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Abstract 

This study analyzes the extent to which electricity consumers of different income levels would 

increase electricity consumption and change their coping behavior to deal with power outages 

in response to electricity reliability improvements. The empirical analysis is conducted in two 

steps: (1) using an unsupervised machine learning technique, a nationally representative sample 

of Nepalese households is segmented into similar clusters based on the reliability constraints 

they face; and, (2) using regression models, the impact of reliability improvements on 

consumption and coping decisions is estimated. The findings point out that improved reliability 

is positively correlated with the probability of electric appliance ownership. The interaction of 

income and reliability-constraint indicators suggests that the unreliable electricity supply 

constrains households equally at all income levels. Moreover, the results from an ordered probit 

model with three off-grid backup decision alternatives indicate no association between coping 

decisions and income in the first two income quintiles. In contrast, higher-income quintiles are 

associated with significant changes in coping behavior when reliable electricity is available 

from the grid. Putting this paper’s findings into an energy-policy perspective, a connection to 

the grid by itself does not necessarily translate to realized benefits from electricity 

consumption. The reliability of the service plays a critical role for households at all income 

levels.  

Keywords: Electricity demand; electricity reliability; coping behavior; k-means clustering 

analysis; low-income countries; Nepal. 
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1. Introduction 

As low-income countries strive to meet United Nations Sustainable Development Goal 

7 (SDG 7, universal access to electricity), residential electricity consumption remains low 

despite substantial investments in grid expansion programs (Blimpo & Cosgrove-Davies, 2019; 

Blimpo et al., 2020)1. Reliability constraints have been blamed for low electricity consumption 

(Bhatia & Angelou, 2015; Aidoo & Briggs, 2019; Pelz & Urpelainen, 2020) since insufficient 

capacity in the generation and transmission segments and overloaded infrastructure in the 

distribution network cause varying reliability levels for consumers connected to the same 

national grid2.  

This study investigates the impact of improvements in grid-electricity access on 

electricity consumption and coping behavior to deal with unreliable electricity supply of 

households at different income levels3. For this purpose, I use a nationally representative 

sample of Nepalese residential consumers consisting of 4,660 households surveyed in 2017, 

one year after this country-wide reliability improvements. Nepal has experienced chronic 

power deficits for more than a decade (2007-2016). However, Nepal’s national electricity 

authority (NEA) has managed to eliminate its seasonal hydropower generation deficits at the 

end of 2016 by facilitating power imports from India (Hashemi, 2021). This creates a unique 

environment to study the research question because during the time data collection was 

conducted, many households across Nepal had improved access to electricity service. 

 
1 “Universal access to modern energy by 2030” is one of the three key pillars of the Sustainable Energy for All 
(SE4All) program, an initiative co-chaired by the United Nations (UN) Secretary General and the World Bank 
President. 
  
2 Availability of grid-electricity takes into account the timing and duration of supply and reliability considers the 
frequency of interruptions to supply. Although availability and reliability may be seen as the same issue, 
addressing them requires different interventions. 
  
3 Improved access to the grid-electricity supply can be defined in terms of enhanced attributes of electricity that 
make it more usable for the desired applications. In this paper, I focus on the impact of enhancing the availability 
and reliability attributes on electricity consumption. 
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Therefore, I exploit the spatial variation in electricity reliability to identify the impact of 

reliability improvements on electricity consumption.  

More specifically, I segment households into similar groups based on the supply 

constraints they face using an unsupervised machine learning technique known as K-means 

clustering. To categorize the different levels of reliability available to households, I group 

households along three dimensions: available hours of electricity per day (maximum of 24 

hours), available hours of electricity during the evening peak-time (6-10 PM, a maximum of 4 

hours), and frequency of outages experienced by households in a typical week. Next, I estimate 

the optimal number of clusters via the K-means clustering technique4. The largest cluster 

comprises 55% of the sample, with the rest of the households are distributed across four 

clusters, representing 5%, 11%, 10%, and 19% of the sample. The clusters reveal three distinct 

patterns of grid-electricity constraints: (1) low availability with frequent outages (clusters 1 

and 2); (2) high availability with frequent outages (clusters 3 and 4); and (3) high availability 

without frequent outages (cluster 5).  

After identifying household clusters, I investigate the extent to which unreliable access 

constrains households’ electricity demand at different income levels by focusing on the impact 

of system reliability on electric appliance ownership. The rationale here is that the residential 

demand for electricity is derived from the household’s demand for electric appliance services. 

Unreliable electricity affects a household’s choice of appliances because it reduces the benefit 

for the household from ownership of such appliances. Therefore, if reliability improvements 

impact households’ purchase decisions and the portfolio of appliances owned, they will also 

impact electricity consumption (McRae, 2010; Meeks et al., 2021). This approach avoids the 

 
4 The objective of the K-means clustering technique is to achieve the highest intra-cluster similarity and lowest 
inter-cluster similarity. Observations are grouped into k homogenous clusters. The first step of the analysis is to 
determine the optimal number of clusters. I use the elbow method which determines the number of clusters by 
examining the within-cluster variance as a function of the number of clusters. 
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potential endogeneity bias due to unobserved factors determining appliance choice and 

electricity consumption when electric appliance ownership is an independent variable in 

electricity demand estimation. 

I find that improved access to grid electricity is positively correlated with the 

probability of electric appliance ownership. Furthermore, the interaction of income and supply-

constraint indicators in a piecewise regression model suggests that the insufficient capacity of 

power supply constrains households equally at all income levels. In contrast, the frequency of 

unplanned service interruptions does not appear to matter at any income level. These findings 

imply that if electricity from the grid were available 24-hour a day, the average duration of the 

remaining outages would probably be so short that it would not affect electric appliance 

ownership decisions.  

In addition, I find that the effect of income on appliance ownership is approximately 

the same across all income quintiles. The importance of this finding is highlighted when I 

investigate how households’ coping behavior changes when they experience different levels of 

reliability. The results from an ordered probit model with three backup decision alternatives 

indicate no association between backup decisions and income in the first two income quintiles. 

On the other hand, higher-income quintiles are associated with significant changes in coping 

behavior when electricity is available from the grid all day long, and unplanned outages are not 

frequent. Thus, the increased availability of supply hours from the grid matters more for poor 

households, for whom the combined ownership cost of both appliances and backup equipment 

may be prohibitive5. 

The empirical results presented in this paper deliver at least three critical insights to 

sector planners and decision-makers in the electricity sector. First, previous studies have 

 
5 Poorer households either do not invest in coping equipment or use low-quality coping equipment (such as 
kerosene and candles) that provide low-quality lighting services. 
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analyzed the ex-ante demand for electricity reliability using contingent valuation (proposed 

hypothetical reliability improvements) and revealed preferences (expenditures on backup 

alternatives used during outages) surveys (Ozbafli & Jenkins, 2015; Ozbafli & Jenkins, 2016; 

Niroomand & Jenkins, 2020; Hashemi, 2021). While survey-based studies provide helpful 

insights to sector planners about the electricity demand, the change in consumers’ coping 

behavior and appliance ownership after actual improvements (ex-post) has remained 

unexplored in the literature.  The findings presented in this study shed some light on how 

consumers’ investment decisions on electric appliances and coping equipment would be 

affected with enhanced quality of electricity service. 

Second, with more progress being made toward achieving SDG7, the findings in this 

study highlight how unreliable access to electricity constrains the acquisition of household 

electric appliances. Thus, reliability improvements are expected to increase benefits from 

electric appliance usage through greater household appliance ownership and, consequently, 

increased electricity consumption. Moreover, a reliable service eliminates the need for 

investments in coping equipment, resulting in savings in additional expenditures on top 

electricity bills to cope with power outages. Previous studies show that there is often a 

significant willingness to pay (WTP) among consumers for reliability improvements (Kim et 

al., 2015; Abrate et al., 2016; Ozbafli & Jenkins, 2016; Carlsson et al., 2020; Niroomand & 

Jenkins, 2020; Hashemi, 2021; Carlsson et al., 2021). Hence, achieving SDG7 goals is 

impossible if the quality of service is ignored in electrification programs.  

Third, consistent with recent studies, the methodology employed in this paper 

highlights the importance of using a multi-dimensional measurement framework rather than 

simply counting grid connections when measuring energy access and the associated economic 

impacts (Bhatia & Angelou, 2015; Mendoza et al., 2019; Pelz & Urpelainen 2020). A focus on 

counting connections - politically motivated in most cases - without considering household 
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electrical energy service utilization has deteriorated electric utilities’ cash flows in low-income 

countries (Blimpo & Cosgrove-Davies, 2019). Also, such an energy-policy perspective is likely 

to overestimate electrification projects’ benefits by sector planners when conducting cost-

benefit analyses of investment projects (Bajo-Buenestado, 2021).  

The rest of the paper proceeds as follows. Section 2 provides a brief review of previous 

studies on different causes of electricity service interruptions. Section 3 describes the empirical 

methodology used in this paper, followed by a description of the data. In section 4, empirical 

results are presented and discussed. Lastly, Section 5 concludes the paper and discusses some 

policy implications. 

2. What causes unreliable electricity supply? 

Investments in grid extension would increase electrification rates, but in the absence of 

adequate availability and reliability of power, the grid-connected consumers would experience 

poor electricity access due to frequent and prolonged outages. In many developing countries, 

insufficient investments in transmission capacity or seasonal shortages in electricity generation 

result in long hours of electricity service unavailability (Zhang, 2018). As a result, electric 

utilities in these countries typically allocate the constrained supply of electricity among 

customers through rationing programs (also known as load shedding programs). Outages 

caused by these programs are called planned outages and are announced ahead of time to 

electricity consumers. Previous studies show that there is often a significant WTP among 

consumers to eliminate planned outages (Abrate et al., 2016; Ozbafli & Jenkins, 2016; Carlsson 

et al., 2020; Niroomand & Jenkins, 2020; Hashemi, 2021; Carlsson et al., 2021). 
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There are, in addition, situations where sufficient electricity is generated and transmitted 

to distribution networks, but frequent unplanned outages remain6. Local substation failure due 

to capacity overload is the most common cause of unplanned outages (Carranza & Meeks, 

2018; Meeks et al., 2021)7. Electric utilities upgrade substation capacities to keep up with 

growing demand over time and to prevent or reduce overloading. The cost of such investments 

is recovered from adjustments to retail electricity prices. However, there is often political 

pressure against raising electricity prices in many developing countries. The situation gets 

worse where access to electricity is viewed as a right. Unaccounted electricity usage (electricity 

theft) through illegal connections and unpaid electricity bills often becomes a socially accepted 

part of the system (Burgess et al., 2020). Consequently, electric utilities’ cash flows deteriorate, 

and they postpone essential investments to maintain service reliability (Gertler et al., 2017). 

Therefore, the availability and reliability of electricity supply from the same national 

grid may vary from one locality to another. This variation creates the need for evaluating the 

reliability issues with a multi-dimensional framework that considers various indicators 

representing multiple attributes. For instance, power outages may be frequent but last for only 

a few minutes or several hours. In addition, the time of day when grid electricity is available is 

an essential factor because the demand for lighting services - the main category of electricity 

consumption in low-income countries - is highest during the evening hours. Therefore, if grid 

power is available for extended hours during the day but constrained during the evening, 

households will still be significantly constrained in their electricity use. In the next section, the 

 
6 Due to its unexpected nature, the opportunity cost of unplanned outages are often greater than planned outages. 
Hashemi et al. (2018) estimate the cost to Nepalese industrial firms in the range of US$0.28/kWh up to 
US$2.88/kWh of electricity not supplied 

 
7 A distribution substation is the last part of the electricity distribution network that ensures electric power is 
adequately converted to a usable service voltage for the daily operations of consumers. Each substation is designed 
for a specific maximum capacity, and the installed protection devices automatically shut down the substation in 
the occurrence of an overload, leaving all consumers connected to that substation without power. Thus, the 
frequency with which unplanned power outages occur in a locality is a function of how much overloaded the 
distribution substations are in that locality. 
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three indicators that are used in this study to capture the spatial variation in electricity reliability 

for households residing across Nepal are introduced and explained in detail. 

3. Methodology and data 

3.1 Methodology  

In this paper, differences in system reliability are explored using K-means clustering, 

an unsupervised data-mining technique with applications in various fields such as market 

segmentation analysis and social network studies. In the energy economics literature, K-means 

clustering has been used to analyze smart-meter data to understand residential electricity load 

profiles and consumption patterns (Trotta, 2020). Estimates of these patterns have been used 

in load forecasting, tariff design, and demand-response programs (Rhodes et al., 2014; Trotta, 

2020). Identifying consumer segments with similar electricity load profiles allows for a broader 

range of policy analyses in electricity markets, including studies of the advisability of grid 

expansion and the efficient level of service reliability (Hayn et al., 2014; Thomas et al., 2020).  

After identifying the relevant household clusters in terms of service reliability, I exploit 

the variation in reliability across household clusters to estimate the effect of improvements on 

high-load electric appliance ownership. The residential demand for electricity is derived from 

the households’ demand for electric appliances. Unreliable electricity affects a household’s 

choice of appliances because it reduces the benefit for the household from ownership of such 

appliances. Therefore, if reliability improvements impact households’ purchase decisions and 

the portfolio of appliances owned, they will also shift the demand curve for residential 

electricity. The alternative of estimating the electricity demand, using either electricity bills or 

hours of consumption as the dependent variables, is likely to yield inconsistent estimates 

because of the clear endogeneity of appliance ownership as a regressor. 



9 

 

Similarly, it is expected that reliability improvements would change consumers’ coping 

behavior to deal with unreliable electricity service. Households engage in various coping 

behaviors (ranging from simple technologies like candles to more advanced forms such as 

diesel generators) when electricity from the grid is not available or when there are fluctuations 

in the voltage of electricity drawn from the grid (Hashemi, 2021). I exploit the variation in 

reliability across household clusters to analyze how households’ adoption patterns of coping 

equipment would be affected after reliability improvements.  

3.2 Data Description 

I use a nationally representative survey of Nepalese households collected as part of the 

World Bank’s Multi-Tier Framework (MTF) for Assessing Energy Access Program (World 

Bank, 2019). The survey was conducted in 2017, one year after the total elimination of load 

shedding in Nepal through electric power imports from India. The sample design was based on 

a two-stage stratification to ensure the national representativeness of the sample. In the first 

stage, the enumeration areas were selected randomly within stratifications, representing urban 

and rural areas and Nepal’s three distinct ecological regions (mountains, hills, and terai). In the 

second stage, households were randomly selected for interviews from wards chosen in the first 

stage. The raw dataset consists of 6,000 households, of which 4,660 were grid-connected. I 

focus only on those grid-connected households in this study. Table 1 presents summary 

statistics for the 3,847 grid-connected households for which there are no missing data.  

The household segmentation variables listed in Table 1 represent three dimensions of 

system reliability. Households report in the survey that electricity from the grid is available on 

average for almost 22 hours per day, with a minimum of 7 and a maximum of 24 hours of 

availability. Moreover, the frequency of outages per week varies greatly across households, 

with a mean of 7 and a standard deviation of 9.37. The third dimension of reliability is peak-

time availability, measured as the hours of grid electricity availability from 6 PM to 10 PM. 
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The sample average is 3.56 hours with a standard deviation of 0.68 hours. The three panels in 

Figure 1 illustrate the district-level average hours of grid electricity availability, frequency of 

outages, and peak-time availability.  

Table 1: Summary statistics 

Variable Mean St. Dev. Min Max 

Segmentation variables     

Daily availability of grid electricity 21.93 2.89 7 24 

Frequency of outages 6.97 9.37 0 88 

Availability during the evening peak time (6 – 10 PM) 3.56 0.68 0 4 

     

Household characteristics     

Electricity bill in a typical month (USD) 4.94 7.43 0.04 77.31 

Total number of high-load appliances 1.43 1.94 0 10 

Quintiles of total monthly expenditures (USD)     

1st  73.44 19.66 14.28 100.66 

2nd  122.09 12.46 100.76 144.19 

3rd  166.90 13.81 144.28 192.57 

4th  228.20 23.27 192.66 274.00 

5th  492.05 415.52 274.17 3,666.48 

Backup status     

No backup 0.09    

Only for lighting 0.61    

Both for lighting and appliances 0.30    

Education status of the household head     

No formal education 0.35    

Primary  0.22    

Secondary 0.38    

College education 0.05    

Household head gender     

Female 0.20    

Time spent at home     

Retired / too old to work 0.12    

Housewife/husband 0.11    

Locality     

Urban 0.66    

Rural 0.34    

     

Number of observations  3,847    
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Panel A. Daily availability of grid electricity 

 

Panel B. Frequency of outages 

 

 

Panel C. Availability of grid-electricity during the evening peak time (6-10 PM) 

Figure 1: Grid electricity supply constraints – district-level averages 

 

Households reported a wide variety of electric appliance ownership, ranging from light 

bulbs and mobile phone chargers, which require only a few watts, to space heaters and air 
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conditioners, which require several kilowatts. Based on the amount of electricity needed to 

operate, their electric appliances can be categorized as low-power or high-power (see Table 

2)8. The more high-load appliances a household owns, the higher is its demand for grid 

electricity for a given level of income. In addition, wealthier households tend to have more 

high-load appliances because of their higher incomes. As a result, the distribution of the total 

number of high-load appliance ownership represents skewness in consumption, with a mean 

and median of 1.46 and 1, respectively.  

Table 2: Appliances owned by households in the sample 
Appliance type by the power load 

Low-load High-load 

Incandescent Light Bulb Refrigerator 

Fluorescent Tube Hairdryer 

Compact Fluorescent Light (CFL) Bulb Electric food processor/blende 

LED Light Bulb Electric rice cooker 

Radio/CD Players/sound system Microwave oven 

VCD/DVD Electric Iron 

Fan Washing machine 

Computer/ Laptop Electric sewing machine 

Smartphone (internet phone) charger Air cooler 

Regular mobile phone charger Air conditioner 

Black & White TV Space Heater 

Regular Color TV Electric water heater 

Flat color TV Electric hot water pot/kettle 

 Electric Water Pump 

Source: Nepal’s Multi-Tier Framework Survey (World Bank, 2019) 

 

In electricity markets with frequent power outages, household coping behavior is a 

strong predictor of current and future electricity demand (Hashemi, 2021)9. The households in 

 
8 According to the World Bank’s MTF framework, appliances with load levels less than 200 watts are low-power 
appliances, and those with load levels greater than 200 watts are high-power appliances. 
 
9 Coping behavior refers to decisions made by electricity consumers about how to deal with power outages. During 
blackouts, consumers may use their off-grid coping equipment (such as rechargeable batteries and generators) or 
delay all electricity-intensive activities until power returns. 
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the sample reported ownership of a wide range of coping equipment for lighting purposes 

during blackouts, including disposable batteries (used with flashlights), kerosene lamps, solar 

lanterns, and solar lighting. Some households also use high-quality coping equipment such as 

rechargeable batteries, voltage stabilizers, and generators to power their appliances during 

service outages. The survey asked two questions about each household’s coping behavior: 

whether it uses any backups for (1) lighting only and (2) lighting plus appliances. Based on the 

responses to these two questions, I define three binary variables for a household’s backup 

status: no backup, backup for lighting only, and backup for both lighting and appliances. While 

9 percent of households do not engage in any coping behavior, 60 percent of them back up for 

lighting only and 31 percent back up for both lighting and appliances.  

The survey also collected information about households’ characteristics. I use those 

characteristics documented in the literature as predictors of electricity demand (Lee et al., 2016; 

Blimpo & Cosgrove-Davies, 2019; Tesfamichael et al., 2020): income, time spent at home, 

educational attainment, and urban/rural locality. I use the recurring combined monthly 

expenses reported by households on food, rent, and other services as a proxy for income10. I 

divide households into quintiles of total monthly expenditures. Thirty-three percent of the 

households in the sample live in rural areas, with the other 67 percent spread across urban areas. 

Thirteen percent of household heads in the sample report as retired, and 12 percent report as 

housewives/househusbands. This is relevant because if the household head is a 

housewife/husband or retiree, electricity demand is likely to be affected because that person 

spends more time at home. 

 

 
10 Other goods and services include medical and pharmacy expenses; cleaning supplies, cosmetics, toiletries, water 
expenses; mobile phone top-up; internet, land phone, cable, and other household communication; and 
transportation costs. 
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4. Results 

I use the elbow method developed by Makles (2012) to find the optimal number of 

clusters. Figure 2 illustrates the within-cluster variance plotted against the number of clusters. 

The criterion for choosing the optimal number of clusters is to find a point where the marginal 

decline in within-cluster variance falls to the “elbow” point. For these data, the number of 

clusters beyond which marginal reductions in within-cluster variance are not significant is five. 

 

Figure 2: Elbow method outcome - the optimal number of clusters 

 

Table 3 lists the unscaled mean and standard deviation of segmentation variables across 

the five clusters and the number of observations in each cluster. Cluster 5 is the largest group 

comprising 55% of the sample. The rest of the sample households are distributed across clusters 

1 to 4, representing 5%, 11%, 10%, and 19% of the sample. As shown in Figure 3, overall and 

peak-time availability hours are significantly less than the sample average for the first group 

(clusters 1 and 2). While the frequency of outages is above the sample average for the second 

group (clusters 3 and 4), grid electricity is available for longer hours for the households in this 

group. Cluster 5 exhibits the lowest variability in the duration of grid-electricity availability 

(standard deviation of 0.77 hours). Households in this cluster also report an uninterrupted 

service during the evening peak hours. Based on the segmentation variables, the clusters reveal 
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three distinct system reliability levels: (1) low availability with frequent outages (clusters 1 and 

2); (2) high availability with frequent outages (clusters 3 and 4); and (3) high availability 

without frequent outages (cluster 5). 

Table 3: Variation in segmentation variables across clusters 

Segmentation variable 
Cluster 

1 2 3 4 5 

Daily availability hours 
(max. of 24 hours) 

13.70 18.48 21.40 21.63 23.55 

 (3.26) (2.36) (1.98) (1.25) (0.77) 

      

Frequency of outages 37.09 9.73 12.81 8.44 2.14 

 (10.83) (6.11) (7.49) (5.90) (2.20) 

      

Availability during the 
peak time (max. of 4 
hours) 

2.86 2.26 3.99 2.99 4.00 

 (0.81) (0.57) (0.05) (0.09) (0.00) 

      

Number of observations 193 417 392 716 2,129 

Percentage of the sample 5% 11% 10% 19% 55% 

Figures in parentheses are standard deviations. 

 

 

Figure 3: Standardized mean values of segmentation variables by cluster 

Note: Variables are standardized to have a mean of 0 and a standard deviation of 1.  
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Table 4 reports the estimated coefficients for a linear probability model with an 

indicator for high-load appliance ownership as the dependent variable without applying the K-

means clustering method. These estimates imply, counterintuitively, a negative relation 

between peak-time availability and appliance ownership. Additionally, the frequency of 

outages is estimated to have only a minimal effect on the likelihood of high-load appliance 

ownership. Thus, it seems likely that the K-means clustering method offers a better way to 

characterize grid reliability, essentially because of the way it deals with multicollinearity 

among system reliability measures. The K-means clustering method achieves that by grouping 

households into unique clusters of supply constraints instead of using each measure of supply 

constraint as a separate regressor. 

Table 4: Estimates of system reliability impacts without K-means clustering 

Variable 

OLS 

Dep. var.: high-load electric 
appliance ownership 

  
Grid-electricity supply constraints  
  

Daily availability hours 0.0264*** 
 (0.0035) 

  
Frequency of outages - 0.0034*** 

 (0.0010) 
  

Availability during the peak time - 0.0419*** 
 (0.0127) 
  
Controls YES 
  
Number of observations 3,847 

Notes: * p < 0.1 , ** p < 0.05 , *** p < 0.01.  Figures in parentheses are robust standard errors. Controls include 
indicators household’s income, housewife/husband, too old to work or retired, female, educational attainment, 
and rural-urban status. 

Table 5 shows the results of a linear piecewise regression model with indicators for 

reliability clusters and defined breakpoints at income quintiles to allow the marginal effect of 

income to vary by quintile. I find that extended hours of availability matter equally for all 

income levels, whereas the frequency of unplanned service interruptions does not matter at any 

income level. As shown in column 1, although improvements in each supply constraint are 
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associated with a higher probability of high-load electric appliance ownership, the magnitude 

of these impacts is the same in all income quintiles. In particular, when availability hours are 

extended, those with and without frequent outages are equally more likely (17 percent) to own 

high-load appliances. Thus, it appears that once availability is increased, the frequency of 

unplanned outages does not affect households’ appliance ownership decisions. This finding 

aligns with previous studies which also found supply reliability is poorly associated with 

household electricity utilization relative to supply availability (Pelz & Urpelainen, 2020). 

Moreover, there are no differences in the marginal effects of income across clusters 

when they are interacted with cluster indicators (column 2). With the most severe constraints 

as the reference group (low availability with frequent outages), the results indicate that none of 

the income groups is more constrained than others by service availability. I also estimate 

separately the impact of each availability measure (daily and peak-time) on appliance 

ownership. As shown in Tables 6 and 7, I find no statistically significant difference in the 

impact of reliability on appliance ownership across income levels.  
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Table 5: System reliability and appliance ownership 

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.  Figures in parentheses are robust standard errors. Controls include indicators for 

housewife/husband, too old to work or retired, female, educational attainment, and rural-urban status. 

 

Variables 

Dep. Var.: High-load electric 
appliance ownership 

(1) (2) 

Clusters of grid-electricity supply constraint   
High availability with frequent outages 0.1678*** 0.1963 
 (0.0222) (0.1447) 

   
High availability without frequent outages 0.1728*** 0.1936 

 (0.0205) (0.1682) 
Total monthly expenditures (USD)   

Quintile 1 expenditures 0.0031*** 0.0040*** 
 (0.0006) (0.001) 
   
Quintile 2 expenditures - 0.0010 - 0.0025 

 (0.0012) (0.003) 
   

Quintile 3 expenditures 0.0003 0.0018 
 (0.0013) (0.003) 

   
Quintile 4 expenditures - 0.0013 - 0.0047** 

 (0.0009) (0.0023) 
   

Quintile 5 expenditures - 0.0001*** 0.0013 
 (0.0003) (0.0009) 

Interaction between high availability with frequent outages and expenditures   
   
Quintile 1 expenditures × High availability with frequent outages  - 0.0004 
  (0.0018) 
   
Quintile 2 expenditures × High availability with frequent outages  0.0004 
  (0.0038) 

   
Quintile 3 expenditures × High availability with frequent outages  - 0.0027 
  (0.0041) 
   
Quintile 4 expenditures × High availability with frequent outages  0.0056* 
  (0.0029) 
   
Quintile 5 expenditures × High availability with frequent outages  - 0.0030** 

  (0.0012) 
Interaction between high availability without frequent outages and expenditures   

   
Quintile 1 expenditures × High availability without frequent outages  - 0.0011 
  (0.0016) 
   
Quintile 2 expenditures × High availability without frequent outages  0.0020 
  (0.0035) 

   
Quintile 3 expenditures × High availability without frequent outages  - 0.0071 
  (0.0037) 
   
Quintile 4 expenditures × High availability without frequent outages  0.0028 
  (0.0026) 
   
Quintile 5 expenditures × High availability without frequent outages  - 0.0030*** 

  (0.0010) 
Controls YES YES 
Observations 3,847 3,847 
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Table 6: Daily availability and appliance ownership 

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.  Figures in parentheses are robust standard errors. Controls include indicators for 

housewife/husband, too old to work or retired, female, educational attainment, and rural-urban status. 

 

Variables 

Dep. Var.: High-load electric appliance 
ownership 

(1) (2) 

Grid-electricity supply constraint (ref. group: < 24-hour 
availability) 

  

24-hour availability  0.0594*** - 0.0157 

 (0.0148) (0.1143) 

Total monthly expenditures (USD)   

Quintile 1 expenditures 0.0032*** 0.0029*** 

 (0.0006) (0.0008) 

   

Quintile 2 expenditures - 0.0013 - 0.0006 

 0.0012 (0.0015) 

   

Quintile 3 expenditures 0.0006 - 0.0001 

 (0.0013) (0.0017) 

   

Quintile 4 expenditures - 0.0012 - 0.0016 

 (0.0009) (0.0012) 

   

Quintile 5 expenditures - 0.0012*** - 0.0006 

 (0.0003) (0.0004) 

Interaction between availability and expenditures   

Quintile 1 expenditures × 24-hour availability  0.0006 

  (0.00127) 

   

Quintile 2 expenditures × 24-hour availability  - 0.0018 

  (0.0025) 

   

Quintile 3 expenditures × 24-hour availability   0.0020 

  (0.0027) 

   

Quintile 4 expenditures × 24-hour availability  0.0005 

  (0.0018) 

   

Quintile 5 expenditures × 24-hour availability  - 0.0015** 

  (0.0007) 

   

Controls YES YES 

Observations 3,847 3,847 



20 

 

Table 7: Peak-time availability and appliance ownership 

Variables 

Dep. Var.: High-load electric 
appliance ownership 

(1) (2) 

Grid-electricity supply constraint (ref. group: < 4 hours of availability 
between 6-10 PM) 

  

Peak-time availability (4 hours of availability between 6-10 
PM) 

0.0309** 0.0220 

 (0.016) (0.1041) 
Total monthly expenditures (USD)   

Quintile 1 expenditures 0.0031*** 0.0033 
 (0.0006) (0.0010) 
   
Quintile 2 expenditures - 0.0013 - 0.0012 

 (0.0012) (0.0021) 
   

Quintile 3 expenditures 0.0005 - 0.0013 
 (0.0013) (0.0022) 

   
Quintile 4 expenditures - 0.0013 0.0005 

 (0.0009) (0.0016) 
   

Quintile 5 expenditures - 0.0012*** - 0.0014 
 (0.0003) (0.0006) 

Interaction between availability and expenditures   
   
Quintile 1 expenditures × Peak-time availability  - 0.0002 
  (0.0013) 
   
Quintile 2 expenditures × Peak-time availability  - 0.0003 
  (0.0026) 
   
Quintile 3 expenditures × Peak-time availability  0.0034 
  (0.0027) 
   
Quintile 4 expenditures × Peak-time availability  - 0.0031 
  (0.0020) 
   
Quintile 5 expenditures × Peak-time availability  0.0003 
  (0.0008) 

Controls YES YES 
Observations 3,847 3,847 

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.  Figures in parentheses are robust standard errors. Controls include indicators for 

housewife/husband, too old to work or retired, female, educational attainment, and rural-urban status 

 

In all specifications, the marginal effect of income on appliance ownership is 

statistically significant at the first income quintile, holding constant reliability. The importance 

of this finding is highlighted more when I investigate how a household’s coping behavior 

changes with access improvements. The estimates for an ordered probit model with the three 

alternative backup decisions as the ranked categories (Table 8) suggest that when the 
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availability and reliability of service are relatively improved, consumers change their coping 

behavior. In particular, with a reasonably reliable service, when power outages occur, 

households reschedule their use of electric appliances and use backup for lighting only. This 

finding is consistent with the findings by Hashemi (2021) that a fully reliable grid provides a 

reliability level above and beyond any backup equipment that even households with high-

quality backup equipment are willing to pay a significant premium on top of their current 

electricity bills. 

Table 8: Supply constraints and coping behavior 

Variables 

Backup status 

No backup Lighting only 
Lighting and 
appliances 

    
Clusters of grid-electricity supply constraint    

High availability with frequent outages - 0.0156* - 0.0184* 0.0341* 
 (0.0081) (0.0096) (0.0176) 
    

High availability without frequent outages 0.0332*** 0.0393*** - 0.0726*** 
 (0.0081) (0.0091) (0.0170) 

    
Total monthly expenditures (USD)    

Quintile 1 expenditures - 0.0002 - 0.0003 0.0005 
 (0.0002) (0.0002) (0.0005) 
    
Quintile 2 expenditures - 0.0007 - 0.0009 0.0016 

 (0.0004) (0.0005) (0.0010) 
    

Quintile 3 expenditures 0.0013** 0.0016** - 0.0029** 
 (0.0005) (0.0006) (0.0011) 

    
Quintile 4 expenditures - 0.0008* - 0.0009** 0.0017** 

 (0.0004) (0.0004) (0.0008) 
    

Quintile 5 expenditures 0.0004*** 0.0005*** - 0.0009*** 
 (0.0001) (0.0001) (0.0003) 
    

Controls YES YES YES 
Observations 3,847 3,847 3,847 
    

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.  Figures in parentheses are robust standard errors. Controls include indicators for 

housewife/husband, too old to work or retired, female, educational attainment, and rural-urban status. 
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However, for poorer households, the marginal effect of income is not significant in 

backup decisions but is significant in appliance ownership decisions. It can be inferred from 

these two findings that income constraints limit both appliance ownership and coping 

decisions. Consistent with Hashemi (2021), although low-income households are willing to 

pay a relatively significant proportion of their current electricity bills for improved reliability, 

the absolute value of their WTP is so low that it only justifies adopting low-quality backup 

services or, in some cases, no backup when the grid is down. In other words, as discussed by 

Aidoo and Briggs (2018), the marginalized position of the poorer households leads them to 

bear a disproportionate share of electricity supply unreliability. Thus, it is expected that the 

impact of increased availability of supply hours from the grid may be more substantial for 

poorer households. 

In summary, the findings presented in this section suggest that household utilization of 

electrical energy services is strongly associated with improvements in electricity supply 

availability. The consumption pattern after improvements, however, may vary across income 

strata. Pelz and Urpelainen (2020) find that improvements in the availability of electricity 

service for Indian households were associated with a higher likelihood of space cooling and 

entertainment utilization. However, mechanical loads, thermal loads, refrigeration, and electric 

cooking remain constrained by low income in rural areas. Hence, residential electricity demand 

grows with reliability improvements, but differently across income strata. 

5. Conclusion and Policy Implications 

This paper estimates the extent to which electricity consumers of different income 

levels would increase their use of high-load appliances and change their coping behavior in 

response to improvements in grid reliability. The findings highlight that a multi-dimensional 

measure framework is essential in studying the impact of enhancements in grid-electricity 

constraints on electricity demand. More specifically, it was observed that although grid-
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connected households are counted in the electrification statistics, unreliable electricity service 

significantly constrains their electric appliance ownership and, consequently, electricity 

consumption. Putting this paper’s findings into SDG 7’s perspective, a connection to the grid 

by itself does not necessarily translate to realized benefits from electricity consumption. The 

availability and reliability of the service play a critical role for households at all income levels. 

Moreover, the estimates for an ordered probit model with the three alternative backup 

decisions suggest that when the availability and reliability of service are relatively improved, 

consumers change their coping behavior across all income levels. In particular, with a 

reasonably reliable service, when power outages occur, households reschedule their use of 

electric appliances and use backup for lighting only. Therefore, the economic benefits from a 

fully reliable grid extend beyond direct benefits from electricity consumption once consumers 

decide to remove their coping equipment. For instance, kerosene is a typical coping technology 

that is associated with the possibility of burn injuries. A reliable supply can minimize or 

eliminate such incidences.  

For policy-making purposes, the findings highlight the importance of tracking the 

reliability of the new infrastructure during the early stages of grid expansion project evaluation. 

Otherwise, sector planners will overestimate the benefits of grid expansion projects. For an 

optimal allocation of available funds in the electricity sector, the efforts by governments and 

international development organizations should not be focused only on grid expansion but also 

on allocating some funds to sustain a reliable supply. More accurate electricity demand 

forecasts and timely investments in expanding distribution substation capacities are examples 

of such policy.  

Finally, this study’s findings leave open some other questions for future research. For 

instance, the impact of reliability improvements on electricity consumption was evaluated right 
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after eliminating power capacity deficits. However, Pelz and Urpelainen (2020) find that each 

additional year of electricity access leads to incrementally higher ownership rates of electric 

appliances and an increased likelihood of a higher total stock of appliances. A similar pattern 

may exist when evaluating the impact of reliability improvements over a more extended period. 

Therefore, future studies can extend the current analysis by investigating the effect of reliable 

electricity on changes in appliance ownership patterns over a longer time horizon. 
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