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1. Introduction

Over the past 20 years, a variety of studies have measured the effects of US fiscal

shocks in a structural vector autoregression (SVAR) that comprises federal spending, fed-

eral revenue, and GDP (labelled {gt, τt, yt} below). Ramey (2011b, 2019) surveys this

research. A central concern in this work is to measure the multipliers from shocks to

government spending or revenue, so that economists can better predict the effects of these

shocks and perhaps also contribute to the design of effective policy in recessions.

Recent studies often identify the SVAR using external instruments, also known as

proxy variables. This method was introduced by Stock (2008), and has been used in

studies by Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015),

Caldara and Kamps (2017), and others. Stock and Watson (2018) show that working with

external instruments yields an appealing property: A single instrument for the structural

shock to gt, for example, can identify the associated impulse response function (IRF).

However, researchers separately identifying features of the SVAR in this way might

produce shocks that are correlated, a characteristic that seems incompatible with the

definition of a shock. Ramey (2016, p 75) argues that each identified shock “should be

uncorrelated with other exogenous shocks; otherwise, we cannot identify the unique causal

effects of one exogenous shock relative to another.” Stock and Watson (2018, p 922) write

that the “assumption that the structural shocks are mutually uncorrelated accords both

with their interpretation as randomly assigned treatments and with their being primitive

economic forces.”

We study the fully identified fiscal SVAR by instrumenting each shock and so measure

their correlations. We find correlations even when instruments are strong and uncorrelated

with other economic shocks and when the sample size spans many decades. We then show

how this SVAR-IV procedure can be modified to include the conditions that the shocks are

uncorrelated (which we refer to as the covariance restrictions) and show that estimation

can proceed by the Generalized Method of Moments (GMM). The covariance restrictions

overidentify the SVAR (or can be used to just identify it in the absence of enough external

instruments). They thus allow a J-test, which may be useful as an indicator of a missing

variable, or some other misspecification.
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Section 2 outlines the method while section 3 then sets it in context, by relating it to

the methods of Mertens and Ravn (2013), Angelini and Fanelli (2019), and Angelini et al

(2020). Section 4 then studies the fiscal SVAR. In this application the J-test finds that

the overidentifying restictions cannot be rejected. An additional, important advantage is

that the estimates from the overidentified SVAR are more efficient than those from the

SVAR-IV method. In our application, standard errors on the shock-impact estimates fall

by an average of 30%.

Section 5 discusses alternate instruments and, most importantly, shows that the co-

variance restrictions allow one to identify the effects of an output shock, for example, even

without an instrument for that shock. Section 6 provides a Monte Carlo exercise which

shows that estimated shocks can be correlated in the just-identified, fully instrumented

SVAR, simply because of sampling variability. It also shows that overidentification with

the covariance restrictions reduces those sample correlations, provides a J-test that is

properly sized, and adds to efficiency. Section 7 concludes.

2. Estimators

Let xt be a vector of N variables, indexed by n. They follow a pth-order VAR:

xt =

p
∑

i=1

Bixt−i +Dwt + ut, ut ∼ IID(0,Σ), (1)

where wt is a vector of deterministic terms, D and Bi are parameters, and Σ is positive

definite. Residuals ut are related to structural shocks ǫt like this:

ut = Θǫt, ǫt ∼ IID(0,Ω), (2)

so that Θ is an N × N matrix. It is assumed to be nonsingular. The diagonal elements

of Θ are normalized to one for parameter identification. The off-diagonal elements are the

parameters of interest because they determine the impact effect of the structural shocks

on the variables xt.

The variance-covariance matrix of the structural shocks, Ω, is diagonal, reflecting the

fact that structural shocks are orthogonal. The shock ǫn,t for example, has variance σ2
n, as
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in Stock and Watson (2018). This is equivalent to assigning a unit variance to each shock

and adjusting Θ accordingly (see Mertens and Ravn, 2013).

Consider a set of N external instruments zt corresponding to the N elements of xt.

For an instrument to be valid we require relevance and exclusion restrictions:

E(zn,tǫn,t) = αn 6= 0 (3a)

E(zn,tǫm,t) = 0, for m 6= n, (3b)

so that a given instrument is correlated with a specific shock and uncorrelated with the

other shocks. With these restrictions the instruments are sufficient to identify the off-

diagonal elements of Θ, and consistent estimation proceeds by IV as shown by Mertens

and Ravn (2013) and Stock and Watson (2018). Each instrument zn,t identifies a column

of Θ using:

E
[

(ûm,t −Θm,nûn,t)zn,t
]

= 0 for m 6= n, (4)

which gives N(N − 1) moments that just identify the off-diagonal elements of Θ. We refer

to this as the just-identified estimator. Thus with a valid instrument for each shock the

SVAR can be identified, and the shocks measured as:

ǫ̂t = Θ̂−1ût. (5)

As the introduction noted, the shocks ǫ̂t, measured in this way, can be correlated. But

the IV estimator can be augmented by restricting the structural shocks to be uncorrelated,

which we refer to as the covariance restrictions. Under that assumption the off-diagonal

elements of Ω are zero, or:

E[ǫm,tǫn,t] = 0 for m 6= n. (6)

The shocks ǫ̂t, defined in equation (5), depend on Θ which is how the sample version

of conditions (6) can provide additional information about the model parameters. We

estimate the moment conditions (4) and (6) by GMM. We refer to this as the overidentified

estimator.
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Imposing the covariance restrictions (6) in estimation leads to N(N − 1)/2 additional

restrictions and a J-test with that many degrees of freedom. In our application the number

of variables is N = 3 and the VAR is fully instrumented. Thus the GMM estimator yields

a J-test with 3 degrees of freedom.

We have so far discussed the case where there is one instrument per shock (or variable

in the VAR) as in equations (3). However, Angelini and Fanelli (2019, Proposition 2, p 963)

show that necessary and sufficient conditions for identification of Θ hold when there is a

shock with a missing instrument (again with one instrument for each of the other shocks).

In that case, conditions (4) give (N − 1)2 restrictions (as each instrument identifies a

column of Θ), while the covariance restrictions provide N(N − 1)/2 restrictions as before.

The matrix Θ contains N(N − 1) unknown parameters, because the diagonal elements are

normalized to one. Thus with a missing instrument there is still overidentification, and a

J-test statistic with degrees of freedom:

(N − 1)2 +
N(N − 1)

2
−N(N − 1) =

(N − 1)(N − 2)

2
. (7)

The fiscal SVAR with N = 3 thus is overidentified using the covariance restrictions

even with only 2 instruments. In that case there are four IV moments (4) and three

covariance restrictions (6) to identify six parameters (the off-diagonal elements of Θ), with

a J-test with 1 degree of freedom. In our fiscal application the three instruments appear

strong. But sub-section 5.2 reports on an example in which we drop an instrument and

still can fully identify the SVAR and apply this J-test.

3. Related Studies

When the SVAR is fully identified, Angelini and Fanelli (2019) propose a maximum

likelihood (ML) estimator comparable to our GMM approach. The two estimators differ for

the usual reasons that GMM and ML differ. For example, our procedure does not require

any distributional assumptions, which may be attractive to practitioners. In our fiscal

policy application, the instruments for tax and government spending shocks are highly

censored, containing many zero observations. In this case, one may be unsure of how to

describe their distribution.
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The full-shocks identification approach of Angelini and Fanelli (2019) involves estimat-

ing a constrained VAR, augmented to include the instrumental variables. Joint estimation

of all the model parameters thus requires that the instruments and VAR variables are

available over the same sample period. Because of the challenge of constructing valid

instruments, there are many cases where instruments are available only over a shorter

sample period. For example, it is now common to identify the effects of monetary policy

shocks using Federal Funds futures contracts, which are available beginning only in 1988.

Stock and Watson (2018) observe that when the instruments are not available over the full

sample, it is still desirable to estimate the parameters from the reduced-form VAR (the

B parameters in our notation) over the full sample period, which provides more efficient

estimates of those parameters and hence impulse response functions. Because our proce-

dure follows the usual SVAR-IV approach of separately estimating the parameters from

the reduced-form VAR and the impact coefficients, we can readily accommodate different

samples.

The GMM procedure is also distinct because the weights placed on the moment con-

ditions are based on their covariability over the estimation period, so that the moments

arising from the covariance restrictions are not treated as any more informative than the

moments associated with the instrumental variables. By contrast, under the ML procedure

the covariance restrictions will hold exactly in the absence of any additional zero restric-

tions on the Θ matrix. If the necessary assumptions hold for the two approaches then both

are consistent but they will differ in finite samples.

Mertens and Ravn (2013), and Angelini et al (2020) consider cases where more than

one instrument is used to identify more than one shock but the assumption that each

instrument is correlated with only one of the shocks is not satisfied. In this case additional

information is required to identify the model, for example zero restrictions on the Θ matrix,

as Angelini and Fanelli (2019) outline in detail. We focus on the case where this assumption

is satisfied and the SVAR can be fully identified with sufficient instruments.

The just-identified estimator is a natural extension of the typical SVAR-IV approach

where a single shock is identified with a single instrument, which must be uncorrelated

with all other (unidentified) shocks in the VAR. Because we identify all shocks in the
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model, however, this assumption can also be studied jointly. As we show in sub-section

4.3, there is no evidence that any of the identified shocks in our fiscal VAR is correlated

with any of the other instruments. Of course, this assumption may not be appropriate in

all contexts. Mertens and Ravn (2013), for example, construct instruments for personal

and corporate tax changes based on a narrative account of changes to US tax liabilities.

They make the reasonable observation that both instruments are likely to be correlated

with personal and corporate tax shocks, violating the exclusion restriction (3b), so they

replace this assumption with a recursivity assumption.

To our knowledge, very few SVAR studies use a full set of instruments for identifica-

tion. Angelini et al (2020, section 3.4) do use a full set. They study a fiscal SVAR for the

US using an auxiliary model of the instruments like that in the ML approach of Angelini

and Fanelli (2019). They find a significant correlation between ǫ̂τ,t and zy,t (where below

we do not). They then place restrictions on Θ to allow identification and estimation when

condition (3b) does not hold. They also use different instruments from ours and a sample

ending in 2006 (for comparability with some previous studies), two features which may

explain their different findings.

Fengler and Polivka (2021) estimate a multivariate volatility model with N − 1 in-

struments by ML and show that N structural shocks are identified. Stock and Watson

(2012) use many instruments to estimate many different shocks in a dynamic factor model

and document sizeable correlations between many of their identified shocks, which they

note may be because many of the instruments are weak and hence may not satisfy either

relevance or exclusion restrictions. A number of studies have only a single instrument,

perhaps because finding valid instruments involves painstaking work by researchers like

those cited in section 4.

Montiel Olea, Stock, and Watson (2020) and Angelini, Cavaliere, and Fanelli (2021)

provide tools for inference in proxy-SVARs when instruments are weak. But in the appli-

cation here the instruments are strong, according to robust, first-stage F -tests, so we do

not draw on their methods.

Several other studies have tested overidentification in SVARs. For example, Bernanke

and Mihov (1998) test monetary SVARs overidentified with short-run restrictions. Lanne
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and Luoto (2021) test restrictions implied by shocks that are uncorrelated but not nec-

essarily independent, in other words restrictions involving higher-order moments. Guay

and Normandin (2018) base identification on third and fourth unconditional moments of

reduced-form residuals. Lewis (2020) bases identification on time-varying volatility. These

last two studies also apply their methods to the {gt, τt, yt} SVAR, so one could combine

their methods with external instruments for further overidentification.

4. Fiscal SVAR

We next outline the fiscal SVAR, describe the instruments, estimate Θ, and then

graph multipliers. The focus is on comparing the findings from the just-identified and

overidentified cases, so as to document the effect of adding the covariance restrictions.

4.1. Specification

Let xt ≡ {gt, τt, yt}
′ be a vector of quarterly US federal government spending, tax

revenue, and GDP in logs of real dollars per capita. Our measurements are designed to

follow those in previous studies. Following Mertens and Ravn (2014), government spending,

gt, is federal government expenditure and gross investment; federal revenue, τt, is the sum

of federal current tax receipts, social insurance contributions, and corporate income taxes;

and output, yt, is Gross Domestic Product (GDP). All variables are in logarithms after

being deflated by the GDP deflator and expressed in per-capita terms. The sample period

is 1948–2019.

The vector of deterministic terms, wt, includes a constant, a quadratic time trend,

and a dummy variable for 1975Q2, and four lags of that dummy variable. Blanchard

and Perotti (2002) include this dummy variable so that they can compare the effects of

temporary and permanent tax changes. The vector xt then follows the VAR:

xt =

4
∑

i=1

Bixt−i +Dwt + ut, ut ∼ IID(0,Σ), (8)

where Σ is positive definite. The variable definitions, deterministic terms, and lag length

(p = 4 quarters) thus follow Mertens and Ravn (2014) and Lewis (2020) for comparability.

This specification of the VAR also fits with other studies of fiscal policy using SVARs in
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quarterly US data, including those of Blanchard and Perotti (2002), Perotti (2008), Ramey

(2011a), Mertens and Ravn (2013), and Liu and Williams (2019).

We assume that Θ is nonsingular so that the structural shocks ǫt can be recovered

from the VAR residuals ut. This assumption would be violated under fiscal foresight,

where some of the exogenous changes to government spending are anticipated in advance.

Ramey (2011a) provides some evidence of this. One way to account for foresight is to

include a series of expected government spending in the VAR. Unfortunately, such data

from the Survey of Professional Forecasters begin only in 1981. To include this data

considerably reduces our sample size and as a result both fiscal instruments are too weak

to be informative. However, Perotti (2011) compares results from SVARs identified with

zero restrictions with and without these expectations and finds very similar results. He also

shows that professional forecasters do not predict actual government spending growth with

much accuracy. Both of these findings suggest that spending shocks are not anticipated.

4.2. Instrument Relevance

In our application to US history, the instrument for government spending shocks,

zg,t, comes from Ramey and Zubairy (2018). This instrument is an updated version of

the Ramey (2011a) shocks which are a series of changes in the expected present value of

government purchases as a result of military buildups. Following Ramey we deflate the

government spending shocks by the the previous period’s nominal GDP. The instrument

for tax shocks, zτ,t, comes from Mertens and Montiel Olea (2018) who construct a narrative

series of exogenous tax changes for different tax brackets. We use their instrument which

is the average tax change for the lowest 90% of the income distribution. We convert their

annual series to quarterly by assigning the tax change to the quarter in which it took effect,

in the same manner as Romer and Romer (2010) and Mertens and Ravn (2012).

To find an instrument zy,t for shocks to GDP growth, we follow the example of Stock

and Watson (2012). They suggest and illustrate using the productivity shocks from the

Smets-Wouters model as an external instrument. We use the shocks from the FRBNY

DSGE model which is the most prominent, ongoing DSGE model for the US. Del Negro

et al (2017) and Cai et al (2019) provide descriptions and applications of the model.
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Specifically, we use the posterior mean of the innovation to the permanent productivity

shock in that model. We then filter this by regressing it on its own 4 lags and 4 lags of the

VAR variables, to ensure it is an innovation in this environment. These three instruments

are essentially uncorrelated with each other: ρ(zg,t, zτ,t) = −0.013, ρ(zg,t, zy,t) = 0.006,

and ρ(zτ,t, zy,t) = −0.028. And they have no significant autocorrelation.

The instruments are available for a smaller sample than the variables in the VAR, so

our GMM estimation uses the shorter sample period. The reduced-form VAR parameters

(B and D) are estimated using data from the full 1948–2019 span to add efficiency—as

recommended by Stock and Watson (2018, pp 923–933)—while the impact matrix Θ is

estimated using data from 1960–2012. We also use that sample (1960–2012) to calculate

first-stage F -statistics.

As a check on the relevance of each instrument Andrews and Stock (2018) recom-

mend using the heteroskedasticity-robust F -statistic, which coincides with the effective

F -statistic of Montiel Olea and Pflueger (2013) when there is a single regressor, as is the

case here. When this statistic is above 10, Montiel Olea, Stock, and Watson (2020) sug-

gest that one can use standard methods for inference. The first-stage, robust F -statistics,

equation-by-equation, for {gt, τt, yt}, are: 9.94, 24.47, and 10.56. For the spending and rev-

enue equations we thus confirm the first-stage findings of Ramey and Zubairy (2018) and

Mertens and Montiel Olea (2014), so that condition (3a) holds. The FRBNY instrument

zy,t appears to be strong enough too.

4.3. Θ̂ and Shock Properties

We consider two identifications. First, we just-identify the SVAR using the three

instruments zt as in equations (4). Second, we also impose the restriction (6) that the

shock covariances are zero. Estimates and standard errors are calculated by iterated GMM.

(Implementing a parametric bootstrap is challenging because the fiscal instruments have

many zero observations.) In the just-identified case, this is equivalent to equation-by-

equation two-stage least squares. In the overidentified case, we use an identity weighting

matrix to produce first-stage estimates and a Newey-West HAC covariance matrix with 4

lags for later stages. The covariance moments in general are nonlinear in the Θ parameters
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and we use the BFGS algorithm to solve the nonlinear optimization problem.

The orthogonality of structural shocks adds three overidentifying restrictions. With

df = 3 the test statistic is J = 0.03 yielding a P -value of 0.99. Thus there is no evidence

against the overidentifying restrictions. Our next goal is to document the effect of this

overidentification on the economic findings. The upper two panels of Table 1 show the

estimates Θ̂ from the two identifications, along with standard errors. (The third panel is

discussed in sub-section 5.2 below.)

Table 1: Estimates Θ̂

IV

g τ y

g 1.000 0.248 -0.433
(0.159) (0.656)

τ -0.134 1.000 2.172
(0.382) (1.006)

y 0.206 -0.052 1.000
(0.119) (0.070)

Overidentified GMM

g τ y

g 1.000 0.253 -0.500
(0.144) (0.484)

τ -0.148 1.000 2.175
(0.205) (0.547)

y 0.191 -0.054 1.000
(0.078) (0.057)

Overidentified GMM
Missing zy,t

g τ y

g 1.000 0.251 -0.596
(0.148) (0.787)

τ -0.123 1.000 2.207
(0.283) (0.637)

y 0.205 -0.051 1.000
(0.115) (0.066)

Notes: Table 1 reports estimates Θ̂ from ut=Θǫt. In the first panel these are just-identified with instruments

zt. In the second panel they are overidentified with covariance restrictions. In the third panel zy,t is

dropped with the covariance restrictions again imposed.
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The most notable effect of overidentification is the increase in precision. Moving

from the IV estimation (in the first panel) to the overidentified estimation with covariance

restrictions (in the second panel) the standard errors fall by an average of 30% with little

change in the point estimates themselves. In the third row of each panel the coefficients

Θ̂y,g and Θ̂y,τ measure the impact effect on output of shocks to government spending and

tax revenues respectively. These values begin the associated IRFs and multipliers. In

Table 1, overidentification reduces the standard error on Θ̂y,g by 35% and the standard

error on Θ̂y,τ by 19%. Thus the efficiency gain for the IRF and multiplier for g-shocks will

be greater than for τ -shocks.

While our main focus is on these efficiency gains, one also can compare the estimates to

those in other studies. For example, the estimates of Θ̂τ,y (with standard errors in brackets)

are 2.172 (1.006) in the just-identified case and 2.175 (0.547) in the overidentified case.

These point estimates fall within the range spanned by the estimates of Blanchard and

Perotti (2002), who calibrate a value of 2.08, and Mertens and Ravn (2014), who estimate

a value of 3.13. Caldara and Kamps (2017) and Lewis (2020) discuss the effects of this

coefficient.

We next calculate the time series of the three structural shocks from Θ̂ and the

reduced-form shocks as in equation (5). (They are graphed in the online appendix.) As

we noted earlier, there may be correlations between the shocks from the traditional iden-

tification that uses one external instrument to identify each shock. Here those values are

ρ(ǫ̂g,t, ǫ̂y,t) = −0.13, ρ(ǫ̂g,t, ǫ̂τ,t) = .16, and ρ(ǫ̂τ,t, ǫ̂y,t) = 0.02. Of course we can uncover

these correlations only because we identify more than one shock: They would go unde-

tected if one were studying a single instrument. In the GMM case these correlations are

smaller but not exactly zero, for two reasons. First, there is overidentification so that the

covariance restrictions need not hold exactly. Second, these correlations are from the entire

sample: They are closer to zero during the 1960–2012 period for which all the instruments

are available.

Table 2 shows the shock-instrument correlations from both our identifications. Note

that the off-diagonal elements (such as ρ(ǫ̂g,t, zτ,t) or ρ(ǫ̂g,t, zy,t)) are close to zero, a result

which is not a formal test but accords with the exclusion restrictions (3b). Angelini and
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Fanelli (2019, Table 1) report similar statistics as a diagnostic in their SVAR. Lewis (2020)

uses the fact that one of those correlations is not zero in a fiscal SVAR to question the

validity of an instrument. But no such question is raised by the diagnostic in Table 2.

Table 2: Shock-Instrument Correlations

IV

ǫ̂g,t ǫ̂τ,t ǫ̂y,t

zg,t 0.202 0.002 -0.001

zτ,t 0.005 0.299 0.001

zy,t 0.001 -0.001 0.289

Overidentified GMM

ǫ̂g,t ǫ̂τ,t ǫ̂y,t

zg,t 0.202 -0.001 0.006

zτ,t 0.005 0.299 0.003

zy,t 0.007 0.002 0.289

Notes: Table 2 reports correlation coefficients between estimated structural shocks and instruments first

from just-identified IV and then with covariance restrictions also imposed.

4.4. Multipliers

Label the impulse response at horizon h as ψh. Then ψ0 = Θ, and the rest of the

impulse response functions (IRFs) are, in recursive form:

ψh =

minh,p
∑

i=1

Biψh−i, (9)

where the Bi are from equation (8) with Bi = 0 for h ≥ p, and with lag length p = 4 in

this application. The online appendix contains the 3x3 matrix of all IRFs.

To focus on the effects of fiscal-policy shocks, and for comparability with previous

studies, we report the dynamic multipliers. Label ψy,g,h as the response of output to a

shock to g after h quarters, and ψy,τ,h as the corresponding measure for tax shocks. These

multipliers measure the ratio of the y-response IRF to the impact response of the fiscal

variable (here normalized to one), divided by the fiscal/GDP ratio over the sample period.
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So, for government spending for example, define G/Y as the average ratio of the level of

government spending to output. Then the dynamic multiplier is:

ψy,g,h

G/Y
, (10)

with a similar expression for the tax multiplier.

The upper panel of Figure 1 shows these multipliers for government spending (on

the left) and taxes (on the right). The just-identified case is shown in black while the

overidentified case is shown in red. Dashed lines show 68% asymptotic confidence intervals

which are calculated using the delta method, the same method used by Mertens and

Montiel Olea (2018) and Mertens and Ravn (2019). (Brüggemann, Jentsch, and Trenkler

(2016) and Jentsch and Lunsford (2019) show that the wild bootstrap is not valid for

structural IRFs.)

Figure 1 shows that the point estimates for the dynamic g-multipliers are slightly

smaller in the overidentified case while for the τ -multipliers they are very similar across

the two estimators. The main effect of the overidentification is in precision, where the

(red) confidence intervals for the g-multipliers in particular are notably narrower.

Our main aim is to compare these just-identified and overidentified cases, but the

findings also can be compared to those in other studies. The largest values of the τ -

multipliers are at -1.2, which falls in between the values found by Blanchard and Perotti

(2002) and Mertens and Ravn (2014). As noted in sub-section 4.3, this partly reflects the

fact that our estimates Θ̂τ,y also lie between the values found in those studies. Our results

are little changed if we end the sample in 2006, for comparison with Mertens and Ravn

(2004) and Lewis (2020). The g-multipliers peak at values above 2, higher than values

reviewed by Ramey (2019, table 1) or reported by Lewis (2020, Figure 4) using several

methods. But the 68% confidence intervals generally include the point estimates found in

other studies.

We next calculate the cumulative spending and tax multipliers, following the formulas

of Mountford and Uhlig (2009), as discussed by Ramey (2019). In the case of government

spending, this multiplier measures the ratio of the present value of the output response

over time to the present value of the government spending shock over time. Define i as
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the average 3-month treasury bill rate over the sample. Then the cumulative multiplier is

given by:

my,g,h =
1

G/Y

∑h

j=0
(1 + i)−jψy,g,h

∑h

j=0
(1 + i)−jψg,g,h

. (11)

The tax multiplier my,τ,h is computed similarly.

The lower panel of Figure 1 shows the cumulative multipliers. Again the just-identified

case is in black and the over-identified case is in red. Dashed lines show 68% confidence

intervals. The overidentification leads to point estimates of the g-multipliers that are

lower and more precisely estimated than in the just-identified case. For example at the

10-quarter horizon the just-identified multiplier is 1.49 with a standard error of 1.05 while

the overidentified one is 1.37 with a standard error of 0.74. Thus the standard error again

drops by 30%. As just noted for the dynamic multipliers, these values are somewhat higher

than the cumulative multipliers reported by Ramey (2019, Table 1) though the confidence

intervals include typical values like 1.

The cumulative τ -multipliers are in the lower right panel of Figure 1. The efficiency

gains from overidentification are small in this dimension, as for the dynamic multiplier

above. For both identifications the cumulative τ -multipliers tend to increase in scale over

time, as Ramey (2019) noted is true of most tax multipliers. These values lie between those

found using the methods of Blanchard and Perotti (2002) and Mertens and Ravn (2015)

as reported by Lewis (2020, Table 2). Note that these multipliers include feedback from

induced changes in output to tax revenues, which leads to large measures as explained by

Ramey (2019, p 98 and Table 2).

We conclude this application with two observations. First, the historical decomposi-

tions implied by the two identifications are very similar, because the shocks and IRFs are

themselves similar. Second, in the just-identified case the forecast error variance decompo-

sitions (FEVDs) may be misleading because the measured shocks may be correlated. For

example, the FEVD of output at horizon zero is calculated as:

Θ̂2
y,nσ̂

2
n

Σ̂y,y

(12)

for each of the n = g, τ, y structural shocks. Because the forecast errors ût are just

combinations of these structural shocks, together the shocks should explain all the variation
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in the forecast errors of output and the sum of equation (12) over n should equal one. But

this will not automatically hold in the just-identified case. However, the departure from

one is not large in this application: The value of the sum is 1.11.

5. Alternate or Missing Instruments

This section reports on two variations on the fiscal SVAR. We first discuss alternate

instruments. We then report on the effects of dropping an instrument (specifically zy,t).

5.1 Alternate Instruments

One might wonder about alternate instruments or whether further overidentification

can be provided by additional instruments. While valid instruments typically are scarce

in macroeconomic applications, several alternate instruments are available for this VAR.

In the role of zτ,t we consider the instrument for unanticipated tax changes developed by

Mertens and Ravn (2013) and extended by Liu and Williams (2019). We also consider

the Mertens and Montiel Olea (2008) instrument that is the average tax change across all

brackets. In both cases these are weaker than the baseline tax instrument of sub-section

4.2 and so might require different tools for inference.

In the role of zy,t we consider the quarterly series of utilization-adjusted, total factor

productivity constructed by Fernald (2014). This has a first-stage F -statistic similar to

that of our baseline zy,t. And we consider the posterior mean of the innovation to the

temporary productivity shock in the FRBNY DSGE model (as opposed to the innovation

in the permanent shock, which is used in our baseline case). This has a much larger first-

stage F -statistic. However, in both these cases we find a larger correlation ρ(ǫ̂g,t, zy,t)

than shown for the baseline case in Table 2, which casts doubt on whether the exclusion

restriction (3b) holds. And in both cases the J-test has a much smaller P -value (roughly

0.10) than in the baseline case, which may be detecting exactly this ineligibility of these

candidate instruments.

5.2 A Missing Instrument

So far the main effect of the covariance restrictions has been to add precision to Θ̂

and hence to estimates of IRFs and multipliers. But these restrictions also may allow
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identification of each element of Θ when an instrument is missing. For example, with 3

variables and 2 instruments, section 2 noted that the SVAR is overidentified, with one

overidentifying restriction.

To illustrate this scenario we omit zy,t and estimate the model using zg,t and zτ,t

along with the covariance restrictions. The instrument sample is again 1960–2012 to allow

direct comparison with section 4. The J-test statistic is 0.002 with a P -value of 0.97, so

there is no evidence against the model from this test. The third panel of Table 1 shows

the estimates Θ̂ and their standard errors.

There are three things to note. First, the key finding is that the final column of Θ is

identified even though zy,t is absent. Valid instruments may be scarce in macroeconomic

applications. In this example the covariance restrictions allow the researcher to study

the causal effect of an output shock ǫy,t without a known, valid instrument. Second, the

point estimates Θ̂ are quite similar to those from the fully-instrumented IV and GMM

estimators. For that reason we do not graph IRFs and multipliers from this third esti-

mator. Third, by comparison with the IV estimator we have dropped zy,t but added the

covariance restrictions. How this swap affects efficiency is an empirical question specific to

the application. In this case the standard errors on average are 10% smaller in the third

panel than in the first panel, where the SVAR is fully instrumented but the covariance

restrictions are not imposed. Each standard error is smaller with the exception of that on

Θ̂g,y.

6. Monte Carlo

To study the properties of the estimators, we next consider a simulation environment in

which the structural shocks are uncorrelated, the instruments are strong, and the sample

size is realistically large. Here several of the differences between the just-identified and

overidentified results that are found in the historical application can arise only due to

sampling variability, for both estimators are consistent.

To illustrate the finite-sample properties, we conduct a simple Monte Carlo experiment

with 3 variables (N = 3) and roughly the same number of observations (T = 275) as in

the historical data. We abstract from the estimation of the VAR matrices Bi by setting
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xt = ut so that the reduced-form residuals are observed. The economic shocks are all NID

with unit variance and no covariances. The off-diagonal elements of Θ are all 0.2. Like

Montiel Olea, Stock, and Watson (2020) we generate the instrumental variables using a

linear measurement-error model:

zn,t = 0.2ǫn,t + σzvn,t, (13)

where vn,t are independent standard normal variables. This setup implies the exclusion

restrictions, because each instrument depends on only one shock. We set σz = 0.316,

which gives an average, first-stage F -statistic of roughly 100. This choice means that there

will not be replications with weak instruments, respecting the guideline of Montiel Olea,

Stock, and Watson (2020) that allows standard inference. It also ensures we do not present

evidence that is rigged against the just-identified case, for it has three strong instruments.

The instruments thus satisfy assumptions (3a) and (3b). We simulate 5000 Monte Carlo

replications.

Figure 2 shows the results. The first panel shows the simulated density of the J-test

statistic (in red) along with the χ2(3) density (in grey). The two coincide closely, so that

the J-test is not subject to much size distortion in this environment.

The second panel shows the density of Θ̂12, which is completely representative because

the VAR is symmetric. The just-identified case is in black and the overidentified case is in

red. The overidentified estimator is much more efficient. Recall that the IRF (9) begins

with ψ0 = Θ so, in a simulated VAR with Bi 6= 0, the confidence intervals for IRFs also

would be narrower in the overidentified case, as they are in Figure 1.

The third panel shows the density of a representative, sample correlation between

two estimated shocks —ρ(ǫ̂1,t, ǫ̂2,t)—again with the overidentified case in red and the just-

identified case in black. In the overidentified case the simulated shock correlations are

highly concentrated around zero, the population value. In the just-identified case their

density is much more dispersed. Thus there is a much higher probability of finding a

non-zero shock correlation, like those found in the historical application.
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7. Conclusion

This paper studies SVARs identified with external instruments (proxy variables), with

one instrument per shock. IV estimation can lead to measured shocks that are correlated,

so we propose adding zero-covariance restrictions and estimating the combined moment

conditions by GMM. This approach has several appealing features: (a) It can easily ac-

comodate different sample spans for instruments and SVAR variables; (b) It provides

overidentification and so yields a J-test of the model; (c) It also allows overidentification

when an instrument is missing.

Our application is to the {gt, τt, yt} SVAR using a full set of instruments (carefully

constructed by several researchers). There the measured shocks in the just-identified IV

case have correlations that range from -0.13 to 0.16. When we add the covariance restric-

tions the J-test statistic is small so that the restrictions are readily accepted. Given these

two findings, one might expect that adding the restrictions is innocuous. But we find the

standard errors on Θ̂ fall by an average of 30% in the overidentified case. Thus confidence

intervals for multipliers are narrower. We also illustrate the identification of the SVAR

when an instrument is missing, using the example of the instrument for output shocks.

Monte Carlo simulations demonstrate the possibility of finding sample shock correla-

tions when the restrictions are not imposed, even with strong instruments and in realistic

sample sizes. They also illustrate the efficiency gains when the restrictions are added in

GMM estimation.
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Data Sources

Data are quarterly for 1948:I–2019:IV for US federal government spending, tax revenue,
and GDP in real dollars per capita. Government spending, gt, is federal government
expenditure and gross investment; federal revenue τt, is the sum of federal current tax
receipts, social insurance contributions, and corporate income taxes; output, yt, is Gross
Domestic Product (GDP) all from the BEA. All variables are expressed as changes in
logarithms after being deflated by the GDP deflator and expressed in per-capita terms.

The instrument zg,t comes from Ramey and Zubairy (2018). The instrument is an updated
version of the Ramey (2011a) shocks which are a series of changes in the expected present
value of government purchases as a result of military buildups. Following Ramey we deflate
the government spending shocks by the the previous period’s nominal GDP. zτ,t is the main
instrument from Mertens and Montiel Olea (2018) which is the average tax change for the
lowest 90% of the income distribution. We convert their annual series to quarterly by
assigning the tax change to the quarter it took effect. zy,t is the the posterior mean of the
innovation to the permanent productivity shock in the FRBNY DSGE model. We filter
this by regressing it on its own 4 lags and 4 lags of the VAR variables. Documentation is
in the references given in the text or at https://github.com/FRBNY-DSGE/DSGE.jl

21



g-shock

Quarters

0 5 10 15 20

y
 re

sp
on

se

0

1

2

3
-shock

Quarters

0 5 10 15 20

y
 re

sp
on

se

-12

-10

-8

-6

-4

-2

0

2

4

Figure 1: Multipliers
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Figure 2: Monte Carlo Densities
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