterpart of the square of the maximum Sharpe ratio could considerably deteriorate

the performance of the selected strategy. Therefore, Ao, Yingying, and Zheng (2019)

propose an alternative estimator for this quantity which relies on a normal distribution

assumption of assets return. To avoid imposing a normality assumption in our economy,
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we apply a regularization to estimate the square of the maximum Sharpe ratio by sta-

bilizing the inverse of the covariance matrix that appears in this quantity. At each step

of our double regularization, which consists of stabilizing the inverse of the covariance

matrix of assets, several regularization techniques from inverse problem literature have

been used. These regularization techniques namely the ridge, the spectral cut-off, and

Landweber-Fridman involve a regularization parameter or penalty term whose optimal

value is selected to minimize the expected distance between the inverse of the estimated

covariance matrix and the inverse of the true covariance matrix at the first level. The

tuning parameter of the second level of regularization is selected to minimize the expected

loss in utility of a mean-variance investor. The optimality of these tuning parameters

selection procedures has been largely augmented in the literature (see for instance Car-

rasco, Koné, and Noumon (2019)). Under appropriate regularity conditions, we show

that the double regularized portfolio guarantees to investors the maximum expected re-

turn with the lowest risk. This implies that our selected portfolio achieves asymptotically

the true Sharpe ratio.

To evaluate the performance of our procedures we implement a simulation exercise

based on a three-factor model calibrated on real data from the US financial market

from July 1980 to June 2016. We obtain by simulation that our procedure significantly

improves the performance of the selected strategy with respect to the Sharpe ratio and

the expected utility loss. The double regularized portfolios are compared to the new

Lasso portfolio, the traditional regularized portfolio, and the naive 1/N strategy in terms

of in-sample utility loss and the Sharpe ratio, and it is shown that our method yields

significant Sharpe ratio improvements and considerably reduces the expected utility loss.

To confirm our simulations, we do an empirical analysis using Kenneth R. French’s 30-

industry portfolios and 100 portfolios formed on size and book-to-market. According

to this empirical result, by double regularizing the efficient mean-variance portfolio, we

considerably improve the performance of the selected strategy in terms of maximizing
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the Sharpe ratio.

The rest of the paper is organized as follows. Section 2 presents the economy environ-

ment and the estimation method. Section 3 presents the first level of regularization and

proposes a data-driven method to select the tuning parameter of this first regularization.

Section 4 presents the second level of regularization and some asymptotic results. Some

simulation results are given in section 5 and the empirical study in section 6. Section 7

concludes the paper. Proofs of all theoretical results are given section 8.

2 The economy environment and the estimation method

2.1 The economy environment

We consider a simple economy with N risky assets with random returns vector Rt+1 and

a risk-free asset where N is assumed to be large. We assume that the return on the risk-

free asset is constant over time. Let denote by Rf the gross return on this risk-free asset.

Empirically with monthly data, Rf will be calibrated to be the mean of the one-month

Treasury-Bill (T-B) rate observed in the data.

Let denote by rt+1 = Rt+1 − Rf1N the vector of excess returns on the set of risky

assets in the economy with 1N the N -dimensional vector of ones. We assume as in Car-

rasco, Koné, and Noumon (2019) that the excess returns are independent and identically

distributed with the mean and the covariance matrix given by µ and Σ respectively.

Let’s denote by ω = (ω1, ..., ωN)
′

the share of the risky assets in the optimal portfolio.

Hence, the investor allocates a fraction ω of wealth to the risky assets and the remainder

(1− 1′Nω) to the risk-free asset.

Let rt, t = 1, · · · , T be the observations of asset returns and R be the T ×N matrix

with tth row given by r′t. Ω = E (rtr
′
t) = E (R′R) /T . The mean-variance portfolio as

proposed by Markowitz (1952) can be seen as a certain trade-off between the expected

return and the variance of the asset returns. Therefore, the optimal solution of the
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mean-variance portfolio can be obtained by solving the following constrained optimization

problem

arg max
ω:ω′Σω′<σ2

E
(
ω

′

rt

)
= ω

′

µ (1)

where σ is a given risk constraint. This way to formulate the classical mean-variance

problem may be very useful in a situation of high uncertainty. It will help investors to

select a strategy that correctly controls the global risk and maximizes at the same time

the expected return of the selected portfolio. Ao, Yingying, and Zheng (2019) show that

solving (1) is equivalent of solving the following unconstrained regression model

argmin
ω
E

[(
rc − ω

′

rt

)2]
(2)

where rc = σ 1+θ√
θ
, θ = µ

′

Σ−1µ the square of the maximum Sharpe ratio of the optimal

portfolio.

The optimal solution of this optimization problem is given by

ω = rcΩ
−1µ (3)

which is unknown and needs to be estimated. The standard way to estimate this solution

is to replace the unknown parameters by their counterpart empirical to obtained the so

called plug -in rule.

ω̂ = r̂cΩ̂
−1µ̂ (4)

Estimating this solution implies estimating the covariance matrix Ω and take its inverse.

The choice of the sample covariance to form the plug-in rule may not be appropriate

because it may be nearly singular, and sometimes not invertible. Moreover, we need

to estimate rc to form the optimal selected strategy. For a given level of risk, rc is

estimated based on an estimation of the parameter θ. Estimating θ implies estimating

the covariance matrix Σ and take its inverse combined with an estimate of the expected

return. The sample mean and the sample covariance matrix are not appropriate estimates
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for this purpose. In fact, when N/T → ρ ∈ (0, 1) (the number of assets in the economy

is large compared with the sample size) Σ̂ and µ̂ may not be consistent estimates for Σ

and µ. Hence, θ̂ = µ̂
′

Σ̂−1µ̂ may not appropriate in this situation.

To overcome all these problems related to the estimation of the solution in (3), Ao,

Yingying, and Zheng (2019) propose to estimate it by solving the following optimization

problem

ω̂ = argmin
ω

1

T

T∑

t=1

(
r̂c − ω

′

rt

)2
(5)

subject to ‖ω‖ ≤ λ where r̂c = σ 1+θ̂√
θ̂
, θ̂ = (T−N−2)θ̂s−N

T
, θ̂s = µ̂

′

Σ̂−1µ̂. θ̂ is an unbiased

estimator proposed by Kan and Zhou (2007) under the normality assumption of the

excess return. The consistency of this estimator is obtained by assuming that the excess

return are normally distributed which seems to be a restrictive assumption. Moreover,

this estimator can take negative values so it is also an undesirable estimate for θ since

θ ≥ 0.

In this paper, we address the estimation issue of the optimal solution through three

regularization techniques (the ridge, spectral cut-off, Landweber-Fridman) borrowed from

the linear invert literature (see Carrasco, Florens, and Renault (2007)). More precisely,

we are going to use a double regularization technique to estimate consistently the efficient

mean-variance portfolio. At each level of regularization, three different stabilization

techniques will be used.

Before talking about these two level of regularization, let’s briefly present the stabi-

lization techniques we are interested in.

2.2 The regularization methods

The regularization methods used in this paper are drawn from the literature on inverse

problems (see Kress (1999)). They are designed to stabilize the inverse of Hilbert-Schmidt

operators (operators for which the eigenvalues are square summable). These regulariza-
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tion techniques will be applied to the sample covariance matrix of asset returns to stabilize

the inverse of this covariance matrix in the selected strategy.

Let λ̂21 ≥ λ̂22 ≥ ... ≥ λ̂2N ≥ 0 be the eigenvalues of a sample covariance matrix Σ̂. By

spectral decomposition, we have that Σ̂ = PDP
′

with PP
′

= IN where P is the matrix

of eigenvectors and D the diagonal matrix with eigenvalues λ̂j on the diagonal. Let also

Σ̂α be the regularized inverse of Σ̂.

Σ̂α = PDαP
′

where Dα is the diagonal matrix with elements q(α, λ̂2j)/λ̂
2
j . The positive parameter α

is the regularization parameter, a kind of smoothing parameter which is unknown and

need to be selected efficiently. q(α, λ̂2j) is the damping function which depends on the

regularization scheme used.

2.2.1 Tikhonov regularization (TH)

This regularization scheme is close to the well known ridge regression used in presence

of multicolinearity to improve properties of OLS estimators. In Tikhonov regularization

scheme, the real function q(α, λ̂2j) is given by

q(α, λ̂2j) =
λ̂2j

λ̂2j + α

2.2.2 The spectral cut-off (SC)

It consists in selecting the eigenvectors associated with the eigenvalues greater than some

threshold.

q(α, λ̂2j) = I
{
λ̂2j ≥ α

}

The explosive influence of the factor 1/λ̂2j is filtered out by imposing q(α, λ̂2j) = 0 for

small λ̂2j , that is λ̂2j < α. α is a positive regularization parameter such that no bias

is introduced when λ̂2j exceeds the threshold α. Another version of this regularization
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scheme is the Principal Components (PC) which consists in using a certain number of

eigenvectors to compute the inverse of the operator. The PC and the SC are perfectly

equivalent, only the definition of the regularization term α differs. In the PC, α is the

number of principal components. In practice, both methods will give the same estimator.

2.2.3 Landweber Fridman regularization (LF)

In this regularization scheme, Σ̂α is computed by an iterative procedure with the formula




Σ̂α
l =

(
IN − cΣ̂α

)
Σ̂l−1 + cΣ̂ for l = 1, 2, ...1/α− 1

Σ̂α
0 = cΣ̂

The constant c must satisfy 0 < c < 1/λ̂21. Alternatively, we can compute this regularized

inverse with

q(α, λ̂2j) = 1−
(
1− cλ̂2j

) 1
α

The basic idea behind this procedure is similar to spectral cut-off but with a smooth

bias function. See Carrasco, Florens, and Renault (2007) for more details on these

regularization techniques.

3 First level of regularization

The fundamental objective of this first regularization is to consistently estimate rc that

appears in the selected portfolio without imposing the normality assumption on the

return distribution. Kan and Zhou (2007) propose a consistent estimator for rc under

normality assumption on returns. In our framework, we do not impose such a normality

instead we decide to stabilize the inverse of the covariance matrix by regularization when

estimating rc. By definition, we have that

θ = µ
′

Σ−1µ
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Hence, this quantity can be estimated by regularization as follows

θ̂α1 = µ̂
′

Σ̂α1µ̂ (6)

where Σ̂α1 is the regularized inverse of the sample covariance matrix Σ̂, α1 the tuning

parameter of the first regularization, and µ̂ the sample mean. Hence,

r̂c,α1 = σ
1 + θ̂α1√

θ̂α1

(7)

Let’s now look at the consistency of r̂c,α1 .

3.1 Consistency of r̂c,α1

To show the consistency of r̂c,α1 we will need some regularity conditions. In particular

we need the following assumption.

Assumption A: Σ
N

is a trace class operator.

A a trace class operatorK is a compact operator with a finite trace i.e Tr (K) = O (1).

This assumption is more realistic than assuming that Σ is a Hilbert-Schmidt operator.

Moreover, Carrasco, Koné, and Noumon (2019) show that Assumption A holds for a

standard factor model. This assumption implies in particular that
∥∥∥∥
Σ

N

∥∥∥∥ = O (1) .

Hence, under Assumption A, we have by Theorem 4 of Carrasco and Florens (2000) that
∥∥∥∥∥
Σ̂

N
− Σ

N

∥∥∥∥∥ = Op

(
1√
T

)
.

Proposition 1 Under Assumption A we have that

r̂c,α1 = σ
1 + θ̂α1√

θ̂α1

→p rc = σ
1 + θ√
θ

(8)

if α1

√
T → ∞, where α1 is the tuning parameter.

To show this proposition, we need only to show that θ̂α1 →p θ under assumption A so
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that we can use the continuous mapping theorem to conclude about the consistency of

r̂c,α1 . Proof of proposition 1 can be found in section 8. The regularity condition α1

√
T →

∞ behind this proposition implies that the estimation window should go to infinity faster

than the optimal tuning parameter α1 goes to zero. We consistently estimate rc without

imposing the normality assumption on the return distribution. Moreover, we do not need

a consistent estimate of µ to estimate rc. In fact, to estimate rc, we use the sample mean

to estimate the expected return µ which is a non consistent estimator in or framework.

3.2 Data-driven selection of the tuning parameter α1

We see in the previous subsection that r̂c,α1 depends on a certain smoothing parameter

α1 ∈ (0, 1). We show the consistency of r̂c,α1 assuming that this tuning parameter is

given. However, in practice, this regularization parameter is unknown and needs to be

selected in an optimal way. Hence, we propose a data-driven selection procedure to

obtain an approximation of this parameter.

Our objective here is to select the tuning parameter that minimizes the distance

between the inverse of the estimated covariance matrix and the inverse of the true co-

variance matrix as in Koné (2021). More precisely, the following loss function has been

used

µ
′

[(
Σ̂α1 − Σ−1

)′

Σ
(
Σ̂α1 − Σ−1

)]
µ (9)

where µ is the expected excess return. Hence, the objective is to select the tuning

parameter that minimizes

E

{
µ

′

[(
Σ̂α1 − Σ−1

)′

Σ
(
Σ̂α1 − Σ−1

)]
µ

}
(10)

which implies that

α̂1 = arg min
α1∈HT

E

{
µ

′

[(
Σ̂α1 − Σ−1

)′

Σ
(
Σ̂α1 − Σ−1

)]
µ

}
(11)

To obtain a better approximation of the tuning parameter based on a generalized
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cross-validation criterion, we need additional assumption. So, let start with some useful

notations.

Let us denote β = Ω−1µ = E (R′R)−1E (R′1T ). The following assumption help us

to obtain a better approximation of the tuning parameter based on a generalized cross-

validation criterion.

Assumption B: For some ν > 0, we have that

N
N∑

j=1

< β, φj >
2

η2νj
<∞

where φj and η
2
j denote the eigenvectors and eigenvalues of Ω

N
.

The regularity condition in Assumption B can be found in Carrasco, Florens, and

Renault (2007) and Carrasco (2012). Moreover, Carrasco, Koné, and Noumon (2019)

show that assumption B hold if the returns are generated by a factor model. Assumption

B is used combined with Assumption A to derive the rate of convergence of the mean

squared error in the OLS estimator of β. These two assumptions imply in particular that

‖β‖2 < +∞ such that we have the following relations

‖β − βα1‖2 =





O
(

αν+1
1

N

)
for SC,LF

O

(
α
min(ν+1,2)
1

N

)
for T

βα1 is the regularized version of β.

Using Assumption A combined with Assumption B, we obtain the following equivalent

of the objective function

E

{
µ

′

[(
Σ̂α1 − Σ−1

)′

Σ
(
Σ̂α1 − Σ−1

)]
µ

}
∼ 1

T
E
∥∥∥X

(
β̂α1 − β

)∥∥∥
2

+
(µ′ (βα1 − β))2

(1− µ′β)

if 1
α2
1T

→ 0 as T goes to infinity.

This equivalent is obtained using a combination of Proposition 2 from Koné (2021)

and Proposition 1 in Carrasco, Koné, and Noumon (2019). We can easily apply a cross-

validation approximation procedure on this expression of the objective function. It follows

from this approximation that minimizing E

{
µ

′

[(
Σ̂α1 − Σ−1

)′

Σ
(
Σ̂α1 − Σ−1

)]
µ

}
with
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respect to α1 is equivalent to minimizing

1

T
E
∥∥∥X

(
β̂α1 − β

)∥∥∥
2

(12)

+
(µ′ (βα1 − β))2

(1− µ′β)
. (13)

Terms (12) and (13) depend on the unknown β and hence need to be approximated. These

quantities will be approximated according to Carrasco, Koné, and Noumon (2019). In

effect, the rescaled MSE

1

T
E

[∥∥∥X
(
β̂α1 − β

)∥∥∥
2
]

can be approximated by generalized cross validation criterion:

GCV (α1) =
1

T

‖(IT −MT (α1)) 1T‖2

(1− tr (MT (α1)) /T )
2 .

Using the fact that

µ̂′ (βα1 − β) =
1′T
T

(MT (α1)− IT )Xβ,

(13) can be estimated by plug-in:
(
1′T (MT (α1)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

) (14)

where β̂α̃ is an estimator of β obtained for some consistent α̃ (α̃ can be obtained by

minimizing GCV (α1)).

The optimal value of α1 is defined as

α̂1 = arg min
α1∈HT




GCV (α1) +

(
1′T (MT (α1)− IT )Xβ̂α̃

)2

T 2
(
1− µ̂′β̂α̃

)





where HT = {1, 2, ..., T} for spectral cut-off and Landweber Fridman and HT = (0, 1) for

Ridge.
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4 Second level of regularization

4.1 Estimation and asymptotic properties

In this first part we will focus on the estimation of the optimal portfolio and some

asymptotic results such as the Sharpe ratio of the regularized portfolio.

Assume that rc has been estimated by regularization according to section 3. We find

in this situation that r̂c,α1 is consistent. We can then use this new estimator of rc to form

the selected portfolio in (3) combined with a second stabilization procedure to stabilize

the inverse of the covariance matrix Ω. If we replace r̂c by r̂c,α1 in (4), we still face

an estimation issue due to the fact we use the sample counterpart of Ω−1 which is not

appropriate in large dimensional problem as in our framework because may be nearly

singular.

We use here three regularization methods to stabilize the inverse of Ω when estimating

the optimal portfolio given in (3). Let us denote by Ω̂α2 the regularized inverse of

the sample covariance matrix Ω̂ with α2 a positive tuning parameter specific to each

regularization method. This parameter is also unknown and will need to be selected.

Using this notation, our regularized portfolio is given by

ω̂α1,α2 = r̂c,α1Ω̂
α2µ̂. (15)

Ω̂α2 is computed according to the regularization technique considered in our estimation

process. These regularization methods are summarized in section 2.2. We can notice that

unlike what has been done in Carrasco, Koné, and Noumon (2019) and Koné (2021), the

selected portfolio depends on two different tuning parameters α1 and α2.

The selected portfolio in (15) can then be use to compute the expected return on the

optimal portfolio as follows

ER (ω̂α1,α2) = ω̂′
α1,α2

µ = r̂c,α1µ̂
′Ω̂α2µ. (16)

Does this quantity converges to the true expected return ω′µ under non- restrictive
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regularity conditions?

We obtain the following result under Assumption A.

Proposition 2 Under Assumption A we have that

ER (ω̂α1,α2) = ω̂′
α1,α2

µ→p ER (ω) = ω′µ (17)

if α1α2

√
T → ∞, where α1 and α1 are the two tuning parameters of the double regular-

ization. Moreover, we have that

ω̂′
α1,α2

Σω̂α1,α2 →p ω
′Σω (18)

Proof of this proposition can be found in the section 8. To obtain the result of Propo-

sition 2, we do not need any assumption about the distribution of the excess return. We

don’t need the excess return to follow a normal distribution. The only useful assumption

we need to derive this result is in Assumption A. Under this assumption, Proposition 2

gives us similar results as in Theorem 1 of Ao, Yingying, and Zheng (2019). According to

this result, the double regularization portfolio that we implement guarantees to investors

the maximum expected return with the lowest risk. In other words, the selected portfolio

with our method achieves asymptotically the true Sharpe ratio.

Assumption A is less restrictive than imposing the normal distribution on the excess

return. This assumption can easily be verified when the excess returns are generated

by the three-factor model (see Carrasco, Koné, and Noumon (2019) for instance). The

regularity condition behind the first part of Proposition 2 holds when the two tuning

parameters are of order 1/T 0.125. More precisely, if αi ∼ 1/T 0.125 for i = 1, 2, we have

that α1α2

√
T ∼ T 0.125 → ∞ as T → ∞.

In the next subsection we propose a way to select the tuning parameter of the second

regularization method.
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4.2 Selection of the tuning parameter of the second regulariza-

tion technique

The results in Proposition 2 are derived assuming that the parameter α2 is given. In

practice, this parameter is unknown and needs to be estimated. Using the fact that

β = Ω−1µ = E (R′R)−1E (R′1T ), we have that

ω̂α1,α2 = r̂c,α1Ω̂
α2µ̂ = r̂c,α1 β̂α2 (19)

where β̂α2 is the regularized version of β.

According to Kan and Zhou (2007), the performance of a ω̂α1,α2 can be measured by

U (ω̂α1,α2) = ω̂
′

α1,α2
µ− γ

2
ω̂

′

α1,α2
Σω̂α1,α2 . (20)

Hence, we propose as in Carrasco, Koné, and Noumon (2019) to select the tuning pa-

rameter α2 that minimizes the following expected loss function

E (L [ω̂α1,α2 ]) = E [U (ω)− U (ω̂α1,α2)] with (21)

L [ω̂α1,α2 ] = U (ω)− U (ω̂α1,α2) (22)

More precisely, the tuning parameter α2 is selected as follows

α̂2 = argmin
α2

E (L [ω̂α1,α2 ]) . (23)

The following result about the loss function L [ω̂α1,α2 ] will be useful to correctly ap-

proximate the objective function of the optimization problem in (23)

Lemma 1 Under Assumption A we have that

L [ω̂α1,α2 ] ∼ L
[
rcβ̂α2

]
(24)

if α1α2

√
T → ∞, as T goes to infinity where α1 and α1 are the two tuning parameters

of the double regularization.

The result of this lemma comes directly from Proposition 2. According to this lemma,

selecting α2 with respect to E (L [ω̂α1,α2 ]) is equivalent of selection this parameter with
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respect to E
(
L
[
rcβ̂α2

])
. Hence, we will focus here on E

(
L
[
rcβ̂α2

])
as the objective

function used to estimate the tuning parameter α2.

L
[
rcβ̂α2

]
=

(
rcβ

′

µ− rcβ̂
′

α2
µ
)
− r2cγ

2

(
β̂

′

α2
Σβ̂α2 − β

′

Σβ
)

= rc

[(
β − β̂α2

)′

µ− rcγ

2

(
β̂

′

α2
Σβ̂α2 − β

′

Σβ
)]

=
r2cγ

2

(
β̂α2 − β

)′

Σ
(
β̂α2 − β

)

Hence, using this decomposition of the loss function L
[
rcβ̂α2

]
, we derive the following

result that gives us a good approximation of the objective function E (L [ω̂α1,α2 ])

Proposition 3 Under Assumptions A and B we have that

(
r2cγ

2

)−1

E (L [ω̂α1,α2 ]) =
1

T
E
∥∥∥R
(
β̂α2 − β

)∥∥∥
2

− (µ′ (βα2 − β))
2
+ rest (α2, N, T ) (25)

where

rest (α2, N, T ) = Op

[
1√
T

(
N

α2
2T

+
αν
2

N
+
α
ν/2−1
2√
T

)]
. (26)

Moreover, if α2
2

√
T → ∞ and α

1−ν/2
2 T → ∞ as T goes to infinity then we obtain the

following approximation

(
r2cγ

2

)−1

E (L [ω̂α1,α2 ]) ∼
1

T
E
∥∥∥R
(
β̂α2 − β

)∥∥∥
2

− (µ′ (βα2 − β))
2

(27)

Proof of this proposition can be found in section 8. To show this result, we use some

results from Carrasco, Koné, and Noumon (2019) particularly the result of Lemma 3.

According to Proposition 3, under appropriate regularity conditions, selecting the tuning

parameter α2 with respect to (23) is equivalent of selecting this parameter base on the

right side of (27). This new objective function can easily be approximated by generalized

cross-validation using the same technique as in Carrasco, Koné, and Noumon (2019). In

fact, according to Proposition 3 α̂2 is obtained by

α̂2 = argmin
α2

{
1

T
E
∥∥∥R
(
β̂α2 − β

)∥∥∥
2

− (µ′ (βα2 − β))
2

}
. (28)
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The objective function is unknown because depends on β hence, will be approximated

by cross validation as follows

GCV F (α2) =
1

T

‖(IT −MT (α2)) 1T‖2

(1− tr (MT (α2)) /T )
2 −

(
1′T (MT (α2)− IT )Xβ̂α̃

)2

T 2

where β̂α̃ is an estimator of β obtained for some consistent α̃.

MT (α2) v =
T∑

j=1

q(α2, λ
2
j)

(
v

′

ψj

T

)
ψj

for any T -dimensional vector v and tr (MT (α2)) =
∑T

j=1 q(α2, λ
2
j) and ψj the eigenvectors

of RR
′

/T . Hence, the tuning parameter is selected as

α̂2 = argmin
α2

GCV F (α2) . (29)

The optimality of this selection is proofed in Carrasco, Koné, and Noumon (2019).

4.3 Mean squared error

The aim here is to see if we can better control the estimation error when using a double

regularization to estimate the mean-variance portfolio. For this purpose, we derive an

approximation to the estimation error in the optimal portfolio to understand if this mean

squared error vanishes asymptotically under less restrictive regularity conditions.

We define the mean squared error of the selected strategy as follows

MSE (ω̂α1,α2) =
1

NT
E
[
‖R (ω̂α1,α2 − ω)‖22

]
(30)

Using this definition of the MSE and under Assumptions A and B, we obtain the following

result

Proposition 4 Under Assumptions A and B we have the following result about the

estimation error of the selected portfolio

MSE (ω̂α1,α2) ∼ C (α1, N, T )

[
1

Tα2

+ αν+1
2

]
+D (α1, N, T )

[
1

Tα2

+ αν+1
2

]1/2
+ E (α1, N, T )(31)
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where

C (α1, N, T ) =
1

Nα1

(
1

α1

√
T

+ 1

)2

D (α1, N, T ) =
1

Nα1

(
1 +

1

α1

√
T

)

E (α1, N, T ) =
1

NTα2
1

Proof. In section 8.

This proposition implies that under appropriate regularity conditions, the MSE of

the selected strategy by double regularization vanishes asymptotically. In other words,

we have that

MSE (ω̂α1,α2) → 0

This implies that we asymptotically control the MSE of the selected portfolio by double

regularization.

5 Simulations

We implement a simple simulation exercise to evaluate the performance of our procedure

and compare it with the existing procedures. This comparison will be done using several

statistics such as in-sample expected loss in utility and the Sharpe ratio.

Let us consider for this purpose a simple economy withN ∈ {10, 20, 40, 60, 80, 90, 100}

risky assets. We use several values of N to see how the size of the financial market

(defined by the number of assets in the economy) could affect the performance of the

selected strategy. Let T be the sample size used to estimate the unknown parameters

in the investment process. Following Chen and Yuan (2016) and Carrasco, Koné, and

Noumon (2019), we simulate the excess returns at each simulation step from the following

three-factor model for i = 1, ..., N and t = 1, ..., T

rit = bi1f1t + bi2f2t + bi3f3t + ǫit (32)
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ft = (f1t, f2t, f3t)
′

is the vector of common factors, bi = (bi1, bi2, bi3)
′

is the vector of

factor loadings associated with the ith asset and ǫit is the idiosyncratic component of rit

satisfying E (ǫit|ft) = 0. We assume that ft ∼ N (µf ,Σf ) where µf and Σf are calibrated

on the monthly data of the market portfolio, the Fama-French size and the book-to-

market portfolio from July 1980 to June 2016. Moreover, we assume that bi ∼ N (µb,Σb)

with µb and Σb calibrated using data of 30 industry portfolios from July 1980 to June

2016. Idiosyncratic terms ǫit are supposed to be normally distributed. The covariance

matrix of the residual vector is assumed to be diagonal and given by Σǫ=diag(σ2
1, ..., σ

2
N)

with the diagonal elements drawn from a uniform distribution between 0.10 and 0.30 to

yield an average cross-sectional volatility of 20%.

In the compact form (32) can be written as follows:

R = BF + ǫ (33)

where B is a N × 3 matrix whose ith row is b
′

i. The covariance matrix of the vector of

excess return rt is given by

Σ = BΣfB
′

+ Σǫ.

The mean of the excess return is given by µ = Bµf . The return on the risk-free asset Rf

is calibrated to be the mean of the one-month T-B observed in the data from July 1980

to June 2016.

The calibrated parameters used in our simulation process are given in Table 1. The

gross return on the risk-free asset calibrated on the data is given by Rf = 1.0036. Once

generated, the factor loadings are kept fixed over replications, while the factors differ

from simulations and are drawn from a trivariate normal distribution.

Let SR(ω) be the Sharpe ratio associated with the optimal portfolio ω, then SR(ω)

is given as follows

SR(ω) =
[
µ

′

Σµ
]1/2

To evaluate the performance of our procedure in terms of the Sharpe ratio, we focus on
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Table 1: Calibrated parameters

Parameters for factors loadings Parameters for factors returns

µb Σb µf Σf

1.0267 0.0422 0.0388 0.0115 0.0063 0.0020 0.0003 -0.0004
0.0778 0.0388 0.0641 0.0162 0.0011 0.0003 0.0009 -0.0003
0.2257 0.0115 0.0162 0.0862 0.0028 -0.0004 -0.0003 0.0009

the actual Sharpe ratio associated with the selected portfolio. If we have B replications

in the simuation, the actual Sharpe ratio for a given replication is

SR(ω̂) =
ω̂

′

µ

[ω̂′Σω̂′ ]1/2

Hence, the SR(ω̂) is estimated as follows

ŜR(ω̂) =
1

B

B∑

j=1

ω̂j
′

µ
[
ω̂j

′

Σω̂j
]1/2

with ω̂j the selected portfolio at the replication j. To evaluate the performance of our

procedure in terms of expected utility loss, we use the following loss fuction

L [ω̂α1,α2 ] = U (ω)− U (ω̂α1,α2)

where ω is the optimal portfolio and ω̂α1,α2 the estimated portfolio by double regulariza-

tion. Hence, in our simulation, the expected utility loss is estimated as follows

Ê (L [ω̂α1,α2 ]) =
1

B

B∑

j=1

L
[
ω̂j
α1,α2

]

We consider the following portfolio selection procedures: the naive portfolio (XoNP)

which allocates a constant amount 1/N in each asset, our double regularized portfolios

(DTH, DSC, DLF), the regularized portfolios proposed by Carrasco, Koné, and Noumon

(2019) (TH, SC, LF), and the new Lasso estimator proposed by Ao, Yingying, and Zheng

(2019) (AoP).

We did this analysis for 1000 replications. In Table 2 the mean squared error in

estimating the aversion coefficient rc for several number of risky assets in the economy.
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Rows 2 to 4 contain the MSE when estimating rc by regularization, row 5 the MSE

obtained using the estimator of Ao, Yingying, and Zheng (2019) and row 6 the MSE

for the sample-based estimate of rc. The result in this table shows that by regularizing

the sample covariance, one considerably reduces the estimation error when estimating

the parameter rc. When the number of assets in the economy increases, the regularized

estimate of rc considerably dominates the one proposed by Ao, Yingying, and Zheng

(2019) in term of reducing the MSE. This in turn may help investors to improve the

performance of the selected strategy that used the regularized estimation of rc.

Table 2: Mean squared error in estimating the parameter rc for T = 120 and
σ = 0.04

N 10 20 40 60 80 90 100

Ridge 0.0025 0.0017 0.0022 0.0032 0.0067 0.0218 0.0230
SC 0.0023 0.0018 0.000437 0.0016 0.0045 0.0175 0.0210
LF 0.0013 0.0018 0.0013 0.0023 0.0047 0.0186 0.0214

Ao estimate 0.0017 0.0038 0.0104 0.0241 0.0436 0.0824 0.0945
Sample based estimate 0.0105 0.0559 0.2935 0.9053 4.8615 10.6255 12.702

Table 3 contains the Sharpe ratio obtained for several strategies. Rows 2 to 4 contain

the result of our double regularized portfolio, row 5 contains the result of the new Lasso

estimator of Ao, Yingying, and Zheng (2019), the result of the naive portfolio is in row

6 and the theoretical Sharpe ratio is in row 10.

The result of this simulation shows that the double regularization considerably im-

proves the performance of the selected strategy in terms of the Sharpe ratio compared to

what is obtained with the new Lasso estimator of Ao, Yingying, and Zheng (2019). In

fact, the first level of the double regularization helps to reduce the estimation error when

estimating rc which in turn helps the investor to increase the Sharpe ratio compared

to that of the Lasso estimator of Ao, Yingying, and Zheng (2019). Moreover, the fact

that our tuning parameter is optimally selected can also explain the performance of our

method over the new Lasso procedure.

Our method also outperforms the naive strategy for any set of risky assets considered

23



in the simulation process.

The comparison of the double regularization with the traditional regularization will

be done only for the expected utility loss.

Table 3: The average monthly Sharpe ratio with T = 120 and σ = 0.04 over
1000 replications. Theo Sharpe R is the theoretical Sharpe ratio.

N 10 20 40 60 80 90 100

DTH 0.4927 0.5201 0.5807 0.6272 0.6602 0.6509 0.7088
DSC 0.5189 0.5469 0.5705 0.6307 0.6482 0.6607 0.7185
DLF 0.4876 0.5581 0.5781 0.6289 0.6502 0.6508 0.7209
AoP 0.4562 0.4604 0.4687 0.5298 0.5589 0.5786 0.5980
XoNP 0.4021 0.4107 0.4209 0.4490 0.4705 0.4820 0.5072

Theo Sharpe R 0.5282 0.5652 0.6021 0.6521 0.6798 0.6887 0.7409

Another interesting result is the performance of the selected portfolio in term of

minimizing the expected utility loss. The result of this analysis is given in Table 4.

Table 4: The Actual Loss in utility T = 120 and σ = 0.04 over 1000 replications.
N 10 20 40 60 80 90 100

DTH 0.0031 0.0028 0.0033 0.0048 0.0054 0.0078 0.0094
DSC 0.0028 0.0027 0.0034 0.0049 0.0056 0.0064 0.008
DLF 0.0027 0.0029 0.0032 0.0047 0.0057 0.0061 0.0078
TH 0.0076 0.0072 0.008 0.0086 0.0094 0.0102 0.0126
SC 0.0067 0.0071 0.0087 0.0092 0.0097 0.0120 0.0142
LF 0.0069 0.0070 0.0082 0.0085 0.0095 0.0102 0.0126
AoP 0.0078 0.008 0.0089 0.0101 0.0120 0.0150 0.0168
XoNP 0.009 0.0095 0.0107 0.0148 0.0165 0.0219 0.0263

The result of this table follows the same principle as in Table 3 where the Sharpe

ratio is replaced by the expected utility loss. Rows 5 to 7 contain the result obtained

by applying the traditional regularization as developed by Carrasco, Koné, and Noumon

(2019) to estimate the optimal portfolio in the investment process.

In terms of comparison of the double regularization with the new Lasso procedure,

we obtain similar results as with the actual Sharpe ratio. According to these results

the investor gains more in terms of reducing the utility loss when using the double

regularization to estimate the optimal portfolio in the investment process. The observed
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result seems to be plausible in the sense that in additional to considerably reducing the

estimation error in estimating rc, the tuning parameter of the second level of this double

regularization is selected to minimize the expected utility loss. Hence, our method is

highly recommended for investors because optimizes simultaneously the performance in

term of utility cost and the Sharpe ratio.

Our method also outperforms the traditional regularized portfolio in terms of min-

imizing the expected utility loss. This observed performance of the double regularized

portfolio can essentially be explained by the fact that a regularized estimate of rc is used

which significantly reduces the estimation error in the optimal solution. The result shows

in particular that investors gain more in applying a double regularization when selecting

the optimal portfolio in the financial market.

6 Empirical study

Our objective here is to use the real data (unlike in the simulation part) to estimate the

unknown parameters of the optimal portfolio and then evaluate the performance of each

estimation procedure.

We apply our method to several sets of portfolios from Kenneth R. French’s website.

We apply our procedure to the following portfolios: the 30-industry portfolios and the

100 portfolios formed on size and book-to-market. We allow investors to re-balance their

portfolios every month. The investor holds this portfolio for one month, realizes gains and

losses, updates information, and then recomputes the optimal portfolio weights for the

next period using the same estimation window. This procedure is repeated each month,

generating a time series of out-of-sample returns. This time series can then be used to

analyze the out-of-sample performance of each strategy based on several statistics such

as the out-of-sample Sharpe ratio. For this purpose, we use data from July 1980 to June

2016.
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Table 5: Out-of-sample performance in terms of the Sharpe ratio applied on
the 30 industry portfolios (FF30) and the 100 portfolios formed on size and
book-to-market (FF100) for two estimation windows. The risk constraint is
σ = 0.04.

P EW DTH DSC DLF TH SC LF AoP XoNP

FF30
60 0.270 0.263 0.282 0.231 0.228 0.245 0.237 0.209
120 0.289 0.284 0.320 0.248 0.235 0.268 0.258 0.219

FF100
120 0.328 0.316 0.339 0.243 0.242 0.254 0.249 0.247
240 0.357 0.346 0.361 0.264 0.272 0.276 0.278 0.260

Table 5 contains the results of the out-of-sample analysis in terms of the Sharpe ratio

for two different data sets: the FF30 and the FF100. These empirical results confirm

what we have obtained in the simulation part. The result shows that by applying a

double regularization to estimate the efficient mean-variance portfolio, we considerably

improve the out-of-sample performance of the selected strategy in terms of maximizing

the Sharpe ratio. Moreover, our regularized strategies outperform the new Lasso method

of Ao, Yingying, and Zheng (2019), the traditional regularized portfolio proposed by

Carrasco, Koné, and Noumon (2019) and the Equal-Weight portfolio for each data set.

By outperforming the traditional regularized portfolio, these empirical results imply that

the first level of regularization in estimating the efficient mean-variance portfolio plays a

significant role in achieving a desire level of performance in the investment process. In

other words, the estimation error from replacing rc with its sample counterpart generate

a significant loss in performance in the portfolio selection process. Therefore, it will be

helpful to use a more appropriate estimator (which should replace the sample counterpart

of rc) to reduce the loss of performance due to the sample estimate particularly when

the number of assets considered in the economy is large as in our framework. Hence, Ao,

Yingying, and Zheng (2019) propose an alternative estimator for rc which is unbiased and

consistent under the normality assumption of asset return distribution. Nonetheless, we

show by simulation that by stabilizing the inverse of the covariance matrix in estimating

rc one significantly reduces the estimation error compared to what has been proposed by
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Ao, Yingying, and Zheng (2019) in a large financial market. Moreover, the properties

of the proposed estimator Ao, Yingying, and Zheng (2019) depend on a distributional

assumption: the normality of assets return. Therefore, the regularized estimate of rc

seems to be more appropriate since we do not need any distributional assumption for this

estimation to perform. So, an interesting advantage of the double regularized portfolio

is its ability to correctly perform well under a more general distributional assumption

including the case of normality return.

Table 6: Out-of-sample performance in terms of the risk applied on the 30
industry portfolios (FF30) and the 100 portfolios formed on size and book-
to-market (FF100) for two estimation windows. The risk constraint is σ = 0.04.

P EW DTH DSC DLF TH SC LF AoP XoNP

FF30
60 0.0520 0.0473 0.0467 0.0530 0.0542 0.0523 0.0497 0.0517
120 0.0471 0.0465 0.0455 0.0521 0.0510 0.0512 0.0482 0.0485

FF100
120 0.0502 0.0473 0.0461 0.0540 0.0530 0.0512 0.0512 0.0529
240 0.0463 0.0462 0.0447 0.0527 0.0520 0.0471 0.0483 0.0498

In Table 6 we have the optimal risk taken by investors in the financial market. We

find a similar result with the new Lasso technique in terms of controlling the risk when

taking positions in the financial market. The optimal risk taken by the investor is very

close to the risk constraint imposed in the economy.

Our regularized strategy may be very useful for investors especially during periods of

high uncertainty in the financial as what we currently observe due to Covid-19.

7 Conclusion

The paper addresses the traditional estimation issue that exists in estimating the effi-

cient mean-variance portfolio. More precisely, the efficient mean-variance is estimated

by a double regularization where each level consists of stabilizing the inverse of the co-

variance matrix of assets using several regularization techniques from inverse problem

literature. These regularization techniques namely the ridge, the spectral cut-off, and
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Landweber-Fridman involve a regularization parameter or penalty term whose optimal

value is selected to minimize the expected distance between the inverse of the estimated

covariance matrix and the inverse of the true covariance matrix at the first level. The

tuning parameter of the second level of regularization is selected to minimize the expected

loss in utility of a mean-variance investor. The optimality of these tuning parameters

selection procedures has been largely augmented in the literature.

Under appropriate regularity conditions, we show that the double regularized portfolio

guarantees to investors the maximum expected return with the lowest risk. This implies

that our selected portfolio achieves asymptotically the true Sharpe ratio. Unlike what

has been obtained in the literature, we do not need the normality of asset returns to find

this result. Moreover, we show based on a simple approximation of the mean squared

error that the estimation error in estimating the efficient mean-variance portfolio vanishes

asymptotically.

To evaluate the performance of our procedures we implement a simulation exercise

based on a three-factor model calibrated on real data from the US financial market from

July 1980 to June 2016.

We obtain by simulation that our procedure significantly improves the performance

of the selected strategy with respect to the Sharpe ratio and the expected utility loss.

The double regularized portfolios are compared to the new Lasso portfolio, the tradi-

tional regularized portfolio, and the naive 1/N strategy in terms of in-sample utility loss

and the Sharpe ratio, and it is shown that our method yields significant Sharpe ratio

improvements and considerably reduces the expected utility loss.

To confirm our simulations, we do an empirical analysis using Kenneth R. French’s

30-industry portfolios and 100 portfolios formed on size and book-to-market. According

to this empirical result, by double regularizing the efficient mean-variance portfolio, we

considerably improve the performance of the selected strategy in terms of maximizing

the Sharpe ratio.
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Hence, we highly recommend this double regularized portfolio to the mean-variance

investors in the sense that it optimizes simultaneously the performance in terms of utility

loss and the Sharpe ratio with the lowest risk in the investment process.
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Koné, N. (2021): “Regularized Maximum Diversification Investment Strategy,” Econo-

metrics, 9(1), 1.

Kress, R. (1999): “Singular integral equations,” in Linear Integral Equations, pp. 94–

124. Springer.

32



Ledoit, O., and M. Wolf (2003): “Improved estimation of the covariance matrix of

stock returns with an application to portfolio selection,” Journal of Empirical Finance,

10(5), 603–621.

(2004a): “Honey, I shrunk the sample covariance matrix,” The Journal of

Portfolio Management, 30(4), 110–119.

(2004b): “A well-conditioned estimator for large-dimensional covariance matri-

ces,” Journal of Multivariate Analysis, 88(2), 365–411.

(2017): “Nonlinear shrinkage of the covariance matrix for portfolio selection:

Markowitz meets Goldilocks,” The Review of Financial Studies, 30(12), 4349–4388.

(2018): “Optimal estimation of a large-dimensional covariance matrix under

Stein’s loss,” Bernoulli, 24(4B), 3791–3832.

Markowitz, H. (1952): “Portfolio selection,” The Journal of Finance, 7(1), 77–91.

Rothman, A. J., P. J. Bickel, E. Levina, J. Zhu, et al. (2008): “Sparse permu-

tation invariant covariance estimation,” Electronic Journal of Statistics, 2, 494–515.

Stein, C. (1956): “Inadmissibility of the usual estimator for the mean of a multivari-

ate normal distribution,” Discussion paper, STANFORD UNIVERSITY STANFORD

United States.

Touloumis, A. (2015): “Nonparametric Stein-type shrinkage covariance matrix esti-

mators in high-dimensional settings,” Computational Statistics & Data Analysis, 83,

251–261.

33



8 Proofs

8.1 Proof of proposition 1

Let’s first recall the idea behind the continuous mapping theorem for the convergence

in probability. According to this theorem, if Xn is sequence of random variable so that

Xn →p X then g (Xn) →p g (X) where g is a continuous function. The continuous

mapping theorem states that continuous functions preserve limits even if their arguments

are sequences of random variables. Now let’s look at the consistency of θ̂α1 under the

assumption A.

θ̂α1 = µ̂′Σ̂α1µ̂

= (µ̂− µ+ µ)′ Σ̂α1 (µ̂− µ+ µ)

= (µ̂− µ)′ Σ̂α1 (µ̂− µ) + 2 (µ̂− µ)′ Σ̂α1µ+ µ′Σ̂α1µ

∥∥∥(µ̂− µ)′ Σ̂α1 (µ̂− µ)
∥∥∥ =

∥∥∥∥∥

(
µ̂− µ√
N

)′
(
Σ̂

N

)α1 (
µ̂− µ√
N

)∥∥∥∥∥

= OP




∥∥∥
(

µ̂−µ√
N

)∥∥∥
2

α1




= OP

(
1

α1T

)
because ‖µ̂− µ‖2 = OP

(
N

T

)

(µ̂− µ)′ Σ̂α1µ =

∥∥∥∥∥

(
µ̂− µ√
N

)′
(
Σ̂

N

)α1 (
µ√
N

)∥∥∥∥∥

= OP

(
1

α1

√
T

)
because ‖µ̂− µ‖2 = OP

(
N

T

)
and ‖µ‖2 = O (N)
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µ′Σ̂α1µ = µ′
(
Σ̂α1 − Σα1 + Σα1

)

= µ′
(
Σ̂α1 − Σα1

)
µ+ µ′Σα1µ

= µ′Σ̂α1

(
Σ− Σ̂α1

)
Σα1 + µ′Σα1µ

=

(
µ√
N

)′
(
Σ̂

N

)α1
[
Σ

N
−
(
Σ̂

N

)

α1

](
Σ

N

)α1
(

µ√
N

)

= µ′Σ−1µ+OP

(
1

α1

√
T

)

Hence, we obtain that,

θ̂α1 = θ +OP

(
1

α1

√
T

)

Therefore, if the tuning parameter α1 is selected in such a way that α1

√
T → ∞ then we

obtain that

θ̂α1 →p θ

The continuous mapping theorem can then be used to show the consistency of r̂c,α1 .

8.2 Proof of proposition 2

We have that

ER (ω̂α1,α2) = ω̂′
α1,α2

µ

= r̂c,α1µ̂
′Ω̂α2µ

= r̂c,α1 (µ̂− µ)′ Ω̂α2µ+ r̂c,α1µ
′Ω̂α2µ

= (r̂c,α1 − rc) (µ̂− µ)′ Ω̂α2µ+ rc (µ̂− µ)′ Ω̂α2µ+ (r̂c,α1 − rc)µ
′Ω̂α2µ+ rcµ

′Ω̂α2µ

∥∥∥(r̂c,α1 − rc) (µ̂− µ)′ Ω̂α2µ
∥∥∥ ≤ ‖(r̂c,α1 − rc)‖

∥∥∥∥
(
µ̂− µ√
N

)∥∥∥∥
∥∥∥∥
µ√
N

∥∥∥∥

∥∥∥∥∥

(
Ω̂

N

)α2
∥∥∥∥∥
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By Proposition 1, we have that

‖(r̂c,α1 − rc)‖ = op(1)

under the assumption that α1

√
T → ∞.

∥∥∥∥
(
µ̂− µ√
N

)∥∥∥∥ = Op

(
1√
T

)
and

∥∥∥∥
µ√
N

∥∥∥∥ = O(1).

Moreover, by definition we have that
∥∥∥∥∥

(
Ω̂

N

)α2
∥∥∥∥∥ = Op

(
1

α2

)

Hence,

∥∥∥(r̂c,α1 − rc) (µ̂− µ)′ Ω̂α2µ
∥∥∥ = op(1).Op

(
1

α1

√
T

)

Therefore, if max1≤i≤2

{
αi

√
T
}
→ ∞ then,

∥∥∥(r̂c,α1 − rc) (µ̂− µ)′ Ω̂α2µ
∥∥∥ = op(1)

∥∥∥rc (µ̂− µ)′ Ω̂α2µ
∥∥∥ ≤ ‖rc‖

∥∥∥∥
(
µ̂− µ√
N

)∥∥∥∥
∥∥∥∥
µ√
N

∥∥∥∥

∥∥∥∥∥

(
Ω̂

N

)α2
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Since 0 ≤ rc <∞, then we have that

∥∥∥rc (µ̂− µ)′ Ω̂α2µ
∥∥∥ = Op

(
1

α2

√
T

)

A similar argument can be used for (r̂c,α1 − rc)µ
′Ω̂α2µ and we obtain that

(r̂c,α1 − rc)µ
′Ω̂α2µ = Op

(
1

α1α2

√
T

)
because ‖(r̂c,α1 − rc)‖ = Op

(
1

α1

√
T

)
and
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(
Ω̂

N

)α2
∥∥∥∥∥ = Op

(
1

α2

)

rcµ
′Ω̂α2µ = rcµ

′
(
Ω̂α2 − Ωα2

)
µ+ rcµ

′Ωα2µ
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rcµ
′
(
Ω̂α2 − Ωα2

)
µ = rc

(
µ√
N

)′
(
Ω̂

N

)α2
[
Ω

N
−
(
Ω̂

N

)

α2

](
Ω

N

)α2
(

µ√
N

)

∥∥∥∥∥

(
µ√
N

)′
(
Ω̂

N

)α2
∥∥∥∥∥ = Op

(
1

α2

)

∥∥∥∥∥

[
Ω

N
−
(
Ω̂

N

)

α2

]∥∥∥∥∥ = Op

(
1√
T

)

by Lemma 4 of Carrasco and Florens (2000).

(
Ω

N

)α2
(

µ√
N

)
= O(1),

And because α2 → ∞ as T → ∞, we have that

ER (ω̂α1,α2) = ER (ω) +Op

(
1

α1α2

√
T

+
1

α1α2T
+

1

α2

√
T

)

Therefore if α1α2

√
T → ∞, then

ER (ω̂α1,α2) →p ER (ω)

ω̂′
α1,α2

Σω̂α1,α2 = r̂c,α1µ̂
′Ω̂α2ΣΩ̂α2µ̂r̂c,α1

µ̂′Ω̂α2 = (µ̂− µ)′ Ω̂α2 + µ′Ω̂α2

= (µ̂− µ)′ Ωα2 + (µ̂− µ)′
(
Ω̂α2 − Ωα2

)
+ µ′Ωα2 + µ′

(
Ω̂α2 − Ωα2

)

∥∥(µ̂− µ)′ Ωα2
∥∥ =

∥∥∥∥
(
µ̂− µ

N

)′(
Ω

N

)α2
∥∥∥∥ = Op

(
1√
NT

)

∥∥∥(µ̂− µ)′
(
Ω̂α2 − Ωα2

)∥∥∥ =

∥∥∥∥∥

(
µ̂− µ

N

)′
[(

Ω̂

N

)α2

−
(
Ω

N

)α2
]∥∥∥∥∥ = Op




∥∥∥ Ω̂
N
− Ω

N

∥∥∥
α2

√
NT


 = Op

[
1

α2

√
NT

]

A similar argument may help to obtain that

∥∥∥µ′
(
Ω̂α2 − Ωα2

)∥∥∥ = Op

[
1

α2

√
NT

]
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Hence as α2 → 0, as T → ∞, we have that

µ̂′Ω̂α2 = µ′Ω−1 +Op

[
1

α2

√
NT

]

We can easily show that,

r̂c,α1µ̂
′Ω̂α2 = rcµ

′Ω−1 +Op

[
1

α1

√
NT

+
1

α2

√
NT

+
1

α1α2T
√
N

]

ω̂′
α1,α2

Σω̂α1,α2 =

{
rcµ

′Ω−1 +Op

[
1

α1

√
NT

+
1

α2

√
NT

+
1

α1α2T
√
N

]}
Σ.

{
rcΩ

−1µ+Op

[
1

α1

√
NT

+
1

α2

√
NT

+
1

α1α2T
√
N

]}

ω̂′
α1,α2

Σω̂α1,α2 = r2cµ
′Ω−1ΣΩ−1µ+Op

[∥∥µ′Ω−1Σ
∥∥ψN,T,α1,α2

]
+Op

[
‖Σ‖ψ2

N,T,α1,α2

]

where

ψN,T,α1,α2 =
1

α1

√
NT

+
1

α2

√
NT

+
1

α1α2T
√
N

Op

[
‖Σ‖ψ2

N,T,α1,α2

]
= Op

[
Nψ2

N,T,α1,α2

]
= Op

[(√
NψN,T,α1,α2

)2]
= Op

[(
1

α1

√
T

+
1

α2

√
T

+
1

α1α2T

)2
]

Op

[∥∥µ′Ω−1Σ
∥∥ψN,T,α1,α2

]
= Op

[√
NψN,T,α1,α2

]
= Op

[
1

α1

√
T

+
1

α2

√
T

+
1

α1α2T

]

Therefore, under the assumption that 1
α1

√
T
+ 1

α2

√
T
+ 1

α1α2T
→ 0 which is obtained if

max1≤i≤2 αi

√
T → ∞ and α1α2T → ∞, then we obtain that

ω̂′
α1,α2

Σω̂α1,α2 → r2cµ
′Ω−1ΣΩ−1µ = ω′Σω

8.3 Proof of Proposition 3

By Lemma 1, selecting α2 with respect to E (L [ω̂α1,α2 ]) is equivalent of selecting α2 with

respect to E
(
L
[
rcβ̂α2

])
where L [ω̂α1,α2 ] = U (ω)− U (ω̂α1,α2).
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L
[
rcβ̂α2

]
= U (rcβ)− U

(
rcβ̂α2

)

= rc

(
β′µ− β̂′

α2
µ
)
− γr2c

2

(
β̂′
α2
Σβ̂α2 − β′Σβ

)

= rc

{(
β − β̂α2

)′
µ− γ̃

2

(
β̂′
α2
Σβ̂α2 − β′Σβ

)}
where γ̃ = γrc

=
r2cγ

2

(
β̂α2 − β

)′
Σ
(
β̂α2 − β

)
.

(
β̂α2 − β

)′
Σ
(
β̂α2 − β

)
=
(
β̂α2 − β

)′
Σ̂
(
β̂α2 − β

)
+
(
β̂α2 − β

)′ (
Σ− Σ̂

)(
β̂α2 − β

)

(
β̂α2 − β

)′ (
Σ− Σ̂

)(
β̂α2 − β

)
=
(
β̂N,α2 − βN

)′
(
Σ

N
− Σ̂

N

)(
β̂N,α2 − βN

)
with βN =

(
Ω

N

)−1

µ.

(
β̂α2 − β

)′ (
Σ− Σ̂

)(
β̂α2 − β

)
≤
∥∥∥β̂N,α2 − βN

∥∥∥
2

∥∥∥∥∥
Σ

N
− Σ̂

N

∥∥∥∥∥

∥∥∥β̂N,α2 − βN

∥∥∥ =
∥∥∥β̂N,α2 − βN,α2

∥∥∥+ ‖βN,α2 − βN‖

β̂N,α2 − βN,α2 =

(
Ω̂

N

)α2

µ̂−
(
Ω

N

)α2

µ

=

(
Ω̂

N

)α2

(µ̂− µ) +

[(
Ω̂

N

)α2

−
(
Ω

N

)α2
]
µ

=

(
Ω̂

N

)α2

(µ̂− µ) +

(
Ω̂

N

)α2
[(

Ω

N

)

α2

−
(
Ω̂

N

)

α2

](
Ω

N

)α2

µ

Hence, we have that

∥∥∥β̂N,α2 − βN,α2

∥∥∥ = Op

[ √
N

α2

√
T

+
1

α2

√
T

]
= Op

[ √
N

α2

√
T

]
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Therefore, using Assumption B, we obtain that

∥∥∥β̂N,α2 − βN

∥∥∥ = Op

[ √
N

α2

√
T

+
α
ν/2
2√
N

]

This imples that

∥∥∥β̂N,α2 − βN

∥∥∥
2

= Op

[
N

α2
2T

+
αν
2

N
+
α
ν/2−1
2√
T

]

So,

(
β̂α2 − β

)′ (
Σ− Σ̂

)(
β̂α2 − β

)
= Op

[
1√
T

(
N

α2
2T

+
αν
2

N
+
α
ν/2−1
2√
T

)]

If α− 22
√
T → ∞ and α

1−ν/2
2 T → ∞ then we have

(
β̂α2 − β

)′ (
Σ− Σ̂

)(
β̂α2 − β

)
= op (1)

(
β̂α2 − β

)′
Σ
(
β̂α2 − β

)
=
(
β̂α2 − β

)′
Σ̂
(
β̂α2 − β

)
+ rest (α2, N, T )

with

rest (α2, N, T ) = Op

[
1√
T

(
N

α2
2T

+
αν
2

N
+
α
ν/2−1
2√
T

)]

Following the same procedure as in Carrasco, Koné, and Noumon (2019), we find that

(
β̂α2 − β

)′
Σ
(
β̂α2 − β

)
=

1

T
E
∥∥∥R
(
β̂τ − β

)∥∥∥
2

− (µ′ (βτ − β))
2
+ rest (α2, N, T )

8.4 Proof of Proposition 4

By definition we have that

MSE (ω̂α1,α2) =
1

NT
E
[
‖R (ω̂α1,α2 − ω)‖22

]
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‖R (ω̂α1,α2 − ω)‖2 =
∥∥∥R
(
r̂c,α1 β̂α2 − rcβ

)∥∥∥
2

=
∥∥∥Rr̂c,α1

[
β̂α2 − β

]
+R [r̂c,α1 − rc] β

∥∥∥
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≤
∥∥∥Rr̂c,α1
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+Op
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[
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2

2
+Op
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1

α1
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2
+

1

α2
1

)

Hence,

MSE (ω̂α1,α2) =
1

NT
E
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2
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NTα1

E
[∥∥∥Rr̂c,α1
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2
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]
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1

α1

√
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E
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2
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1 +
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√
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)
E
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2

]
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1
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1

)

By Lemma 3 in Carrasco, Koné, and Noumon (2019), we have that

1

T
E

[∥∥∥R
[
β̂α2 − β

]∥∥∥
2

2

]
∼ 1

Tα2

+Nαν+1
2

Therefore, we have that

MSE (ω̂α1,α2) ∼ 1

N

(
1 +

1
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√
T

)2(
1

Tα2

+Nαν+1
2

)
+

1
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(
1 +

1
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√
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)(
1
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+
1
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