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Abstract
We introduce a new Stata package called summclust that summarizes the cluster

structure of the dataset for linear regression models with clustered disturbances. The
key unit of observation for such a model is the cluster. We therefore propose cluster-
level measures of leverage, partial leverage, and influence and show how to compute
them quickly in most cases. The measures of leverage and partial leverage can be used
as diagnostic tools to identify datasets and regression designs in which cluster-robust
inference is likely to be challenging. The measures of influence can provide valuable
information about how the results depend on the data in the various clusters. We
also show how to calculate two jackknife variance matrix estimators efficiently as a
byproduct of our other computations. These estimators, which are already available in
Stata, are generally more conservative than conventional variance matrix estimators.
The summclust package computes all the quantities that we discuss.
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1 Introduction

It is now standard in many fields of economics and other disciplines to employ cluster-robust
inference for the parameters of linear regression models. In the most common case, each
of the N observations is assigned to one of G disjoint clusters, which might correspond to,
for example, families, schools, villages, hospitals, firms, industries, years, cities, counties, or
states. The assignment of observations to clusters is assumed to be known, and observations
in different clusters are assumed to be independent, but any pattern of heteroskedasticity
and/or dependence is allowed within each cluster. Under these assumptions, a cluster-robust
variance matrix, or CRVE, yields asymptotically valid t-tests, Wald tests, and confidence
intervals. However, even when N is very large, the resulting inferences may be unreliable
when G is not large or the clusters are not sufficiently homogeneous.

The literature on cluster-robust inference has grown rapidly in recent years. Cameron
and Miller (2015) is a classic survey article. Conley, Gonçalves, and Hansen (2018) surveys
a broader class of methods for dependent data. MacKinnon, Nielsen, and Webb (2023a)
is a comprehensive guide to empirical practice. As it discusses, there are two situations in
which cluster-robust t-tests and Wald tests are at risk of over-rejecting to an extreme extent,
even when G is not small. The first is when one or a few clusters are much larger than the
rest, and the second is when the only “treated” observations belong to just a few clusters;
Djogbenou, MacKinnon, and Nielsen (2019) discusses the first case, and MacKinnon and
Webb (2017a, b, 2018) discuss the second. In both of these cases, one cluster (or a few of
them) has high leverage, in the sense that omitting this cluster has the potential to change the
OLS estimates substantially. When that actually happens, a cluster is said to be influential.

The concepts of leverage and influence are normally applied at the observation level
(Belsley, Kuh, and Welsch 1980), but they are equally applicable at the cluster level. Just as
high-leverage observations can make heteroskedasticity-robust inference unreliable (Chesher
1989), so too can high-leverage clusters make cluster-robust inference unreliable. Just as
highly influential observations may lead us to suspect that there is something wrong with
the model or the data, so too may highly influential clusters. Any situation in which a few
clusters have high leverage or high influence should be worrying.

There are at least two different concepts of leverage. The usual one focuses on fitted
values or, equivalently, residuals. A cluster is said to have high leverage if removing it has
the potential to change the fitted values for that cluster by a lot. The second concept is
partial leverage (Cook and Weisberg 1980). A cluster is said to have high partial leverage
for the j th coefficient if removing that cluster has the potential to change the estimate of the
j th coefficient by a lot. We discuss both concepts in Section 2.1.
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Whether a cluster has high leverage, high partial leverage, or is influential can depend on
the sample in rather complicated ways. We provide a new Stata package called summclust
that implements computationally-efficient ways to identify high-leverage and influential clus-
ters and provides a number of statistics that collectively summarize the cluster structure of
the dataset. These can be useful for detecting cases in which cluster-robust inference may
not be reliable. Our leverage and influence calculations also allow us to compute two cluster
jackknife variance matrix estimators, which we refer to as CV3 and CV3J, at little additional
cost. These estimators are already available in Stata by using either the vce(jackknife)
option or the jackknife prefix. Recent work (Hansen 2022; MacKinnon, Nielsen, and Webb
2023b) suggests that CV3 and CV3J generally perform better in finite samples than more
widely-used CRVEs; see also Section 7.

The remainder of the paper is organized as follows. The next section begins with a brief
review of cluster-robust inference for linear regression models. Then Section 2.1 introduces
our new measures of leverage, partial leverage, and influence at the cluster level. Section 2.2
shows how our results can be used to compute the CV3 and CV3J jackknife variance matrix
estimators. Section 2.3 discusses what quantities are reported by summclust and should, at
least in some cases, be reported by the investigator.

Section 3 provides a detailed description of the summclust package which computes these
variance estimators and diagnostic measures. The command uses the syntax:

summclust varlist, cluster(varname) [options]

The package has quite a few options and can even be used by itself to estimate a linear
regression model with clustered disturbances. The last few sections of the paper illustrate
the use of summclust and provide evidence on the value of the measures that it calculates.
Section 4 presents an empirical illustration in which measures of leverage, partial leverage,
and influence are highly informative. Section 5 discusses several special cases in which some
or all of these measures can be determined analytically. Section 6 briefly discusses two-
way clustering, where summclust can be valuable even though it is not explicitly designed
to handle this case. Section 7 describes some simulation experiments which suggest that it
may be desirable to report many of the quantities calculated by summclust, and Section 8
concludes.

2 Clustering, Leverage, Influence, and the Jackknife

We focus on the linear regression model

yg = Xgβ + ug, g = 1, . . . , G, (1)
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where the data have been divided into G disjoint clusters. The g th cluster has Ng observa-
tions, so that the sample size is N = ∑G

g=1 Ng. In (1), Xg is an Ng × k matrix of regressors,
β is a k-vector of coefficients, yg is an Ng-vector of observations on the regressand, and ug

is an Ng-vector of disturbances (or error terms). The Xg may of course be stacked into an
N ×k matrix X, and likewise the yg and ug may be stacked into N -vectors y and u, so that
(1) can be rewritten as y = Xβ + u.

Dividing the sample into clusters only becomes meaningful if we make assumptions about
the disturbance vectors ug and, consequently, the score vectors sg = X⊤

g ug. For a correctly
specified model, E(sg) = 0 for all g. We further assume that

E(sgs⊤
g ) = Σg and E(sgs⊤

g′) = 0, g, g′ = 1, . . . , G, g′ ̸= g, (2)

where Σg is the symmetric, positive semidefinite variance matrix of the scores for the g th

cluster. The second assumption in (2) is crucial. It says that the scores for every cluster are
uncorrelated with the scores for every other cluster. We take the number of clusters G and
the allocation of observations to clusters as given. The important issue of how to choose
the clustering structure, perhaps by testing for the correct level of clustering, is discussed in
detail in MacKinnon, Nielsen, and Webb (2023c).

The OLS estimator of β is

β̂ = (X⊤X)−1X⊤y = β0 + (X⊤X)−1X⊤u,

where the second equality depends on the assumption that the data are actually generated
by (1) with true value β0. It follows that

β̂ − β0 = (X⊤X)−1
G∑

g=1
X⊤

g ug =
( G∑

g=1
X⊤

g Xg

)−1 G∑
g=1

sg. (3)

From the rightmost expression in (3), we see that the distribution of β̂ depends on the
disturbance subvectors ug only through the distribution of the score vectors sg. Asymptotic
inference commonly uses the empirical score vectors ŝg = X⊤

g ûg, in which the ug are replaced
by the residual subvectors ûg, to estimate the variance matrix of the sg. This should work
well if the sum of the sg, suitably normalized, is well approximated by a multivariate normal
distribution with mean zero, and if the sg are well approximated by the ŝg. However,
asymptotic inference can be misleading when either of these approximations is poor.

It follows immediately from (3) that an estimator of the variance of β̂ may be based on
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the usual sandwich formula,

(X⊤X)−1
( G∑

g=1
Σg

)
(X⊤X)−1. (4)

The natural way to estimate (4) is to replace the Σg matrices by their empirical counterparts,
that is, the ŝgŝ⊤

g . If, in addition, we multiply by a correction for degrees of freedom, we
obtain the cluster-robust variance estimator, or CRVE,

CV1:
G(N − 1)

(G − 1)(N − k)(X⊤X)−1
( G∑

g=1
ŝgŝ⊤

g

)
(X⊤X)−1. (5)

This is by far the most widely used CRVE in practice, and it is the default one implemented
in Stata; alternatives to this estimator will be discussed in Section 2.2. When G = N, the
CV1 estimator reduces to the familiar HC1 estimator (MacKinnon and White 1985) that is
robust only to heteroskedasticity of unknown form.

The fundamental unit of inference for clustered observations is not the observation but
the cluster; this is evident from (3), (4), and (5). The asymptotic theory for cluster-robust
inference has been analyzed by Djogbenou, MacKinnon, and Nielsen (2019) and Hansen and
Lee (2019) under the assumption that G → ∞. The quality of the asymptotic approximation
depends on the number of clusters G and the heterogeneity of the score vectors (MacKinnon,
Nielsen, and Webb 2023a). The more the distributions of the scores vary across clusters, the
worse the asymptotic approximation will likely be. Heterogeneity can arise from variation
in cluster sizes and/or from variation in the distributions of the disturbances, the regressors,
or both. As we discuss in Sections 2.1, 2.3 and 7, leverage, partial leverage, and summary
statistics based on them provide useful measures of heterogeneity across clusters.

Inference about β is typically based on cluster-robust t-statistics and Wald statistics.
If βj denotes the j th element of β and β0j is its value under the null hypothesis, then the
appropriate t-statistic is

tj = β̂j − β0j

s.e.(β̂j)
,

where β̂j is the OLS estimate, and s.e.(β̂j) is the square root of the j th diagonal element
of (5). Under extremely strong assumptions (Bester, Conley, and Hansen 2011), it can be
shown that tj asymptotically follows the t(G − 1) distribution. Conventional inference in
Stata and other programs is based on this distribution.

As the articles cited in the second paragraph of Section 1 discuss, inference based on
tj and the t(G − 1) distribution can be unreliable when G is small and/or the clusters are
severely heterogeneous. This is true to an even greater extent for Wald tests of two or more
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restrictions (Pustejovsky and Tipton 2018). The measures of leverage and partial leverage
at the cluster level that we introduce in the next section may help to identify the sort of
heterogeneity that is likely to make inference unreliable.

Instead of using the t(G − 1) distribution, we can obtain both P values for tj and confi-
dence intervals for βj by employing the wild cluster restricted (or WCR) bootstrap (Cameron,
Gelbach, and Miller 2008). It can sometimes provide much more reliable inferences than
the conventional approach; see Section 7. Roodman, MacKinnon, Nielsen, and Webb (2019)
describes a computationally efficient implementation of this method in the Stata package
boottest. MacKinnon, Nielsen, and Webb (2023b) proposes new versions of the wild cluster
bootstrap that involve transforming the empirical scores. When G is reasonably large and the
clusters are not very heterogeneous, inferences based on the WCR bootstrap and inferences
based on CV1 t-statistics combined with the t(G − 1) distribution will often be very similar.
When they differ noticeably, neither should be relied upon without further investigation.

Section 2.2 discusses two CRVEs, which we refer to as CV3 and CV3J, that are both
based on the cluster jackknife. In practice, these estimators are often extremely similar. CV3

and CV3J tend to yield more reliable inferences in finite samples than does CV1, especially
when the clusters are quite heterogeneous; see Section 7 and MacKinnon, Nielsen, and Webb
(2023b). Based on this simulation evidence, we recommend computing either CV3 or CV3J

essentially all the time. This is easy to do using summclust.

2.1 Identifying High-Leverage and Influential Clusters

At the observation level, there are three classic measures of heterogeneity, namely, leverage,
partial leverage, and influence (Belsley, Kuh, and Welsch 1980; Chatterjee and Hadi 1986).
In this section, we propose analogous measures at the cluster level.

Measures of leverage at the observation level are based on how much the residual for
observation i changes when that observation is omitted from the regression. If hi denotes the
ith diagonal element of the “hat matrix” H = PX = X(X⊤X)−1X⊤, then omitting the ith

observation changes the ith residual from ûi to ûi/(1 − hi). Because 0 < hi < 1, this delete-
one residual is always larger in absolute value than ûi. The factor by which the delete-one
residual exceeds ûi increases with hi. Since the average of the hi is k/N, observations with
values of hi substantially larger than k/N may reasonably be said to have high leverage.

Dropping the g th cluster when we estimate β yields the delete-one-cluster estimate β̂(g).
Using β̂(g) in place of β̂ changes the residual vector for the g th cluster from ûg to û(g)

g . These
delete-one-cluster residual vectors can be written in two ways:

û(g)
g = yg − Xgβ̂(g) = (I − Hg)−1ûg.
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In the rightmost expression above,

Hg = Xg(X⊤X)−1X⊤
g

is the Ng × Ng diagonal block of H that corresponds to cluster g. The matrix Hg is the
cluster analog of the scalar hi. Of course, it is not feasible to report the Hg. In fact, when
any of the clusters is sufficiently large, even computing and storing these matrices may be
challenging. As a measure of leverage, we therefore suggest using a matrix norm of the Hg.
Specifically, we suggest the scalar

Lg = Tr(Hg) = Tr
(
X⊤

g Xg(X⊤X)−1
)
. (6)

When the g th cluster contains just one observation, say the ith, then Lg = hi. Thus, in this
special case, the leverage measure that we are proposing reduces to the usual measure of
leverage at the observation level.

The trace in (6) is the nuclear norm of the matrix Hg. In general, the nuclear norm
of a matrix A is the sum of the singular values of A. When A is symmetric and positive
semidefinite, the singular values are equal to the eigenvalues, which are non-negative. Since
the trace of any square matrix is equal to the sum of the eigenvalues, the trace of a symmetric
and positive semidefinite matrix is also its nuclear norm. In principle, we could report any
norm of the Hg matrices, but the nuclear norm is particularly easy to compute. Also,
because it is linear, we can sum over g and take the sum inside the norm just as if the Hg

were scalars. Since ∑G
g=1 X⊤

g Xg = X⊤X, this result means that G−1 ∑G
g=1 Tr(Hg) = k/G,

which is analogous to the result that the average of the hi over all observations is k/N.
High-leverage clusters can be identified by comparing the Lg to k/G, their average. If,

for some cluster h, Lh is substantially larger than k/G, then cluster h may be said to have
high leverage. Just how much larger Lh has to be is a matter of judgement. A cluster with
Lh = 2k/G probably does not qualify, but a cluster with Lh = 5k/G probably does. Cluster h

can have high leverage either because Nh is considerably larger than G/N or because the
matrix Xh is somehow extreme relative to the other Xg matrices, or both. We can compare
the leverage of any two clusters by forming ratios. For example, if L1 = 3 and L2 = 1, then
we can say that the first cluster has three times the leverage of the second cluster.

The leverage measure we suggest in (6) shows the potential impact of a specified cluster
on residuals and fitted values, but not on any particular regression coefficient. When interest
focuses on just one such coefficient, say the j th, it may be more interesting to calculate the
partial leverage of each cluster. The concept of partial leverage was introduced, for individual
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observations, in Cook and Weisberg (1980). Let

x́j =
(
I − X[j]

(
X⊤

[j]X[j]
)−1

X⊤
[j]

)
xj,

where xj is the vector of observations on the j th regressor, and X[j] is the matrix of obser-
vations on all the other regressors. Thus x́j denotes xj after all the other regressors have
been partialed out. The partial leverage of observation i is simply the ith diagonal element
of the matrix x́j(x́⊤

j x́j)−1x́⊤
j , which is just x́2

ji/(x́⊤
j x́j), where x́2

ji is the ith element of x́j.
The analogous measure of partial leverage for cluster g is

Lgj =
x́⊤

gjx́gj

x́⊤
j x́j

, (7)

where x́gj is the subvector of x́j corresponding to the g th cluster. This is what (6) reduces
to if we replace X and Xg by x́j and x́gj, respectively. It is easy to calculate the partial
leverage for every cluster for any coefficient of interest. The average of the Lgj is evidently
1/G, so that if cluster h has Lhj >> 1/G, it has high partial leverage for the j th coefficient.
Moreover, as we will see in Section 7, the empirical distribution of the Lgj across clusters
seems to provide useful diagnostic information.

Young (2022) derives a measure of cluster-level leverage for the first-stage regression used
to obtain a linear instrumental variables estimator. The paper calls Lgj the group g “share
of coefficient leverage” for instrument j and then uses the maximum of the Lgj over all the
instruments excluded from the structural equation as a measure of the leverage of cluster g.
Using simulations based on 1309 IV regressions from 30 published papers, the paper finds
that inference is much less reliable for models where one or two clusters have high leverage
in the first-stage regression than for models where no clusters do so.

One possible consequence of heterogeneity is that the estimates may change a lot when
certain clusters are deleted. It can therefore be illuminating to delete one cluster at a time,
so as to see how influential each cluster is. To do this in a computationally efficient manner,
summclust first computes the cluster-level matrices and vectors

X⊤
g Xg and X⊤

g yg, g = 1, . . . , G. (8)

These are then used to construct X⊤X and X⊤y, and the vector of least squares estimates
when cluster g is deleted is computed as

β̂(g) = (X⊤X − X⊤
g Xg)−1(X⊤y − X⊤

g yg). (9)

Unless k is extremely large, it should generally not be expensive to compute β̂(g) for every
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cluster using (9). summclust simply has to invert G matrices, each of them k × k, and then
multiply each of those matrices by a k-vector.

Especially when they vary a lot, the β̂(g) can reveal a great deal about the sample. In
addition, as we shall see in Section 2.2, they may be used to calculate jackknife variance
matrices. When there is a parameter of particular interest, say βj, it may be a good idea
to report the β̂

(g)
j for g = 1, . . . , G in either a histogram or a table. By default, summclust

creates several figures with these and other cluster-level statistics. If β̂
(h)
j differs greatly from

β̂j for some cluster h, then cluster h is evidently influential.
In a few extreme cases, there may be a cluster h for which it is impossible to compute β̂

(h)
j .

This will happen, for example, when the regressor corresponding to βj is a treatment dummy
and cluster h is the only treated one. This is an extreme example of the problem of few treated
clusters, and inferences based on either the t(G − 1) distribution or the WCR bootstrap are
likely to be completely unreliable in this case (MacKinnon and Webb 2017b, 2018, 2020).

Identifying influential clusters by comparing the β̂(g) with β̂ is very similar to identify-
ing influential observations using the classic methods discussed in Belsley, Kuh, and Welsch
(1980) and Chatterjee and Hadi (1986); for an interesting recent extension, see Broderick,
Giordano, and Meager (2021). Unlike the leverage measures, the β̂

(g)
j may be either positive

or negative, must depend on the yg, and necessarily vary across clusters. They may some-
times reveal features of the model or dataset that require further investigation. Perhaps the
model does not seem to apply to some clusters, or perhaps there are measurement errors or
observations that have been miscoded.

Regression models often include cluster fixed effects. When one of the regressors is a
fixed-effect dummy for cluster g, the matrices X⊤

g Xg and X⊤X − X⊤
g Xg are singular. This

will cause the calculation in (9) to fail unless a generalized inverse routine, such as the invsym
routine in Mata, is used. Although summclust uses this routine, it also provides options to
avoid the problem, and save some computer time, by partialing out the fixed-effect dummies
prior to computing the cluster-level matrices and vectors in (8); see Section 3.

Partialing out cluster fixed effects means replacing X and y by X̃ and ỹ, the deviations
from their cluster means. For example, the element of ỹ corresponding to the j th observation
in the g th cluster is yg,j − N−1

g

∑Ng

i=1 yg,i. The g th subvector of ỹ is ỹg, and the g th submatrix
of X̃ is X̃g. Since there is just one fixed effect per cluster, ỹg depends solely on yg, and
X̃g depends solely on Xg. The calculations in (6) and (9) are now based on X̃⊤X̃, X̃⊤ỹ,
the X̃⊤

g X̃g, and the X̃⊤
g ỹg. Importantly, the sum of the Lg is now equal to the number of

columns in X̃ instead of the number of columns in X.
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2.2 Two Jackknife Variance Matrix Estimators

Although the CV1 variance estimator defined in (5) is very widely used, it often does not
have good finite-sample properties. Two alternative CRVEs, which are usually known as CV2

and CV3, were proposed in Bell and McCaffrey (2002). They are the cluster analogs of the
heteroskedasticity-consistent estimators HC2 and HC3, which are appropriate when the ui

are independent. These names were coined in MacKinnon and White (1985), which proposed
HC3 as a jackknife variance estimator. In the remainder of this section, we focus on CV3,
because CV2 is not a jackknife estimator and is not amenable to the computational methods
that we propose; for more on it, see Imbens and Kolesár (2016), Pustejovsky and Tipton
(2018), and Niccodemi, Alessie, Angelini, Mierau, and Wansbeek (2020). Stata 18 added
the ability to rapidly calculate CV2 standard errors, using the option vce(hc2 clustvar).
Simulations in MacKinnon, Nielsen, and Webb (2023b) suggest that CV2 is preferred to CV1,
but that CV3 is almost always preferred to CV2.

CV3 can be written in several ways. One of them is

CV3:
G − 1

G
(X⊤X)−1

( G∑
g=1

s̈gs̈⊤
g

)
(X⊤X)−1, (10)

where the modified score vectors s̈g are defined as

s̈g = X⊤
g M−1

gg ûg.

Here Mgg = INg − Xg(X⊤X)−1X⊤
g is the diagonal block corresponding to the g th cluster of

the projection matrix MX , which satisfies û = MXu. Although computing CV3 using (10)
works well when all the Ng are very small, it becomes expensive, or perhaps computationally
infeasible, when one or more of the Ng is large. The problem is that an Ng × Ng matrix
needs to be stored and inverted for every cluster. Niccodemi, Alessie, Angelini, Mierau, and
Wansbeek (2020) proposes a method that is much faster for large clusters, versions of which
apply to both CV2 and CV3. However, recognizing that CV3 is a jackknife estimator makes
a method that is even simpler and usually faster available.

There are actually two cluster jackknife estimators of Var(β̂). The simplest is probably

CV3J: G − 1
G

G∑
g=1

(β̂(g) − β̄)(β̂(g) − β̄)⊤, (11)

where β̄ is the sample mean of the β̂(g), which were defined in (9). The expression in (11)
is the cluster analog of the usual jackknife variance matrix estimator given in MacKinnon
and White (1985, eqn. (11)). Each of the β̂(g) is obtained by deleting a cluster instead of
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an observation, and the summation is over clusters instead of observations. If β̄ in (11) is
replaced by β̂, we obtain instead

CV3:
G − 1

G

G∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)⊤. (12)

This version of CV3 is numerically identical to the one in (10) (MacKinnon, Nielsen, and
Webb 2023b, Section 3). Unless all the clusters are very small, computing CV3 using (12) is
much faster than using (10); timings are reported in MacKinnon, Nielsen, and Webb (2023b).

Many discussions of jackknife variance estimation follow Efron (1979) and use β̄ as in
(11), but others, including Bell and McCaffrey (2002), use β̂ as in (12). Although these
two jackknife variance estimators are asymptotically the same, they are rarely equal, since
CV3 minus CV3J is a positive semi-definite matrix. In practice, however, they tend to be
very similar (MacKinnon, Nielsen, and Webb 2023b), and there seems to be no good reason
to expect either CV3 or CV3J to perform better in general. Interestingly, the original HC3

estimator proposed in MacKinnon and White (1985) is actually the analog of CV3J. The
modern version of HC3, which is the analog of CV3, seems to be due to Davidson and Mac-
Kinnon (1993, Chapter 16). This version of HC3 is normally computed by dividing each
residual by the corresponding diagonal element of MX , and the factor of (N − 1)/N is
usually (but incorrectly) omitted.

The factor of (G−1)/G in both (11) and (12) is designed to compensate for the tendency
of the β̂(g) to be too spread out. This factor is the analog of the usual factor of (N−1)/N for a
jackknife variance matrix at the individual level. It implicitly assumes that all clusters are the
same size and perfectly balanced, with disturbances that are independent and homoskedastic.
In this special case, the estimators CV3 and CV3J would be identical and unbiased (Bell
and McCaffrey 2002). These estimators are already available in Stata. When used with
the cluster option, the vce(jackknife) option computes CV3J standard errors, and the
vce(jackknife,mse) option computes CV3 standard errors. Because it is specialized for
linear regression models, the implementation in summclust is quite a bit faster.

Both jackknife estimators may readily be used to compute cluster-robust t-statistics.
Because there are G terms in the summation, it seems natural to compare these with the
t(G−1) distribution, as usual. These procedures should almost always be more conservative
than t-tests based on the widely-used CV1 estimator. In an important recent paper, Hansen
(2022) shows that CV3 has much better worst-case theoretical properties than CV1. This
strongly suggests that t-statistics based on CV3 are likely to yield lower rejection frequencies
than ones based on CV1. The simulation results in Section 7 and in MacKinnon, Nielsen,
and Webb (2023b) are consistent with this conjecture.
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When a model includes fixed effects, some care needs to be taken when computing CV3

and CV3J. As noted in Section 2.1, it is computationally attractive to partial out fixed effects
prior to calculating β̂. However, if we were to partial out any arbitrary regressors prior to
computing the delete-one-cluster estimates in (9), then the computed β̂(g) would depend on
the values of the partialed-out regressors for the full sample, including those in the g th cluster.
Consequently, the values of CV3 and CV3J will be incorrect if we partial out any regressor that
affects more than one cluster (such as industry-level fixed effects with firm-level clustering).
The regressors that are partialed out must be cluster fixed effects or fixed effects at a finer
level (such as firm-level fixed effects with industry-level clustering), because each of them
affects only one cluster. See the discussion of the absorb and fevar options in Section 3.

It is possible that the vector β is identified for the full sample but not when one cluster
is deleted. For example, consider the coefficient on a dummy variable that takes on non-zero
values only for observations in the g th cluster. This coefficient cannot be identified when
cluster g is omitted. In such a case, the matrix X⊤X −X⊤

g Xg in (9) is singular, and CV3 and
CV3J cannot be computed using an ordinary matrix inverse. However, because summclust
uses the invsym function in Stata, which implements a generalized inverse, the offending
element of β̂(g) is simply replaced by 0. The package therefore checks whether any of the
β̂(g) coefficients of interest are equal to 0 and issues a warning when they are; see Section 3.

There may be more than one set of fixed effect that are invariant at the cluster level. For
example, imagine an analysis of students’ test scores where the researcher wants to control
for both school and neighborhood fixed effects and cluster the standard errors at the state
level. In this case, neither of Stata’s built-in regress and areg commands can produce an
estimate of CV3, because the fixed effects for schools and neighborhoods in state g cannot
be identified when state g is omitted. However, summclust can produce such an estimate.

2.3 What Should Be Reported

We believe that investigators should routinely compute the Lg. They should also compute
the Lgj for any coefficient(s) of particular interest. In some cases, the Lg and the Lgj will
be roughly proportional to the Ng (the cluster sizes). That in itself would be informative.
It may be even more interesting, however, to find that the relative size of Lg and/or Lgj for
some cluster(s) g is much larger, or much smaller, than the relative size of Ng.

When the number of clusters is small, it is easy enough to look at all the Ng, β̂
(g)
j ,

Lg, and Lgj to see whether any clusters are unusually large, unusually influential, or have
unusually high leverage or partial leverage. Once G exceeds 10 or 12, however, it may be more
informative to report summary statistics or to plot these quantities. The summclust package
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always reports the minimum, first quartile, median, mean, third quartile, and maximum of
the Ng and the Lg. It also reports these quantities for the Lgj and the β̂

(g)
j for the specified

regressor j, and by default it provides a figure containing four scatterplots of the Lg and the
Lgj against the Ng and the β̂(j); see Sections 3 and 4.

Another possibility is to report a few summary statistics, as summclust also does. Con-
sider a generic (positive) quantity ag, which might denote any of Ng, Lg, or Lgj for g =
1, . . . , G. It seems plausible that inference may be unreliable when any of the ag vary substan-
tially across clusters, and we provide some evidence to support this conjecture in Section 7.

There are many measures of how much the distribution of the ag differs from what it
would be in the perfectly balanced case. One of these is the scaled variance

Vs(a•) = 1
(G − 1)ā2

G∑
g=1

(ag − ā)2, (13)

where the argument a• is to be interpreted as the entire set of ag for g = 1, . . . , G, and ā

denotes the arithmetic mean, which is N/G for the Ng, k/G for the Lg, and 1/G for the Lgj.
These are all positive numbers, so it is reasonable to scale by their squares. Larger values
of Vs imply that the ag are more variable across clusters, relative to their mean. We could
report either Vs or its square root, which is often called the coefficient of variation. In the
perfectly balanced case, Vs = 0. By default, summclust reports the coefficient of variation
for the cluster sizes, the leverages, the partial leverages, and the β̂

(g)
j .

Another possibility, which is only valid for positive quantities, is to report one or more
alternative sample means. The more these differ from the arithmetic mean, the more het-
erogeneous must be the clusters. Three common alternatives to the arithmetic mean are the
harmonic, geometric, and quadratic means:

āharm =
 1

G

G∑
g=1

1/ag

−1

, āgeo =
 G∏

g=1
ag

1/G

, and āquad =
 1

G

G∑
g=1

a2
g

1/2

.

Unless all the ag are the same, the harmonic and geometric means will be less than the
arithmetic mean ā, and the quadratic mean (which has the same form as the root mean
squared error of an estimator) will be greater than ā. summclust optionally reports all three
of these alternative means, along with the ratio of each of them to ā. The three ratios
provide scale-free measures of cluster heterogeneity; the closer they are to one, the more
homogeneous are the clusters.

Another way to quantify the heterogeneity of the cluster sizes and the regressors is to cal-
culate G∗, the “effective number of clusters,” as proposed in Carter, Schnepel, and Steiger-
wald (2017). The value of G∗ depends on the coefficient j for which it is being computed
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and on a parameter ρ to be discussed below, so we denote it G∗
j(ρ). It is defined as

G∗
j(ρ) = G

1 + Γj(ρ) , Γj(ρ) = 1
G

G∑
g=1

(
γgj(ρ) − γ̄j(ρ)

γ̄j(ρ)

)2
, γ̄j(ρ) = 1

G

G∑
g=1

γgj(ρ), (14)

where 0 ≤ ρ ≤ 1, and the γgj(ρ) are given by

γgj(ρ) = e⊤
j (X⊤X)−1X⊤

g Ωg(ρ)Xg(X⊤X)−1ej, g = 1, . . . , G. (15)

Here ej is a k-vector with 1 in the j th position and 0 everywhere else, so that e⊤
j (X⊤X)−1

is the j th row of (X⊤X)−1, and Ωg(ρ) is an Ng ×Ng matrix with 1 on the principal diagonal
and ρ everywhere else. It is easy to see that

Ωg(ρ) = ριι⊤ + (1 − ρ)I, (16)

where ι is an Ng-vector of 1s, and I is an Ng × Ng identity matrix. Notice that Γj(ρ) is just
the scaled variance of the γgj(ρ); compare (13).

The parameter ρ may be interpreted as the intra-cluster correlation coefficient for a model
with cluster-level random effects. Since ρ is unknown, Carter, Schnepel, and Steigerwald
(2017) suggests calculating G∗

j(1) as a sort of worst case. However, when there are cluster-
level fixed effects, or fixed effects at a finer level nested within clusters, they will absorb all
of the intra-cluster correlation. Thus it does not make sense to specify ρ > 0 in either of
these cases. It does seem natural to use G∗

j(0), however, because the amount of intra-cluster
correlation that remains in models with cluster fixed effects is often quite small.

From (15) and (16), we see that

X⊤
g Ωg(ρ)Xg = ρ(ι⊤Xg)⊤(ι⊤Xg) + (1 − ρ)X⊤

g Xg. (17)

This result makes it inexpensive to compute the γgj(ρ) for any value of ρ by first computing
them for ρ = 0 and ρ = 1. The needed equations are

γgj(0) = w⊤
j X⊤

g Xg wj,

γgj(1) = (ι⊤Xg wj)⊤(ι⊤Xg wj), and

γgj(ρ) = ργgj(1) + (1 − ρ)γgj(0),

(18)

where wj is the j th column of (X⊤X)−1. After obtaining the γgj(ρ) from (18), it is trivial to
compute G∗

j(ρ) using (14). Evidently, G∗
j(ρ) is always less than G. When it is much smaller

than G, it can provide a useful warning.
Suppose that we have partialed out cluster fixed effects prior to computing G∗

j(ρ). Then
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the first term on the right-hand side of (17) should in theory be a zero matrix, because every
column of Xg should add to zero. In practice, however, the limitations of floating-point
arithmetic mean that this matrix will actually contain extremely small positive numbers.
This will cause the computation of G∗

j(ρ) to be numerically unstable. When the fixed effects
are not partialed out, similar but more complicated numerical issues arise.

The Stata package clusteff discussed in Lee and Steigerwald (2018) is designed to
calculate G∗

j(ρ), with ρ = 0.9999 rather than ρ = 1 by default to avoid numerical instabilities.
However, the only version of this package that we have used does so in a computationally
inefficient way that does not use (18). When any of the Ng is large, it can take a very long
time, or even fail because Stata runs out of memory. For example, it failed with some of
the samples in MacKinnon, Nielsen, and Webb (2023a).

Like Vs(a•) and the alternative sample means for measures of leverage and partial leverage
discussed above, G∗

j(ρ) is sensitive not only to variation in cluster sizes but also to other
features of the Xg matrices. But it is not sensitive to heteroskedasticity or to any other
features of the disturbances. summclust computes G∗

j(0), G∗
j(1), and (optionally) G∗

j(ρ) for
a specified covariate. However, when there are cluster fixed effects, or fixed effects nested
within clusters, it only computes G∗

j(0). For example, it will not compute G∗
j(ρ) for ρ ̸= 0

whenever there are state-level fixed effects and clustering at the region level.
The quantity G∗

j(0) is very closely related to Vs(L•j), where L•j denotes the entire set of
Lgj, for g = 1, . . . , G. It is not hard to see that the γg(0) defined in (15) and (18) are equal
to the Lgj defined in (7) divided by x́⊤

j x́j. Since this makes the γg(0) proportional to the
Lgj, Vs(L•j) is numerically identical to Γ(0); compare (13) and the middle equation in (14).
Thus we see from the first equation in (14) that G∗

j(0) is simply a monotonically decreasing
function of the scaled variance of our measures of partial leverage at the cluster level. When
Vs(L•j) is large, G∗

j(0) is necessarily much smaller than G.

3 The summclust Package

The summclust package may be obtained from SSC or https://github.com/mattdwebb/
summclust. It implements the summclust command, which calculates a large number of
statistics to help assess cluster heterogeneity and also provides CV3 and CV3J standard errors.
The package does not rely on any other Stata packages, but it does require a version of
Stata that provides Mata’s panelsum() function (Version 13 or later).

We first present an overview of the summclust command, followed by a simple illustration
using the webuse dataset nlswork.
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3.1 Syntax and options

Syntax

summclust varlist, cluster(varname) [options]

varlist: the dependent variable, the independent variable of interest, and other (binary
or continuous) independent variables. At least one additional regressor must be specified.
Time-series operators and factor variables are not permitted.
cluster: the clustering variable, for which the number of unique values equals G.

options Description
fevar(varlist) creates fixed effects for each of the specified variables, using i.varname.
absorb(varname) partials out the variable varname before computing other statistics. This

option should only be used for variables that are nested within the
specified clusters. It can often be computationally faster than using
fevar and should be used when there are cluster-level fixed effects in
order to avoid singular omit-one-cluster samples caused by those fixed
effects. In cases with an extremely large number of fixed effects,
summclust may run into memory issues. If so, one can use the Stata
prefix jackknife with the user-contributed command reghdfe.

jackknife calculates the jackknife variance estimator CV3J in addition to CV3.
addmeans displays the alternative sample means of the Ng, Lg, Lgj, and β̂

(g)
j , as

described in Section 2.3. For the Ng, Lg, and Lgj, it reports the
harmonic, geometric, and quadratic means, as well as the ratio of each of
them to the arithmetic mean. For the β̂

(g)
j , which can be negative, only

the quadratic mean and its ratio are reported, because the harmonic and
geometric means are not defined for negative numbers.

gstar calculates the effective number of clusters G*(0) and, when there are no
cluster (or subcluster) fixed effects, G*(1) as well.

rho(scalar) calculates the effective number of clusters, G*(rho), in addition to G*(0)
and G*(1). This option can be used with or without the gstar option.
The value of rho must be between 0 and 1; the program ends with an
error message when an invalid value for rho is entered. If it is not valid
to display G*(rho), due to variables that are invariant within clusters, it
reports that G*(rho) cannot be computed and displays only G*(0).
There is no reason to use the gstar option when this option is used.
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options Description
table displays the cluster-by-cluster values of cluster size, leverage, partial

leverage, and the delete-one-cluster coefficient estimate. If G > 52, then
the unformatted matrix is displayed instead of a table.

sample allows for sample restrictions. The argument(s) for this option are
whatever would follow the “if” in a standard regress command. For
instance, in order to restrict the analysis to individuals 25 years of age or
older based on a variable “age”, sample(age>=25) should be added to
the list of options.

nograph suppresses creation of the figure, which is otherwise shown by default.
regtable displays a full table of regression output, similar to Stata’s regress table,

but with jackknife standard errors. It reports CV3 standard errors by
default, but it instead reports CV3J standard errors when the jackknife
option is also specified. If k > 52, then the unformatted matrix is
displayed instead of a table.

Description

summclust is a stand-alone command for summarizing cluster variability in several ways. It
always calculates measures of cluster-level influence and leverage, and it optionally calculates
the effective number of clusters. It also always reports CV1 and CV3 standard errors for a
single coefficient, and it optionally reports a CV3J standard error as well. If requested, it
can calculate additional measures of cluster-level heterogeneity. Unless it is told not to, it
produces a figure which can help identify the source of cluster level heterogeneity. Finally,
it can optionally produce a full table of regression results with CV3 standard errors.

By default, summclust calculates the CV3 standard error based on (10). With well-
behaved samples, this should match the standard error calculated using either Stata’s native
jackknife: reg y x, cluster(group) or reg y x, cluster(group) vce(jackknife)
commands. However, many samples are not well-behaved, in the sense that the regressor
matrices for some of the omit-one-cluster subsamples may not have full rank. We will refer
to such subsamples, rather informally, as “singular subsamples.”

Whenever there are singular subsamples, summclust calculates two standard errors. One
of these drops the singular subsamples, as the native Stata commands do. The other uses
a generalized inverse. summclust provides guidance as to which standard error is likely
to be more reliable. When regtable is specified, and singular subsamples are present,
two versions of the regression table are displayed. Similarly, if jackknife is specified and
there are singular subsamples, four different standard errors are shown, either CV3 or CV3J,
combined with either the generalized inverse or one that drops the singular subsamples.
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nograph suppresses creation of the figure, which is otherwise shown by default. The
figure shows four scatter plots: leverage against observations per cluster, partial leverage
against observations per cluster, leverage against omit-one-cluster coefficients, and partial
leverage against omit-one-cluster coefficients. This figure can be quite informative, but it is
computationally costly to produce. We recommend invoking this option after the figure has
been inspected.

When jackknife is specified, regtable uses the CV3J estimates to produce the regres-
sion table. Otherwise, CV3 estimates are used.

3.2 Illustration with nlswork

To illustrate summclust’s functionality and syntax, we consider a simple example using the
online dataset nlswork, which contains a sample of women who were 14–26 years of age in
1968 from the National Longitudinal Survey of Young Working Women. For the purposes
of this exercise, we restrict the sample to individuals who are 20 to 40 years old.

We estimate a simple Mincer regression using the nlswork dataset to see whether there
is a marriage premium for wages. The variable msp is equal to 1 if the person is married and
cohabits with their spouse, and equal to 0 otherwise. For the purposes of this example, we
cluster by industry. The following code opens the dataset and estimates the regression using
Stata’s regress command:

webuse nlswork, clear

keep if inrange(age,20,40)

reg ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind)

The Stata output from the command above provides CV1 standard errors. Alternatively,
we can estimate CV3 and CV3J standard errors using this code:

reg ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind) vce(jackknife, mse)

reg ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind) vce(jackknife)

When either of these commands is run, Stata displays the warning “Note: One or more
parameters could not be estimated in 2 jackknife replicates; standard-error estimates include
only complete replications.”

The coefficient on msp and two or three standard errors can also be obtained using
summclust. The basic command is:

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind)
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This code results in the default output from summclust, which is mostly contained in two
tables. The first one includes the coefficient on the second variable in the varlist (in this case
msp), the CV1 and CV3 standard errors for this coefficient, and the associated t-statistics,
P values, and confidence intervals. In this case, summclust also displays a warning about
singular subsamples and thus produces two “Regression Output” tables. The standard errors
in the table which drops singular subsamples match those produced natively in Stata.

Cluster summary statistics for msp when clustered by ind_code.

There are 17395 observations within 12 ind_code clusters.

Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

------+----------------------------------------------------------------

CV1 | -0.026940 0.008248 -3.2663 0.0075 -0.045093 -0.008787

CV3 | -0.026940 0.011150 -2.4161 0.0342 -0.051481 -0.002399

-----------------------------------------------------------------------

Regression Output -- Dropping Singular Omit-One-Cluster Subsamples

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

------+----------------------------------------------------------------

CV3 | -0.026940 0.006701 -4.0200 0.0030 -0.042099 -0.011780

-----------------------------------------------------------------------

In the first table for this example, the CV1 and CV3 standard errors are noticeably different,
with the latter being considerably larger. However, in the second table, where the two
singular subsamples are dropped, the CV3 standard error becomes much smaller.

The “Cluster Variability” table from summclust (below) provides insight into what is
happening. It reports summary statistics for Ng, Lg, Lgj, and β̂

(g)
j . Whenever singular

subsamples are dropped, two sets of statistics are shown for β̂
(g)
j . The first (second-last

column) uses all the jackknife subsamples with a generalized inverse standard error. The
second (final column) uses only the non-singular subsamples. We can see that the largest
value of β̂

(g)
j is considerably smaller (and therefore more different from the other values)

when none of the subsamples is dropped. This explains why the CV3 standard error is larger
in the first table above than in the second one.

19



Cluster Variability

Statistic | Ng Leverage Partial L. all bet~g kept be~g

----------+---------------------------------------------------------

min | 35.00 0.085945 0.000700 -0.032772 -0.032772

q1 | 144.50 0.633594 0.004399 -0.027655 -0.027917

median | 905.00 2.794231 0.038554 -0.026891 -0.027082

mean | 1449.58 4.583333 0.083333 -0.026398 -0.027571

q3 | 2112.50 6.190322 0.105043 -0.025268 -0.026587

max | 5736.00 17.008305 0.353148 -0.019198 -0.024202

-----------+-----------------------------------------------------

coefvar | 1.19 1.166238 1.320154 0.131277 0.074100

It is evident from this table that the clusters are extremely heterogeneous. The largest cluster
contains almost one-third of the sample and is 167 times the size of the smallest. There are
also extreme differences in both leverage and partial leverage across clusters. The ratio of the
largest to the smallest value is 198 for leverage and 504.5 for partial leverage. The sum of the
leverages is 12×4.583333 = 55, which is the number of estimated coefficients. Although both
sets of β̂

(g)
j vary quite a bit, dropping one cluster never changes the sign of the coefficient.

The option fevar is used when there are factor variables, which would be specified as
i.varname in conventional Stata syntax. In the above example, the arguments to fevar
are grade, age, and birth_yr. For each argument, a set of temporary dummy variables
is created. These dummy variables are included in the regression, and there is no constant
term if they are present.

The sample code above does not illustrate several additional options. The most important
of these is the absorb option, which operates like fevar. It treats its argument, a single
variable, as an additional factor variable to include in the set of regressors. absorb(varname)
can be used when including i.varname in a regression would result in many fixed effects.
Speed can often be increased, perhaps substantially, by partialing out the absorbed fixed
effects from the dependent and all the independent variables. It is advisable to use absorb
rather than fevar whenever their argument corresponds to a set of cluster fixed effects, since
the elements of β̂(g) that correspond to the fixed effects cannot be identified in that case; see
Section 2.1.

The absorb option should be used with care. Partialing out fixed effects is valid for the
measures of leverage and influence and for the jackknife variance matrices only when the
absorbed variable yields fixed effects that can be partialed out on a cluster-by-cluster basis.
That is, absorb should only be used for straight cluster fixed effects or for fixed effects at a
finer level, such as state × year fixed effects for a panel with clustering at the state level. It is
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not valid to partial out fixed effects that are not limited to a single cluster. In that case, the
β̂(g) and quantities based on them would be different for the original data and the data after
partialing out, because the partialed-out observations for the g th cluster would depend on
other clusters as well. Accordingly, summclust checks to ensure that the clustering variable
is invariant within each value of the absorbed variable. When it is not invariant, a warning
is displayed, and the values of Lg, Lgj, β̂

(g)
j , CV3, and CV3J are not available.

To see the difference between fevar and absorb, we can estimate an expanded regression
that includes industry fixed effects. Consider the following two commands:

summclust ln_wage msp union race, fevar(grade age birth_yr ind) cluster(ind)

summclust ln_wage msp union race, fevar(grade age birth_yr) absorb(ind) cluster(ind)

For the command which uses fevar for all the categorical variables, some of the output is

Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

-------+----------------------------------------------------------------

CV1 | -0.018955 0.007014 -2.7025 0.0206 -0.034392 -0.003517

CV3 | -0.018955 0.007586 -2.4987 0.0296 -0.035651 -0.002258

------------------------------------------------------------------------

Because every one of the jackknife subsamples is singular, only the results based on the
generalized inverse are reported. In contrast, when absorb is used for the industry fixed
effects, the corresponding output is instead

Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

-------+----------------------------------------------------------------

CV1 | -0.018955 0.007014 -2.7025 0.0206 -0.034392 -0.003517

CV3 | -0.018955 0.007586 -2.4987 0.0296 -0.035651 -0.002258

------------------------------------------------------------------------

Regression Output -- Dropping Singular Omit-One-Cluster Subsamples

------------------------------------------------------------------------

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

CV3 | -0.018955 0.004173 -4.5418 0.0014 -0.028396 -0.009514

------------------------------------------------------------------------

These two tables highlight a key reason for using absorb. Because only two of the jackknife
subsamples are singular, summclust is able to report both standard errors. Observe that,
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when all 12 jackknife samples are used, the standard errors are the same regardless of whether
industry fixed effects are specified using fever or absorb.

Whether we use fevar or absorb leads to somewhat different output for the measures of
cluster variability.

Cluster Variability [using fevar]

Statistic | Ng Leverage Partial L. beta no g

-----------+-------------------------------------------------

min | 35.00 1.079703 0.000276 -0.021394

q1 | 144.50 1.617131 0.003970 -0.020316

median | 905.00 3.752372 0.033630 -0.019050

mean | 1449.58 5.500000 0.083333 -0.018880

q3 | 2112.50 7.066207 0.092329 -0.018852

max | 5736.00 17.728424 0.382133 -0.012367

-----------+-------------------------------------------------

coefvar | 1.19 0.957329 1.422090 0.126464

Cluster Variability [using absorb]

Statistic | Ng Leverage Partial L. all bet~g kept be~g

-----------+---------------------------------------------------------

min | 35.00 0.079703 0.000700 -0.021394 -0.021394

q1 | 144.50 0.617131 0.004399 -0.020316 -0.020601

median | 905.00 2.752372 0.038554 -0.019050 -0.019281

mean | 1449.58 4.500000 0.083333 -0.018880 -0.019538

q3 | 2112.50 6.066207 0.105044 -0.018852 -0.019028

max | 5736.00 16.728424 0.353143 -0.012367 -0.016767

-----------+---------------------------------------------------------

coefvar | 1.19 1.170068 1.320148 0.126464 0.061639

The β̂
(g)
j when all clusters are retained are identical for both options. But since there are

two singular subclusters, there are two versions of the β̂
(g)
j for the fevar results.

The leverage estimates are also smaller when we use the absorb option. Recall that,
for the original model with no industry fixed effects, the leverages summed to 55. In the
first case just above, where the industry fixed effects are included as regressors in fevar,
the regression has 66 coefficients, and the leverages therefore sum to 12 × 5.5 = 66. In the
second case, where the industry fixed effects are partialed out using absorb, the regression
has 54 coefficients, and the leverages therefore sum to 12 × 4.5 = 54. Thus for the first case,
each of the leverages is larger than the corresponding one for the second case by precisely 1.
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Examples
In the examples that follow, we include the nograph option to reduce computational time.
This example illustrates the jackknife and table options:

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind) nog///

jack table

Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

-------+----------------------------------------------------------------

CV1 | -0.026940 0.008248 -3.2663 0.0075 -0.045093 -0.008787

CV3 | -0.026940 0.011150 -2.4161 0.0342 -0.051481 -0.002399

CV3J | -0.026940 0.011004 -2.4482 0.0324 -0.051160 -0.002720

------------------------------------------------------------------------

In addition to the two standard tables, it displays the following table:

Cluster by Cluster Statistics

ind_code | Ng Leverage Partial L. beta no g

-----------+-------------------------------------------------

1 | 119 0.581881 0.002825 -0.026959

2 | 35 0.085945 0.000700 -0.027206

3 | 170 0.685307 0.005341 -0.026823

4 | 3451 12.753229 0.241651 -0.021861

5 | 974 2.448713 0.114532 -0.024202

6 | 2626 7.815303 0.095555 -0.027393

7 | 1599 4.565341 0.048163 -0.026587

8 | 513 2.494440 0.018808 -0.029519

9 | 836 3.131195 0.028945 -0.032772

10 | 114 0.336320 0.003457 -0.027917

11 | 5736 17.008305 0.353148 -0.019198

12 | 1222 3.094021 0.086874 -0.026333

-------------------------------------------------------------

This table makes it easy to see whether the high leverage clusters are also the largest clusters.
That is clearly the case here. After running the program, this table is stored as the Mata
matrix scall.

To obtain summary statistics on the four (or five) measures of cluster variability, we can
use the addmeans option:
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summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind) nog add

This command produces the following table:

Alternative Sample Means and Ratios to Arithmetic Mean

| Ng Leverage Partial L. all bet~g kept be~g

----------------+------------------------------------------------------------

Harmonic Mean | 206.576 0.608440 0.004988 . .

Harmonic Ratio | 0.143 0.132751 0.059853 . .

Geometric Mean | 623.091 2.042731 0.025557 . .

Geometric Ratio | 0.430 0.445687 0.306684 . .

Quadratic Mean | 2193.268 6.870062 0.134308 0.026605 0.027654

Quadratic Ratio | 1.513 1.498923 1.611699 -1.007868 -1.003015

-----------------------------------------------------------------------------

Once again, we see that there is extreme variability across the clusters. This is particularly
noticeable for the ratio of the harmonic mean to the arithmetic mean, which is between
0.125 and 0.143 for the cluster size, leverage, and partial leverage measures. Recall that
these ratios would be close to one if the clusters were relatively homogeneous. This table is
stored in Mata’s memory as bonus.

To obtain estimates of the effective number of clusters, we can use either the gstar option
or the rho() option. The former displays G∗

j(0) and G∗
j(1). The latter requires a specified

value of ρ and displays G∗
j(0) and G∗

j(1) along with G∗
j(ρ). When there are fixed effects at

the cluster or subcluster level, only G∗
j(0) is reported.

For the nlswork example, the first option may be called as:

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind) nog gstar

This yields:

Effective Number of Clusters

----------------------------

G*(0) = 5.495

G*(1) = 1.376

----------------------------

The second option, using ρ = 0.5 as an illustration, may be called as:

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind) nog rho(0.5)

This yields:
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Effective Number of Clusters

----------------------------

G*(0) = 5.495

G*(.5) = 1.433

G*(1) = 1.376

----------------------------

In this example, it is clear that the effective number of clusters is substantially less than the
actual number of clusters. This provides more evidence that inference using the CV1 standard
error together with the t(G−1) distribution is likely to be unreliable. These three quantities
can be accessed in Mata’s memory as gstarzero, gstarrho, and gstarone, respectively.

By using the regtable option, one can display a modified version of the regression table,
which is similar to the default output from Stata’s regress command. The command is:

summclust ln_wage msp union race, fevar(grade age birth_yr) cluster(ind) nog regtable

When there are singular subsamples, two versions of this table will be displayed. In this
example, the table is quite long, so we do not reproduce it here.

3.3 List of Stored Results

All the results that are displayed as output can also be found in Mata’s memory. To access
one of these after running summclust, simply add the following line:

mata: object_name

The object_name can take one of the following values:

cvstuff: This matrix stores the table with the title “Regression Output”. It is 2 × 6 when
the jackknife option is not used (the default), and 3 × 6 when jackknife is used.

scall: This matrix stores the G×4 table created by the table option with the title “Cluster
by Cluster Statistics”.

bonus: This 6 × 4 matrix contains the alternative sample means and their ratios to the
arithmetic mean created by the addmeans option.

gstarzero: This scalar contains G∗(0) created by the gstar or rho options.
gstarone: This scalar contains G∗(1) created by the gstar or rho options.
gstarrho: This scalar contains G∗(ρ) created by the rho option.
regresstab: This matrix contains the table shown when the regtable option is specified.
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Scalars within matrices can be referenced on a cell-by-cell basis. For example, the CV3

standard error is stored in the second row and second column of cvstuff, and to display it
one can enter the following command:

mata: cvstuff[2,2]

Additionally, several results are available as scalars or matrices in return memory using r().
The available scalars are:

beta: The estimate β̂ for the coefficient of interest.
cv1se: The CV1 standard error for the coefficient of interest.
cv1t: The CV1 t-statistic for the coefficient of interest.
cv1p: The P value for the null hypothesis that β = 0 for the coefficient of interest using the

CV1 standard error.
cv1lci: The lower bound of the 95% confidence interval for β using the CV1 standard error.
cv1uci: The upper bound of the 95% confidence interval for β using the CV1 standard error.
gstarzero: The effective number of clusters for the coefficient of interest using ρ = 0.
gstarone: The effective number of clusters for the coefficient of interest using ρ = 1.
gstarrho: The effective number of clusters for the coefficient of interest using the value of

ρ specified in rho(ρ).

The standard error, t-statistic, P value, and confidence interval bounds are also available
for the CV3 and CV3J standard errors. To access these, replace “1” in the above with either
“3” or “3J”; for example, the P value using CV3J is available in cv3Jp. In the event of
singular subsamples, there are two versions of the CV3 or CV3J results. The ones where
singular subsamples have been dropped have a suffix of ‘drop’. For instance, cv3sedrop is
used instead of cv3se.

The available matrices are:

ng: This G × 1 matrix contains the number of observations, Ng, for each cluster.
leverage: This G × 1 matrix contains the leverage, Lg, for each cluster.
partlev: This G × 1 matrix contains the partial leverage, Lgj, for each cluster.
betanog: This G × 1 matrix contains the β̂

(g)
j for each cluster.

4 Empirical Example

We consider an empirical example from Busso and Galiani (2019), which studies an experi-
ment where retail firms were randomly assigned to enter one of 72 different geographic mar-
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kets (in Spanish, mercados), within the Dominican Republic. After randomization, 21 mar-
kets had no entrants and so were in the control group, 18 had one entrant, another 18 had
two, and the remaining 15 had three. The primary analysis only distinguishes between the
51 treated markets and the 21 control markets. The number of observations (stores) per
market varies from 20 to 55.

This example is interesting because conventional wisdom (e.g., MacKinnon, Nielsen, and
Webb 2023a) suggests that, with 72 clusters that do not vary much in size, and with neither
few treated nor few control clusters, inference based on CV1 standard errors and the t(71)
distribution should work well. However, our leverage measures suggest otherwise, and alter-
native inference methods yield noticeably different results.

The model we estimate is

Ysd = α + γZd + Xsd β + ϵsd. (19)

Here s indexes stores, and d indexes markets. The treatment variable Zd equals 1 if market d

is treated (there was entry) and 0 if it was a control (there was no entry). The coefficient of
interest is γ, which measures the causal effect of increased competition on an outcome Y . We
focus on just one of several outcomes, namely, the log of demeaned prices after treatment.
The results from this regression are found in Table 5, Panel B, column 4, row 1 of Busso and
Galiani (2019). The table states that there are 72 clusters and 2,025 observations; however,
the replication dataset that we use contains just 1,926 observations.

Regression (19) includes 17 control variables in the row vector Xsd. These are the first
lag of the outcome variable, the number of retailers in each district pre-treatment, a lagged
quality index, eight province fixed effects, total district beneficiaries of a conditional cash
transfer program, percent beneficiaries of that program, average income in the market, two
market education measures, and a binary indicator for the urban status of the market. Thus
the total number of regressors is 19.

The OLS estimate of γ, its CV1 standard error, the P value for a test that γ = 0, and a
.95 confidence interval are shown in the first row of Table 1. Allowing for different numbers
of reported digits, these estimates accord with the ones in Busso and Galiani (2019). The
estimate of −0.01469 has the expected sign (average prices declined). However, the P value
is just slightly less than 0.05, and the confidence interval barely excludes 0.

We next use the summclust package to calculate the cluster-level characteristics of the
model and dataset. Some key ones are reported in Table 2. It is evident that cluster sizes
are well balanced, varying from 20 to 55, with the first and third quartiles equal to 24 and
27. However, both the leverages Lg and the partial leverages Lg1 vary considerably. The
former range from 0.1308 to 0.7378, and the latter from 0.0001 to 0.0642. The coefficients of
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Table 1: Estimates of the Treatment Effect

Method γ̂ Standard Error P value Confidence Interval
CV1 −0.01469 0.007243 0.0461 [−0.02913, −0.00025]
CV2 −0.01469 0.008078 0.0730 [−0.03080, 0.00142]
CV3 −0.01469 0.009090 0.1105 [−0.03281, 0.00343]
CV3J −0.01469 0.009087 0.1104 [−0.03281, 0.00343]
WCR-C bootstrap −0.01469 0.0891 [−0.03121, 0.00243]
WCR-S bootstrap −0.01469 0.0913 [−0.03121, 0.00254]

Notes: There are N = 1,926 observations and G = 72 clusters. The two WCR bootstraps use B = 999,999
and a seed of 56,829,046. WCR-C is the classic WCR bootstrap of Cameron, Gelbach, and Miller (2008), and
WCR-S is the “score” variant proposed in MacKinnon, Nielsen, and Webb (2023b). It involves transforming
the restricted empirical scores in a way based on the jackknife, but it still uses CV1. The bootstrap results
were obtained using Version 4.2.0 of boottest.

Table 2: Leverage and Partial Leverage for γ̂

Statistic Ng Leverage Partial Leverage γ̂(g)

Minimum 20 0.130842 0.000099 −0.017550
First quartile 24 0.204104 0.003166 −0.015089
Median 26 0.235813 0.009001 −0.014791
Mean 26.75 0.263889 0.013889 −0.014663
Third quartile 27 0.292042 0.020926 −0.014070
Maximum 55 0.737797 0.064242 −0.010723
Coef. of variation 0.21 0.388686 1.059813 0.074061

Notes: There are N = 1,926 observations and G = 72 clusters. The effective numbers of clusters are
G∗

γ(0) = 34.16 and G∗
γ(1) = 33.33.

variation are 0.3887 and 1.0598, respectively. The latter is moderately large, although not
enormous. The two values of G∗ are slightly smaller than G/2, which also suggests that the
sample is not well balanced.

Most of the γ̂(g) do not vary much, and thus their coefficient of variation is small. However,
the most extreme values are notable. The estimate of γ, which is −0.01469, could be as
small as −0.01755 or as large as −0.01072 if just one out of 72 clusters were dropped.

These results suggest that CV1, the default CRVE, may not be particularly reliable in
this case. We therefore consider five alternative procedures. The second, third, and fourth
rows of Table 1 report the CV2, CV3, and CV3J standard errors, along with the P values and
confidence intervals associated with them. The CV2 P value is noticeable larger than the CV1

one and suggests that the estimate is not significant at the .05 level. The CV3 and CV3J rows
are almost identical. At 0.1105, the CV3 P value does not even allow us to reject the null at
the .10 level. The fifth and six rows of Table 1 report two WCR bootstrap P values and the
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Figure 1: Example summclust Figure
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Cluster Specific Statistics For 72 mercado Clusters

Notes: A figure like this is always produced unless the nograph option is specified. It plots both leverage
and partial leverage against cluster size and against the omit-one-cluster coefficients for, in this case, 72
clusters specified by a variable called “mercado.”

associated .95 confidence intervals. At 0.0891 and 0.0913, these are a bit smaller than the
jackknife ones, but they clearly do not allow us to reject the null hypothesis at the .05 level.

In view of the reasonably large number of clusters and the fact that cluster sizes do not
vary much, the large discrepancy between the results for CV1 and the other procedures may
seem surprising. However, it is not all that surprising when we note how much the leverages
and, especially, the partial leverages vary.

By default, summclust produces a figure like Figure 1, with its title created by the
program using the name of the clustering variable, in this case “mercado”. This figure
plots both leverage and partial leverage against the number of observations per cluster and
also against the omit-one-cluster coefficients. These four subfigures may help to reveal the
source of cluster-level heterogeneity. For this example, neither the large leverages nor the
large partial leverages come exclusively from clusters with large numbers of observations or
extreme omit-one-cluster coefficients.

To explore what is driving the differences in partial leverage, we create an additional
scatter plot. Figure 2 plots partial leverage against the number of observations per cluster,
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Figure 2: Partial Leverage vs Cluster Size
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Notes: The figure plots partial leverage against cluster size for 72 clusters. A green X marks a treated
cluster, and an orange circle marks a control cluster.

with different colors and symbols depending on whether or not a given market (cluster) was
treated. The figure has two interesting features. The first is that the three rather large
clusters have fairly small partial leverage. The second is that the 12 clusters with the highest
partial leverage are all control markets. The first result is quite surprising, since large clusters
often tend to have high leverage. But Figure 2 makes it clear that there is, in general, no
simple relationship between cluster sizes and partial leverage. The second result is not so
surprising, because only 21 out of the 72 clusters are controls. Many of the control clusters
presumably have high partial leverage because control clusters are relatively rare. See (32)
in Example 4 in the next section for an explanation.

5 Simple Analytical Examples

In this section, we discuss a number of simple examples in which it is possible to calculate
our measures of leverage and influence analytically. These examples are quite revealing.

Example 1 (Estimation of the mean). Finding the sample mean is equivalent to performing
a least-squares regression in which the only regressor is xi = 1 for all i = 1, . . . , N. In this
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case, it is easy to see that X⊤
g Xg = Ng and X⊤X = N. Therefore,

Lg = Tr(Hg) = Ng

N
= Ng∑G

h=1 Nh

. (20)

In this simple case, cluster leverage is exactly proportional to cluster size. In other cases, we
can interpret leverage as a generalization of cluster size that takes into account other types
of heterogeneity as well.

Evidently, β̂ = ȳ = N−1 ∑G
g=1 Ng ȳg, where ȳ and ȳg denote the sample average for the

full sample and for cluster g, respectively. This expression can be rewritten as

β̂ =
G∑

g=1

Ng

N
ȳg =

G∑
g=1

Lg β̂g, (21)

so that β̂ is seen to be a weighted average of the G estimates β̂g = ȳg, with the weight for
each cluster equal to its leverage. Similarly, we find that

β̂(g) = N

N − Ng

∑
h̸=g

Lh β̂h, (22)

where the first factor simply makes up for the fact that we are summing over G − 1 clusters
instead of G as in (21). Subtracting (21) from (22), we conclude that

β̂(g) − β̂ = Ng

N

(
β̂(g) − β̂g

)
= Lg

(
β̂(g) − β̂g

)
. (23)

Therefore, cluster g will be influential whenever omitting it yields an estimate β̂(g) that
differs substantially from the estimate β̂g for cluster g itself, especially when cluster g also
has high leverage.

Example 2 (Single regressor plus constant). Consider a regression design with a single
regressor, xi, and a constant term. Then

X⊤
g Xg =

 Ng
∑Ng

i=1 xg,i∑Ng

i=1 xg,i
∑Ng

i=1 x2
g,i

 and (X⊤X)−1 = 1
N2σ̂2

x

 ∑N
i=1 x2

i − ∑N
i=1 xi

− ∑N
i=1 xi N

,

where σ̂2
x denotes the sample variance of the xi. After some algebra, we find that

Lg = Ng

Nσ̂2
x

(
σ̂2

x + σ̂2
x,g + (x̄g − x̄)2

)
, (24)

where x̄g and σ̂2
x,g denote the sample mean and sample variance of the xi within cluster g.

Expression (24) is a straightforward generalization of (20). The last two terms within the
large parentheses are the sample variance of the xg,i within cluster g and the square of the
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difference between x̄g and x̄. The sum of these terms is the sample variance of the xg,i

around x̄ within cluster g. Thus cluster g will have high leverage when the variance of the
xg,i around x̄ within that cluster is large relative to the variance σ̂2

x for the full sample. If
everything except cluster sizes were perfectly balanced, Lg would evidently reduce to 2Ng/N.

The partial leverage for x is just

Lg2 =
Ng

(
σ̂2

x,g + (x̄g − x̄)2
)

Nσ̂2
x

, (25)

the total variation around x̄ within cluster g divided by the total variation within the sample.
If everything except cluster sizes were perfectly balanced, it would reduce to Ng/N.

Example 3 (Single regressor plus fixed effects). Suppose there is a single regressor, xi,
and there are cluster-level fixed effects, which have been partialed out. In this case, we
can write all quantities as deviations from their cluster averages, and there is no distinction
between leverage and partial leverage. Then X̃⊤

g X̃g = ∑Ng

i=1(xg,i − x̄g)2 = Ngσ̂2
x,g. Similarly,

X̃⊤X̃ = ∑G
g=1 Ng σ̂2

x,g is the average variance of the xi across all clusters. We find that

Lg =
Ng σ̂2

x,g∑G
h=1 Nh σ̂2

x,h

, (26)

which is again a straightforward generalization of (20). The leverage of cluster g is propor-
tional to Ng times the variance of the xg,i around x̄g. Thus, for example, doubling the vari-
ance of the xg,i has the same effect on leverage as doubling Ng.

In this case, using (26), it is easy to see that

β̂ =
∑G

g=1 Ng σ̂xy,g∑G
g=1 Ng σ̂2

x,g

=
G∑

g=1
Lg

σ̂xy,g

σ̂2
x,g

=
G∑

g=1
Lgβ̂g, (27)

where σ̂xy,g = (1/Ng) ∑Ng

i=1(xg,i − x̄g)(yg,i − ȳg) is the sample covariance of xi and yi within
cluster g. The rightmost expressions in (21) and (27) are identical. In both cases, β̂ is seen
to be a weighted average of the G cluster estimates, with the weight for each cluster equal
to its leverage.

When cluster g is omitted, we obtain

β̂(g) =
∑

h̸=g Nhσ̂xy,h∑
h̸=g Nhσ̂2

x,h

=
∑

h̸=g Lhβ̂h∑
h̸=g Lh

, (28)

which would specialize to (22) if (20) were true. As before, β̂(g) is a weighted average of the
β̂h, with weights proportional to the Lg, which in this case are also the partial leverages.
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Subtracting (27) from (28), we find that

β̂(g) − β̂ = Lg

(
β̂(g) − β̂g

)
, (29)

which is formally identical to the rightmost expression in (23), although of course Lg is
defined in (26) not (20). Cluster g will be influential whenever β̂(g) differs substantially from
the estimate β̂g for cluster g itself, especially when cluster g also has high leverage.

Example 4 (Treatment model with a constant term). Now we specialize Example 2 to the
case in which the single regressor is a treatment dummy denoted by di. Let d̄g and d̄ denote
the proportion of treated observations in cluster g and in the sample, respectively. Then
(24) becomes

Lg = Ng

N

(
d̄g

d̄
+ 1 − d̄g

1 − d̄

)
. (30)

The first factor here is the relative size of the g th cluster. The second factor depends on how
much d̄g differs from d̄. When d̄g = d̄, we see that Lg = 2Ng/N . Otherwise, the first term
inside the parentheses causes leverage to be high whenever d̄g is large relative to d̄, and the
second term causes leverage to be high whenever d̄g is small relative to d̄. As d̄ increases for
given d̄g, the first term becomes smaller relative to the second term. Thus the g th cluster
will tend to be influential either when it has a large proportion of treated observations and
the overall proportion is small, or when it has a small proportion of treated observations and
the overall proportion is large.

We can also obtain the partial leverage of the treatment dummy for this case. Expression
(25) simply becomes

Lg2 = Ng

N

(
d̄g

d̄
+ d̄ − d̄g

1 − d̄

)
. (31)

Once again, the first factor is the relative size of the g th cluster. The second factor reduces
to 1 when d̄g = d̄, so that Lg2 = Ng/N in that special case.

We can further specialize (30) and (31) to models in which the treatment is applied at
the cluster level. Suppose that all observations in clusters g = 1, . . . , G1 are treated and no
observations in the G0 = G − G1 control clusters from G1 + 1 to G are treated. Then we
find that d̄g = 1 for g = 1, . . . , G1, and d̄g = 0 for g = G1 + 1, . . . , G. Inserting these into
(30) shows that

Lg =


Ng

N
1
d̄

for g = 1, . . . , G1,

Ng

N
1

1−d̄
for g = G1 + 1, . . . , G.

(32)
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Inserting them into (31) shows that

Lg2 =


Ng

N
d̄+1

d̄
for g = 1, . . . , G1,

Ng

N
d̄

1−d̄
for g = G1 + 1, . . . , G.

Thus any cluster tends to have high leverage if Ng/N is large. A treated cluster has high
leverage and partial leverage if d̄ is small. Conversely, a control cluster has high leverage
and partial leverage if d̄ is large.

Example 5 (Treatment with fixed effects). Finally, we consider the case of cluster-level fixed
effects, where treatment is randomly applied at the individual level. This is a special case
of Example 3. We cannot consider cluster fixed effects with cluster-level treatment, because
the treatment dummy would be invariant within clusters. We specialize (26) and find that

Lg = Ng d̄g(1 − d̄g)∑G
h=1 Nh d̄h(1 − d̄h)

. (33)

Thus, as before, the leverage of cluster g, relative to the average for the other clusters, is
proportional to its size, Ng. It also depends on the proportion of treated observations in the
cluster. The maximum (relative) leverage for cluster g occurs at d̄g = 1/2 and is symmetric
around 1/2. The result (29) continues to hold. It tells us that cluster g will be influential
when its leverage (33) is large and β̂(g) differs greatly from β̂g.

6 Two-Way Clustering

Up to this point, we have focused on one-way clustering. However, it is also important to
compute measures of leverage, partial leverage, and influence when there is clustering in
two or more dimensions (Cameron, Gelbach, and Miller 2011). In the simplest and most
commonly-encountered case, where there is two-way clustering, we recommend computing
the usual one-way measures of leverage, partial leverage, and influence for each of the two
clustering dimensions. This requires calling summclust twice.

When the number of clusters in either dimension is small, or when the data are seriously
unbalanced in either dimension, conventional inference based on a two-way version of CV1,
together with the t(min(G−1, H −1)) distribution, can be seriously unreliable. MacKinnon,
Nielsen, and Webb (2021) therefore suggests using the usual two-way CV1 estimator and
applying the original WCR bootstrap to the dimension with the fewest clusters or the most
unbalanced clusters. Simulation evidence suggests that this often provides more reliable
inferences than the t distribution, but these inferences may still be problematic.
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It may also be interesting to calculate measures of leverage, partial leverage, and influence
for the intersection of the two clustering dimensions, especially when the number of non-
empty intersections is not large. This means calling summclust a third time. Suppose there
are two clustering dimensions, with G clusters in the first dimension and H clusters in the
second. Then the number of intersection clusters is at most GH, but it can be smaller if some
of the intersection clusters are empty. In order to use summclust for the intersections, it is
necessary to create a new variable that uniquely identifies each of the non-empty intersection
clusters. Running summclust for this case may be expensive when the number of non-empty
intersections is large, especially if k is also large.

It is important to remember that, when summclust is invoked three times for each of
two clustering dimensions and their intersection, the CV3 standard error that it reports for
each of the three cases is based on a different pattern of one-way clustering. When two-way
clustering is appropriate, none of these standard errors is valid. However, what summclust
reports can be used to compute an asymptotically valid variance as

V̂ar2W(β̂j) = V̂arG(β̂j) + V̂arH(β̂j) − V̂arGH(β̂j). (34)

Here β̂j is the OLS estimate of a coefficient of interest, and the three estimated variances on
the right-hand side of (34) are the squares of the CV3 or CV3J standard errors reported by
summclust for clustering dimension G, clustering dimension H, and the intersection of the
two clustering dimensions, respectively.

Asymptotically, the two-way variance Var2W(β̂j) should not be less than either of the
one-way variances. Therefore, if V̂ar2W(β̂j) is less than either V̂arG(β̂j) or V̂arH(β̂j), it makes
sense to replace it by the larger of those two variance estimates. Doing this also eliminates the
risk of having to take the square root of a negative number. The appropriate t distribution
has min(G − 1, H − 1) degrees of freedom if V̂ar2W(β̂j) is used and G − 1 or H − 1 degrees
of freedom if it is replaced by either V̂arG(β̂j) or V̂arH(β̂j), respectively. We conjecture that,
especially when this is done, the two-way standard error based on either jackknife estimator
will yield more conservative, and generally more reliable, inferences than the usual two-way
standard error based on CV1.

As we discuss in Section 3, it is often invalid to partial out fixed effects when computing
a jackknife CRVE. This can be particularly tricky in the case of two-way clustering. For
example, suppose there are G states and H years. Then it may be desirable to partial out the
state fixed effects when computing V̂arG(β̂j) but invalid to partial out the year fixed effects.
Similarly, it may be desirable to partial out the year fixed effects when computing V̂arH(β̂j)
but invalid to partial out the state fixed effects. Finally, it is invalid to partial out either
set of fixed effects when computing V̂arGH(β̂j). The absorb option of summclust normally
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detects cases where partialing out is invalid and refuses to display jackknife standard errors
and several other quantities.

7 Simulation Experiments

One of the reasons for calculating leverages and partial leverages is to identify cases in which
inference may be problematical. The objective of the simulation experiments in this section
is to see whether the rejection frequencies for cluster-robust t-tests can be predicted from the
features of the X matrix reported by summclust. There are 3000 cases, each corresponding
to a particular X matrix. For each case, we generate 10,000 values of y and use them to
estimate rejection frequencies for t-tests or bootstrap tests at the .05 level.

In the experiments, there are either 20 clusters and 2000 observations or 30 clusters and
3000 observations. The cluster sizes Ng are determined by a parameter γ ≥ 0, as follows:

Ng =
[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G − 1,

where [·] denotes the integer part of its argument, and NG = N − ∑G−1
j=1 Ng. As γ increases,

the cluster sizes become increasingly unbalanced. The value of γ is chosen randomly from
the U[2, 4] distribution, so that the cluster sizes tend to vary quite a lot. When G = 20,
the smallest cluster has between 8 and 32 observations, and the largest has between 229 and
378. When G = 30, the smallest cluster has between 7 and 32 observations, and the largest
has between 237 and 396.

There are five regressors, one of which is the test regressor, plus a constant term. The
regressors equal either 0 or 1. With probability 1 − pc, all the observations in a cluster are 0.
With probability pc, they randomly equal either 0 or 1, both with probability 0.5. Thus,
when pc = 1, all variation is at the individual level, and leverage tends to be proportional to
cluster sizes. As pc declines, the samples become more unbalanced. In the experiments, the
values of pc are chosen to be 0.25, 0.30, 0.35, 0.40, 0.50, and 0.60, each for one-sixth of the
cases. Smaller values of pc tend to be associated with larger discrepancies between actual
rejection frequencies and .05, the nominal level of the tests.

For each experiment, we obtain 12,000 estimated rejection frequencies. One-quarter of
these are based on CV1 and the t(G − 1) distribution, one-quarter on CV3 and the t(G − 1)
distribution, and one-quarter on each of the WCR-C and WCR-S bootstraps. To predict
these rejection frequencies, we use a generalized additive model based on smoothing splines;
see James, Witten, Hastie, and Tibshirani (2021, Section 7.7). The base model can be

36



Figure 3: Predicted rejection frequencies for asymptotic and bootstrap tests at .05 level
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(b) WCR Bootstrap Tests

Notes: Each of the curves shows fitted values from the generalized additive model (35) that predicts observed
rejection frequencies, based on 10,000 replications, using nonlinear functions of the Vs(L•j); see the text for
details. Bootstrap rejection frequencies are based on B = 399. WCR-C is the classic restricted wild cluster
bootstrap, and WCR-S is the score variant proposed in MacKinnon, Nielsen, and Webb (2023b).

written as
ri = β0 + f1(Vsi) + f2(V 1/2

si ) + β1G
∗
i0 + ui, (35)

where ri is the rejection frequency for case i. Here Vsi denotes Vs(L•j), the scaled variance
of the partial leverages Lgj for the test regressor for case i, G∗

i0 denotes G∗
j(0) for the test

regressor for case i (recall from Section 2.3 that it is a monotonically decreasing function
of the Lgj), and f1(·) and f2(·) are smoothing splines with five degrees of freedom. Since
everything on the right-hand side of (35) is a function of Vsi, this model is simply using the
Vsi to predict the ri in a potentially nonlinear way.

Figure 3 shows the fitted values from (35), which are predicted rejection frequencies,
plotted against the scaled variance of the partial leverages Lgj for four methods of inference
and two sample sizes. Panel (a) shows them for t-tests based on both CV1 (solid lines) and
CV3 (dashed lines) for G = 20 and G = 30, and Panel (b) shows them for WCR-C and
WCR-S bootstrap tests for the same two cases. The model seems to fit quite well, at least
for the asymptotic tests, as can be seen from the values of R2 reported for each of the curves.
It also fits well for the bootstrap tests, and in fact it has smaller residuals for them than for
the asymptotic tests. The lower R2 values for the bootstrap tests simply reflect the fact that
there is much less variation to explain.

We can see from Figure 3 that t-tests based on CV1 often over-reject to an extreme
degree. For the very smallest values of Vs(L•j), the tests tend to over-reject modestly, with
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predicted rejection frequencies of 0.058 for G = 20 and 0.055 for G = 30. However, these
then rise quite rapidly and almost linearly. For G = 30, there are four cases (out of 3000)
for which Vs(L•j) > 15. These are not shown in the figure, but the approximately linear
relationship continues to hold, and the fit for these extreme cases is reasonably good.

In contrast, the t-tests based on CV3 tend to under-reject for small values of Vs(L•j).
For the very smallest values, the predicted rejection frequencies are 0.033 for G = 20 and
0.039 for G = 30. Although it is not obvious from the figure, the CV3 tests are predicted to
under-reject somewhat more than half the time, because, in our experiments, most values
of Vs(L•j) are quite small. As Vs(L•j) increases, rejection frequencies increase, although for
G = 20 they start to decline again once Vs(L•j) exceeds about 9.6. The predicted rejection
frequencies never exceed 0.105 for G = 20 and 0.118 for G = 30. In a few cases (74 for
G = 20 and 5 for G = 30), the matrix that is inverted in (9) was singular for at least one
omit-one-cluster subsample. This happened whenever one of the regressors took the same
value for all observations in G − 1 of the clusters. These cases were dropped.

Panel (b) of Figure 3 shows the fitted values from (35) for WCR-C and WCR-S bootstrap
t-tests plotted against the scaled variance of the Lgj. Notice that the scale of the vertical
axis differs greatly from the one in Panel (a). All tests, especially the WCR-S ones, perform
quite well for smaller values of Vs(L•j). Except for WCR-S with G = 30, however, the
rejection-frequency curves are not even close to being linear. This is also the only case for
which the fitted values do not deviate greatly from 0.05 for large values of Vs(L•j). In every
other case, a large value of Vs(L•j) tends to be associated with substantial levels of over-
rejection or under-rejection.

It is natural to ask whether we can improve the fit of (35) by adding additional explana-
tory variables that are not simply functions of the Vs(L•j). The answer is that we can. In
particular, the variables āgeo(L•j) and G∗

j(1) are often significant when they are added. How-
ever, the spline f1(Vsi) always remains highly significant, even when many other regressors
are included. Thus, at least in these experiments, the scaled variance of the partial lever-
ages, which is the square of their coefficient of variation, seems to be particularly revealing.

Based on these results, which are of course extremely dependent on the way in which the
regressors are generated, it seems sensible for investigators to look at a number of different
summary measures for both leverage and partial leverage. That is why summclust reports
several of them. In this case, the most informative summary measure appears to be the
scaled variance, defined in (13), of the partial leverage measures Lgj, defined in (7), for the
regressor of interest. summclust reports the square root of this in the “Coefvar” line of the
“Cluster Variability” table. In general, cluster-robust inference seems to be most reliable
when the partial leverages do not vary greatly across clusters.
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8 Conclusions

We have discussed a new Stata package called summclust that is designed to summarize
the cluster structure of the dataset for a linear regression model with clustered disturbances.
Since the key unit of observation is the cluster, it makes sense to examine measures of
influence, leverage, and partial leverage at the cluster level. These are easy to compute
and are conceptually very similar to the corresponding classic measures at the observation
level (Belsley, Kuh, and Welsch 1980; Chatterjee and Hadi 1986). The summclust package
calculates all of them and also reports a number of summary statistics.

Our measure of influence at the cluster level can provide valuable information about how
empirical results depend on the data in the various clusters. Investigators should be wary
if dropping one or two clusters changes the results dramatically. However, apart from such
cases, the most interesting quantities that summclust calculates generally seem to be the
partial leverages and measures that summarize their distribution.

It has long been known that cluster-robust inference can be unreliable when the number
of clusters is small. More recent work, including MacKinnon and Webb (2017a, 2018) and
Djogbenou, MacKinnon, and Nielsen (2019), has shown that it can also be severely unreliable
when cluster sizes vary a lot or when few clusters are treated in the context of difference-in-
differences and other treatment models. In both of these cases, leverage and partial leverage
tend to vary greatly across clusters. It therefore seems natural to use our measures of leverage
and partial leverage as diagnostic tools to identify datasets and regression designs in which
cluster-robust inference is likely to be challenging. Simulation results in Section 7 suggest
that the extent to which partial leverage varies across clusters can be particularly informative.
We believe that investigators should always look at the summary statistics reported by
summclust and exercise caution whenever they indicate substantial variation across clusters.

As we discuss in Section 2.2, the computations needed for leverage and influence are very
similar to the ones needed to compute cluster jackknife variance matrix estimators. The
summclust package therefore computes two very similar jackknife estimators, which we refer
to as CV3 and CV3J, almost as a byproduct of other computations. These are the same
estimators that Stata can produce using the vce(jackknife,mse) and vce(jackknife)
options. However, because summclust is designed explicitly for linear regression models
estimated by OLS, it is faster than using these vce options. Moreover, when summclust is
already being used to obtain cluster-level measures of influence and leverage for diagnostic
purposes, the additional cost of computing the jackknife variance estimators is minimal.

When the number of clusters is reasonably large and the variation of leverage and partial
leverage across clusters is small, we would expect conventional inference based on CV1 stan-
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dard errors to perform well. If so, the CV3 standard errors reported by summclust should
be very similar to the CV1 standard errors reported by one of Stata’s regression commands.
When this is the case, there is probably no need for investigators to worry further about the
reliability of their inferences. In many cases, however, the CV3 and CV1 standard errors will
differ noticeably. This happens for the empirical example in Section 4, where there are 72
clusters but partial leverage varies a lot. In such cases, the CV3 standard errors are almost
certain to be more conservative, and very likely to be more reliable, than the CV1 ones.

P values and confidence intervals that are even more reliable can often be obtained by us-
ing the restricted wild cluster bootstrap, which is implemented natively with wildbootstrap
in Stata 18 and in the package boottest (Roodman, MacKinnon, Nielsen, and Webb 2019).
Recent versions of that package implement the WCR-S bootstrap (MacKinnon, Nielsen, and
Webb 2023b) in addition to the classic WCR-C bootstrap. We strongly recommend that
both variants be calculated whenever the CV3 and CV1 standard errors disagree. When the
two bootstrap P values agree, as they do for the empirical example in Section 4, then it is
probably safe to rely on either of them. When they disagree, then neither of them may be
entirely reliable, but we would be inclined to use the one given by the WCR-S bootstrap.

Up to this point, everything in this section has been based on the assumption that
there is one-way clustering with a known clustering structure. When more than one level of
clustering is plausible, investigators need to choose among them, and this can be challenging;
see the discussions in MacKinnon, Nielsen, and Webb (2023a, c). The measures of leverage
and influence produced by summclust may be helpful in deciding at what level to cluster.

The current version of summclust is not explicitly designed to handle two-way clustering.
However, as we discuss in Section 6, it can be called for each clustering dimension so as to
produce two sets of diagnostic statistics. If it is called three times, once for each dimension
and once for their intersection, then it can also be used to compute two-way cluster jackknife
variance matrix estimators. At present, however, little is known about the properties of
these estimators.

Software Installation

To install the software files as they exist at the time of publication of this article, type

. net sj 23-4

. net install st00!! (to install program files, if available)

. net get st00!! (to install ancillary files, if available)
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The command summclust can be installed from the Statistical Software Components
archive by typing

. ssc install summclust

or from GitHub by typing

net install summclust, ///
from("https://raw.githubusercontent.com/mattdwebb/summclust/main/")
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