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restricted efficient cluster (WREC) bootstrap. All computations are based on matrices
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Wald tests for OLS regression and of WREC bootstrap tests for IV regression.

Keywords: clustered data, cluster-robust variance estimator, CRVE, robust inference,
wild cluster bootstrap, WCR bootstrap, pairs cluster bootstrap, wild restricted efficient
cluster bootstrap, WREC bootstrap, bootstrap Wald test

JEL Codes: C12, C15, C21, C23.

*Corresponding author. Address: Department of Economics, 94 University Avenue, Queen’s University,
Kingston, Ontario K7L 3N6, Canada. Email: mackinno@queensu.ca. Tel. 613-533-2293. Fax 613-533-6668.



1 Introduction

Inference in regression models based on cluster-robust variance estimators can be seriously
unreliable when the number of clusters is small, the clusters are not fairly homogeneous
both in size and in the features of the regressand and regressors, or the key regressor is
a treatment dummy and few clusters are treated. Recent papers that provide theoretical
results and /or simulation evidence on which these statements are based include MacKinnon
and Webb (2017a, b, 2018), Pustejovsky and Tipton (2018), Djogbenou, MacKinnon and
Nielsen (2019), and Canay, Santos and Shaikh (2021). Unless there are many clusters, and
they are all quite homogeneous, it can be dangerous to rely on conventional cluster-robust
t-statistics, Wald statistics, and confidence intervals. The tests can over-reject severely, and
the confidence intervals may be much too short.

Instead of using procedures based directly on cluster-robust standard errors, it is usu-
ally better to base inferences on the restricted wild cluster (WCR) bootstrap, which was
proposed in Cameron, Gelbach and Miller (2008) and proven to be asymptotically valid in
Djogbenou, MacKinnon and Nielsen (2019). This method is implemented in the boottest
package for Stata; see Roodman, MacKinnon, Nielsen and Webb (2019). The package uses a
computational trick that allows it to bootstrap cluster-robust OLS ¢-statistics and confidence
intervals with extraordinary speed when the number of clusters is not too large, even when
the sample size is enormous. This paper provides a new algebraic implementation of this
procedure, which provides some useful insights but is no faster; see Section 3.2.

The main contribution of the paper is to propose a different computational approach,
which applies to the pairs cluster bootstrap (Section 3.1) as well as the wild cluster bootstrap
(Section 3.2). In the latter case, it is generally not as fast as the boottest approach, but it
is easier to understand. Most importantly, the new approach can be used for IV estimation
(Section 4), where existing methods can be very slow when the sample size is large.

In addition to being computationally attractive, the methods proposed in this paper
are conceptually simple. The key idea is that all computations are based on matrices and
vectors that contain sums of products and cross-products over all the observations within
each cluster. Once those vectors and matrices have been computed, they can be used for all
the bootstrap samples, and subsequent computational costs are independent of the sample
size. This idea can also be used in other contexts. In particular, it makes it easy to compute
measures of influence and leverage at the cluster level, a topic that is explored in MacKinnon,
Nielsen and Webb (2021). This paper, however, focuses exclusively on its application to
several bootstrap methods.

Section 2 discusses some key ideas. Then Section 3 shows how to compute pairs cluster



bootstrap P values and wild cluster bootstrap P values for both ¢-tests and Wald tests
efficiently. It also discusses wild cluster bootstrap confidence intervals. Section 4 is concerned
with IV estimation, where the bootstrap computations are much more complicated. It deals
with a bootstrap method called the wild restricted efficient cluster (WREC) bootstrap,
an extension of one proposed for models with heteroskedasticity but without clustering in
Davidson and MacKinnon (2010), and shows how to compute WREC bootstrap P values
efficiently. Section 5 presents simulation results which illustrate the enormous time savings
that can be achieved by using these methods. Section 6 presents evidence from Monte Carlo
experiments on the finite-sample properties of bootstrap Wald tests for OLS regression and

of WREC bootstrap tests for IV regression. Finally, Section 7 concludes.

2 Background and Key Ideas

When the data have been divided into G disjoint clusters and ordered by cluster, the linear

regression model y = X3 + u can be written as
yg:Xng+ug7 g:17"'7G7 (1)

where X is an N, x k matrix of exogenous regressors, B is a k x 1 vector of coefficients,
Yy, is an N, x 1 vector of observations on the regressand, and wuy is an Ny x 1 vector of
disturbances (or error terms). Since the g™ cluster is assumed to have N, observations, the
sample size is N = Zngl N,

The OLS estimator of B is, of course, B = (XTX) !X Ty. It follows that, when the

data-generating process (DGP) is a special case of (1),

~ G -1 G
B-By=(X"X) Z X u, = (Z X;Xg> Y s, (2)
g=1

g=1

where 3y is the true value of 8, and s, = XgTug denotes the k x 1 score vector corresponding

to the g'" cluster. It is assumed that
E(sgs,) =Xy, and E(sgs,) =0, g.9'=1,....G, ¢ #g. (3)

where the expectations here are conditional on the X,. The matrix 3,, a k X k symmetric,
positive semi-definite matrix, is the (conditional) covariance matrix of the score vector for

the g™ cluster. It follows from (2) and (3) that the (conditional) covariance matrix of 3 is

Var(8) = (X 'X)~ (ZE) (X'X)~ (4)



This well-known result is often stated in a somewhat different way, with the matrix X,
replaced by X ; Q,X,, where €, denotes the covariance matrix of u,. However, (4) is a
more informative way to write Var(3), because it makes it clear that the key things to
estimate are the 3/, that is, the covariance matrices of the score vectors.

It is natural to estimate the 3, by using the outer products of the empirical score vectors
8, = XJ'&Q, in which the disturbance subvectors u, are replaced by the residual subvectors
u,. If in addition we multiply by a correction for degrees of freedom, we obtain the most
widely-used cluster-robust variance estimator, or CRVE,

. o G
CVy: Var(B) = (G(i(i\)[(le 5 (XTX)—1<g§:j1 .§g§;>(XTX)‘1, (5)

which just depends on the X "X matrix and the empirical score vectors. Note that each of
the 8,8, matrices has rank at most 1, so that (5) has rank at most G (in many cases, it
will have rank G —1). This suggests, correctly, that asymptotic inference based on CV; may
be unreliable when G is not large, especially when there is more than one restriction. It is

therefore common to use bootstrap methods, as discussed in Section 1.

Remark 1. If interest focuses on a single element of 8, say [3;, then the first and second
instances of (X 'X)~! in (5) can be replaced by the j* row and the j™ column of that

symmetric matrix, respectively. O]

The basic insight of this paper is that, for the model (1), both the OLS estimates B and
the variance matrix (5) depend on X and y only through the matrices X gT X, and the vectors
X gT Yy, for g = 1,...,G. These quantities may be thought of as sufficient statistics for the
parameter estimates, their estimated covariance matrices, and the bootstrap samples. The
first step in all the proposed procedures is therefore to calculate these sufficient statistics.
Doing so requires computation time that is O(N). The sufficient statistics may then be used

to compute the OLS estimates

R G -1 G
B=(X"X)'XTy= (Z XgTXg> Y X, y, (6)
g=1 g=1
and the empirical scores
P A _ vl Ty A _
8,=X,(yy— XyB) =X, y,— X, X8, g=1,...,G. (7)

Notice that there is no need to calculate the residual vector w. Given the empirical scores

8, and the matrix (X "X)7!, it is easy to calculate CV; using (5).

Remark 2. In order to obtain OLS estimates that are as numerically accurate as possible,
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it is often recommended to use a QR decomposition rather than relying on matrix inversion
as in (6). However, experience suggests that, unless the matrix X 'X is extremely ill-
conditioned, computations based on (6), where the matrix inversion is performed using a

Cholesky decomposition, are more than accurate enough. O

3 Bootstrap Computations for OLS Estimation

The key feature of efficient computational methods for bootstrapping the linear regression
model (1) is that they start by computing the sufficient statistics XgTXg and X gT y, for
every one of the G clusters. These computations, which are evidently O(k?N), should take
advantage of the fact that the XgT X, matrices are symmetric. All of the quantities needed for
bootstrap inference are subsequently calculated using these sufficient statistics, without the
need for any more computations that are O(N). Thus the cost of each bootstrap replication
depends on G and k but not on N. If instead we performed a full OLS regression for every
bootstrap sample, the cost of each bootstrap replication would be O(k*N).

For concreteness, consider testing the hypothesis that a'B = 0, where a is a known

k-vector. Then the bootstrap methods for OLS regression all work as follows:

1. Obtain B using (6) and Var(8) using (5), and use them to compute the test statis-
1/2
tic t, = a'f /( TVar (8 )a) ST necessary, re-estimate the model under the null

hypothesis to obtain restricted estimates 3; see Section 3.4.

2. Compute bootstrap test statistics ¢:° for B bootstrap samples indexed by b. Just how
this can be done efficiently varies from case to case and will be discussed below. Here
B should be chosen so that a(B+1) is an integer for any test level « of interest (Racine
and MacKinnon 2007, Section 2). Common values are 999, 9,999 and 99,999.

3. Calculate the bootstrap P value corresponding to the alternative hypothesis of interest.
The P value could be left-tailed, right-tailed, equal-tailed, or symmetric (Djogbenou,
MacKinnon and Nielsen 2019, Section 3.1). The symmetric bootstrap P value is

A LE
%:B;WM>mm (8)

where [(+) is the indicator function, which is 1 if its argument is true and 0 otherwise.

In order to test two or more linear restrictions, say R3 = r, where the matrix Ris r x k

and the vector r is r X 1, we can use the Wald statistic

W(B) = (RB —r)" (RVar(B)R") (RS - r) (9)



and compute the right-tailed bootstrap P value
. A 1 & .
Pr(W(p)) = 5 ;H(Wb >W(B)). (10)

where W} is the Wald statistic for the b'® bootstrap sample; see Section 3.2.

Just how to generate the bootstrap samples varies according to the bootstrap method
used. The key is never actually to generate all N observations of a bootstrap dataset.
Section 3.1 discusses the pairs cluster bootstrap, and Section 3.2 discusses the wild cluster
bootstrap, both restricted and unrestricted. Section 3.3 considers the special case of dummy
variables for fixed effects. Section 3.4 explains how to obtain bootstrap confidence intervals

by inverting tests based on the restricted wild cluster bootstrap.

3.1 The Pairs Cluster Bootstrap

The pairs cluster bootstrap is very close in spirit to the original resampling bootstrap of
Efron (1979). Conceptually, we arrange the data into G pairs, [ X, y,], one for each cluster.
Then each bootstrap sample consists of G pairs [X e y;‘], resampled with replacement from
the original G pairs and stacked to form a matrix X* and a vector y*.

For the model (1), however, there is no need to form X* and y*. Instead, after we have
computed the pairs of matrices and vectors [X;X g X;yg] for each cluster, as discussed at
the beginning of Section 3, we can resample directly from them. The b*" bootstrap sample

then consists of

[ng ng7 ng ygb]7 g = 17 et G? (11>

where each of the bootstrapped pairs in (11) is chosen with replacement with probability
1/G from the original pairs [XJXQ, X;ryg]. The bootstrap estimate of 8 is

A%b Ty R b T b
B = (Z Xy Xy ) ZXQ Yy (12)
g=1 g=1
and the bootstrap empirical scores, which are needed for the CRVE, are
Axb  yxb | kb «b | 3 %b Axb
s, =Xy, — X7 X,'B". (13)

Importantly, the .§;b can be calculated without using the residuals 4**, which never need to
be computed. Since the calculations in (12) and (13) are both O(k*G), they should not be

demanding unless k is large and/or G is extremely large.



The CRVE for 8* has exactly the same form as (5):

- G ) (S ) (Exx) o

and the bootstrap test statistic for a' 8 = 0 is given by

a' (8" - B)
(a™Var(B*)a)

*b __
t, =

s (15)

It is usually not expensive to compute (15). The outer factors in (14) were already computed
for (12). Forming the middle factor is O(k*G), since it just involves summing G outer prod-
ucts. Moreover, in many cases, the denominator of ¢ can be computed without calculating
the entire covariance matrix; see Remark 1. However, the pairs cluster bootstrap is consider-
ably more expensive than the wild cluster bootstrap, to be discussed in Section 3.2. Because
the matrix of sums of squares and cross-products of the regressors, that is, Zngl X ;bTX ;‘b, is
different for every bootstrap sample, this matrix needs to be created and inverted B times.

In certain cases, it may be impossible to calculate (15) for every bootstrap sample.
Suppose, for example, that one of the regressors equals 0 for all observations except some
(or all) of the ones in clusters 1 and 2. Then, if the b** bootstrap sample happens to omit
both clusters 1 and 2, the matrix Zle X ;‘bTX ;b will be singular, making it impossible to
compute B *b This sort of problem can arise when inference concerns treatment at the cluster
level, and few clusters are treated; see MacKinnon and Webb (2017b, 2018). If only a few
bootstrap samples are affected, it may be reasonable just to discard them. But if more than
a handful of bootstrap samples have to be discarded, it would probably be unwise to base
inference on the pairs cluster bootstrap.

Of course, the fact that it is now possible to calculate pairs cluster bootstrap P values
fairly inexpensively does not mean that this is a good procedure to use. Because the null
hypothesis is not imposed on the bootstrap samples, and because the number of observations
varies across bootstrap samples unless all clusters are the same size, it seems likely that the
pairs cluster bootstrap may not always perform particularly well. Indeed, simulation evidence
suggests that this is often the case; see Cameron, Gelbach and Miller (2008), MacKinnon
and Webb (2017b), and Section 6.1 below.

3.2 The Wild Cluster Bootstrap

The wild cluster bootstrap (WCB) was proposed in Cameron, Gelbach and Miller (2008), and

its asymptotic validity was proved in Djogbenou, MacKinnon and Nielsen (2019). In many



cases, the restricted version of the WCB seems to provide particularly reliable inferences,
although (like other methods) it can fail in certain cases. In particular, it can under-reject
severely in models for treatment and difference-in-differences when the number of treated
clusters is small (MacKinnon and Webb 2017a, b, 2018), and it can over-reject seriously
when cluster sizes vary a lot.

The key idea of the wild cluster bootstrap is to multiply the entire vector of residuals
for each cluster g by a single auxiliary random variable v;. Unless G is very small (Webb
2014), the best choice for the distribution of v, seems to be the Rademacher distribution,
which takes the values 1 and —1 with equal probability (Davidson and Flachaire 2008;
Djogbenou, MacKinnon and Nielsen 2019). There are two variants of the WCB. One of
them uses unrestricted parameter estimates B and residuals u; it is called the unrestricted
wild cluster (WCU) bootstrap. The other estimates the model subject to the restrictions
and uses restricted estimates 8 and restricted residuals @ in the bootstrap DGP; it is called
the restricted wild cluster (WCR) bootstrap.

The empirical score vectors needed for the WCU bootstrap have already been computed in
(7). For the WCR bootstrap, it is necessary to estimate the model subject to the restrictions
and then compute the restricted empirical score vectors s, as XgTyg - X J Xg,é . This can
often be done quite efficiently by reusing calculations for the unrestricted model. Suppose,
for example, that

y = X581 + By + u,

where the restriction is that G, = 0. Then

A | X)Xy
16 - [ O ]7

where X" X is the upper left (k—1) x (k—1) block of the matrix X "X, and X"y contains
the first & — 1 elements of the vector X "y.

The wild cluster bootstrap uses the same regressors for every bootstrap sample, and the
bootstrap disturbances only affect the estimates through the scores. Thus generating the b'"
bootstrap sample simply requires us to compute the bootstrap score vectors

s;b :v;bég, g=1,....G, (16)

where s, = X J Y, — X gT Xg,é, and B denotes either ,3 or B. Notice that the vectors szb in
(16) are the bootstrap analogs of the score vectors s, = X J u,, not the bootstrap analogs
of the empirical score vectors §, = X gT Ug.

Instead of using (16), the conventional procedure for the WCB would generate the vectors



u;b of bootstrap disturbances as

w’ =vli, g=1,...,G, (17)
and then use them to compute first the score vectors s;b and then the vector B* — B3; see (18)
below. Equations (17) alone involve calculations that are O(NV), and obtaining the score
vectors requires further calculations that are O(kN). Thus, by using (16), computations
that are O((k +1)N ) have been replaced by ones that are O(kG).

Equation (16) provides an alternative motivation for the wild cluster bootstrap. The
usual one is that multiplying all the residuals in each cluster g by the same random variable,
as in (17), preserves the covariance matrix of the residuals. This is true. But it is clear
from (16) that doing so also preserves the covariance matrix of the scores. Since it is the
bootstrap scores that determine B*b, and the empirical bootstrap scores that determine its
covariance matrix, this is actually the critical feature of the WCB.

Using the bootstrap scores from (16), we readily obtain

G
Br—B=(X"X)"Y s’ and (18)

g=1
§ZbIS;b—XJXg<B*b_B>7 gzlu"'7G7 (19>

where the .§;b are the empirical bootstrap scores, that is, the analogs of the §,. Observe
that (18) is the bootstrap analog of equation (2). Moreover, equation (7) implies that
8y=8,— XgTXg(,é — Bo), and (19) is the bootstrap analog of this equation. Using (18) and
(19), it is straightforward to compute the wild bootstrap version of (5) and the corresponding
bootstrap t-statistic or bootstrap Wald statistic.

This involves considerably more work than necessary, however, because we do not actually
need the bootstrap parameter estimates B*b. For the numerator of the bootstrap ¢-statistic,

we can avoid evaluating (18) by using

a' (B -8 Z a' (XTX) s Z Cqv, = clvy. (20)
g=1
Here the vector ¢ has typical element ¢, = a' (X "X )~'§,, which can be calculated prior to
the bootstrap loop, and the vector v; has typical element v;b.

For the denominator of the bootstrap t-statistic, we can save time by forming the matrices
A, = XX (XTX)" before the bootstrap loop begins. Then (19) becomes

AZS L g=1,...,G, (21)



and the square of the denominator is

a"Var(8®)a =

G(N —1) (

< A*b T -1
(G—l)(N—k) zzj ) X) e, (22)

Computing (22) is quite inexpensive, but the cost can be reduced further by using a trick
proposed in Roodman, MacKinnon, Nielsen and Webb (2019). The discussion there is for
Wald tests and involves some rather complicated matrix algebra. The following discussion
is much simpler because it deals only with ¢-tests.

Before bootstrapping begins, the G x G matrix H with typical element

Hyp=a' (X X)X X ,(X'X)'3, (23)

is computed. Then, for each bootstrap replication, the Hg, and the ¢, are used to calculate

z, —v bey — quh oy g=1,...,G. (24)

Notice that the empirical bootstrap scores §;b no longer appear explicitly here. Using (24),
we obtain (22) as
GIN=1) &y
= (z5)". (25)
G- -8 =
Dividing ¢"v; from (20) by the square root of (25) yields the wild bootstrap t-statistic ¢:°.
The method based on (20), (23), (24), and (25) will be referred to as the boottest method,

since this is essentially what the boottest package does.

a"Var(8®)a

The calculations for the boottest method are remarkably cheap. Once the preliminary
work has been done, the effort required for each bootstrap sample is O(G?) and does not
depend on either N or k. In contrast, forming the empirical bootstrap scores in (19) or (21)
in order to compute (22) requires computations that are O(k*G). Thus we should expect
the boottest method to be cheaper than the more straightforward one based on (20) and
(22), except perhaps when G is extremely large; see Section 5.1.

Asymptotic cluster-robust Wald tests tend to over-reject more and more severely as
the number of restrictions increases (Pustejovsky and Tipton 2018). Thus it is particularly
important to bootstrap these tests; see Section 6.1. Consider the r linear restrictions R8 = r,
where R and 7 are r X k and r X 1, respectively. The Wald test statistic is W(B) given in
(9). If the bootstrap DGP imposes the restrictions RS = r, as the WCR bootstrap does,
then the bootstrap analog of (9) is

—

Wy = (RB” — )" (RVar(B”)R")  (RB™ — ). (26)

10



Because the pairs cluster and WCU bootstraps do not impose the restrictions, however,
expression (26) is not valid for them. Both instances of the vector RB* — 7 need to be
replaced by the vector R(B*b — ,é)

Given 8% and \//z;r(,é*b), expression (26) for the WCR bootstrap is very easily calculated,
but computing time can be further reduced by not explicitly calculating either of them. If

instead we compute the r X k matrix
B=R(X"X)™! (27)
before the bootstrap loop begins, then the WCR bootstrap Wald statistic is simply

Wy — (G’gé\)[(]_\flg k) (B ;: 32b>T<B gzi:l §Zb(§zb>TBT)l (B gz: S;b)_ (28)

The equality of (28) and (26) follows from (18), (27), and the fact that r — R3 = 0, because
B satisfies the restrictions. Notice that the covariance matrix inverted in (28) depends on
the estimated bootstrap scores, while the vectors that measure how far RB*b is from r only

depend on the actual bootstrap scores generated by (16).

Remark 3. If we are performing a bootstrap test without the corresponding asymptotic
test, the leading scalar factor in (28) can be dropped, as long as the corresponding one in

(5) is also dropped when computing (9). O

The boottest method has been extended to Wald statistics, but the algebra is complicated;
see Roodman et al. (2019, Section 5). In most cases, the boottest method should be cheaper
than the one based on (28), because it avoids explicitly calculating the estimated bootstrap
scores. However, (28) is much easier to program, and it might even be computationally
attractive when both G and r are large, because the boottest method requires r(r + 1)/2

calculations similar to (24) when there are r restrictions.

3.3 Fixed Effects and Bootstrap Computations

Many linear regression models where the data appear to be clustered involve fixed effects,
often a large number of them. A great deal of computer time can often be saved by partialing
out the fixed effects before running the regression. Using the wild cluster bootstrap with
data where fixed effects have been partialed out works as expected, but care must be taken
when using the pairs cluster bootstrap.

A linear regression model with fixed effects can be written as
y = XB+ Dn + u, (29)

11



where D contains N rows of observations on 0-1 dummy variables. The OLS estimate B
from (29) can be obtained by projecting y and X off the columns of D and then regressing
Mpy on MpX, where Mp =1— D(D"D)"'D7 is the matrix that takes residuals from
a regression on D. When there is just one set of fixed effects, each row of D contains just
one “1,” so that premultiplying by Mp simply takes deviations from the means over every
set of observations to which a fixed effect applies. When there are two or more sets of fixed
effects, what it does is more complicated.

For the wild cluster bootstrap, bootstrapping the model (29) by treating Mpy and
Mp X as if they were the original data works as expected. We can condition on the matrix
X "M p X because it is the same for all bootstrap samples. In addition, since the bootstrap
test statistics depend on y** only through the matrix X "Mpy*™, it is not necessary to
generate the y** and partial out the fixed effects. We can simply generate the bootstrap
scores using (16) as usual.

For the pairs cluster bootstrap, however, resampling from the pairs
(X™MpX), (X'Mpy), (30)

to obtain bootstrap quantities X ;bTX 20 and X ;‘bTy;‘b, where the fixed effects have already
been partialed out, and then using (12) and (13) to obtain ,3*” and §Zb, respectively, does
not yield the same bootstrap estimates as resampling from the triples

[Xga D,, yg] (31)

to obtain X**, D** and y**, and then regressing y** on X** and D**, because D*’ is different
for every bootstrap sample. However, both resampling procedures should be asymptotically
valid, and it is not clear which one is likely to work better in finite samples.

There is one important special case in which both resampling procedures yield identical
results. Suppose there is a fixed effect for each cluster and no other fixed effects. In that
case, for any vector & with components x,, (Mpx), = x, — T,t, for g=1,...,G. Here 7,
is the sample mean of the elements of x 4, and ¢ is an Ny-vector of 1s. Thus (Mpx), is just
the vector of deviations of the elements of x, from their group mean. Because resampling
by cluster does not change the group means of the X, or the y,, resampling from (30) yields

the same results as resampling from (31) in this special case.

3.4 Bootstrap Confidence Intervals

Inverting a WCR bootstrap test is often a good way to obtain a confidence interval for one

of the coefficients in (1); see MacKinnon (2015). The boottest package already calculates

12



these WCR. bootstrap intervals, but obtaining them is a bit tricky. Since the discussion of
confidence intervals in Roodman, MacKinnon, Nielsen and Webb (2019) is brief and does
not focus on computation, it seems worthwhile to discuss the main issues. For concreteness,

the model (1) can be rewritten as
Yy, :Xlgﬁl +62w29+uga g = 17-"7G7 (32)

where the objective is to form a confidence interval for the parameter 5. In (32), the vector
T, contains the observations for cluster g on the regressor associated with 3, and the
N, x (k — 1) matrix Xj, contains those observations for the other regressors.

A bootstrap confidence interval for 5 can always be obtained by inverting two bootstrap
tests, one that (s equals the lower limit of the interval, and one that it equals the upper
limit. We could use a different one-sided bootstrap P value for each end of the interval, but

this is equivalent to using the equal-tail P value

Prr(Bag) = ;min <§Bj 1(t3" > ta), iﬂ(t;b < t2)> : (33)

b=1 b=1
where R ~b
t2:62/\_76?0 and t;b:@%?%7 b=1,...,B. (34)
Var(0s) Var(53")

Here 5y denotes one of the limits of the confidence interval, say (35 for the lower limit and
Bay for the upper one. Neither 3, nor its standard error depends on s, but for the WCR
bootstrap both @;‘b and its standard error do so. Thus, in order to obtain a WCR bootstrap
confidence interval, we need to use an iterative procedure to find the lower and upper limits
of the interval. In the case of a lower limit, we need to find a value (35, almost certainly less
than Bg, for which PE}*T(ﬂgl) is greater than « for By > fB9 and less than « for By < B9. In
the case of an upper limit, we need to find a value (35,, almost certainly greater than Bg, for
which the two inequalities are reversed.

Finding a WCR bootstrap confidence interval requires evaluating ﬁgT(ﬁm) quite a few
times using the same set of realizations of the auxiliary random variable. Unless BG is
enormous, it makes sense to generate all of the v;b before the procedure begins and store
them. Before we can generate the bootstrap samples for any value (59, we need to obtain
the ¢, implicitly defined in (20) and the H, defined in (23), with §, = §,, the score vector
that corresponds to (a0 and the restricted estimates B; conditional on 8y = Bs0. In this case,
a is a vector with the first k; elements equal to 0 and the k" element equal to 1, so that
(XTX) 'a is just the last column of (X" X)~! which may be denoted by e. Both the ¢,

13



and the Hy, depend on 3. We observe that

cq(B20) = ygTXge - yTXI(XFXl)_lXJ;Xge

(35)
— Bao (3, X s — 3 X1 (X, X1) ' X | X e).

The first two terms in (35) are scalars that just need to be computed once. The final term is
[ao times a scalar that also just needs to be computed once. Everything here depends solely
on the matrices XgTX 5 and the vectors X gT Yy, or components of them.

The H,, defined in (23) can be computed in essentially the same way as (35), but with
e, which appears four times there, replaced by (X 'X)'X gT X, e. Thus updating the two
expressions in (23) for a new value of 5 requires very little computational effort. For each
bootstrap sample, we can then use (20) to obtain 53, and we can use (24) and the square
root of (25) to obtain the bootstrap t-statistic for testing fs = Fap.

The limits of the confidence interval can be found in many ways. However, because
Pi1(Ba) is not a continuous function of its argument, methods that depend on derivatives
cannot be used, except perhaps to obtain initial approximations. A method that is easy
to implement and reliable, although not particularly fast, is bisection. For concreteness,

consider the lower limit. First, we need to find two values of (s, say [, and (g, such that

f(Boa) = ﬁET(B%) —a<0 and f(Bs)= pE*T(BQb) —a>0. (36)

In many cases, if we start at the lower limit of the asymptotic interval and choose (35, to be,
say, half a standard error lower and [, to be half a standard error larger, conditions (36)
will both be satisfied. If the first is not satisfied, we must reduce [o,; if the second is not
satisfied, we must increase 35, The next step is to set Bo. = (B2q + P2p)/2 and find f(Bae).
If f(Bae) < 0, we replace foq by [oc. If instead f(fa.) > 0, we replace [ by [ac. In either
case, the interval between (5, and S, is now half as long as it was before. Once again, we
set Bae = (Baq + Pav)/2, find f(5a.), and proceed as before.

Of course, we need a stopping rule. The obvious one is to stop when the distance between
Paq and [ogp is sufficiently small; although this will depend on how the parameter S, is scaled.
Using (33) and (34) repeatedly for both limits within the bisection procedure, we eventually
obtain the interval {5217 Bgu}, where Pir(Ba) = a and Pip(Ba) = a. The quality of these
approximations will increase with B, which should be chosen so that a(B+1)/2 is an integer
because of the factor of 2 in (33).

A very different approach to solving for the limits of a bootstrap confidence interval
that depends on restricted estimates was proposed in Hansen (1999). That approach, which

has a nice graphical interpretation, could undoubtedly be adapted to the present case. For
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sufficiently large values of B, it will yield essentially the same results.

Inverting a WCR bootstrap test to obtain a confidence interval should rarely require
much computing time, but it evidently involves a good deal of rather tricky programming.
Instead of inverting a WCR bootstrap test, we could use either the pairs cluster bootstrap
or the WCU bootstrap to obtain a studentized bootstrap confidence interval. Because no
iteration is needed, this would be much simpler than the procedure just described. Let ¢j_, /2
and ¢, /2 denote, respectively, the 1 — /2 quantile and the /2 quantile of the i* obtained
using either of these unrestricted bootstrap methods. For example, if B = 999 and o = 0.05,
then ¢, , would be number 25 and ¢j_, , would be number 975 in the list of the t5% sorted

from smallest to largest. The studentized bootstrap interval is then simply

B = 8(Ba)ci_ajer Ba = 5(Ba)Cisal (37)

where s(f,) is the cluster-robust standard error of fs.

In many cases, the interval (37) will work quite well. However, simulation results in Mac-
Kinnon (2015) suggest that studentized bootstrap intervals based on the WCU bootstrap
generally under-cover. That is, the proportion of samples for which the interval includes the
true value [y is less than 1 — . Sometimes this under-coverage is very modest, but in other
cases it can be substantial. In the experiments reported in MacKinnon (2015), confidence
intervals obtaining by inverting WCR bootstrap tests under-cover less than intervals based
on (37). When the latter under-cover severely, the former often over-cover.

The finite-sample performance of bootstrap confidence intervals is closely related to the
finite-sample performance of bootstrap tests. When WCU and WCR bootstrap tests perform
almost equally well, we would expect studentized bootstrap intervals based on the former
to perform just about as well as bootstrap intervals obtained by inverting the latter. In the
experiments of Section 6.1, where the number of regressors is relatively large, both WCU and
WCR bootstrap tests over-reject noticeably. Since the former always over-reject more than
the latter, it must be the case that studentized WCU bootstrap intervals would under-cover

more severely than WCR bootstrap intervals in these cases.

4 Bootstrap Computations for IV Estimation

Bootstrap methods for instrumental variables (IV) estimation with clustered disturbances
are more complicated than ones for OLS estimation, and their properties in finite samples are
much less well understood. In the OLS case, the role of the bootstrap is simply to correct for

the (sometimes) poor performance of cluster-robust covariance matrix estimators. In the IV
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case, the bootstrap still has to do that, but it also has to correct for the discrepancies between
the actual and asymptotic distributions of the parameter(s) of interest. These discrepancies,
which can include large biases, depend in complicated ways on the number of instruments,
the features of the instruments, especially how weak they are, the correlation(s) between the
disturbances in different equations, and potentially on many other things.

There is an enormous literature on IV inference in finite samples, much of it focused
on weak instruments in models with independent, homoskedastic disturbances. Nelson and
Startz (1990), Staiger and Stock (1997), Kleibergen (2002), Chao and Swanson (2005), and
Andrews, Moreira and Stock (2006) are influential papers, and Andrews, Stock and Sun
(2019) is a valuable recent survey. Most of this literature does not focus on bootstrap
methods, for two reasons. The first is that many bootstrap methods (notably the pairs
bootstrap and the standard versions of the residual bootstrap and the wild bootstrap) seem
to perform poorly. The second is that even the best bootstrap methods (see Section 4.1) can
be shown to fail when the instruments are very numerous and/or extremely weak. However,
these are extreme cases, in which the sample probably contains so little information about
the parameters of interest that not much can be learned anyway. The theoretical focus
on such cases has, in my view, tended to obscure the fact that some bootstrap methods
apparently work quite well for models and datasets that do contain a reasonable amount
of information, but for which conventional inference based on heteroskedasticity-robust or
cluster-robust covariance matrix estimators can be highly unreliable.

For simplicity, and because it is by far the most commonly encountered case in empirical
work, consider a model with just one endogenous explanatory variable. There are two

equations in total:

Y1 = BYy2 + Zv + uy, and (38)
y2:W7T+U2:Z7Tl+VVQ7T2+’U/2. (39)

Here (38) is a structural equation for y;, and (39) is a reduced-form equation for y,. The
coefficient of interest is . The instrument matrix W is N x [. The N x k matrix of
exogenous regressors Z is part of it, so that there are [ — k — 1 over-identifying restrictions.
When the two endogenous variables are in fact determined simultaneously, the i*® elements
of u; and uy are almost certainly correlated. In consequence, OLS estimation of (38) yields
an inconsistent estimate of 3, and it is natural to use IV estimation instead.

The key features of bootstrap methods that yield reliable inferences for 3, at least in cases
that are not too extreme, is that they are based on restricted estimates and that they use

efficient estimates of the reduced-form equation (39) to generate the bootstrap samples. The
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first bootstrap method to employ such a method was the restricted efficient (RE) bootstrap
proposed in Davidson and MacKinnon (2008). This method is a variant of the residual
bootstrap, because it is based on the assumption that the disturbances are independent
and homoskedastic. Davidson and MacKinnon (2010) later relaxed the homoskedasticity
assumption and proposed the wild restricted efficient (WRE) bootstrap. A straightforward
extension of this method allows for clustered disturbances. The wild restricted efficient
cluster (WREC) bootstrap uses one value of v* per cluster instead of one per observation.
This method is one of several that were studied in Finlay and Magnusson (2019). It is the
only one that will be discussed here.

The key computational idea first discussed in Section 2 and applied to the WCR boot-
strap in Section 3.2 can be applied to the WREC bootstrap, as well as to other bootstrap
methods for IV regression. The computations are more complicated than the ones for the
WCR bootstrap and will inevitably be more expensive, but they share the property that all
operations which are O(N) only need to be performed once, before bootstrapping actually
begins. For large sample sizes, this can greatly reduce computational costs. The version of
boottest discussed in Roodman, MacKinnon, Nielsen and Webb (2019) implemented the
WREC bootstrap in a way that was quite slow. Since Version 3.1.0, however, boottest has
used a much faster algorithm, which was partly inspired by an early draft of this paper. This
algorithm still seems to be somewhat slower than the method proposed in Section 4.1, but
that may simply be because it is programmed in Mata rather than Fortran.

The IV estimates of § and « can be obtained by regressing y; on Pwy, and Z, where
Py is the projection matrix W(W TW)"'WT that yields fitted values from a regression

on all the instruments. This gives the usual expression for the IV estimates:

—1
yIPWyz

Yy Z

Yy Pwys Z'y,
w7z 277

E
7

(40)

The Frisch-Waugh-Lovell (or FWL) theorem implies that [ in (40) is identical to the OLS

estimate of § from the univariate regression
(I — Pz)y, = 8(1 — Pz)Pwy, + residuals = 5(Pw — Pgz)ys + residuals, (41)

where Py is the projection matrix Z(Z"Z)"'Z", and the second equality uses the fact that
Py Z = Z. Using (41), it is then easy to show that

Yy
Yy

(Pw — Pz)y1 Yo Pwyr — y, Pz

3 — = . 42
b (Pw — Pz)y.  ys Pwy. —y; Pzyo (42)

T
2
-
2
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The rightmost expression for /3 here is the one on which all our computations are based.
When there are G clusters, the four scalars that appear in the rightmost expression in

(42) can be written as

G G

Yy, Pwy; = (ZyLV%)(WTW)‘l(ZWc;Tng), j=1,2, and (43)
g=1 g=1
G G

viPry = (2 uL2,) (2 27 (X 2] ys) i =12 (44)
g=1 g=1

where Y14, Y24, Wy, and Z, are matrices containing the rows of y;, y2, W, and Z that belong

to cluster g. Moreover,

G G
W'W=>W,'W, and Z'Z=> Z, Z,. (45)

g=1 g=1
Thus 3 depends on the sample only through the various within-cluster cross-products that
appear in (43), (44), and (45). These cross-products can be computed quite economically

by using the facts that

Z'Z, ZIW. Zy;
W, W, = | “0 %0 “0 200 ang W Ty, = | D00 =12, (46)
W, Z, W, Ws, Wiy,

Since it is not clear what the degrees-of-freedom factor should be for a CRVE based on
IV estimates, because the IV residuals are not necessarily too small, I follow Stata and omit

this factor. The bread in the CRVE sandwich is (g;2T (Pw — Pz)y2>71, and the filling is
¢
Z (vs (Pw — PZ)) dga, (Pw — Pz)yz)g, (47)

where ((PW — Pz)yz)g is a matrix containing the rows of (Py — Pgz)y, that correspond

to group g, and (y2T (Pw — Pz)) is the transpose of that matrix. Expression (47) can be
g9

rewritten as
G 2
Z( S W(W W)W,y —y, Z(Z272) 7 2, ) (48)

We can then use the facts that
WTulg %Tylg - BVVgTqu - %ng's' and
Z) = Z, Yy — BZ, Yoy — Z) Zy
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and substitute these into (48). Of course, (49) requires 4 as well as 3. Because we know 3,

we can just regress y; — BPWy2 on Z. This yields
,Ay — (ZTz)—lzTyl o ﬁA(ZTZ)_lzTyQ

S (A A T (50)
=(Z'Z2)" X Z vy — B Z,ys)-
g=1 g=1
Everything in (50) depends on within-cluster cross-products that have already been calcu-
lated; Z " Z is given in (45), and both Z"y; and Z "y, were used in (44). The projection
matrix Py does not appear because Py Z = Z.
From (42) and (48), we see that the t-statistic for 5 = 3, is

1
tgy = 5(y2TPWy1 — Y5 Pzy1 — Bo(ys Pwyo — y;szz)), (51)

The factor of y, Pwys — Y Pzys in the second term here is both the inverse of the bread
in the CRVE sandwich and the denominator of B .

Of course, if we simply wanted to compute t3,, it would not make sense to employ the long
and rather complicated sequence of computations described in (42) through (51). It would
be easier and not much more expensive just to use a standard program for IV estimation
with cluster-robust standard errors. But using the former makes sense when we want to
bootstrap t5,, because the bootstrap t-statistics will depend on the sample only through G

sets of vectors and matrices that are computed before the bootstrap loop begins.

4.1 The WREC Bootstrap

As noted earlier, the WREC bootstrap is a slightly modified version of the WRE bootstrap
proposed in Davidson and MacKinnon (2010). The bootstrap DGP for the latter uses a single
auxiliary random variable, say v, for the i*" observation for both equations. This preserves
the correlations between the structural and reduced-form residuals. The WREC bootstrap
needs to preserve not only those correlations but also all the within-cluster correlations of
both sets of residuals. It therefore uses the same auxiliary random variable, say vy, for every
observation in the ¢*® cluster for both equations. The fact that the WREC bootstrap uses
only G realizations of the auxiliary random variable is what makes it possible to compute
the bootstrap t-statistics without performing any operations that are O(N).

If we actually generated bootstrap data for every observation, the WREC bootstrap DGP
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for cluster g could be written as

Y1, = BoYa, + ZgY + vymitiyy, (52)
y;g = %'ﬂ' + U;mgﬁgg, (53)

where equation (53) is implicitly evaluated before equation (52), because yj, depends on y3,.
Here 4 is obtained by regressing y; —Boy2 on Z, which should be inexpensive because we have
already computed (Z'Z)™ !, and Z 'y, = Zngl ZgTylg. The other things that appear in (52),
in addition to y3,, are my = (N/(N — k))'/2, a degrees-of-freedom correction, the random
variate vy, which (usually) follows the Rademacher distribution, and @1, = y1,—BoY2y— Z,7-
The vector @y, is Yoy — W, 7, where 7 will be defined shortly, and my = (N/(N — 1))}/? is
another degrees-of-freedom correction. Of course, we never actually calculate the 4, the
Uy, the yj,, or the Y3 , because doing so would involve computations that are O(N).

The estimate 7 that appears in (53) is obtained by running the regression
Yo = W+ puy + €, (54)

where u, is divided into a vector that is correlated with w; and a vector € that is uncorrelated
with it. Unless p, the correlation between the structural and reduced-form disturbances, is
zero (or at least close to zero), 7 is more efficient than the usual estimate & obtained
by regressing y, on W alone; see Kleibergen (2002). It is asymptotically equivalent to
what we would obtain by estimating equations (38) and (39) jointly using full-information
maximum likelihood. Because (39) is an unrestricted reduced form, those estimates are
numerically identical to restricted LIML estimates of (38); indeed, that is how boottest
currently estimates wr. Obtaining the restricted LIML estimates requires a fair amount
of algebra (Roodman, MacKinnon, Nielsen and Webb 2019, Appendix B), which could be
rewritten in terms of the cluster cross-product matrices used in this section.
It is not difficult to show that

= (WW)™ (Wiy, - 5(W Mgy, — 6oW Mzy)), (55)
where M, =1 — P;. Here

y{ Mwyo — Boys My yo
y! Mwy: — 260y! Mwys + 53y; Mw ys

p= (56)

is the estimated coefficient on @; in regression (54), and Mw = I — Py,. The second term in
the second factor of (55) would vanish if p = 0, and 7 would then equal #, the usual vector

of reduced-form estimates. Everything that appears on the right-hand sides of (55) and (56)
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can be expressed in terms of quantities that were either computed above or can readily be
computed just once, notably y{ y1, y{ y2, and y, y».

The numerator of the bootstrap t-statistic depends solely on 3y and the bootstrap analogs
of (43) and (44). The latter depend in turn on either (W ™W)~! or (Z7Z)~! and on one

or two of the vectors

yiTW = Zygjw Z( (1= vyma) 7 W, W, + vimay, W), (57)
g=1
yi W = z i W, = Bows W+ Z (vyma(yl, W, — Bows, W, =4 2] W,)),  (58)
g=1

and/or the vectors y3' Z and y}' Z, which are respectively equal to the first k elements of
Y3 "W and the first k elements of y;"W.

Equation (58) is missing the term Z " 7" Z, W,, which would seem to arise from the
second term on the right-hand side of (52). There is no reason to bother with that term;
because Pw Z — Pz Z = Z — Z, it vanishes when we compute B* Notice that most of the
computations in (57) and (58) can be done before the bootstrap loop begins. The only things
that differ across bootstrap samples are the auxiliary random variables vy, for g =1,...,G.

From (51), we see that the bootstrap t-statistic is

* 1 * * * * * * * *
tgy, = E<y2TPWy1 - y2TPZy1 - Bo(szPW:'h - y2TPZ:y2))' (59)

The numerator can readily be calculated using (W W)~ (ZTZ)™! and (57)—(58). The
denominator is just the square root of (48) with the y, and the @, replaced by their analogs

from the bootstrap samples:
o 1/2
2
ot = (Z(y;TW(WTW) ‘W', -y Z2(Z27Z)” 1ZTulg>) : (60)
g=1

We already have expressions for y3'W and y3' Z in (57). We just need ones for WTu1 g

and Zgﬁ’{g, where a7, is the vector of bootstrap IV residuals for the g™ cluster. Clearly
W, lar, = Wyl — W, gy - W, 2,4 (61)

and Z; a7, contains the first £ elements of WTulg We have already computed W, y7,
W/;,Tyg‘, and VV;,TZg, which appear in (61). We have also come very close to calculating B*,

which, for completeness, is

B v ' Pwy; — yJszl-
y; 'Pwys —y; 'Prys’
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compare (42). The only thing in (61) that we have not yet computed is 4*. As with (50),
we just need to regress yj — B*Pwy§ on Z. This yields

G

¥ =(2"2)" (Zl ) Yy — 0" ZZT%Q), (62)
9=
where the matrix and all the vectors in (62) have been computed previously.

We finally have everything needed to compute t;, defined in (59), and thus everything
needed for the WREC bootstrap. All operations that are O(N) can be done before the
bootstrap loop begins, and so can many other calculations. Thus, as is documented in
Section 5.2, the cost of obtaining B bootstrap t-statistics is generally far less than the cost
of obtaining an actual ¢-statistic B times.

Because B is usually biased, often severely so, it makes sense to use an equal-tailed

bootstrap P value like (33). In this case, it is given by

Pir(Bo) = 3 min (Z I(t5 > tg,)), f:]l(t}f; < t50>> , (63)

b=1

where tg, is the ¢-statistic for 3 = Sy given in (51) and ¢3 is the bootstrap t-statistic for the

b bootstrap sample given in (59).

5 Computing Costs

The algorithms proposed in Sections 3 and 4, along with the one for the WCR bootstrap
used in boottest (Roodman, MacKinnon, Nielsen and Webb 2019), can evidently be much
faster than more straightforward bootstrap methods that generate full bootstrap samples. In
realistic cases, costs can be reduced by several orders of magnitude, because all calculations
that are O(NN) are done just once rather than for every bootstrap sample. This means that
bootstrap P values and bootstrap confidence intervals based on the WCR bootstrap, the
WREC bootstrap, and even the pairs cluster bootstrap can often be computed routinely,
even for extremely large samples. In this section, some timing evidence is presented to
support these claims.

The first set of simulation experiments, in Section 5.1, investigates the computational
methods proposed in Section 3 for the pairs cluster bootstrap and the WCR bootstrap
applied to linear regression models estimated by OLS. The second set, in Section 5.2, studies
the cost of computing the WREC bootstrap for linear regression models estimated by IV

using the methods proposed in Section 4.1.
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Table 1: Computing Times in Seconds for OLS Bootstrap Methods

N 10,000 1,000,000

G,k 20,10 40,10 40,20 20,10 40,10 40,20
r=1

Bench, 999 0.1378 0.1459 0.4656 21.89 20.05 63.65
Pairs, 999 0.0038 0.0068 0.0213 0.0253 0.0264 0.0880
WCR(s), 999 0.0016 0.0029 0.0080 0.0239 0.0222 0.0723
WCR(b), 999 0.0006 0.0011 0.0015 0.0229 0.0210 0.0684
Bench, 9,999 1.378 1.459 4.656 218.9 200.5 636.5
Pairs, 9,999 0.0370 0.0666 0.2102 0.0595 0.0858 0.2848

WCR(s), 9,999 0.0146 0.0280 0.0749 0.0366 0.0474 0.1380
WCR(b), 9,999 0.0045 0.0098 0.0102 0.0260 0.0291 0.0745

r=>5

Bench, 999 0.1397 0.1461 0.4703 20.71 19.02 64.81
Pairs, 999 0.0049 0.0079 0.0246 0.0274 0.0277 0.0887
WCR(s), 999 0.0027 0.0040 0.0111 0.0251 0.0232 0.0755
Bench, 9,999 1.397 1.461 4.703 207.1 190.2 648.1
Pairs, 9,999 0.0480 0.0783 0.2423 0.0695 0.0969 0.3096

WCR(s), 9,999 0.0256 0.0391 0.1066 0.0470 0.0583 0.1699

Notes: All computations were performed in Fortran using one core of an Intel i9-10850K processor running
at 3.6 GHz. For accuracy, they were repeated at least 1000 times. For r = 1, WCR(s) computes the
bootstrap test statistics as Wald statistics using (28), while WCR(b) computes them using the boottest
approach described in equation (20) and equations (23) through (25).

5.1 The Pairs Cluster and WCR Bootstraps

From the discussion in Section 3, it is clear that computing time depends on N, G, B, k,
and r. These are therefore the quantities that are varied in the simulations. Specifically, N
equals 10,000 or 1,000,000, G equals 20 or 40, and B equals 999 or 9,999. The number of
regressors k is either 10 or 20, and the number of restrictions r is either 1 or 5.

Table 1 shows computing times in seconds for the pairs cluster bootstrap and the WCR
bootstrap programmed in two different ways. For comparison, a benchmark number is also
reported. It is simply B + 1 times the computing time for a single test statistic, because an
inefficient bootstrap method typically involves computing the same test statistic that many
times. This may be an over-estimate, especially in the case of the wild cluster bootstrap,
because it ignores the possibility of using various computational tricks, such as re-using the
(X "X)~! matrix. On the other hand, it also fails to account for the cost of generating each
bootstrap sample. In all cases, the cost of generating the data (which is often larger than

the cost of bootstrapping) is excluded from the times reported.
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Times for the WCU bootstrap, not shown, are similar to those for the WCR bootstrap,
but somewhat smaller (especially for N = 10°) because the restricted estimates do not
need to be computed. The pairs cluster bootstrap is more expensive than the wild cluster
bootstrap because the former needs to construct the X T X matrix for each bootstrap
sample, while the latter uses the same X "X matrix for all of them. However, the new
method of computing the pairs cluster bootstrap proposed in Section 3.1 is still enormously
faster than the benchmark.

For r = 1, there are two variants of the WCR bootstrap. The simpler one, denoted
“WCR(s)”, is based on (28). The other one, denoted “WCR(b)”, is the boottest method
described in Section 3.2. Although both methods are much faster than the benchmark, the
boottest method can be quite a bit faster than the simpler one. This is particularly true
when N is small, k is large, and B is large. In theory, the marginal cost of generating an
additional bootstrap test statistic using WCR(b) is independent of N and k. This seems to
be more or less true in Table 1, allowing for some inaccuracy in the reported times. Unless
G is very large, in which case there is usually no need to bootstrap, this marginal cost tends
to be remarkably small.

For r = 5, only one set of WCR results is shown, because the boottest method for
computing Wald statistics has not yet been programmed in Fortran. But even the relatively
slow method based on (28), which is very easy to program, is enormously faster than the
benchmark. However, it is sometimes not much faster than the new version of the pairs
bootstrap proposed in Section 3.1.

Except for the benchmark numbers, all of the times in Table 1 are less than one second,
and most of them are less than 1/10 of a second. So all the methods proposed here seem
to be more than fast enough for practical use with large samples. The benchmark times
always greatly exceed those for the WCR(s) and WCR(b) bootstraps. When N = 10°
and B = 9,999, they do so by factors of several thousand. When N = 10%, the initial
computations evidently account for a substantial proportion of the total time. Increasing B
from 999 to 9,999 generally has a fairly modest effect. For WCR(b), as noted above, the
effect is always very modest indeed and depends solely on G.

Increasing G from 20 to 40 and increasing r from 1 to 5 both have fairly small effects
on computing times for the bootstrap, especially when N = 10°. The only parameter that
has a large effect, but not for WCR(b), is k. This happens because forming the XgTXg
matrices requires O(k*N) operations, and creating the “filling” in the CRVE (5) requires
O(k*G). The former only has to be done once for any bootstrap test, but the latter has
to be done B + 1 times for the WCR(s) and pairs cluster bootstraps. For the pairs cluster

bootstrap, it is also necessary to compute and invert the matrix 2521 X ;‘bTX ;b for each
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Table 2: Computing Times in Seconds for the WREC Bootstrap

N 10,000 1,000,000

k.l 2,20 12,20 12,40 2,20 12,20 12,40
G =20

Bench, 999 0.6861 1.0366 2.5369 152.08 232.46 580.06
WREC, 999 0.0062 0.0083 0.0268 0.0776 0.0788 0.2782
Bench, 9,999 6.861 10.366 25.369 1520.8 2324.6 5800.6
WREC, 9,999 0.0574 0.0822 0.2453 0.1260 0.1458 0.4902
G =40

Bench, 999 0.6803 1.0378 2.5175 158.18 242.04 586.23
WREC, 999 0.0132 0.0189 0.0718 0.0843 0.0871 0.2995
Bench, 9,999 6.803 10.378 25.175 1581.8 2420.4 5860.2
WREC, 9,999 0.1304 0.1778 0.5646 0.1902 0.2303 0.7971

Notes: All computations were performed in Fortran using one core of an Intel i9-10850K processor running

at 3.6 GHz. For accuracy, they were repeated at least 1000 times.

bootstrap sample. Thus the only circumstance in which the new procedures risk becoming
computationally challenging is when there are many regressors. In such cases, reducing the
number of coefficients that have to be estimated by partialing out fixed effects and perhaps
other dummy variables might reduce computing time substantially; see Section 3.3. Of
course, this is never a problem for the WCR(b) procedure used by boottest, which becomes

relatively less costly as the number of regressors increases.

5.2 The WREC Bootstrap

Table 2 shows computing times in seconds for the WREC bootstrap and for a benchmark,
which is simply B+ 1 times the cost of running a single IV regression and computing a single
cluster-robust t-statistic. This benchmark is only a crude approximation. It does not allow
for some fairly obvious optimizations, but it also ignores the cost of generating the bootstrap
samples, which can be substantial if they are generated in a naive way.

As implemented using the method proposed in Section 4.1, the WREC bootstrap is
always extremely fast. It never takes as long as one second, even with 10% observations, 40
instruments, and 9,999 bootstrap samples. Its relative performance is best when N = 106,
G = 20,1 = 20, and k = 12. In this case, it is roughly 16,000 times as fast as the
benchmark. Inevitably, computing time goes up with G, k, and (especially) [, the number of
instruments. However, it appears that these numbers would all need to be very large indeed

for computation to be even slightly challenging.
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For N = 10% the cost of increasing B from 999 to 9,999 is always somewhat less than a
factor of 10. In contrast, for N = 105, it is always much less than a factor of 10. In the latter
case, computation time is evidently dominated by the cost of forming the within-cluster sums

of cross-products that appear in (43) through (45), which only needs to be done once.

6 Monte Carlo Experiments

The fast bootstrap algorithms developed in Sections 3 and 4 make it feasible to undertake
experiments that would otherwise have been computationally challenging. This section takes
advantage of that fact to investigate the finite-sample properties of these bootstrap meth-
ods. All experiments use 400,000 replications, ensuring that experimental randomness is
negligible. Section 6.1 deals with Wald tests in regression models estimated by OLS, and
Section 6.2 deals with t-tests of the coefficient on the single endogenous regressor in linear

regression models estimated by IV.

6.1 Wald Tests in Finite Samples

There has been a good deal of work on the finite-sample properties of various methods,
notably the WCR, bootstrap, for cluster-robust inference about a single coefficient in the
linear regression model (1); see, among others, Cameron, Gelbach and Miller (2008), Imbens
and Kolesar (2016), and MacKinnon and Webb (2017a, b, 2018). However, with the exception
of Pustejovsky and Tipton (2018), which does not study bootstrap tests, there has apparently
been no work on the finite-sample properties of cluster-robust Wald tests for more than one
restriction. The Monte Carlo experiments of this subsection therefore focus on that case.

The experiments deal with tests of r > 1 restrictions based on the Wald statistic W(,@)
given in (9). Four tests are considered. The only one that does not involve bootstrapping
rejects the null hypothesis at level o whenever W(,é) /1 exceeds the 1 — a quantile of the
F(r,G—1) distribution. Since the results of Pustejovsky and Tipton (2018) suggest that the
approximation on which this test is based is generally not a good one, especially for larger
values of r, this procedure is not expected to perform well.

The other three tests are based on the pairs cluster bootstrap, discussed in Section 3.1,
and two variants of the wild cluster bootstrap, discussed in Section 3.2. For both the pairs

cluster and WCU bootstraps, the statistic for the b*" bootstrap sample is
A A — A —1 A A
Wy = (8"~ B)'R"(RVar(B")R") R(B" - B),
because the bootstrap samples do not impose the restriction that RSB = r. In contrast, for
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the WCR bootstrap, the bootstrap test statistic is given by (26).

The data are generated from the model (1) with & = 20. The number of regressors
is quite large because up to 10 restrictions are to be tested. With the exception of the
constant term, both the regressors and the disturbances are normally distributed and follow
independent random-effects models parametrized so that the intra-cluster correlation of the
disturbances is 0.1 and that of the regressors is 0.5. For reasons of space, the values of these
parameters were not varied, although they necessarily affect the results. Figures C.1 and
C.5 of Djogbenou, MacKinnon and Nielsen (2019) suggest that rejection rates for bootstrap
tests are quite insensitive to the correlation of the disturbances once it exceeds about 0.05,
and only moderately sensitive to the correlation of the regressors once it exceeds about 0.40.

In the experiments, there are N = 100G observations, which are divided among the G

clusters using the formula

N, = [N exp(19/G) g=1,...,G -1, (64)

> exp(vi/G))’

where [z] means the integer part of x. The value of Ng is then set to N — Z?;ll N,y. The key
parameter here is 7, which determines how uneven the cluster sizes are. When v = 0 and
N/G is an integer, equation (64) implies that N, = N/G for all g. As v increases, however,
cluster sizes vary more and more.

In the first two sets of experiments, G = 20. Figure 1 shows rejection rates (or frequencies)
for all four tests as a function of r, the number of restrictions. In panel (a), 7 = 0, so that
all clusters have 100 observations. In panel (b), v = 2, so that cluster sizes vary from 32
to 229. The vertical axis has been subjected to a square root transformation in order to
show results for all four procedures legibly on the same axes. In all experiments, the number
of bootstrap replications B is equal to 399. In practice, it would be better to use a larger
number, such as 999 or 9,999, and it would not be terribly expensive to do so. However,
because randomness in the bootstrap samples averages out across replications, the reported
rejection rates would have been essentially unchanged if a larger value of B had been used.

In both panels, the F' test over-rejects severely. The extent to which it does so increases
with r and is always greater in panel (b) than in panel (a). Although neither of these results
is surprising, the figure makes it clear that asymptotic Wald tests can be greatly over-sized,
especially when r is not small. If one of these tests fails to reject a null hypothesis, then
we can be very confident that evidence against that hypothesis is weak. However, if one of
them apparently rejects a null hypothesis, we should seek confirmation from other procedures
before drawing any conclusions.

The pairs cluster bootstrap works very well for » = 1. In fact, it is by far the most reliable
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Figure 1: Rejection Rates for Wald Tests with 20 Clusters

Rej. Rate Rej. Rate
1.00 1.00
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(a)y=0 b)) y=2

Notes: The vertical axis shows estimated rejection rates, after a square root transformation,
for tests at the .05 level. These are based on 400,000 replications with G = 20, N = 2000,
k = 20, and B = 399. The number of restrictions, r, varies from 1 to 10. Clusters are
equal-sized in panel (a) and vary from 32 to 229 in panel (b).

procedure in this case. However, in both panels, it under-rejects more and more severely as
r increases. For r > 6, it rejects less than 1% of the time at the .05 level. For r = 10, it
either never rejects or rejects just once in 400,000 replications. This property of the pairs
cluster bootstrap does not seem to have been noticed before. The problem arises because, as
r increases, the bootstrap test statistics become larger and more dispersed to a much greater
extent than do the actual test statistics. In consequence, the .95 quantile of the empirical
distribution of the W for each sample tends to become larger and larger relative to the
value of W(,@ ). Thus using that quantile as a critical value leads to increasingly severe under-
rejection as r increases. It would be interesting to investigate why the bootstrap distribution
behaves in this way for the pairs cluster bootstrap, but this would require theoretical work
well beyond the scope of this paper.

The two wild cluster bootstrap tests do not work particularly well, but their performance
does not deteriorate as r increases. In fact, it eventually improves modestly once r becomes
large enough. As expected, the WCU bootstrap always rejects more often than the WCR
bootstrap. Even when r = 1, both procedures over-reject much more often than they have
done in previous Monte Carlo experiments (MacKinnon and Webb 2017a, 2018). The reason
for this seems to be that there are 20 regressors here (including a constant term), instead of

just a few, as in previous work. Djogbenou, MacKinnon and Nielsen (2019, Appendix C.2)

28



Figure 2: Rejection Rates for Wald Tests with 40 Clusters

Rej. Rate Rej. Rate
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Notes: The vertical axis shows estimated rejection rates, after a square root transformation,
for tests at the .05 level. These are based on 400,000 replications with G = 40, N = 4000,
k = 20, and B = 399. The number of restrictions, r, varies from 1 to 10. Clusters are
equal-sized in panel (a) and vary from 32 to 246 in panel (b).

studies the consequences of adding additional regressors and finds that doing so increases
rejection rates for both the WCR and WCU bootstraps, but rejection rates are considerably
smaller than is seen in Figure 1. This is almost certainly because the present experiments
involve both fewer clusters and more regressors than the ones in that paper.

Figure 2 is similar to Figure 1, except that G = 40 and N = 4000. In panel (a), all
clusters are the same size. In panel (b), they vary from 32 to 246. With the exception of
the pairs cluster bootstrap when r» = 1, all the tests perform much better when G = 40 than
when G = 20. In particular, the WCR bootstrap never rejects more than 5.8% of the time in
panel (a) and 6.9% of the time in panel (b). Since the comparable numbers for G = 20 were
8.1% and 10.2%, doubling the number of clusters has evidently made WCR-based inference
much more reliable. The pairs cluster bootstrap is still the best procedure for r = 1, but
it continues to under-reject more and more severely as r becomes larger, albeit to a much
lesser extent than it did for G = 20.

6.2 Bootstrap Tests for IV Regression

There is an enormous literature on the finite-sample properties of IV estimates, especially
when the instruments are weak; see Andrews, Stock and Sun (2019) for a recent survey.

However, with the exception of Finlay and Magnusson (2019) and Wang and Zhang (2021),
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there has been little work on cluster-robust IV bootstrap methods. The experiments in this
subsection attempt to remedy this omission, at least to a modest extent. They focus on
WREC bootstrap tests for the parameter § in the linear model (38)—(39).

Studying the WREC bootstrap is much more complicated than studying bootstrap meth-
ods for OLS regression with clustering, because IV regressions with clustering involve two
quite different types of finite-sample size distortion. As in the OLS case, one of these arises
because cluster-robust standard errors may be inaccurate (usually too small). The other
arises whether or not there is clustering, because the distribution of the IV estimator @
given in (42), and therefore of ¢-statistics based on it, can differ greatly from its asymp-
totic distribution. In particular, B is often severely biased, especially when the number of
over-identifying restrictions is large and the instruments are weak.

In the first set of experiments, there are 2000 observations and 20 clusters, each with 100
observations. None of the instruments, regressors, or disturbances actually displays intra-
cluster correlation; that will be added below. Thus these experiments should yield results
similar in most respects to those for the WRE bootstrap (Davidson and MacKinnon 2010).
Studying the WREC bootstrap is much cheaper than studying the WRE bootstrap, because
the computational tricks of Section 4.1 cannot be used with the latter. However, the cluster-
robust t-statistics are likely to be somewhat larger, on average, than heteroskedasticity-robust
ones, and somewhat more variable across samples, especially when the number of clusters is
small. If the WREC bootstrap works well, it should compensate for both of these phenomena
at the cost of some power loss.

A key parameter for finite-sample inference about 3 in the model (38)—(39) is the concen-
tration parameter C', which measures the strength of the instruments. When the disturbances

are independent and identically distributed, as they are in the first set of experiments,

- E (] W, Mz Wyr,)

Y
o3

(65)

where o5 is the standard deviation of the elements of wy. Thus C' measures the explanatory
power in the reduced-form regression (39) of the instruments that are not also regressors in
the structural equation (38), relative to the variance of the disturbances in (39). In theoretical
analyses, it is common to assume that m, = O(N -1/ %), so that C' remains constant as N
increases. In practice, however, C' is unknown and roughly proportional to the sample size.
Since C' is the noncentrality parameter of the F' statistic for o = 0 in regression (39), it
can be estimated (inconsistently) by running that regression and computing the F' statistic.
Stock and Yogo (2005) shows that this F' statistic needs to be much larger than its usual

critical value if t-tests and confidence intervals for 8 are to be reliable.
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Figure 3: Rejection Rates for IV Regression t-Tests
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(a) Asymptotic t-tests (b) WREC bootstrap t-tests

Notes: The vertical axis shows estimated rejection rates for tests at the .05 level for three
values of g5. These are based on 400,000 replications with G = 20, N = 2000, k£ = 5,
[ =10, and B = 399. Clusters are equal-sized, and there is no intra-cluster correlation.
The correlation between the structural and reduced-form disturbances, p, is shown on the
horizontal axis.

In the first set of experiments, all elements of 7 equal 1, and o takes on the values 10,
20, or 40, implying that C'/(l — k) equals 20, 5, or 1.25. It seems reasonable to argue, based
on the tables in Stock and Yogo (2005), that C'/(l — k) = 20 corresponds to moderately weak
instruments, C'/(l — k) = 5 corresponds to very weak instruments, and C'/(l — k) = 1.25
corresponds to extremely weak instruments. In none of these cases would we expect the
distribution of the ¢-statistic (51) to be well approximated by the N(0,1) distribution.

Panel (a) of Figure 3 shows rejection rates for asymptotic ¢-tests at the .05 level based
on the standard normal critical value of 1.96 as a function of p, the correlation between the
disturbances of the structural equation (38) and the reduced-form equation (39). The values
of [ and k are 10 and 5, respectively, so that there are 4 over-identifying restrictions. It
is evident that the tests over-reject severely for all values of o5 when p is large. Perhaps
surprisingly, however, they actually under-reject for o5 = 40 when p is small.

Panel (b) of Figure 3 shows rejection rates for equal-tailed WREC bootstrap tests, defined
in (63), for the same experiments. Note the greatly enlarged scale of the vertical axis! For
the smallest value of o3, the WREC bootstrap tests reject almost exactly 5% of the time for
all values of p. For the second-smallest value, this is still true, although there is very slight
under-rejection for the larger values of p. Only for the largest value of o5, which corresponds
to extremely weak instruments, do the WREC bootstrap tests not perform almost perfectly.

They reject between 4.2% and 4.4% of the time. In contrast, the asymptotic tests reject
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Figure 4: Rejection Rates for IV Regression t-Tests
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Notes: The vertical axis shows estimated rejection rates for tests at the .05 level for three
values of o,. These are based on 400,000 replications with G = 20, N = 2000, k& = 5,
p = 0.5, and B = 399. Clusters are equal-sized, and there is no intra-cluster correlation.
The difference between the number of instruments [ and the number of exogenous regressors
k is shown on the horizontal axis.

between 3.4% and 47.8% of the time, depending on the value of p.

Figure 4 is similar to Figure 3, but now p is fixed at 0.5 and [ — k varies between 1
and 25, taking on the values 1,2,...,7 and 9,11,...,25. In panel (a), we see once again
that the asymptotic tests usually over-reject severely, especially when the instruments are
weak. However, all tests perform reasonably well when [ — k = 1, so that there are no
over-identifying restrictions.

In panel (b), where once again the vertical axis is on a greatly enlarged scale, we see that
the WREC bootstrap tests always perform well for the smallest value of o9, but they under-
reject in the left of the figure for the two larger values. For oy = 20, this under-rejection is
not severe and is not really evident for [ — k > 5, but for o, = 40 it is quite severe and is
evident even for fairly large values of [ — k.

The tests shown in Figures 3 and 4 are two-tailed. Results for one-tailed tests, especially
asymptotic ones, are rather different. What usually happens, because B is biased upwards
when p > 0, is that right-tail tests reject more often than two-tailed tests, and left-tail tests
reject less often. For example, in the most extreme case of Figure 3, where p = 0.9 and
o9 = 40, the right-tail asymptotic test rejects 54.8% of the time, and the left-tail one never
rejects. In contrast, the right-tail bootstrap test rejects 5.06% of the time, and the left-tail
one rejects 4.23%.

In the next set of experiments, both the disturbances and the instruments are correlated

within clusters. The instruments (which include the exogenous regressors), are generated
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Figure 5: Rejection Rates for IV Regression t-Tests with Intra-Cluster Correlation
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Notes: The vertical axis shows estimated rejection rates for tests at the .05 level. These are
based on 400,000 replications with G = 20 or G = 40, N = 2000, equal-sized clusters, k = 5,
=10, p=0.5, ¢, = 0.1, and B = 399. The intra-cluster correlation ¢, for the instruments
and exogenous regressors is shown on the horizontal axis.

using independent normal random-effects models parametrized so that their intra-cluster
correlation is ¢,. Generating the disturbances is somewhat more complicated, because there
needs to be both intra-cluster correlation and correlation between w; and w,. This is done
by using a normal random-effects model to generate three random N-vectors, v, €, and €,

all of them with intra-cluster correlation ¢,. Then w; and u, are generated by
u;=pPv4+(1—p)%;, j=1,2 (66)

The correlation between w; and wu, is evidently p. Because both v and the €; have intra-
cluster correlation ¢, so do the w;. The intra-cluster correlations of y; and ¥y then arise
endogenously from those of Z, W, uy, and wus.

The results of four sets of experiments are shown in Figure 5. In all cases, the disturbances
are generated using (66), with correlation coefficient ¢, = 0.1. The intra-cluster correlation
@, of the instruments and exogenous regressors varies from 0.0 to 0.9 by increments of 0.1.
There are two values of g9, namely, 10 and 20. No experiments were performed for oo = 40,
because the instruments, already extremely weak when ¢, = 0, would have been ridiculously
weak for larger values of ¢,. Note that the instruments effectively become weaker as the
intra-cluster correlations increase. Neither the usual concentration parameter (65) nor the
usual F-statistic for o = 0 is valid in this case; see Olea and Pflueger (2013). When
v, = 0.0, the rejection rates in both panels of Figure 5 are essentially the same as the

corresponding ones in Figure 3. However, the rejection rates for asymptotic tests increase
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Figure 6: Rejection Rates for IV Regression t-Tests with Intra-Cluster Correlation
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Notes: The vertical axis shows estimated rejection rates for tests at the .05 level. These
are based on 400,000 replications with G = 20 or G = 40, N = 2000, k =5, [ = 10, p = 0.5,
v, = 0.5, p, = 0.2, and B = 399. The value of v, which determines how much cluster sizes
vary via equation (64), is shown on the horizontal axis.

sharply with ¢,, especially when o9 = 20. In contrast, the rejection rates for bootstrap tests
decline gradually with ¢, when g = 20 and hardly change when o5 = 10.

In panel (b) of Figure 5, there are 40 clusters instead of 20. As expected, all the tests
now perform better, and over-rejection by the asymptotic tests increases more slowly with
.. Notably, the WREC bootstrap tests perform more or less perfectly when o, = 10. Even
when o, = 20, the worst they do is to reject about 4% of the time, when the corresponding
asymptotic tests are rejecting 21.4% of the time.

The results in Figure 5 remind us of a very important feature of cluster-robust inference,
which has been known at least since Moulton (1986). What matters for inference are the
intra-cluster correlations of the scores; see Section 2. When either the disturbances or the
regressors display no intra-cluster correlation, then neither do the scores, and cluster-robust
inference is asymptotically equivalent to heteroskedasticity-robust inference.

In another set of experiments, not reported here, the value of ¢, was set to 0.5, and the
value of ¢, was varied. As expected, results for ¢, = 0 were almost identical to the ones
for v, = 0 in Figure 5. Then, as ¢, became larger, the rejection rates for asymptotic tests
increased, and the ones for bootstrap tests decreased.

Results for the final set of experiments are shown in Figure 6. In this case, what varies is 7,
the parameter that determines how much cluster sizes differ; see equation (64). When v = 0,
all clusters have either 100 observations (in panel (a), where G = 20) or 50 observations (in

panel (b), where G = 40). At the other extreme, when v = 4, cluster sizes vary from 8 to
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378 in panel (a) and from 3 to 215 in panel (b). In both panels, the asymptotic tests reject
more frequently as cluster sizes become more variable. In panel (a), this is also true for
the bootstrap tests, which initially under-reject. In panel (b), however, the bootstrap tests
for 05 = 10 perform almost perfectly for all values of v, and the ones for g, = 20 always
under-reject moderately. Rejection rates for the latter vary between 3.7% and 3.9%.
Because the simultaneous equations model (38)-(39) has quite a few free parameters,
the regressors and instruments can in principle be generated in a great many ways. In
addition, the number of observations, the number of clusters, and the distribution of the
cluster sizes can vary enormously. Thus the experiments reported in this section are far
from definitive. It would be easy enough to generate datasets for which asymptotic inference
would work almost perfectly. It would also be easy to generate datasets for which asymptotic
inference was extremely inaccurate and even the WREC bootstrap worked poorly, perhaps
because the instruments were extremely weak, the intra-cluster correlations were high, the
number of clusters was small, and/or cluster sizes were highly variable. Nevertheless, it
seems reasonable to conclude that tests based on the WREC bootstrap will generally yield

more reliable inferences than ones based on IV t-statistics and asymptotic theory.

7 Conclusion

This paper proposes new computational methods for bootstrap tests in linear regression
models with clustered disturbances. It also provides a new algebraic formulation for the
existing method discussed in Roodman, MacKinnon, Nielsen and Webb (2019) and imple-
mented in the Stata package boottest. For large samples, these methods can be several
orders of magnitude faster than conventional ones. The key idea is to pre-compute a set of
vectors and matrices of sums of squares and cross-products for each of the GG clusters, which
serve as sufficient statistics. The actual test statistic and all the bootstrap test statistics then
depend on the sample only through these sufficient statistics. The simulations in Section 5
often show enormous reductions in computer time, especially for large sample sizes.

The new methods are particularly advantageous when applied to the pairs cluster boot-
strap for models estimated by OLS (Section 3.1) and to the WREC bootstrap for models
estimated by instrumental variables (Section 4.1). In the case of the WCR bootstrap for
models estimated by OLS, however, they are not quite as efficient as the extraordinarily
rapid method already used by boottest, which is explained in a new way in Section 3.2.

The Monte Carlo experiments in Section 6 contain a number of new findings. The pairs
cluster bootstrap under-rejects severely when used with Wald tests of several restrictions in

models estimated by OLS regression. The WCR bootstrap over-rejects more substantially
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than in previous studies, almost certainly because the number of random regressors is much
larger. The WREC bootstrap for IV regression often performs remarkably well in cases
where conventional ¢-tests over-reject greatly. In many cases (but not all) where it does not
perform perfectly, the WREC bootstrap tends to under-reject. Increasing the amount of
intra-cluster correlation for either the instruments or the disturbances effectively makes the

instruments weaker, thus causing both ¢-tests and bootstrap tests to become less reliable.
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