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Abstract 

 This paper provides the tools and procedures for empirically implementing several 

dominance criteria for social welfare comparisons and broad income inequality comparisons. 

Dominance criteria are expressed in terms of vectors of quantile ordinates based on income 

shares or quantile means. Statistical properties of these sample ordinates are established that 

allow a framework for statistical inference on these vectors. And practical empirical criteria are 

forwarded for using formal statistical inference tests to reach conclusions about ranking social 

welfare and inequality between distributions. Examples include rank dominance, generalized 

Lorenz dominance, dominance with crossing Lorenz curves, and distributional distance 

dominance between income groups. 
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1.   Introduction 

In a time when rising wages coincide with increased inequality it is reasonable to ask 

whether people as a whole are better or worse off? But to answer such a question, one needs an 

empirical criterion for “better off” or for economic well-being. Similarly, recent focus on issues 

such as “common prosperity” (The Economist, 2021a,b), “equitable growth” (Drummond, 2021), 

“fairness in growth” (Lohr, 2022), and “quality of life” (Department of Finance Canada, 2021) 

further enhances the need for such an empirically implementable criterion. Again, will 

government policies focussed on helping the so-called Middle Class (Wright, 2021) or reducing 

income inequality benefit overall economic well-being? An empirically implementable criterion 

could also allow one to quantify how economic well-being has varied over time for a given 

economy or region or to formally test for statistically significant differences in the criterion 

between countries such as Canada and the United States. The present paper offers an empirical 

approach to evaluating changes or differences in economic well-being in an easily 

implementable framework of statistical inference based on disaggregative distributional 

statistics. This approach could also be part of a burgeoning interest in the broad endeavour of 

distributional National Accounts (see, for example, Alvaredo et al., 2018, 2020, and Zucman et 

al., 2018). 

More specifically, the paper applies the technical developments in Beach (2021a,b) 

which establish a statistical inference framework for a toolbox of disaggregative inequality 

measures in order to forward an empirically implementable set of rules or a “practical empirical 

criterion” (PEC) for establishing when economic welfare has changed statistically significantly. 

The paper applies this inference approach and PEC to several dominance rules (including rank 

dominance, Lorenz dominance, and generalized Lorenz dominance) provided in the theoretical 
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welfare literature. In so doing, it extends the set of toolbox measures of income inequality, 

develops a distributional distance function concept, and provides explicit formulas for 

distribution-free standard errors of Lorenz curve ordinates and related measures. 

The main contributions of the paper are thus: (i) showing how to empirically implement 

several welfare dominance criteria in terms of vectors of quantile-based distributional statistics; 

(ii) presenting formulas for (distribution-free) asymptotic variances and covariances – and hence 

standard errors – of these distributional statistics; (iii) forwarding a practical empirical criterion, 

or PEC, for establishing the stochastic dominance of one vector of distributional statistics over 

another; and (iv) developing a new distributional distance vector construct that can also be used 

in empirical dominance analysis. The proposed empirical inference framework can thus be used 

to help analyze, say, the distributional and economic welfare consequences of macroeconomic 

events or policies, or of demographic changes such as the oncoming avalanche of Baby Boomer 

retirements (perhaps hastened by the covid pandemic), or more generally to empirically test for 

first- and second-order stochastic dominance situations in a formal statistical inference 

framework. 

The paper is organized as follows. The next section sets out the quantile function 

approach developed in previous work by the author (Beach 2021a,b) and that serves as the basis 

for the statistical inference framework of the present analysis. Asymptotic variance and standard 

error results are presented for quantile-based estimates of sets of quantile means and income 

shares – such as typically provided by Statistics Canada or the United States Bureau of the 

Census – used to distributionally characterize a distribution of income. Section 3 outlines the 

normative perspective to evaluating changes in social welfare and inequality. Then Section 4 

applies the above empirical framework to testing for rank dominance between distributions. 
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Since each distribution is characterized by a vector of disaggregative distributional statistics, the 

comparison of two vectors involves setting out a practical empirical criterion (or PEC) for the 

statistical ranking of vectors of quantile mean random variables. Section 5 and 6 then apply this 

empirical framework to Lorenz dominance and generalized Lorenz dominance between 

distributions with appropriate PECs forwarded for each. Section 7 shows how one can 

decompose social welfare into efficiency and equity contribution components and develops a 

PEC for the equity component as well. Section 8 and 9 consider how to address inequality 

dominance when the Lorenz curves of two distributions cross one or more times. And Section 10 

applies the PEC approach to comparing vectors of “distributional distance” characterizing two 

income distributions. Then Section 11 concludes with some implications of the paper’s analysis. 

 

 

2. Quantile Function Approach Basic Results 

2.1 Empirical Framework of Analysis 

 Empirical measures of economic well-being and inequality are built up from 

disaggregative statistics on percentile mean income levels and percentile income shares. 

Percentile statistics are those that are expressed in terms of given percentage groups of the 

ranked or ordered observations in a microdata sample. In the case of income distribution 

statistics, the data observations in a sample are ordered by income from the lowest income 

observation to the highest income observation. The ordered observations are then divided into 

non-overlapping income groups, say, in terms of ten deciles (or generically referred to as 

quantile income groups or simply quantiles). So the first decile group consists of those 

observations with the 10 percent lowest income levels, the second decile group consists of the 
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next 10 percent lowest income recipients, and so on up to the top or tenth decile income group 

which includes those 10 percent of income recipients with the highest income levels in the 

sample. The standard Lorenz curve of (cumulated) income shares, for example, is based around 

such percentile groups, and quantile mean income levels can also be calculated for each of the 

percentile groups. 

 The key feature of such percentile statistics is that the relative sizes of the percentile 

groups are given percentages of the sample or distribution. Quantile means and quantile income 

share are two examples of what can be referred to as toolbox measures (Beach, 2021a) of 

characterizing the disaggregative structure of an income distribution. Both Statistics Canada and 

the U.S. Bureau of the Census publish annual series on both decile (and quintile) income shares 

and decile/quintile mean income levels. The empirical analysis of this paper focuses on quantile 

statistics as a way to characterize the detailed structure of distribution because, as shown in 

sections 2.3 and 2.4 below, statistical inference calculations based on them turn out to have an 

especially straightforward and convenient form. 

 

2.2 The Quantile Function Approach to Statistical Inference  

 The income share and quantile mean statistics are calculated from sample survey data, 

and hence can be viewed as sample estimates of their corresponding features in the (unobserved) 

overall underlying income distribution. They can thus be viewed as random variables with 

associated sampling distributions. What we want to do is to figure out what one can say about 

these sampling distributions, so that one can undertake formal statistical inference on these 

estimated measures. The so-called quantile function approach is a way to address this problem 

(Beach, 2021a,b). 
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 Consider first some formal concepts and notation. Suppose the distribution of income Y, 

is divided into K ordered income groups, so that K = 10 in the case of deciles and K = 5 for 

quintiles. Let the dividing proportions of recipients be 𝑝1  <  𝑝2  < ⋯  <  𝑝𝐾−1 (with 𝑝0 = 0 and 𝑝𝐾 = 1.0).1 Then in terms of the underlying (population) density of income recipients, the mean 

income of the i’th quantile is given by 

 µ𝑖 = ∫ 𝑦 𝑓(𝑦)𝑑𝑦 /𝜉𝑖𝜉𝑖−1   ∫ 𝑓(𝑦)𝑑𝑦 𝜉𝑖𝜉𝑖−1   for i = 1, …, K    (1) 

where 𝑓(•) is the underlying population density function and the  𝜉𝑖’s are the cut-off income 

levels corresponding to the proportions 𝑝1, 𝑝2, … , 𝑝𝐾−1 (with 𝜉0 =  0). Since the income group 

proportions are given for percentile statistics, the denominator in (1) is given by  

 𝐷𝑖 = 𝑝𝑖 − 𝑝𝑖−1 ,  so that 

 µ𝑖 = ( 1𝐷𝑖)∫ 𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑖𝜉𝑖−1  .        (2) 

This integral expression – what we’ll refer to as a quantile function – links the quantile 

mean µ𝑖 to the quantile cut-offs 𝜉𝑖  , 𝜉𝑖−1 . It turns out that a powerful theorem by C.R. Rao 

(1965) says that, if we know the asymptotic distribution of the sample estimates 𝜉𝑖 and 𝜉𝑖−1 as 

asymptotically joint normal and if, in the population, µ𝑖 can be expressed as a continuous and 

differentiable function of 𝜉𝑖 and 𝜉𝑖−1 , then the sample estimate µ̂𝑖 will also be asymptotically 

normally distributed with (asymptotic) mean µ𝑖 and (asymptotic) variance that can be easily 

calculated in terms of first derivatives of expression (2). We will refer to this as Rao’s linkage 

theorem. Since the asymptotic distribution of the sample cut-offs 𝜉𝑖’s has long been well 

established, this theorem provides the basis of the quantile function approach (or QFA) used in 

                                                           

1 We assume in what follows that the data samples used are random samples. If the survey records are 
indeed weighted, the formulas can be readily adjusted by replacing sums of observations by sums of the 
sample weighted observations. 
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Beach (2021a,b) and the present paper. The basic idea is to express the various percentile 

distributional measures in terms of integral functions of the income cut-offs (the 𝜉𝑖’s) and then 

invoke Rao’s linkage theorem to establish asymptotic normality and expressions for the sample 

measures’ asymptotic variances. Standard errors, then, are simply obtained from these estimated 

(asymptotic) variances rescaled by the size of the estimation sample: 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/2
 

where N is the sample size of the estimation sample. 

 Now, in general one would expect the (asymptotic) variances to depend on the specific 

functional form of the underlying income distribution’s density 𝑓(•). Certainly the (asymptotic) 

variance-covariance structure of the 𝜉𝑖’s does. But – as will be shown in the next two subsections 

– perhaps surprisingly, the resulting (asymptotic) variances and standard errors of the percentile-

based distributional measures are a special case that do not depend upon the specific functional 

form of 𝑓(•). In this sense, they are said to be distribution-free, and hence very straightforward 

to calculate. Taking a quantile function approach thus allows one to avoid having to estimate 

assumed underlying population density function forms (such as the lognormal in Beach, 2021a) 

or to undertake burdensome bootstrapping estimation techniques for density ordinate evaluation 

(as in Davidson, 2018). 

 

2.3 Application of the QFA to Quantile Means 

 The starting point is to establish the asymptotic distribution and its variance-covariance 

structure for the full set of sample quantile income cut-off levels. Suppose that the income 

distribution is divided into K ordered income groups corresponding to the cumulative proportions 0 < 𝑝1  <  𝑝2  < ⋯  <  𝑝𝐾 = 1 and the quantile cut-offs   𝜉1, 𝜉2 , … 𝜉𝐾−1. Let 𝜉 =
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 (𝜉1,  𝜉̂2 , … 𝜉𝐾−1)′
 be a vector of K-1 sample quantile cut-offs2 from a random sample of size N 

drawn from a continuous population density 𝑓(•) such that the 𝜉𝑖’s are uniquely defined and 𝑓𝑖  ≡ 𝑓(𝜉𝑖)  > 0 for all i = 1, …, K-1. Then it can be proved (see, for example, Wilks (1962), p. 

273, or Kendall and Stuart (1969, pp. 237-239)) that the vector √𝑁 (𝜉 −  𝜉) converges in 

distribution to a (K-1)-variate normal distribution with mean zero and variance-covariance 

matrix 𝚲 where  

𝛬 =  [   
 𝑝1(1−𝑝1)𝑓12 ⋯ 𝑝1(1−𝑝𝐾−1)𝑓1𝑓𝐾−1⋮ ⋮𝑝1(1−𝑝𝐾−1)𝑓1𝑓𝐾−1 ⋯ 𝑝𝐾−1(1−𝑝𝐾−1)𝑓𝐾−12 ]   

 =  [ 𝜆11 ⋯ 𝜆1,𝐾−1⋮ ⋮𝜆1,𝐾−1 ⋯ 𝜆𝐾−1,𝐾−1] =  [𝜆𝑖𝑗] . (3) 

Note how the (asymptotic) variances and covariances explicitly depend on the specific functional 

form of  𝑓(•) in the denominators of the 𝜆𝑖𝑗’s. 

 Then applying a multivariate version of Rao’s linkage theorem (Rao, 1965, p. 388), 

consider the full set of K sample quantile means 𝑚̂ =  (µ̂1, µ̂2, … , µ̂𝐾)′ corresponding to the 

vector of population quantile means 𝑚 = (µ1, µ2 , … , µ𝐾)′ where µ𝑖 is defined in eq. (2). In the 

case of deciles, K = 10 and 𝐷𝑖 = 0.10. Then according to Rao’s theorem for continuous 

differentiable functions, the vector  𝑚̂ is asymptotically joint normally distributed in that √𝑁(𝑚̂ − 𝑚) converges in distribution to a joint normal with KxK (asymptotic) variance-

covariance matrix V where 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑚̂) ≡ 𝑉 = 𝐺 𝛬 𝐺′         (4a) 

and the K x (K-1) matrix G is  

                                                           

2 To estimate the sample quantile cut-offs, order the sample of N observations by income level. Then, in 

the case of deciles, 𝜉𝑖 is that income level such that 𝑝𝑖N observations lie below it and the rest above. If 
there is no single observation meeting this condition, simply take the average of the two adjacent 
observations (below and above) that are closest. 
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 𝐺 = [𝑔11 ⋯ 𝑔1,𝐾−1⋮ ⋮𝑔𝐾,1 ⋯ 𝑔𝐾,𝐾−1] =  [𝑔𝑖𝑗] 
     =  [𝜕µ𝑖𝜕𝜉𝑗] with i = 1, …, K rows 

   and j = 1, …, K-1 columns.      (4b) 

For convenience, rewrite eq. (2) as 

 µ𝑖 = ( 1𝐷𝑖)  •  𝑁𝑖(𝜉𝑖, 𝜉𝑖−1) for i = 1, …, K , 

where  𝑁𝑖 is an explicit function of 𝜉𝑖 and 𝜉𝑖−1 in the numerator of the expression for µ𝑖 . 
 In deriving the components of [𝑔𝑖𝑗] , let us illustrate with the case of decile income 

groups. Then it can be worked out that  

 𝑔11 = 𝜕µ1𝜕𝜉1 = 10 𝜕𝑁1𝜕𝜉1  = 10 𝜉1  •  𝑓(𝜉1)   
  𝑔1𝑗 = 𝜕µ1𝜕𝜉𝑗 = 10 𝜕𝑁1𝜕𝜉𝑗  = 0  for j = 2, …, K-1 . 

 𝑔21 = 𝜕µ2𝜕𝜉1 = 10 𝜕𝑁2𝜕𝜉1  = 10 (−𝜉1)  •  𝑓(𝜉1)   
 𝑔22 = 𝜕µ2𝜕𝜉2 = 10 𝜕𝑁2𝜕𝜉2  = 10 𝜉2  •  𝑓(𝜉2)   

𝑔2𝑗 = 𝜕µ2𝜕𝜉𝑗 = 10 𝜕𝑁2𝜕𝜉𝑗  = 0  for j =3, …, K-1 . 

 𝑔𝐾𝑗 = 𝜕µ𝐾𝜕𝜉𝑗 = 10 𝜕𝑁𝐾𝜕𝜉𝑗  = 0  for j = 1, …, K-2 . 

 𝑔𝐾,𝐾−1 = 𝜕µ𝐾𝜕𝜉𝐾−1 = 10 𝜕𝑁𝐾𝜕𝜉𝐾−1  = 10 (−𝜉𝐾−1)  •  𝑓(𝜉𝐾−1).  
As a result, the G matrix is the banded diagonal-type matrix: 

 𝐺 = [
10 𝜉1 • 𝑓(𝜉1) 0 0 0 ⋯−10 𝜉1 • 𝑓(𝜉1) 10 𝜉2 • 𝑓(𝜉2) 0 0 ⋯0 −10 𝜉2 • 𝑓(𝜉2) 10 𝜉3 • 𝑓(𝜉3) 0 ⋯⋮ 0 −10 𝜉3 • 𝑓(𝜉3) 10 𝜉4 • 𝑓(𝜉4) ⋯⋮ ⋮ ⋮ ⋮0 0 0 0 ⋯
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⋯ 0 0⋯ 0 0⋮ ⋮⋯ 0 0⋯ −10 𝜉8 • 𝑓(𝜉8) 10 𝜉9 • 𝑓(𝜉9)⋯ 0 −10 𝜉9 • 𝑓(𝜉9)
] .     (5) 

 The (asymptotic) variances, then, are gotten by multiplying the corresponding row of G 

and column of 𝐺′ (i.e., row of G) by the appropriate diagonal element of the variance-covariance 

matrix  . So 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1) = 𝐺(𝑟𝑜𝑤 1) • Λ •  𝐺(𝑟𝑜𝑤 1)′ 
   =  (10)2 𝜉12  • 𝑓(𝜉1)2  •  [𝑝1(1−𝑝1)𝑓(𝜉1)2 ]  
   =  (10)2 𝑝1(1 − 𝑝1) 𝜉12  .      (6a) 

Similarly, 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂10) = 𝐺(𝑟𝑜𝑤 10) • 𝛬 •  𝐺(𝑟𝑜𝑤 10)′ 
   =  (10)2 𝜉92  • 𝑓(𝜉9)2  •  [𝑝9(1−𝑝9)𝑓(𝜉9)2 ]  
   =  (10)2 𝑝9(1 − 𝑝9) 𝜉92  .      (6b) 

And for i = 2, …, 9 , 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) = 𝐺(𝑟𝑜𝑤 𝑖) • 𝛬 •  𝐺(𝑟𝑜𝑤 𝑖)′ 
   =  (10)2 [𝑝𝑖−1(1 − 𝑝𝑖−1)𝜉𝑖−12 + 𝑝𝑖(1 − 𝑝𝑖) 𝜉𝑖2         

     − 2 𝑝𝑖−1(1 − 𝑝𝑖)𝜉𝑖−1 𝜉𝑖]  .    (6c) 

More generally, then,  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1) =  ( 1𝐷1)2  𝑝1(1 − 𝑝1) 𝜉12 , 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐾) =  ( 1𝐷𝐾)2  𝑝𝐾−1(1 − 𝑝𝐾−1) 𝜉𝐾−12  ; 

and for i = 2, …, K-1 , 
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 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) =  ( 1𝐷𝑖−1)2  𝑝𝑖−1(1 − 𝑝𝑖−1)𝜉𝑖−12 + ( 1𝐷𝑖)2  𝑝𝑖(1 − 𝑝𝑖)𝜉𝑖2  
− 2 ( 1𝐷𝑖−1) ( 1𝐷𝑖) 𝑝𝑖−1(1 − 𝑝𝑖)𝜉𝑖−1 𝜉𝑖 .    (7) 

If the proportional size of each income group is the same, so that 𝐷𝑖 = (1𝐾) for all i = 1, …, K, 

then 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1) =  𝐾2 𝑝1(1 − 𝑝1) 𝜉12         (8a)  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐾) =  𝐾2 𝑝𝐾−1(1 − 𝑝𝐾−1) 𝜉𝐾−12        (8b) 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) =  𝐾2 [𝑝𝑖−1(1 − 𝑝𝑖−1)𝜉𝑖−12 + 𝑝𝑖(1 − 𝑝𝑖)𝜉𝑖2  − 2 𝑝𝑖−1(1 − 𝑝𝑖)𝜉𝑖−1 𝜉𝑖]      (8c) 

for i = 2, …, K-1. 

 These results on the (asymptotic) variances, then, are sufficient to determine the standard 

errors of the quantile mean estimates. Since the formulas in eqs. (6)-(8) involve unknown 

population parameters, one obtains estimated (asymptotic) variances by replacing all the 

unknown parameters by their consistent estimates. So, for example, in (6a), 

 𝐴𝑠𝑦.̂ 𝑣𝑎𝑟(µ̂1) = (10)2 𝑝1(1 − 𝑝1) 𝜉12  

where 𝜉1 is replaced by its standard sample estimate. Rao (1965, p. 355) has also shown that if 𝑓(•) is strictly positive, then the 𝜉𝑖′s are indeed (strongly) consistent. The resulting standard 

error for µ̂1 is then gotten by adjusting for the sample size of the estimation sample: 

 𝑆. 𝐸. (µ̂1) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂1)𝑁 ]1/2 . 
Or more generally, 

 𝑆. 𝐸. (µ̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖)𝑁 ]1/2         (9) 

for all i = 1, …, K . 
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 Note as well that the asymptotic variances and standard errors of the quantile means for 

given percentile groups are distribution-free. This is because of the way that the 𝑓(𝜉𝑖) terms all 

cancel out in the derivation in the case of percentile measures. The formulas in eqs. (6)-(9) are 

thus very straightforward and easy to calculate. 

 One can apply these results to look at differences in individual quantile means between 

different population groups – such as quantile mean earnings differences between male and 

female workers in the labour market – and at changes in separate quantile means between time 

periods. So long as the estimates being compared are from independent samples, the variance of 

the difference in sample estimates is simply the sum of the separate variances, and the standard 

error of the difference is given by 

 𝑆. 𝐸. (µ̂𝑖𝑏 − µ̂𝑖𝑎) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖𝑏)𝑁𝑏 + 𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖𝑎)𝑁𝑎 ]1/2
      (10) 

where superscripts a and b refer to the two separate sample estimates. A quantile analysis thus 

allows for potentially quite detailed disaggregative examination of differences between 

distributions. And the range of toolbox measures available furthers the perspective and flexibility 

of such examinations. 

 Indeed, one could express these differences in relative or percentage terms – or what The 

Economist (2021c, p. 24) refers to as Piketty lines of different growth rates of quantile means 

across the different regions of the income distribution. In this case, it is shown in Beach (2021b, 

p. 15) that, if 

 𝑞̂𝑖 =  (µ̂𝑖𝑏 − µ̂𝑖𝑎)/ µ̂𝑖𝑎 =  (µ̂𝑖𝑏µ̂𝑖𝑎) − 1 , 
then approximately 

 𝑉𝑎̂𝑟(𝑞̂𝑖) =  ( −µ̂𝑖𝑏(µ̂𝑖𝑎)2)2 •   𝑉𝑎̂𝑟(µ𝑖𝑎) + ( 1µ̂𝑖𝑎)2  •  𝑉𝑎̂𝑟(µ̂𝑖𝑏)  
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     = ( −µ̂𝑖𝑏(µ̂𝑖𝑎)2)2  •  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(µ̂𝑖𝑎)𝑁𝑎 ] + ( 1µ̂𝑖𝑎)2  •  [𝐴𝑠𝑦.𝑣𝑎𝑟(µ̂𝑖𝑏)𝑁𝑏 ]    (11) 

and again 

 𝑆. 𝐸. (𝑞̂𝑖) =  [𝑉𝑎̂𝑟(𝑞̂𝑖)]1/2. 

Again, the standard error estimates are distribution-free. 

It would thus be helpful to users of official decile and quintile mean statistics from 

government statistical agencies if these agencies provided the actual sample sizes (i.e., the N in 

the denominator of (9)) that their survey estimates are based on, and not just the overall survey 

sample size. 

 

2.4 Application of the QFA to Incomes Shares 

 The income share of the i’th income group can be expressed as 

 𝐼𝑆𝑖  ≡  ∫ (1µ)𝑅𝑖  𝑦𝑓(𝑦)𝑑𝑦   for i = 1, …, K,     (12a) 

with integration over the region 𝑅𝑖 running from 𝜉𝑖−1 to 𝜉𝑖 , and µ is the mean of the overall 

(population) distribution of income. The integral in (12a) can, for future notational convenience, 

be written as 

 𝐼𝑆𝑖 = 𝑁𝑖(𝜉𝑖−1, 𝜉𝑖, µ) =   ∫ (1µ) 𝜉𝑖𝜉𝑖−1  𝑦𝑓(𝑦)𝑑𝑦 .      (12b) 

It can be seen that estimates of 𝐼𝑆𝑖 or 𝑁𝑖 involve estimates of two sets of parameters – the range 

of integration cut-off 𝜉𝑖−1 and 𝜉𝑖 and the overall population mean µ . To take account of this, we 

make use of a useful paper by Lin, Wu and Ahmad (1980) (henceforth LWA). LWA establish 

that, under general regularity conditions, 𝜉𝑖 , 𝜉𝑖−1,  and µ̂ are asymptotically joint normally 

distributed with (asymptotic) variance-covariance matrix 

 Ʃ =  [𝜎𝑖𝑗]           (13) 
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where 𝜎11 = 𝑝𝑖−1(1−𝑝𝑖−1)[𝑓(𝜉𝑖−1)]2  ,      𝜎22 = 𝑝𝑖(1−𝑝𝑖)[𝑓(𝜉𝑖)]2  , 𝜎33 = 𝜎2 

 𝜎12 = 𝑝𝑖−1(1−𝑝𝑖)𝑓(𝜉𝑖−1)𝑓(𝜉𝑖) = 𝜎21          

 𝜎13 = 𝜉𝑖−1− µ(1−𝑝𝑖−1)𝑓(𝜉𝑖−1) = 𝜎31 

and 𝜎23 = 𝜉𝑖− µ(1−𝑝𝑖)𝑓(𝜉𝑖) = 𝜎32 , 

where 𝜎2 is the variance of the overall (population) distribution of income. 

 One can now combine this set of LWA result with Rao’s linkage theorem. So, if  𝜉𝑖−1, 𝜉𝑖 
and µ̂ are asymptotically joint normal with (asymptotic) variance-covariance matrix Ʃ above, 

then the (asymptotic) variance of 𝐼𝑆̂𝑖 is given by 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝐺′ Ʃ 𝐺        (14) 

where  

 𝐺 =  [ 𝜕𝑁𝑖𝜕𝜉𝑖−1 , 𝜕𝑁𝑖𝜕𝜉𝑖 , 𝜕𝑁𝑖𝜕µ ]′ = [𝑔1, 𝑔2, 𝑔3]′ . 
So in the case of i = 1: 

 𝑔1 = 0 

 𝑔2 = (1µ) 𝜉1𝑓(𝜉1) 

  𝑔3 = −𝑁1µ = −𝐼𝑆1µ  , 

and   

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂1) = 𝑔22 𝜎22 + 𝑔32 𝜎33 + 2𝑔2𝑔3𝜎23    

  = (𝜉1µ )2 𝑝1(1 − 𝑝1) + (𝐼𝑆1µ )2  𝜎2 − 2 (𝜉1µ ) (𝐼𝑆1µ ) [𝜉1 −  µ(1 − 𝑝1)] . (15) 

 

  In the case of i = 10: 
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 𝑔1 = −(1µ) 𝜉9  • 𝑓(𝜉9) 

 𝑔2 =  0 

  𝑔3 = −𝑁10µ = −𝐼𝑆10µ  , 

so 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂10) = 𝑔12 𝜎11 + 𝑔32 𝜎33 + 2𝑔1𝑔3𝜎13  
  = (𝜉9µ )2 𝑝9(1 − 𝑝9) + (𝐼𝑆10µ )2  𝜎2 + 2 (𝜉9µ ) (𝐼𝑆10µ ) [𝜉9 −  µ(1 − 𝑝9)] . (16) 

And in the case of i = 2, …, 9: 

 𝑔1 = −(1µ) 𝜉𝑖−1  • 𝑓(𝜉𝑖−1) 

 𝑔2 = (1µ) 𝜉𝑖  • 𝑓(𝜉𝑖) 

and  𝑔3 = −(1µ) 𝐼𝑆𝑖 . 
Therefore, 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖) =  𝐺′ Ʃ 𝐺 

        = (𝜉𝑖−1µ )2  𝑝𝑖−1(1 − 𝑝𝑖−1) + (𝜉𝑖µ)2  𝑝𝑖(1 − 𝑝𝑖) + (𝐼𝑆𝑖µ )2 𝜎2 

  − 2 (𝜉𝑖−1µ ) (𝜉𝑖µ) 𝑝𝑖−1(1 − 𝑝𝑖)  
+ 2 (𝜉𝑖−1µ ) (𝐼𝑆𝑖µ ) [𝜉𝑖−1 −  µ(1 − 𝑝𝑖−1)]     (17) 

 − 2 (𝜉𝑖µ) (𝐼𝑆𝑖µ ) [𝜉𝑖 −  µ(1 − 𝑝𝑖)] . 
The standard error of the i’th quantile income share is thus given by 

 𝑆. 𝐸. (𝐼𝑆̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝐼𝑆̂𝑖)𝑁 ]1/2
 . 

Note, incidentally, that just as 𝐼𝑆𝑖 is a ratio and hence units-free, so also is each term of its 

(asymptotic) variance and hence its standard error. The effect of randomness operating through µ̂ 
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operates through the third term (corresponding to the simple variance of µ̂) and the last two terms 

(corresponding to µ̂’s covariance with 𝜉𝑖−1 and 𝜉𝑖 , respectively). 

 And, again, the standard error formulas for income shares are also distribution-free, and 

conventional statistical inference can be undertaken in straightforward fashion. 

 Note that the formulas in equations (15)-(17) include 𝜎2, so that implementation of these 

formulas requires an estimate of the variance (or standard deviation) for the sample used to 

calculate the terms in (15)-(17). So again it would be helpful to users of quantile income share 

statistics from official statistical agencies if these agencies provided the estimated standard 

deviations for the actual samples that the survey estimates are based on, and not just the 

estimated sample means. 

 Quantile means and income shares serve as the basis for operationally implementing the 

evaluation of changes in social welfare and income inequality. 

 

 

3. A Normative Perspective for Evaluating Changes in Social Welfare and 

Inequality 

 The traditional way of measuring income inequality in an income distribution is in terms 

of some summary or aggregate measure of inequality such as the Gini coefficient (G), coefficient 

of variation (C), relative mean (absolute) deviation (M), or the standard deviation of the logs of 

income (L). But such measures are subject to two basic criticisms. First is the aggregation 

problem: various summary measures aggregate income differences in different ways, so that 

different measures can give different results when comparing two distributions. One way 
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(partially) to address this is to identify several desirable properties we may want such summary 

measures to satisfy. These could include, for example: 

i)   Symmetry (or Anonymity) – An inequality measure depends only on incomes in a 

distribution and not on who has which incomes; 

 ii)  Mean Independence – An inequality measure is invariant to proportional changes (e.g., 

doubling) of all incomes (i.e., it is a relative measure of inequality); 

 iii)  Population Homogeneity – An inequality measure is invariant to replication of the 

population (e.g., doubling the number of persons in the distribution while keeping the shape of 

the distribution the same); 

iv)  Principle of Transfers – Any transfer of $x from a richer person to a poorer person so that 𝑦𝑖 + 𝑥 < 𝑦𝑗 − 𝑥 if initially 𝑦𝑖 < 𝑦𝑗 should reduce inequality; 

v)  Transfer Sensitivity – A transfer of $x such as envisioned in (iv) should reduce inequality 

more if it occurs among a lower-income pair of individuals than if it occurs among a higher-

income pair of individuals. This is obviously a stronger form of the Principle of Transfers. 

It turns out that, (i), (ii) and (iii) are satisfied by all the above four inequality measures, but (iv) is 

satisfied only by C and G, and (v) is not satisfied by any of them. 

 Alternatively, another way to address the aggregation problem is to rely on a 

disaggregative measure of inequality such as a Lorenz curve. A problem here, though, is that two 

Lorenz curves being compared often, if not typically, cross, so a clear comparison is not 

straightforward. 

 The second basic criterion of conventional summary measures of inequality is the 

implicit value judgement problem. That is, any summary inequality measure involves implicit 

value judgements or weightings of different persons’ incomes (or economic well-being), and 
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thus contains embedded in it an implicit social welfare function (SWF). For example, different 

inequality measures differently emphasize income differences at the bottom, middle, or upper 

end of the distribution. Consequently, it can be argued, it would be better to choose desirable 

SWF properties explicitly and then derive the implied inequality measure from the desired SWF. 

To do so is to take a normative approach to measuring inequality rather than the traditional 

descriptive approach. This is the approach taken in the current paper. 

 To implement such a normative approach, one first needs to define a social welfare 

function and its basic properties. For a much more expansive discussion of the normative 

approach, see, for example, Boadway and Bruce (1984). Specifically, a social welfare function 𝑊(•) is any function 

 𝑊 = 𝑓(𝑈1, … ,  𝑈𝑁)  

that has as arguments 𝑈𝑖 individual (or household) utility functions and that incorporates social 

values used to aggregate economic well-being across the population. To do this, we require that: 

 the 𝑈𝑖’s must be at least cardinal scale measurable in order to be aggregated across 

persons; 

 the 𝑈𝑖’s must have at least some degree of comparability across persons in the 

population (i.e., if utilities are cardinally measured for each individual, the units of 

measurement must be the same across individuals); and 

 for technical convenience, each 𝑈𝑖 depends only on incomes and indeed only on 

individual i’s income (i.e., 𝑈𝑖 = 𝑈𝑖(𝑌𝑖), so there is no envy or altruism). This implies an 

additively separable SWF, and each 𝑈𝑖(•) is viewed as a “social income valuation 

function”. 
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One can then identify several possible desirable properties for such a social welfare 

function: 

i)  (Strong) Pareto Principle – State X is socially preferred to state Y if at least one person strictly 

prefers X to Y and no one prefers state Y to X  (i.e.,  𝜕𝑈𝑖 / 𝜕𝑌𝑖  > 0 and social indifference curves 

in 𝑌𝑖, 𝑌𝑗 space have negative slopes); 

ii)  Symmetry or Anonymity – Everyone’s incomes are evaluated by using the same 𝑈(•) 

function (i.e., 𝑈𝑖(•) =  𝑈(•) for all i = 1, …, N); 

 iii)  Population Invariance – If the population is replicated K times, then social welfare increases 

K-fold (i.e., 𝑊(𝑌1, … , 𝑌𝐾𝑁  ) = 𝐾 • 𝑊(𝑌1, … , 𝑌𝑁)) ; 

iv)  Strict Concavity of the SWF or the Principle of Transfers – A strictly concave SWF is such 

that 𝜕2𝑈𝑖  / 𝜕𝑌𝑖2  < 0 for all i (this implies that social indifference curves are strictly convex to 

the origin). This is sometimes referred to as an “egalitarian SWF”; 

v)  Transfer Sensitivity – A transfer-sensitive SWF is such that 

 
𝜕3𝑈𝑖𝜕𝑌𝑖3  > 0 . 

Again, this is a stronger version of the Principle of Transfers. 

 Atkinson (1971) uses this normative approach to show that, under properties (i)-(iv), an 

empirical proxy of social welfare or economic well-being (𝑆𝑊𝑝) can be expressed as 

 𝑆𝑊𝑝 = 𝑌̅  • (1 − 𝐼𝐴) 

         = 𝑌̅  • E  

where 𝑌̅ is the mean income level of a distribution and 𝐼𝐴 is a specific measure of inequality 

(referred to as Atkinson’s inequality measure), where it turns out that 0 ≤ 𝐼𝐴  ≤ 1 where higher 

values indicate greater levels of inequality in the distribution. That is, 𝑆𝑊𝑝 can be decomposed 
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into two (multiplicative) components – an efficiency dimension (𝑌̅) or average per capita income 

and an equity dimension (E) where ≡ 1 − 𝐼𝐴 . 

 If one further assumes a specific functional form for 𝑈(•) – in the convenient form of an 

iso-elastic social welfare function – Atkinson (1970) then derives a specific formula for the 

calculation of 𝐼𝐴 . An iso-elastic SWF is general and flexible enough to incorporate a wide range 

of social attitudes to income inequality from the Benthanite utilitarian SWF to Rawls’ maxi-min 

SWF. 

 But 𝐼𝐴 is still a summary or aggregate measure of income inequality. What the social 

choice literature since Atkinson’s (1970) paper has tried to do is to extend or apply Atkinson’s 

normative perspective to develop a set of disaggregative criteria for comparing different income 

distributions based on the above properties, so that both criticisms of traditional inequality 

measures are addressed. The rest of this paper examines several such disaggregative criteria from 

the theoretical social choice literature and proposes ways to operationalize or empirically 

implement these criteria in terms of vectors of quantile means and income shares and related 

disaggregative distributional statistics. The paper also develops inference procedures to allow for 

formal statistical testing for these criteria. This development is applied to six such criteria in the 

following sections. 

 

 

4.  Application to Rank Dominance and a Practical Empirical Criterion 

 One early example of a disaggregative normative ranking criterion for distributions 

comes from Saposnik (1981). His rank dominance theorem says that, for any social welfare 

function satisfying the properties of symmetry, population invariance and the Pareto principle 
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(i.e., social welfare conditions (i) – (iii)), distribution A is socially preferred to distribution B if 

the quantile means for A are all higher than those for B. Note that there is no egalitarianism built 

into this criterion. It essentially says that, if everyone has higher incomes in A than in B, then 

they must be better off. This is useful in comparing distributions many years apart, say, for 

example, the Canadian income distributions for 1961 versus 2021. But in most practical cases 

faced by empirical researchers, this situation doesn’t apply. 

 Nonetheless, it is useful to begin our application of dominance criteria with this relatively 

simple criterion. To empirically implement it, one represents the two distributions being 

compared by their respective vectors of sample quantile means, µ̂𝑖 , for i = 1, …, K quantiles. 

The actual decision rule for determining the outcome of the comparison of vectors requires some 

practical empirical criterion (henceforth a PEC) based on the principles of statistical inference. 

 

4.1 A Practical Empirical Criterion for Quantile Means 

  Following Beach, Davidson and Slotsve (1984), one can set out a two-step test procedure 

for the PEC. It is assumed that the data samples for the two distributions being compared are 

independent and hence do not overlap. Examples are, say, two different years of data being 

compared or two different (non-overlapping) population groups such as age, racial, or sex 

groups. 

Step 1 – Test the joint null hypothesis of equality of the two (population) quantile mean 

vectors versus the alternative hypothesis of non-equality. This can be done by a standard (but 

asymptotic) chi-square test with K degrees of freedom, where K is the number of quantiles. For a 

meaningful disaggregative analysis, it makes sense to let K = 10 or 20, say, rather than a small 
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number such as 5. If the null hypothesis is not rejected, then the two distributions can be said to 

be not statistically significantly different, and further comparison is not pursued. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected – which is the typical case 

when using large microdata sets for the sample distributions – then proceed to calculate separate 

t-statistics for differences for each of the individual quantile means. These K individual t-

statistics, however, are correlated, and hence comparing each test statistic to the critical value on 

an (asymptotic) normal distribution would not be appropriate. One has to recognize that this Step 

2 involves correlated multiple comparisons. Following the work of Beach and Richmond (1985) 

and Bishop, Formby and Thistle (1989, 1992) on multiple comparison testing, one should 

compare the K separate t-statistics (for differences in quantile means) to critical values on the 

Studentized Maximum Modules (or SMM) distribution. If at least one of the quantile mean 

differences t-statistics has the appropriate sign and is statistically significant (based on the SMM 

distribution) and none of the t-statistics of the remaining quantile mean differences has the wrong 

sign and is significant, then conclude that the distribution with the higher sample quantile means 

rank dominates (or is socially preferred to) that with the lower quantile means. If not, then one 

can say only the two distributions are statistically significantly different and not reach a preferred 

or dominance conclusion. Note that this is an asymptotic test and critical values from the SMM 

distribution correspond to K and infinite degrees of freedom. Typical usefully critical values 

from the SMM distribution are: 

    ∝ = .01 ∝ = .05 ∝ = .10 

  K = 5 –   3.289  2.800  2.560 

  K = 10 –  3.691  3.254  3.043 

  K = 20 –  4.043  3.643  3.453 
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Source: Stoline and Ury (1979), Tables 1-3. 

 

4.2 Full Variance-Covariance Matrix for Quantile Means 

 The first step in the above practical empirical criterion (PEC) involves a joint test of the 

difference between two vectors or sets of estimated quantile means. If the two distributions being 

compared are designated distributions A and B, then the vectors of quantile means can be 

represented as 

 µ̂𝑎 = (µ̂1𝑎, … , µ̂𝐾𝑎 )′ ,    µ𝑎 = (µ1𝑎, … , µ𝐾𝑎 )′ 
and  µ̂𝑏 = (µ̂1𝑏 , … , µ̂𝐾𝑏 )′

 ,    µ𝑏 = (µ1𝑏 , … , µ𝐾𝑏 )′
 . 

A standard result from statistics, then, shows that if the random vector µ̂𝑎 is normally distributed 

with mean µ𝑎 and variance-covariance matrix 𝑉𝑎, µ̂𝑏 is normally distributed with mean µ𝑏 and 

variance-covariance matrix 𝑉𝑏, and µ̂𝑎 and µ̂𝑏 are statistically independent, then µ̂𝑏 − µ̂𝑎 is also 

normally distributed with mean µ𝑏 − µ𝑎 and variance-covariance matrix 𝑉𝑎 + 𝑉𝑏 . Under the 

null hypothesis that the two vectors µ𝑎 and µ𝑏 are the same (i.e., µ𝑏 − µ𝑎 = 0), then the 

quadratic form 

 (µ̂𝑏 − µ̂𝑎)′[𝑉𝑎 + 𝑉𝑏]−1(µ̂𝑏 − µ̂𝑎) 

is distributed as a chi-squared random variable with K degrees of freedom. If 𝑉𝑎 and 𝑉𝑏 are 

estimated consistently, then the test statistics for step 1 of the PEC,  

 (µ̂𝑏 − µ̂𝑎)′[𝑉̂𝑎 + 𝑉̂𝑏]−1(µ̂𝑏 − µ̂𝑎)       (18) 

is asymptotically distributed as a chi-square variate again with K degrees of freedom. 

 In order to implement the chi-square test in (18), however, one needs to know how to 

estimate the full variance-covariance matrices 𝑉̂𝑎 and 𝑉̂𝑏 of µ̂𝑎 and µ̂𝑏, respectively. The 

development in Section 2 above showed how to obtain the estimated variances (the square of the 
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estimated standard errors of the various individual quantile means). But, in order to perform the 

joint chi-square test in Step 1, one also needs estimates for all the covariances in 𝑉̂𝑎 and 𝑉̂𝑏 as 

well. The approach followed to obtain them, however, is the same as for the variances. 

 Argumentation is expressed in terms of asymptotic variances and covariances. Again, let 𝑚̂ =  (µ̂1, … , µ̂𝐾)′ generically represent the vector of sample quantile mean estimates for a given 

income distribution, so it has been shown that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑚̂) ≡  𝑉𝑆 = 𝐺 𝛬 𝐺′        (19) 

where 𝛬 is the asymptotic variance-covariance matrix of the sample quantile cut-off levels, the 𝜉𝑖’s, and 𝐺 is a K x (K-1) matrix of partial derivatives 

 𝐺 =  [𝑔𝑖𝑗]   where 𝑔𝑖𝑗 = 𝜕µ𝑖𝜕𝜉𝑗      (20a) 

for i = 1, …, K rows and j = 1, …, K-1 columns. 

 Note that, in this development, the asymptotic variance-covariance matrix of 𝑚̂ is 𝑉𝑆 with 

a subscript S (for asymptotic) to distinguish it from matrix 𝑉̂ which refers to the estimated 

variance-covariance matrix of 𝑚̂ which is gotten by rescaling the estimated asymptotic variance-

covariance matrix by the inverse of the sample size. We also use a slightly more general notation 

than before with 

 µ𝑖 = ( 1𝐷𝑖)  •  ∫ 𝑦 𝑓(𝑦)𝑑𝑦𝜉𝑖𝜉𝑖−1  

      = ( 1𝐷𝑖) •  𝑁𝑖(𝜉𝑖−1, 𝜉𝑖)  for i = 1, …, K 

where 𝐷𝑖 = 𝑝𝑖 − 𝑝𝑖−1 and 𝜉0 = 0.3 Then 

 𝑔𝑖𝑗 = ( 1𝐷𝑖) •   𝜕𝑁𝑖𝜕𝜉𝑗  .         (20b) 

                                                           

3 This allows for different sized quantile groups. 
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The i,j’th element of 𝑉𝑆, then, is obtained by premultiplying the matrix 𝛬 by the i’th row of G 

treated as a row vector and postmultiplying by the j’th row of G (written as a column vector): 

 𝑣𝑠(𝑖, 𝑗) = (𝑖′th row of 𝐺) •  𝛬 • (𝑗′th row of 𝐺)′ .     (21) 

 In the case of variances i = j, so calculations lead to  

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂1)  ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑚̂1)  
   =  𝑝1(1 − 𝑝1) (𝜉1𝐷1)2

        (22a) 

and 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝐾)  ≡  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑚̂𝐾)  
   =  𝑝𝐾−1(1 − 𝑝𝐾−1) (𝜉𝐾−1𝐷𝐾 )2

  .     (22b) 

For i = 2, …, K-1: 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(µ̂𝑖) =  𝑝𝑖−1(1 − 𝑝𝑖−1) (𝜉𝑖−1𝐷𝑖 )2 + 𝑝𝑖(1 − 𝑝𝑖) (𝜉𝑖𝐷𝑖)2  
    − 2𝑝𝑖−1(1 − 𝑝𝑖) (𝜉𝑖−1𝜉𝑖𝐷𝑖2 )  .     (22c) 

Equations (22a)-(22c) determine the elements on the principal diagonal of 𝑉𝑆 . 

 Now consider the off-diagonal elements in the first row of 𝑉𝑆 . For 1 < 𝑗 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂1, µ̂𝑗) =  −𝑝1(1 − 𝑝𝑗−1) (𝜉1𝐷1) (𝜉𝑗−1𝐷𝑗 ) + 𝑝1(1 − 𝑝𝑗) (𝜉1𝐷1) (𝜉𝑗𝐷𝑗) ,  (22d) 

For elements along the last column of 𝑉𝑆 , i.e., for 1 < 𝑖 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖, µ̂𝐾) =  𝑝𝑖−1(1 − 𝑝𝐾−1) (𝜉𝑖−1𝐷𝑖 ) (𝜉𝐾−1𝐷𝐾 ) + 𝑝𝑖(1 − 𝑝𝐾−1) (𝜉𝑖𝐷𝑖) (𝜉𝐾−1𝐷𝐾 ). (22e) 

For the top right-hand corner element, 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂1, µ̂𝐾) =  −𝑝1(1 − 𝑝𝐾−1) (𝜉1𝐷1) (𝜉𝐾−1𝐷𝐾 ) .     (22f) 

For all remaining above-diagonal elements of 𝑉𝑆 ; i.e., for 1 < 𝑖 < 𝑗 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(µ̂𝑖 , µ̂𝑗) =  𝑝𝑖−1(1 − 𝑝𝑗−1) (𝜉𝑖−1𝐷𝑖 ) (𝜉𝑗−1𝐷𝑗 ) − 𝑝𝑖−1(1 − 𝑝𝑗) (𝜉𝑗−1𝐷𝑖 ) (𝜉𝑗𝐷𝑗) 
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  − 𝑝𝑖(1 − 𝑝𝑗−1) (𝜉𝑖𝐷𝑖) (𝜉𝑗−1𝐷𝑗 ) + 𝑝𝑖(1 − 𝑝𝑗) (𝜉𝑖𝐷𝑖) (𝜉𝑗𝐷𝑗) .   (22g) 

 Since a variance-covariance matrix is symmetric about its principal diagonal, all below-

diagonal elements can be obtained as 

 𝑣𝑆(𝑖, 𝑗) =  𝑣𝑆(𝑗, 𝑖)  for  𝑖 > 𝑗 .      (22h) 

Note also that all terms in the 𝑉𝑆 matrix – both (asymptotic) variances and covariances – are also 

distribution-free in that they do not depend on 𝑓(•) evaluations, and thus can all be readily 

estimated consistently. Thus consistent estimates of the actual variances and covariances of the µ𝑖’s can be obtained as  

 𝑣(𝑖, 𝑗) =  𝑣𝑆(𝑖, 𝑗) / 𝑁         (23) 

where N is the size of the estimation sample. 

 In order to perform Step 1 of the PEC for comparing the two quantile mean vectors µ̂𝑎 

and µ̂𝑏 , then, calculate estimates of all asymptotic variances and covariances (𝑉̂𝑆𝑎 and 𝑉̂𝑆𝑏) for the 

two samples using the formulas in equations (22a)-(22h) by replacing population parameters by 

their consistent sample estimates, rescale the (asymptotic) variance-covariance estimates to the 

actual variance-covariance estimates 𝑉̂𝑎 and  𝑉̂𝑏 as in (23), and then calculate the joint chi-

square test statistic in (18). 

 To perform the individual tests in Step 2 of the PEC, compute the standard “t-statistic” 

ratio for the difference between two independent random variables (µ̂𝑖𝑎 and µ̂𝑖𝑏) as  

 𝑡𝑖 = µ̂𝑖𝑏− µ̂𝑖𝑎  [𝑣̂𝑎(𝑖,𝑖)+ 𝑣̂𝑏(𝑖,𝑖)]1/2  

and compare this to the appropriate critical value on the SMM distribution. 
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5.  Application to Lorenz Dominance 

 The same approach can be applied to an inequality-based dominance criterion. Atkinson, 

in his famous 1970 paper, forwarded what has come to be known as the Lorenz dominance 

theorem. For any (summary) inequality measure satisfying symmetry, mean independence, 

population homogeneity and the principle of transfers (i.e., inequality criteria (i)-(iv) above), if 

the Lorenz curve for distribution A lies everywhere above the Lorenz curve for distribution B, 

then all inequality measures satisfying these properties will indicate that (summary) inequality in 

A is less than in B. Note that this theorem does not say anything about social welfare; it refers 

only to inequality. It also does not say anything if the two Lorenz curves cross. 

 To empirically implement this dominance criterion, one can represent a Lorenz curve by 

a vector of its estimated ordinates. Testing between Lorenz curves then amounts to tests of 

differences between the estimated ordinate vectors. Again, if the two distributions whose 

inequality is being compared are designated A and B, then the vectors of Lorenz curve ordinates 

can be represented by 

 𝑙𝑎 = (𝑙1𝑎, … , 𝑙𝐾−1𝑎 )′
 ,    𝑙𝑎 = (𝑙1𝑎, … , 𝑙𝐾−1𝑎 )′ 

and  𝑙𝑏 = (𝑙1𝑏, … , 𝑙𝐾−1𝑏 )′
 ,    𝑙𝑏 = (𝑙1𝑏 , … , 𝑙𝐾−1𝑏 )′

 , 

and their respective variance-covariance matrices by 𝛷𝑎 and 𝛷𝑏 . The ordinates 𝑙1, … , 𝑙𝐾−1 

correspond to the given (cumulative) proportions 𝑝1, … , 𝑝𝐾−1 . Since the two end points on a 

Lorenz curve are fixed at 𝑝0 = 0 and 𝑝𝐾 = 1 , only K-1 ordinates are random variables. 

 The actual decision rule or PEC for comparing the vectors of Lorenz curve ordinates 

again involves two steps. And again it is assumed that the two sets of ordinate estimates are 

statistically independent and based on two quite separate samples. 
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Step 1 – Test the joint null hypothesis of equality of the two ordinate vectors (i.e., 𝑙𝑏 − 𝑙𝑎 = 0) versus the alternative hypothesis of non-equality. In this case, the test statistic is  (𝑙𝑏 − 𝑙𝑎)′[𝛷̂𝑎 + 𝛷̂𝑏]−1(𝑙𝑏 − 𝑙𝑎)      (24) 

which is distributed asymptotically as a chi-square random variable with K-1 degrees of freedom. 

If the null hypothesis is not rejected, then the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected, then undertake separate “t-

statistic” calculations for differences on each of the individual estimated Lorenz curve ordinates. 

If at least one of the t-statistics has the appropriate sign and is statistically significant compared 

to critical values on the SMM distribution with K-1 and infinite degrees of freedom and none of 

the t-statistics (if any) that has the wrong sign is statistically significant (again based on the 

SMM distribution), then one can conclude that one set of ordinates statistically dominates the 

other. If statistical dominance is found, this implies dominance for all summary inequality 

measures satisfying inequality properties (i)-(iv). Again, typical useful SMM critical values are: 

    ∝ = .01 ∝ = .05 ∝ = .10 

  K-1 = 4   3.430  2.631  2.378 

  K-1 = 9  3.634  3.190  2.976 

  K-1 = 19  4.018  3.615  3.425 

Source: Stoline and Ury (1979), Tables 1-3. 

 This leaves two problems to be resolved: (i) how does one determine the statistical 

properties of the Lorenz curve ordinates in order to make statistical inference decisions, and (ii) 

how to establish the full variance-covariance matrix of the vector of estimated ordinates. These 

are addressed in the next two subsections. 
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5.1 Inference for Lorenz Curve Ordinates 

 Recall that Lorenz curve ordinates are simply cumulative income shares (which have 

already been considered in Section 2 above). Let the K-vector of individual income share 

statistics be 

 𝑛̂ =  (𝑛̂`, … , 𝑛̂𝐾)′ 
with corresponding population shares 𝑛 = (𝑛1, … , 𝑛𝐾)′. Then it can be seen that 

 𝑙 = 𝑈 •  𝑛̂           (25) 

where U is a (𝐾 − 1) 𝑥 𝐾 matrix with ones on its principal diagonal and below, and zeros above 

the diagonal. U is given and non-random. Since (25) is a linear transformation, if 𝑛̂ is 

(asymptotically) joint normally distributed with mean vector 𝑛 and variance-covariance matrix 𝑊𝑆, then 𝑙 is also (asymptotically) joint normally distributed with mean 𝑙 = 𝑈 • 𝑛 and 

asymptotic variance-covariance matrix 𝛷𝑆 = 𝑈 •  𝑊𝑆  •  𝑈′   and hence  𝛷 = 𝑈 •  𝑊 •  𝑈′ .   (26) 

So if W, the actual variance-covariance matrix of the estimates income shares can be established, 

so also can that of the vector of implied Lorenz curve ordinates. 

 

5.2 Full Variance-Covariance Matrix for Income Shares 

 In order to obtain estimates of variance-covariance matrix elements for sample income 

shares, it is again useful to work out asymptotic variances and covariances for 𝑛̂ . It has been 

established in Section 2 that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑛̂𝑖) =  𝐺𝑖′ Ʃ𝑖 𝐺𝑖  
where  Ʃ𝑖 is the asymptotic variance-covariance matrix of the triplet 𝜉𝑖−1 , 𝜉𝑖 , and µ̂ and 

 𝐺𝑖 = [ 𝜕𝑁𝑖𝜕𝜉𝑖−1 , 𝜕𝑁𝑖𝜕𝜉𝑖 , 𝜕𝑁𝑖𝜕µ ]′ 
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where income share 𝑛𝑖  ≡  𝐼𝑆𝑖 = ∫ (1µ)  𝑦 𝑓(𝑦)𝑑𝑦 ≡  𝑁𝑖𝑅𝑖 (𝜉𝑖−1, 𝜉𝑖, µ) . More generally, one 

can use a multivariate version of the Rao linkage theorem to establish that 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑛̂) ≡  𝑊𝑆 = [𝑤𝑆(𝑖, 𝑗)] =  𝐺′ Ʃ 𝐺       (27) 

where now Ʃ is the KxK asymptotic variance-covariance matrix of the full set of sample quantile 

cut-offs, the  𝜉𝑖’s, and the overall sample mean, µ̂ . Ʃ thus consists of 𝚲 in the upper-left K-1 

rows and columns, the (asymptotic) covariances of the 𝜉𝑖 and µ̂ along the bottom row and right-

hand column, and the (asymptotic) variance of µ̂ (=  𝜎2) in the bottom right-hand corner. The 

KxK matrix G of partial derivatives then has as its i’th row all zeros except for the three elements 

𝜕𝑁𝑖𝜕𝜉𝑖−1 , 
𝜕𝑁𝑖𝜕𝜉𝑖  , 𝜕𝑁𝑖𝜕µ  . Thus it is more convenient to work out the terms of 𝑊𝑆 element by element 

where 𝑤𝑆(𝑖, 𝑗) = (𝑖’th row of 𝐺)  • Ʃ • (𝑗′th row of 𝐺)′ .     (28) 

 In the case of variances, i=j, which works out to the results: 

  𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂1)  ≡ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑛̂1) =  𝑤𝑆(1,1) 

  = 𝑝1(1 − 𝑝1) (𝜉1µ )2 + (𝐼𝑆1µ )2  𝜎2      (29a) 

   −2 (𝜉1µ ) (𝐼𝑆1µ ) [𝜉1 −  µ(1 − 𝑝1)] , 
 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝐾)  ≡ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑛̂𝐾) =  𝑤𝑆(𝐾, 𝐾) 

  = 𝑝𝐾−1(1 − 𝑝𝐾−1) (𝜉𝐾−1µ )2 + (𝐼𝑆𝐾µ )2  𝜎2     (29b) 

   +2 (𝜉𝐾−1µ ) (𝐼𝑆𝐾µ ) [𝜉𝐾−1 −  µ(1 − 𝑝𝐾−1)] . 
And for i = 2, …, K-1: 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐼𝑆̂𝑖)  ≡ 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑛̂𝑖) =  𝑤𝑆(𝑖, 𝑖) 

  = 𝑝𝑖−1(1 − 𝑝𝑖−1) (𝜉𝑖−1µ )2 + 𝑝𝑖(1 − 𝑝𝑖) (𝐼𝑆𝑖µ )2 + (𝐼𝑆𝑖µ )2  𝜎2   
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   −2  𝑝𝑖−1(1 − 𝑝𝑖) (𝜉𝑖−1µ ) (𝜉𝑖µ)      (29c) 

+2(𝜉𝑖−1µ ) (𝐼𝑆𝑖µ ) [𝜉𝑖−1 −  µ(1 − 𝑝𝑖−1)]   
−2(𝜉𝑖µ) (𝐼𝑆𝑖µ ) [𝜉𝑖 −  µ(1 − 𝑝𝑖)] . 

Now address the (asymptotic) covariances in the first row of 𝑊𝑆 . For 1 < 𝑗 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂1, 𝐼𝑆̂𝑗) =  𝑤𝑆(1, 𝑗) 

  = −𝑝1(1 − 𝑝𝑗−1) (𝜉1µ ) (𝜉𝑗−1µ ) + 𝑝1(1 − 𝑝𝑗) (𝜉1µ ) (𝜉𝑗µ ) + (𝐼𝑆1µ ) (𝐼𝑆𝑗µ ) 𝜎2   

   − (𝜉1µ ) (𝐼𝑆𝑗µ ) [𝜉1 −  µ(1 − 𝑝1)]       (29d) 

+(𝜉𝑗−1µ ) (𝐼𝑆1µ ) [𝜉𝑗−1 −  µ(1 − 𝑝𝑗−1)]     

−(𝜉𝑗µ ) (𝐼𝑆1µ ) [𝜉𝑗 −  µ(1 − 𝑝𝑗)] . 
For elements down the last column of 𝑊𝑆 ; i.e., for 1 < 𝑖 < 𝐾 : 

  𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝐼𝑆̂𝐾) =  𝑤𝑆(𝑖, 𝐾) 

  = 𝑝𝑖−1(1 − 𝑝𝐾−1) (𝜉𝑖−1µ ) (𝜉𝐾−1µ ) − 𝑝𝑖(1 − 𝑝𝐾−1) (𝜉𝑖µ) (𝜉𝐾−1µ ) + (𝐼𝑆𝑖µ ) (𝐼𝑆𝐾µ ) 𝜎2  

   + (𝜉𝑖−1µ ) (𝐼𝑆𝐾µ ) [𝜉𝑖−1 −  µ(1 − 𝑝𝑖−1)]     (29e) 

−(𝜉𝑖µ) (𝐼𝑆𝐾µ ) [𝜉𝑖 −  µ(1 − 𝑝𝑖)] .    

+(𝜉𝐾−1µ ) (𝐼𝑆𝑖µ ) [𝜉𝐾−1 −  µ(1 − 𝑝𝐾−1)] . 
For the top right-hand corner element of 𝑊𝑆, 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂1, 𝐼𝑆̂𝐾) =  𝑤𝑆(1, 𝐾) 

  = −𝑝1(1 − 𝑝𝐾−1) (𝜉1µ ) (𝜉𝐾−1µ ) + (𝐼𝑆1µ ) (𝐼𝑆𝐾µ ) 𝜎2  

   − (𝜉1µ ) (𝐼𝑆𝐾µ ) [𝜉1 −  µ(1 − 𝑝1)]      (29f) 
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+(𝜉𝐾−1µ ) (𝐼𝑆1µ ) [𝜉𝐾−1 −  µ(1 − 𝑝𝐾−1)] . 
Finally, for all remaining above-diagonal elements of 𝑊𝑆 ; i.e., for 1 < 𝑖  < 𝑗 < 𝐾 : 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝐼𝑆̂𝑖, 𝐼𝑆̂𝑗) =  𝑤𝑆(𝑖, 𝑗) 

  = 𝑝𝑖−1(1 − 𝑝𝑗−1) (𝜉𝑖−1µ ) (𝜉𝑗−1µ ) − 𝑝𝑖−1(1 − 𝑝𝑗) (𝜉𝑖−1µ ) (𝜉𝑗µ ) + (𝐼𝑆𝑖µ ) (𝐼𝑆𝑗µ ) 𝜎2  

 − 𝑝𝑖(1 − 𝑝𝑗−1) (𝜉𝑖µ) (𝜉𝑗−1µ ) + 𝑝𝑖(1 − 𝑝𝑗) (𝜉𝑖µ) (𝜉𝑗µ ) 

   + (𝜉𝑖−1µ ) (𝐼𝑆𝑗µ ) [𝜉𝑖−1 −  µ(1 − 𝑝𝑖−1)]     (29g) 

− (𝜉𝑖µ) (𝐼𝑆𝑗µ ) [𝜉𝑖 −  µ(1 − 𝑝𝑖)]   

+(𝜉𝑗−1µ ) (𝐼𝑆𝑖µ ) [𝜉𝑗−1 −  µ(1 − 𝑝𝑗−1)]     

−(𝜉𝑗µ ) (𝐼𝑆𝑖µ ) [𝜉𝑗 −  µ(1 − 𝑝𝑗)] . 
 Again, since a variance-covariance matrix is symmetric about its principal diagonal, all 

below-diagonal covariance terms can be obtained as 

 𝑤𝑆(𝑖, 𝑗) =  𝑤𝑆(𝑗, 𝑖)   for  𝑖 > 𝑗 .      (29h) 

Note also that all terms in 𝑊𝑆 are distribution-free, and thus can be readily estimated 

consistently. More specifically, consistent estimates of the actual variances and covariances of 

the 𝐼𝑆̂𝑖 can thus be obtained as 

 𝑤̂(𝑖, 𝑗) =  𝑤̂𝑆(𝑖, 𝑗) / 𝑁          (30) 

where N is the estimation sample size. 

 Once again to perform Step 1 of the PEC for comparing the two vectors of Lorenz curve 

ordinates 𝑙𝑎 and 𝑙𝑏 , first calculate estimates of all the asymptotic variances and covariances (𝑊̂𝑆𝑎 

and 𝑊̂𝑆𝑏) for the two estimation samples from equations (29a)-(29h) by replacing population 

parameters by their consistent sample estimates, rescale the (asymptotic) variance and covariance 
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estimates to the actual variance and covariance estimates (𝑊̂𝑎 and  𝑊̂𝑏) as in equation (30), 

calculate the Lorenz curve ordinates by 𝑙 = 𝑈 •  𝑛̂ from equation (25) and Lorenz curve ordinate 

estimated variances and covariances from 𝛷̂ = 𝑈 •  𝑊̂  •  𝑈′ 
following equation (26), and then finally calculate the joint chi-square test statistic in equation 

(24). 

 To perform the individual tests in Step 2 of the PEC, again use the standard “t-statistic” 

ratio for the difference between two independent random variates (𝑙𝑖𝑎 and 𝑙𝑖𝑏) as  

 𝑡𝑖 = 𝑙𝑖𝑏− 𝑙𝑖𝑎  [𝑤̂𝑎(𝑖,𝑖)+ 𝑤̂𝑏(𝑖,𝑖)]1/2  

and compare this to the relevant critical value on the SMM tables. 

 

 

6.  Application to Generalized Lorenz Dominance 

 A blending of the first two dominance criteria is provided in a third application of 

empirically implementing curve-based dominance criteria. Shorrocks (1983) uses a transformed 

Lorenz curve as the basis for social welfare inferences, not just inequality conclusions. The 

generalized Lorenz dominance theorem of Shorrocks (1983) says that, for any additively 

separable social welfare function satisfying social welfare conditions (i)-(iv) including the 

principle of transfers, distribution A is socially preferred to distribution B if the generalized 

Lorenz curve for A lies everywhere above the generalized Lorenz curve for B. The generalized 

Lorenz curve ordinates for an income distribution are obtained by scaling up the Lorenz curve 

ordinates of the distribution by the distribution’s overall mean income level: 
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 𝑔𝑖 =  µ •  𝑙𝑖  and 𝑔̂𝑖 = µ̂ •  𝑙𝑖 .       (31) 

Essentially, the argument is that, if the mean income of the distribution A is sufficiently higher 

than that in distribution B, this can compensate for some greater degree of inequality in A than in 

B, so that social welfare will still be greater in distribution A than in B. It turns out that this rule 

is very convenient for ranking social welfare among quite disparate countries, or for ranking 

income distributions in a given country (or group) over long periods of time (e.g., the Canadian 

income distribution across the decades of 1950, 1960, 1970 and 1980). 

 To implement this dominance criterion, one can again represent a generalized Lorenz 

curve by a vector of its estimated ordinates: 

 𝑔 = (𝑔1, … , 𝑔𝐾−1)′   and 𝑔̂ =  (𝑔̂1, … , 𝑔̂𝐾−1)′ . 
Testing between generalized Lorenz curves then amounts to tests of differences between the 

estimated ordinate vectors 𝑔̂𝑎 and 𝑔̂𝑏 . The respective generalized Lorenz curve ordinate 

variance-covariance matrices may be labelled 𝛹𝑎 and 𝛹𝑏 . 

 The corresponding decision rule or PEC for comparing vectors 𝑔̂𝑎 and 𝑔̂𝑏 once again 

involves two steps (where, as above) the estimation samples are statistically independent. 

 Step 1 – Test the joint null hypothesis of equality of two generalized Lorenz curve 

ordinate vectors (i.e., 𝑔𝑏 − 𝑔𝑎 = 0) versus the alternative hypothesis of non-equality. In this 

case, the test statistics is 

 (𝑔̂𝑏 − 𝑔̂𝑎)′ [𝛹̂𝑎 + 𝛹̂𝑏]−1 (𝑔̂𝑏 − 𝑔̂𝑎)        (32) 

which, under the null hypothesis, is asymptotically distributed as a chi-square random variable 

with K-1 degrees of freedom. If the null hypothesis is not rejected, then the two generalized 

Lorenz curves can be said to be not statistically significantly different, and further comparison is 

not warranted. 
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  Step 2 – If, however, the null hypothesis in Step 1 is rejected, then proceed to compute 

separate “t-statistics” for differences on each of the individual generalized Lorenz curve 

ordinates. If at least one of the t-statistics has the appropriate sign and is statistically significant 

compared to critical values on the SMM distribution with K-1 and infinite degrees of freedom 

and none of the t-statistics (if any) that have the wrong sign is statistically significant (again on 

the SMM critical values), then one can conclude that the distribution with the higher sample 

generalized Lorenz curve ordinates rank dominates (or is socially preferred to) the distribution 

with the corresponding lower ordinates. If not, then one can say only that the social welfare of 

the two distributions are statistically significantly different, but not reach a preferred or 

dominance conclusion. 

 

6.1 Variance-Covariance Structure of Generalize Lorenz Curve Ordinates 

 Since Lorenz curve ordinates are calculated from income shares, it makes sense to 

consider the relationship of generalized Lorenz curve ordinates to these underlying income 

shares as well. To go back to first principles, consider µ • 𝐼𝑆𝑖 as the dollar contribution of the 

i’th income group to the overall mean income of the distribution. So we can represent it by the 

“contribution” 

 𝑐𝑖 =  µ •  𝐼𝑆𝑖          (33a) 

       = µ •  ∫ (1µ)  𝑦 𝑓(𝑦)𝑑𝑦 𝑅𝑖  

       = ∫  𝑦 𝑓(𝑦)𝑑𝑦                             ≡   𝑁𝑖𝑅𝑖 (𝜉𝑖−1, 𝜉𝑖) 

      = 𝐷𝑖  •  ( 1𝐷𝑖)𝑁𝑖(𝜉𝑖−1, 𝜉𝑖) 

      = 𝐷𝑖  •  µ𝑖          (33b) 
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where  µ𝑖 is the quantile mean of the i’th income group and 𝐷𝑖 = 𝑝𝑖 − 𝑝𝑖−1 . So 𝑐𝑖 is simply a 

scalar transform of the quantile mean µ𝑖 . Consequently, 𝑐̂𝑖 = 𝐷𝑖  •  µ̂𝑖 , and the elements of the 

variance-covariance matrix of the vector of sample contributions 𝑐̂ =  (𝑐̂1, … , 𝑐̂𝐾)′ are simply 

scalar transforms of the corresponding elements of the variance-covariance matrix of the vector 

of quantile means µ̂ =  (µ̂1, … , µ̂𝐾)′ . More specifically, all the 𝐷𝑖 terms in equations (22a)-

(22h) for the asymptotic variances and covariances drop out. Alternatively viewed, since 𝑐𝑖 = 𝑁𝑖(𝜉𝑖−1, 𝜉𝑖) , all the partial derivatives in equations (20a) and (20b) now involve simply 
𝜕𝑁𝑖𝜕𝜉𝑗  

without the term 
1𝐷𝑖 . For ease of reference, these may be set out explicitly for the asymptotic 

variance-covariance matrix  𝛤𝑆 of 𝑐̂ : 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑐̂1) = 𝑝1(1 − 𝑝1)𝜉12        (34a) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑐̂𝐾) = 𝑝𝐾−1(1 − 𝑝𝐾−1)𝜉𝐾−12       (34b) 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑐̂𝑖) = 𝑝𝑖−1(1 − 𝑝𝑖−1)𝜉𝑖−12 + 𝑝𝑖(1 − 𝑝𝑖)𝜉𝑖2    (34c) 

    − 2 𝑝𝑖−1(1 − 𝑝𝑖)𝜉𝑖−1𝜉𝑖  for i = 2, …, K-1 . 

For 1 < 𝑗 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑐̂1, 𝑐̂𝑗) = − 𝑝1(1 − 𝑝𝑗−1)𝜉1𝜉𝑗−1 +  𝑝1(1 − 𝑝𝑗)𝜉1𝜉𝑗 .   (34d) 

For 1 < 𝑖 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑐̂𝑖, 𝑐̂𝐾) =  𝑝𝑖−1(1 − 𝑝𝐾−1)𝜉𝑖−1𝜉𝐾−1 −  𝑝𝑖(1 − 𝑝𝐾−1)𝜉𝑖𝜉𝐾−1 .  (34e) 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑐̂1, 𝑐̂𝐾) = − 𝑝1(1 − 𝑝𝐾−1)𝜉1𝜉𝐾−1 .     (34f) 

For 1 < 𝑖 < 𝑗 < 𝐾 : 

 𝐴𝑠𝑦. 𝑐𝑜𝑣(𝑐̂𝑖, 𝑐̂𝑗) =  𝑝𝑖−1(1 − 𝑝𝑗−1)𝜉𝑖−1𝜉𝑗−1 −  𝑝𝑖−1(1 − 𝑝𝑗)𝜉𝑖−1𝜉𝑗   (34g) 

      − 𝑝1(1 − 𝑝𝑗−1)𝜉𝑖𝜉𝑗−1 +  𝑝𝑖(1 − 𝑝𝑗)𝜉𝑖𝜉𝑗 .     

And for all below-diagonal elements of 𝛤𝑆 = [𝛾𝑆(𝑖, 𝑗)] , 
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 𝛾𝑆(𝑖, 𝑗) = 𝛾𝑆(𝑗, 𝑖)   for  𝑖 > 𝑗 .      (34h) 

Thus consistent estimates of the actual variances and covariances of the 𝑐̂𝑖’s can be obtained as 

 𝛾(𝑖, 𝑗) = 𝛾𝑆(𝑖, 𝑗) / 𝑁          (35) 

where here N is the estimation sample size. 

 The ordinates of the generalized Lorenz curve can be readily obtained from the  𝑐̂𝑖 by 

straightforward cumulation: 

 𝑔̂𝑖 = ∑ 𝑐̂𝑗𝑖𝑗=1      and 𝑔𝑖 = ∑ 𝑐𝑗𝑖𝑗=1   
or more generally, 

   𝑔̂ = 𝑈 • 𝑐̂   and  𝑔 = 𝑈 • 𝑐      (36) 

where again U is a (K-1)xK non-random matrix with ones on the principal diagonal and below, 

and zeros above the diagonal. 

 Since the 𝑐̂𝑖’s are proportional functions of the µ̂𝑖’s , and the µ̂𝑖’s are asymptotically joint 

normal, then 𝑐̂𝑖’s are also asymptotically joint normal with means 𝑐𝑖’s and full (asymptotic) 

variance-covariance matrix 𝛤𝑆 given by equations (34a)-(34h) and estimated actual variance-

covariance matrix 𝛤̂ . Similarly, since the 𝑔̂𝑖’s are linear functions of the 𝑐̂𝑖’s , the 𝑔̂𝑖’s are also 

asymptotically joint normally distributed with means 𝑔𝑖’s and full (asymptotic) variance-

covariance matrix  𝛹𝑆 = 𝑈 •  𝛤𝑆  •  𝑈′         (37) 

and estimated actual variance-covariance matrix 

 𝛹̂ = 𝑈 •  𝛤̂  • 𝑈′         (38) 

where the elements in 𝛤̂ are given by equation (35). Once again, all terms in 𝛤𝑆 are distribution-

free, and thus can be readily estimated consistently. 
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 To perform Step 1 of the PEC for comparing the two vectors of generalized Lorenz curve 

ordinates 𝑔̂𝑎 and 𝑔̂𝑏 , first calculate estimates of all the asymptotic variances and covariances 

(𝛤̂𝑆𝑎 and 𝛤̂𝑆𝑏) for the two estimation samples from equations (34a)-(34h) by replacing population 

parameters by their consistent sample estimates, rescale the (asymptotic) variance and covariance 

estimates to actual variance and covariance estimates (𝛤̂𝑎 and 𝛤̂𝑏) as in equation (35), calculate 

the generalized Lorenz curve ordinates by 𝑔̂ = 𝑈 • 𝑐̂ from equation (36) and the generalized 

Lorenz curve ordinate estimated variances and covariances from equation (38), and then finally 

calculate the joint chi-square test statistic in equation (32). 

 To perform the individual tests in Step 2 of the PEC, again use the standard “t-statistic” 

ratio for the difference between two independent variates (𝑔̂𝑖𝑎 and 𝑔̂𝑖𝑏) as 

 𝑡𝑖 = 𝑔̂𝑖𝑏− 𝑔̂𝑖𝑎  [𝛾̂𝑎(𝑖,𝑖)+ 𝛾̂𝑏(𝑖,𝑖)]1/2  

and compare this to the relevant critical value on the SMM distribution. 

  

 

7. Decomposition of Generalized Lorenz Curve Ordinates into Efficiency and 

Equity Components 

 As stated in Section 3 above, Atkinson’s inequality index, 𝐼𝐴 , has the property – under 

various conditions – that an empirical proxy for social welfare can be decomposed into the 

product of an efficiency measure and an equity indicator: 

 𝑆𝑊̂ =  µ̂  • (1 − 𝐼𝐴) . 

A similar decomposition appears in Jorgenson (1990) as well. Can such an intuitively appealing 

decomposition also be applied more generally to entire dominance condition curves? The answer 
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is yes. If the µ̂𝑖’s can be viewed as a disaggregative indicator of economic well-being or social 

welfare, then  

 µ̂𝑖 = µ̂  •  (µ̂𝑖µ̂)  or alternatively   = µ̂ [1 − (µ̂− µ̂𝑖µ̂ )]    (39) 

where µ̂ is again a measure of overall efficiency and (µ̂𝑖µ̂) can be viewed as an indicator of 

disaggregative equity for income group i. The term ( µ𝑖µ ) may be referred to as the relative-mean 

income gap for quantile group i and a vector of such terms as the relative-mean income curve for 

an income distribution (see Beach, 2021a, for further discussion and interpretation of this curve). 

 When comparing two income distributions, say A and B, it is obviously of interest to 

look at their differences in overall means, µ̂𝑎 and µ̂𝑏 . But it is also of interest to consider the 

relative-mean income gaps across the various quantile groups and how these differ between the 

distributions. That is, consider the differences in the gaps, say, 
µ̂𝑖𝑏µ̂𝑏 − µ̂𝑖𝑎µ̂𝑎 , across all of the 

individual quantile groups as a reflection of the disaggregative equity differences between the 

two distributions. 

 Indeed, it turns out that performing formal statistical tests of these relative-mean income 

gaps is quite straightforward using the above development. For convenience, designate the 

relative-mean income gap for quantile group i by 𝑟𝑖 . Then, from first principles, 

 𝑟𝑖  =  ( µ𝑖µ ) 

       = 𝐷𝑖−1  •  ∫  𝑦 𝑓(𝑦)𝑑𝑦 /  µ𝑅𝑖  

       = 𝐷𝑖−1  •  ∫  (𝑦µ) 𝑓(𝑦)𝑑𝑦 𝑅𝑖  

      = ( 1𝐷𝑖) • 𝐼𝑆𝑖 = ( 1𝐷𝑖) • 𝑛𝑖        (40) 
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where, as before,  𝐷𝑖 =  𝑝𝑖 − 𝑝𝑖 and 𝑅𝑖  is the appropriate range of integration. That is, 𝑟𝑖  is 

simply a scalar transform of quantile i’s income share. And similarly, 

 𝑟̂𝑖  =  ( µ̂𝑖µ̂ ) =  ( 1𝐷𝑖) • 𝐼𝑆̂𝑖 = ( 1𝐷𝑖) • 𝑛̂𝑖 . 
Thus the vector 𝑟 = (𝑟1, … , 𝑟𝐾)  is such that 

 𝑟 =  𝐷−1  • 𝑛  and similarly 𝑟̂ =  𝐷−1  • 𝑛̂     (41) 

where 𝐷−1 is a KxK matrix with elements 𝐷𝑖−1 along its principal diagonal and zeros elsewhere. 

Thus, since 𝑟̂ is a linear transform of 𝑛̂ and 𝑛̂ is asymptotically joint normally distributed, so also 

is 𝑟̂ with mean 𝑟 and asymptotic variance-covariance matrix 

 𝑅𝑆 = 𝐷−1  •  𝑊𝑆  •  𝐷−1        (42) 

where 𝑊𝑆 is the asymptotic variance-covariance matrix of the estimated income share vector 𝑛̂ . 

Thus the asymptotic variance of 𝑟̂𝑖 (for i=2, …, K-1), for example, is given by equation (29c) 

where each term is divided by 𝐷𝑖2 . A consistent estimate of the actual variance-covariance 

matrix of 𝑟̂ is then given by 

 𝑅̂ = 𝐷−1  •  𝑊̂  •  𝐷−1 = [𝑟̂(𝑖, 𝑗)]        (43) 

and the elements of 𝑊̂ are given by equation (30). 

 An asymptotic test of the difference in relative-mean income gaps for quantile group i 

between two independent distributions A and B, then, is done with the standard “t-statistic” 

 𝑡𝑖 = 𝑟̂𝑖𝑏− 𝑟̂𝑖𝑎  [𝑟̂𝑎(𝑖,𝑖)+ 𝑟̂𝑏(𝑖,𝑖)]1/2  

and this statistic is then compared to a critical value on the standard normal distribution. Note 

that the SMM distribution critical values are not used here since this test is not part of a PEC 

joint test criterion. 
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8. Inequality Dominance with a Single Lorenz Curve Crossing 

 What can one infer if Lorenz curves cross? More often than not this is the empirical 

situation when comparing two estimated Lorenz curves, and the Lorenz dominance criterion 

above is of no help in such situations. However, Shorrocks and Foster (1987) have come up with 

an extension of the latter criterion to cover just such situations. What may be called the transfer 

sensitivity dominance theorem states that, if the Lorenz curve for distribution A crosses the 

Lorenz curve for distribution B once from above, then all inequality measures satisfying the 

inequality properties (i)-(iv) plus property (v) – transfer sensitivity – will indicate that (summary) 

inequality in A is less than in B if the coefficient of variation for distribution A is lower than that 

for distribution B. The coefficient of variation for a distribution is the ratio of the standard 

deviation of the distribution to the mean, i.e.: 𝜎̂ / µ̂ in the estimation sample. Thus, by adding the 

one further property of transfer sensitivity, one can get a stronger practical result that helps rank 

aggregate income inequality across distributions even when their Lorenz curves cross (once). 

Again, this provides a ranking of overall income inequality between distributions, and not of 

social welfare more generally. 

 Implementing this stronger dominance rule is indeed feasible in light of the above 

development in this paper. All it requires is some revision of the Lorenz dominance PEC of 

Section 5. 

 The practical empirical criterion (PEC) for inequality dominance can now be revised as 

follows: 

Step 1 – Same as before. Test the joint null hypothesis of equality of the two Lorenz 

curve ordinate vectors (i.e., 𝑙𝑏 − 𝑙𝑎 = 0) versus the alternative hypothesis of non-equality. In 

this case, the test statistic is, as before,  
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(𝑙𝑏 − 𝑙𝑎)′[𝛷̂𝑎 + 𝛷̂𝑏]−1(𝑙𝑏 − 𝑙𝑎) . 

If the null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

 Step 2 – If the null hypothesis in Step 1 is rejected and there is a single crossing of 

Lorenz curve ordinates, then undertake separate “t-statistic” calculations for differences on each 

of the individual estimated Lorenz curve ordinates. If at least one of the t-statistics has the 

appropriate sign and is statistically significant compared to critical values on the SMM 

distribution with K-1 and infinite degrees of freedom and none of the t-statistics (if any) that has 

the wrong sign is statistically significant (again based on the SMM distribution), then proceed to 

Step 3. Otherwise, do not draw any dominance inference. 

 Step 3 – Compare the coefficients of variation for the two distributions. If the coefficient 

of variation for the distribution with the initially higher Lorenz curve ordinates (𝐶̂𝑎 , 

corresponding to distribution A, say) is smaller than the coefficient of variation for the other 

distribution (𝐶̂𝑏)4, then one can conclude that distribution A statistically dominates distribution 

B. This implies dominance for all summary inequality measures – that is, they are smaller in 

distribution A than in distribution B – satisfying inequality properties (i)-(v). 

 Note that in this version of the PEC for transfer sensitivity dominance, comparison of the 

coefficients of variation is done simply by inspection. A stronger version of Step 3 (and hence of 

the PEC) could involve a formal statistical test on 𝐶̂𝑏 − 𝐶̂𝑎 . Since the standard error of the 

sample coefficient of variation has been found to be 

 𝑆. 𝐸. (𝐶̂) = 100𝐶 [1+2𝐶22𝑁 ]1/2
        (44) 

                                                           

4
 Note that the capital letter C for coefficient of variation here is quite different from the lower case 𝑐𝑖 for 

mean income contribution in Section 6 above. 
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where 𝐶̂ is expressed as a proportion (Ahn and Fessler, 2003), the estimated variance of 𝐶̂𝑏 − 𝐶̂𝑎 

for independent samples is 

 𝑉𝑎̂𝑟(𝐶̂𝑏 − 𝐶̂𝑎) = 𝑆. 𝐸. (𝐶̂𝑎)2 +  𝑆. 𝐸. (𝐶̂𝑏)2
 . 

Since 𝐶̂ is asymptotically normally distributed (Ahn and Fessler, 2003), one can do an 

(asymptotic) normal test on the “t-ratio” test statistic 

 𝑡 =  𝐶̂𝑏−𝐶̂𝑎[𝑉𝑎̂𝑟(𝐶̂𝑏−𝐶̂𝑎)]1/2 .         (45) 

And given that one is interested in a one-sided alternative test hypothesis, it makes sense to 

perform a one-tailed test on the standard normal where 𝐻1 ∶  𝐶𝑏 − 𝐶𝑎  > 0 (i.e., distribution A 

has a smaller coefficient of variation). 

 

 

9.  Inequality Dominance with Multiple Lorenz Curve Crossings 

 But what if we have a situation where two Lorenz curves cross more than once? The 

Shorrocks and Foster (1987) approach has indeed been extended by Davies and Hoy (1994) to 

handle just this situation and can be viewed as a generalization of the former. In this case, instead 

of a single crossing and single coefficient of variation test, Davies and Hoy (1994) allow for 

possibly multiple Lorenz curve crossings – in the current author’s experience two crossings is the 

most ever seen and the typical number of crossings is one – and posit a coefficient of variation 

condition for each cross-over point (including the top right-hand (1,1) point on the Lorenz 

curves). 

 More specifically, where two distributions A and B are being compared, Davies and Hoy 

(1994) show that the following statements are equivalent: 
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1) For all summary measures of inequality, I, satisfying inequality properties (i)-(v) – i..e., 

including transfer sensitivity –  𝐼𝑎  <  𝐼𝑏 ; and 

2) For all cross-over points k = 1, 2 …, the cumulative coefficients of variation at point k are 

smaller in distribution A than B. 

To empirically implement this, again represent the two Lorenz curves being compared by 

vectors of their (sample) ordinates. Consider also what we will call cumulative or conditional 

coefficients of variation corresponding to each of the quantile cut-offs, 𝜉1, … , 𝜉𝐾−1 , and for the 

full sample as well. In terms of notation, let the cumulative coefficients of variation be 𝐶𝑐𝑖 , 
where 𝐶𝑐𝑖2 = 𝐸((𝑌 − µ𝑐𝑖)2 ǀ 𝑌 ≤  𝜉𝑖) /  [𝐸(𝑌 ǀ 𝑌 ≤  𝜉𝑖)]2 , µ𝑐𝑖 = 𝐸(𝑌 ǀ 𝑌 ≤  𝜉𝑖) is the cumulative mean (up to 𝜉𝑖), 
and 𝜎𝑐𝑖2 = 𝐸((𝑌 − µ𝑐𝑖)2 ǀ 𝑌 ≤  𝜉𝑖)  is the cumulative variance. 

So 𝐶𝑐𝑖 = 𝜎𝑐𝑖 / µ𝑐𝑖 . The unconditional coefficient of variation for the full set of observations 

can be viewed as the case of i=K (i.e., 𝐶𝑐𝐾 = 𝐶). Then a PEC for the Davies-Hoy situation can 

be stated as follows. 

 Step 1 – Same as before. Test the joint null hypothesis of equality of the two Lorenz 

curve ordinate vectors (i.e.,  𝑙𝑏 − 𝑙𝑐 = 0) versus the alternative hypothesis of non-equality. In 

this case, the test statistic is again (𝑙𝑏 − 𝑙𝑎)′[𝛷̂𝑎 + 𝛷̂𝑏]−1(𝑙𝑏 − 𝑙𝑎) . 

If the null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

Step 2 – Essentially the same as for the single-crossing case. If the null hypothesis in Step 

1 is rejected and there are one or more crossings of Lorenz curve ordinates, then undertake 
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separate “t-statistic” calculations for differences on each of the individual estimated Lorenz 

curve ordinates. If at least one of the t-statistics has the appropriate sign and is statistically 

significant compared to critical values on the SMM distribution with K-1 and infinite degrees of 

freedom and none of the t-statistics (if any) that has the wrong sign is statistically significant 

(again based on the SMM distribution), then proceed to Step 3. Otherwise, do not draw any 

dominance inference. 

  Step 3 – Compare the cumulative coefficients of variation for the two distributions. As 

for Step 2, undertake separate “t-statistic” calculations for differences on each of the individual 

estimated cumulative coefficients of variation (as well as the estimated standard coefficient of 

variation). If at least one of the t-statistics has the appropriate sign and is statistically significant 

compared once again to critical values on the SMM distribution with K and infinite degrees of 

freedom and none of the t-statistics (if any) that have the wrong sign is statistically significant 

(again based on the SMM distribution), then one can conclude that the distribution with the 

initially higher Lorenz curve ordinates (distribution A, say) statistically dominates distribution B. 

Once again, this implies dominance for all summary inequality measures – that is, they are 

smaller in distribution A than in distribution B – satisfying inequality properties (i)-(v). 

 To implement this PEC, then, involves doing statistical inference on the 𝐶̂𝑐𝑖’s and 

specifically establishing the variance structure of the set of cumulative coefficients of variation. 

 

9.1 Variance Structure of the Cumulative Coefficients of Variation 

 Since the coefficient of variation is the ratio of first and second moments, it makes sense 

that its (cumulative) sample estimates would be asymptotically normally distributed. And since 
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we are interested only in “t-ratios” of differences, we need focus just on the variance structure of 

the (cumulative) sample estimates rather than the full variance-covariance structure. 

 We begin by recognizing that the (cumulative) coefficients of variation are continuous 

differentiable function of the 𝜉𝑖’s and we know the (asymptotic) distribution of the sample 

quantile cut-off estimates, 𝜉𝑖 , 𝑖 = 1,… , 𝐾 − 1. Since 𝜉𝑖, … , 𝜉𝐾−1 are asymptotically joint normal 

and the 𝐶𝑐𝑖’s are continuous differentiable functions of the 𝜉𝑖’s, then Rao’s linkage theorem says 

that the set of  𝐶̂𝑐𝑖’s are also asymptotically joint normally distributed. Indeed, since each 𝐶𝑐𝑖 is 

a function of only a single 𝜉𝑖, the (asymptotic) variance of 𝐶̂𝑐𝑖 is given by simply the single 

derivative 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐶̂𝑐𝑖) =  (𝜕𝐶𝑐𝑖𝜕𝜉𝑖 )2  • 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖)  for i = 1, …, K-1 ,  (46) 

where we have already seen that 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝜉𝑖) =  𝑝𝑖(1− 𝑝𝑖)[𝑓(𝜉𝑖)]2  

where 𝑓(•) is the underlying population density function of incomes from which the estimation 

sample is drawn. 

 To establish the derivative (𝜕𝐶𝑐𝑖𝜕𝜉𝑖 ) , it is convenient to express the (cumulative) variance as  

 𝜎𝑐𝑖2 = 𝐸(𝑌2 ǀ 𝑌 ≤  𝜉𝑖) − µ𝑐𝑖2  

and consider the derivative of 𝐶𝑐𝑖2 : 

 
𝜕𝐶𝑐𝑖2𝜕𝜉𝑖 = 𝜕(𝜎𝑐𝑖2 / µ𝑐𝑖2) 𝜕𝜉𝑖   

         = ( 1µ𝑐𝑖2) •  [𝜕𝜎𝑐𝑖2 𝜕𝜉𝑖 ] + 𝜎𝑐𝑖2  •   [𝜕µ𝑐𝑖−2𝜕𝜉𝑖 ] 
i.e., 2𝐶𝑐𝑖  •  [𝜕𝐶𝑐𝑖𝜕𝜉𝑖 ] =  ( 1µ𝑐𝑖2) •  [𝜕𝜎𝑐𝑖2 𝜕𝜉𝑖 ] − 2 (𝜎𝑐𝑖2 µ𝑐𝑖2 ) ( 1µ𝑐𝑖) •  [𝜕µ𝑐𝑖𝜕𝜉𝑖 ] . 
So,  
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𝜕𝐶𝑐𝑖𝜕𝜉𝑖 = (12) ( 1𝜎𝑐𝑖•µ𝑐𝑖) •  [𝜕𝜎𝑐𝑖2 𝜕𝜉𝑖 ] − (𝐶𝑐𝑖µ𝑐𝑖) •  [𝜕µ𝑐𝑖𝜕𝜉𝑖 ] .     (47) 

 By Leibritz’s rule, the two component derivatives are then, if µ𝑐𝑖 = ( 1𝑝𝑖) ∫  𝑦 𝑓(𝑦)𝑑𝑦 𝜉𝑖0 , 

 
𝜕µ𝑐𝑖𝜕𝜉𝑖 = ( 1𝑝𝑖) 𝜉𝑖  • 𝑓(𝜉𝑖),        (48) 

and if   𝜎𝑐𝑖2 =  𝐸(𝑌2 ǀ 𝑌 ≤  𝜉𝑖) − µ𝑐𝑖2  
          = ( 1𝑝𝑖) ∫  𝑦2 𝑓(𝑦)𝑑𝑦 − µ𝑐𝑖2 𝜉𝑖0 ,  

 
𝜕𝜎𝑐𝑖2 𝜕𝜉𝑖 = ( 1𝑝𝑖) 𝜉𝑖2  •  𝑓(𝜉𝑖) − 2µ𝑐𝑖 • [( 1𝑝𝑗) 𝜉𝑖  • 𝑓(𝜉𝑖)]  

         = ( 1𝑝𝑖) 𝜉𝑖  • 𝑓(𝜉𝑖) • [𝜉𝑖 − 2µ𝑐𝑖] .      (49) 

Substituting (48) and (49) into (47) leads to 

 
𝜕𝐶𝑐𝑖𝜕𝜉𝑖 = (12) ( 1𝜎𝑐𝑖•µ𝑐𝑖) •  [( 1𝑝𝑖) 𝜉𝑖  • 𝑓(𝜉𝑖)(𝜉𝑖 − 2µ𝑐𝑖)] 

   − (𝐶𝑐𝑖µ𝑐𝑖)  •  [( 1𝑝𝑖) 𝜉𝑖  • 𝑓(𝜉𝑖)] 
       = ( 1𝑝𝑖) 𝜉𝑖  • 𝑓(𝜉𝑖) • {(12) (𝜉𝑖− 2µ𝑐𝑖)𝜎𝑐𝑖•µ𝑐𝑖 − (𝐶𝑐𝑖µ𝑐𝑖)} . 

Thus, 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝐶̂𝑐𝑖) =  (𝜕𝐶𝑐𝑖𝜕𝜉𝑖 )2  •  𝑝𝑖(1− 𝑝𝑖)[𝑓(𝜉𝑖)]2   

               = (1− 𝑝𝑖𝑝𝑖 ) ( 𝜉𝑖µ𝑐𝑖)2 •  {(12) (𝜉𝑖− 2µ𝑐𝑖)𝜎𝑐𝑖 − 𝐶𝑐𝑖}2
 

 = (1− 𝑝𝑖𝑝𝑖 ) ( 𝜉𝑖µ𝑐𝑖)2 •  {(12) ( 1𝐶𝑐𝑖) • [( 𝜉𝑖µ𝑐𝑖) − 2] − 𝐶𝑐𝑖}2
.   (50) 

Note that, once again, the (asymptotic) variance is distribution-free, and each term in (50) can be 

consistently estimated from the available sample. 

 The standard error of the sample 𝐶̂𝑐𝑖 , then, is gotten as 
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 𝑆. 𝐸. (𝐶̂𝑐𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝐶̂𝑐𝑖)𝑁 ]1/2
  

where, as usual, N is the size of the estimation sample. The estimated variance of the difference 

in (cumulative) coefficients of variation for independent samples from distribution A and B is 

 𝑉𝑎̂𝑟(𝐶̂𝑐𝑖𝑏 − 𝐶̂𝑐𝑖𝑎) = 𝑆. 𝐸. (𝐶̂𝑐𝑖𝑎)2 +  𝑆. 𝐸. (𝐶̂𝑐𝑖𝑏)2
 

and the t-ratio statistic of the difference is then 

𝑡 =  𝐶̂𝑐𝑖𝑏 − 𝐶̂𝑐𝑖𝑎[𝑉𝑎̂𝑟(𝐶̂𝑐𝑖𝑏 − 𝐶̂𝑐𝑖𝑎)]1/2 

that is used in Step 3 of the PEC test criterion. 

 The Appendix at the end of this paper shows how the 𝐶̂𝑐𝑖’s can be calculated from 

quantile-specific means and standard deviations by straightforward recursion formulas. So, 

again, it would be helpful to practitioners using official published statistics on income shares if 

the official statistical agencies also provided quantile standard deviations along with their 

quantile means, so users can undertake statistical inference on Lorenz curves if they wish. 

 

 

10.  Distributional Distance Dominance 

 One aspect of concern about rising income inequality is the implied growing economic 

and social distance between income groups and the potential political fracturing this may bring 

about. The literature and media have focussed on the widening gap between top incomes and the 

rest of the distribution and the increasing difficulty of lower-income workers to pull ahead into 

stable middle-income status – the sense of belonging to the Middle Class may be weakening. So 
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this raises the question of whether there is a way to measure, in general fashion, the growing 

economic distances between different income groups across a distribution? 

 The analysis of this paper suggests just such a measure – a “distributional distance 

function”. It can perhaps be most conveniently pictured as a graph with deciles or percentiles 

measured along the base or horizontal axis (e.g., i = 1, 2, …, K) and incremental quantile mean 

income gaps (µ̂𝑖 − µ̂𝑖−1) measured along the vertical or left-hand axis. This relationship or curve 

may be referred to as the distributional distance function for a given income distribution.  

Its ordinates show the distance or income gap between adjacent quantile groups in a 

distribution. So for some distributions, the gaps may be relatively wide between lower and 

middle-class quantile groups, suggesting it is more difficult to move up to middle-income status. 

Obviously, gaps could be combined to show the distance between, say, bottom and middle 

income groups. While for other situations – such as over recent decades in the Canadian and U.S. 

economies – the widening gaps have been most dramatic at the upper end of the distributions.5 

Indeed, one can compare such curves between two income distributions and argue that 

the uniformly lower curve is said to distance dominate or show distributional distance dominance 

over the higher such curve. Comparing such curves would also allow one to identify which 

regions of a distribution are showing widening income distance gaps over time. Such 

comparisons can be easily done from decile mean income figures published annually by official 

statistical agencies such as Statistics Canada and the U.S. Bureau of the Census. 

                                                           

5
 Distributional distances could also be expressed in proportion terms – such as (µ̂𝑖 − µ̂𝑖−1) / µ̂𝑖−1 – and 

application of Rao’s linkage theorem would still carry through. But for intuitive appeal and convenience 
of linear analysis, we’ll express distributional distances in dollar or level terms.    
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 Employing the analytical machinery of the present paper also allows one to extend formal 

statistical inference and hypothesis testing to such a comparison. The key is to represent each 

(sample) distributional distance function by the vector 

 𝑑̂ = (µ̂1,  µ̂2 − µ̂1, … ,  µ̂𝐾 − µ̂𝐾−1 )′  
where the first element can be thought of as  µ̂1 − µ̂0 where  µ̂0 = 0 . Testing and inference then 

depend on the statistical properties of these quantile mean differences. One can also develop a 

formal PEC rule for comparing income distributions in terms of overall distance dominance. 

 

10.1 Statistical Inference for the Distributional Distance Function 

 The sample vector 𝑑̂ is a linear function of µ̂ , the vector of quantile means: 

 𝑑̂ =  𝐷 • µ̂  and 𝑑 = 𝐷 • µ 

where, for purposes of this section,6 

 𝐷 = [ 1 0−1 1⋱ ⋱0 −1 1 ]        (51) 

is a KxK non-random banded matrix with ones along the principal diagonal, minus ones just 

below the principal diagonal, and zeros elsewhere. As has already been seen, µ̂ is asymptotically 

joint normally distributed with mean vector µ and (asymptotic) variance-covariance matrix 𝑉𝑆 . It 

then follows from Rao’s linkage theorem that 𝑑̂ is also asymptotically joint normally distributed 

with mean 𝑑 and (asymptotic) variance-covariance matrix 

 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑑̂) =  ∆𝑆 =  𝐷 •  𝑉𝑆  •  𝐷′ = [𝛿𝑆(𝑖, 𝑗)] ,     (52) 

where the elements of 𝑉𝑆 are worked out in section 4.2 above. Thus, for example, for i = 2, …, K, 

                                                           

6
 This is to be distinguished from the D matrix in Section 7. 
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 𝐴𝑠𝑦. 𝑣𝑎𝑟(𝑑̂𝑖) =  𝑣𝑆(𝑖 − 1, 𝑖 − 1) + 𝑣𝑆(𝑖, 𝑖) − 2𝑣𝑆(𝑖 − 1, 𝑖)  

where 𝑣𝑆(𝑖, 𝑗) is the i,j’th element of 𝑉𝑆 . Thus, the standard error of 𝑑̂𝑖 is 

 𝑆. 𝐸. (𝑑̂𝑖) =  [𝐴𝑠𝑦.𝑣̂𝑎𝑟(𝑑̂𝑖)𝑁 ]1/2
         (53) 

for estimation sample size N. One can then use (53) to formally test for the statistical 

significance of any individual quantile difference based on an (asymptotic) standard normal test. 

 

10.2 A PEC for Distributional Distance Dominance 

 To rank overall distance dominance between two (independent) income distributions, one 

can adopt a practical empirical criterion similar to that for establishing rank dominance. 

 Step 1 – Test the joint null hypothesis of equality of the two distributional distance 

vectors, 𝑑𝑎 and 𝑑𝑏 (corresponding to distributions A and B), versus the alternative hypothesis of 

non-equality. This can be done with the test statistic 

 (𝑑̂𝑏 − 𝑑̂𝑎)′ [∆̂𝑎 + ∆̂𝑏]−1(𝑑̂𝑏 − 𝑑̂𝑎)        (54) 

where ∆̂𝑎= [𝛿𝑎(𝑖, 𝑗)] ,   ∆̂𝑏= [𝛿̂𝑏(𝑖, 𝑗)] , 
 𝛿𝑎(𝑖, 𝑗) =  𝛿𝑆𝑎(𝑖, 𝑗) / 𝑁𝑎 , 

and 𝛿𝑏(𝑖, 𝑗) =  𝛿𝑆𝑏(𝑖, 𝑗) / 𝑁𝑏 .  ∆̂𝑎 and ∆̂𝑏 are thus the estimated variance-covariance matrices of 𝑑̂𝑎 and 𝑑̂𝑏 , respectively, and 

are obtained by (i) rescaling the elements of the asymptotic variance-covariance matrices ∆𝑆𝑎 and ∆𝑆𝑏 by their respective sample sizes and (ii) replacing all unknown population terms by their 

consistent sample estimates. Under the null hypothesis of equality of the two distance vectors, 

statistic (54) is asymptotically chi-square with K degrees of freedom. If the null hypothesis is not 
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rejected, then the two distributions can be said to have distributional distance functions that are 

not statistically significantly different, and further comparison is not pursued. 

 Step 2 – If, however, the null hypothesis in Step 1 is rejected, then proceed to calculate 

separate “t-statistics” for differences on each of the individual quantile distance elements: 

𝑡𝑖 = 𝑑̂𝑖𝑏−𝑑̂𝑖𝑎[𝛿̂𝑎(𝑖,𝑖)+ 𝛿̂𝑏(𝑖,𝑖)]1/2  ,  i = 1, … K ,       (55) 

where 𝛿(𝑖, 𝑖) =  [𝑆. 𝐸. (𝑑̂𝑖)]2 is the estimated variance of  𝑑̂𝑖 – disregarding the superscripts a 

and b for convenience. Then compare these individual t-statistics to critical values on the SMM 

distribution with K and infinite degrees of freedom. If at least one of these individual “t-tests” is 

statistically significant of one sign and none of the other individual t-statistics are statistically 

significant of the other sign, then one can conclude that the distributional distance function with 

the lower 𝑑̂𝑖’s – say distribution A – dominates that of the other distribution (i.e., B). If not, one 

can say that the two distributional distance functions are statistically significantly different, but 

not reach a conclusion as to whether one distance dominates the other overall. 

 

 

11. Review and Conclusions 

 The theoretical literature on social choice and economic welfare evaluation has offered 

several dominance criteria for ranking different income distributions – such as rank dominance, 

Lorenz dominance or generalized Lorenz dominance – and based on comparing curves such as 

quantile mean curves or Lorenz curves. This paper provides the tools and procedures for actually 

implementing these dominance criteria empirically with data that can be readily obtained from 

statistical agencies such as Statistics Canada and the U.S. Bureau of the Census. The approach 



54 

 

followed thus advances the statistical inference framework for a toolbox of disaggregative 

income inequality measures (such as quantile means and income shares) published by these 

agencies. 

 The process for implementing this advance involves three stages. The first stage consists 

of representing a dominance curve by a vector of the curve’s estimated ordinates for a set of 

specified quantile points (such as deciles or percentiles). This transforms a theoretical problem 

into a statistical one. The second stage involves establishing the statistical properties of this 

vector of sample ordinates through use of recent developments on quantile-based inferences that 

are distribution-free and thus very straightforward to implement. This transforms the statistical 

problem into an inferential one by providing a framework for basing comparisons on formal 

statistical inference and testing. The third stage of implementing dominance comparisons 

involves proposing specific practical empirical criteria (or PECs) – one can think of these as a 

type of decision tree – for using formal statistical inference tests to reach empirical conclusions 

about the ranking of income distributions based on the theoretical dominance criteria. This 

converts a series of statistical test outcomes to conclusions with respect to the possible ranking of 

income distributions being compared. 

 This approach is applied to several dominance rules for ranking social welfare or income 

inequality between distributions: 

 rank dominance for comparing social welfare (Section 4) 

 Lorenz dominance for comparing income inequality (Section 5) 

 generalized Lorenz dominance for comparing social welfare (Section 6) 

 Lorenz dominance for comparing income inequality when Lorenz curves cross (Sections 

8, 9) 
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 distributional distance dominance for comparing distances between income groups 

(Section 10). 

The latter is a novel concept to highlight another feature or property of an income distribution. 

These dominance criteria can all be expressed in terms of linear transforms of income shares and 

quantile means, and hence their statistical properties can be easily established. Since statistical 

inference for quantile-based income shares and quantile means has been shown to be 

distribution-free (in the sense of not depending on any specific underlying income distribution 

function), so also is statistical inference for these transforms, and hence test statistics can be 

readily obtained as well. 

 The analytical results in the paper have several implications. First, they show that quite 

broad inferences can be drawn as to social welfare and inequality comparisons that do not rely on 

single specific measures and can be much more general. Thus there should be a shift in focus 

from specific summary measures of inequality to whole sets of disaggregative measures that are 

readily available in official statistical sources. Since these disaggregative measures are all 

quantile-based, the analysis thus highlights this disaggregative quantile-based approach to 

characterizing and measuring income inequality. 

 Second, the analysis of the paper shows that these disaggregative income inequality 

statistics can – when used jointly – provide not just descriptive information on changing patterns 

of inequality, but also (under fairly broad and reasonable conditions) normative insights and 

inferences as well. The paper also shows how these readily available disaggregative measures of 

income inequality – with only a bit more information that could be easily provided by statistical 

agencies – can provide the basis for formal statistical inference and standard statistical testing 

protocols. 
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 Third, the set of proposed toolbox measures of disaggregative income inequality in Beach 

(2021a,b) should be expanded to include several further measures highlighted in the current 

paper: 

 Lorenz curve ordinates (Section 5) 

 generalized Lorenz curve ordinates (Section 6) 

 relative-mean income ordinates (Section 7),  

 quantile standard deviations (Section 9), and 

 distributional distance measures (Section 10). 

The paper provides full variance-covariance formulas for each of these measures as well, 

so they can all be used in informative and straightforward fashion. 

Fourth, government statistical agencies such as Statistics Canada and the U.S. Bureau of 

the Census should provide – along with their income shares, quantile means and quantile cut-off 

values published annually – information on (i) the sample sizes of the estimation samples the 

above statistics are based on, as well as (ii) cumulative means and standard deviations by 

quantile group (including for the full samples). This would allow empirical users to calculate 

relevant test statistics for formal statistical inference on the above published statistics as part of 

their empirical analysis. 

And fifth, the inferential approach in this paper could also be combined with active on-

going research on distributional National Accounts (Zucman et al., 2018; Alvaredo et al., 2020). 
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Appendix 

Calculating Cumulative Coefficients of Variation from Quantile  

Means and Standard Deviations 

 This appendix shows how one can calculate cumulative coefficients of variation (for use 

in statistical inference in Section 9 on crossing Lorenz curves) from quantile-specific means and 

standard deviations by simple recursion formulas. 

 Let the cumulative coefficient of variation 

 𝐶𝑐𝑖  ≡ 𝜎𝑐𝑖 /  µ𝑐𝑖         (a1) 

where the lower-case 𝑐𝑖’s indicate cumulative; i.e., 

 µ𝑐𝑖 = 𝐸(𝑌 ǀ 𝑌 ≤  𝜉𝑖) 

and  (𝜎𝑐𝑖)2 = 𝑉𝑎𝑟(𝑌 ǀ 𝑌 ≤  𝜉𝑖) . 

 We develop recursion formulas for each of µ𝑐𝑖 and (𝜎𝑐𝑖)2 . In the case of the means, 

 𝐸(𝑌 ǀ 𝑌 ≤  𝜉𝑖) =  (𝑝𝑖−1𝑝𝑖 )  𝐸(𝑌 ǀ 𝑌 ≤  𝜉𝑖−1) + (𝐷𝑖𝑝𝑖)  𝐸(𝑌 ǀ 𝜉𝑖−1  < 𝑌 ≤  𝜉𝑖) 

i.e.: µ𝑐𝑖 = (𝑝𝑖−1𝑝𝑖 ) µ𝑐𝑖−1 + (𝐷𝑖𝑝𝑖) µ𝑖        (a2) 

for i = 2, …, K (where 𝜉𝐾 =  ∞) and with µ𝑐1 = µ1 . 

 In the case of standard deviations, it is more convenient to work with the variances: 

 (𝜎𝑐𝑖)2 = 𝐸[(𝑌 − µ𝑐𝑖)2 ǀ 𝑌 ≤  𝜉𝑖]  
  = 𝐸 (𝑌2 ǀ 𝑌 ≤  𝜉𝑖) − (µ𝑐𝑖)2 .       (a3) 

But the same reasoning as in (a2) holds for cumulating the 𝑌2’s: 

 𝐸 (𝑌2 ǀ 𝑌 ≤  𝜉𝑖) =  (𝑝𝑖−1𝑝𝑖 )  𝐸 (𝑌2 ǀ 𝑌 ≤  𝜉𝑖−1) +  (𝐷𝑖𝑝𝑖)  𝐸(𝑌2 ǀ 𝜉𝑖−1  < 𝑌 ≤  𝜉𝑖)  

i.e.: µ𝑐2𝑖 = (𝑝𝑖−1𝑝𝑖 ) µ𝑐2𝑖−1 + (𝐷𝑖𝑝𝑖) µ2𝑖        (a4) 
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for i = 2, …, K , and with  µ𝑐21 = (𝜎1)2 + (µ1)2 , where the 2 in each term of (a4) refers to 

operations on the 𝑌2’s. 

 Therefore, plugging recursion formulas (a2) and (a4) into equations (a3) and (a1) allows 

one to update (𝜎𝑖)2 and thus 𝐶𝑐𝑖 as well for each i = 2, …, K . 

Given a set of sample quantile means and standard deviations, then, one can calculate the 

cumulative estimated coefficients of variation in analogous fashion. 

 µ𝑐̂𝑖 = (𝑝𝑖−1𝑝𝑖 ) µ𝑐̂𝑖−1 + (𝐷𝑖𝑝𝑖) µ̂𝑖        (a5) 

for  i = 2, …, K  with µ𝑐̂1 = µ̂1. Since, 𝜎𝑖2 = µ2𝑖 − (µ𝑖)2 , 
 µ2𝑖 = 𝜎𝑖2 + (µ𝑖)2 . 

So  µ2̂𝑖 = 𝜎̂𝑖2 + (µ̂𝑖)2   for  i = 1, …, K        (a6) 

and  𝜎̂𝑖2 is the square of the i’th quantile sample standard deviation. Here (𝜎̂𝑖)2 = (1 / 𝑁𝑖)  •∑  (𝑌𝑗 − µ̂𝑖)2𝑗,𝑅𝑖   
where  𝑅𝑖 refers to the range of observations greater than 𝜉𝑖−1 and less than or equal to 𝜉𝑖 , and 𝑁𝑖 is the number of observations in 𝑅𝑖 . (Note that the denominator here is 𝑁𝑖 rather than 𝑁𝑖 − 1 , 

so that adding up conditions hold.)  Then 

  µ𝑐̂2𝑖 = (𝑝𝑖−1𝑝𝑖 ) µ𝑐̂2𝑖−1 + (𝐷𝑖𝑝𝑖) µ̂2𝑖        (a7) 

for i = 2, …, K  with again µ𝑐̂21 = µ̂21 . Then 

 (𝜎𝑐̂𝑖)2 = µ𝑐̂2𝑖 −  (µ̂𝑐𝑖)2         (a8) 

and thus 𝐶𝑐̂𝑖 = 𝜎𝑐̂𝑖 / µ̂𝑐𝑖  .         (a9) 

Since the calculations involve sums and differences of squared terms, they should be 

performed in high precision. Note also that  𝐶𝑐̂𝐾 is indeed the estimated coefficient of variation 

for the sample as a whole. 


