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Abstract

One of the most popular estimators of interactive effects panel data models is the com-

mon correlated effects (CCE) approach, which uses the cross-sectional averages of the ob-

servables as proxies of the unobserved factors. The present paper proposes a simple test

that is suitable for testing hypotheses about the factors in CCE and that is valid provided

only that the number of cross-sectional units is large. The new test can be used to test if a

subset of the averages is enough to proxy the factors, or if there are observable variables

that capture the factors. The test can also be used sequentially to determine the smallest set

of averages needed to proxy the factors.

Keywords: Factor model selection; Interactive effects models; CCE estimation.

1 Introduction

Consider the stacked T × 1 vector yi, observable for i = 1, ..., N cross-sectional units. The model

considered for this variable is the same as in Pesaran (2006), and is given by

yi = Xiβi + Fγi + εi, (1)

Xi = FΓi + Vi, (2)
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where Xi is a T × k matrix of observable regressors, βi is a k × 1 vector of slope coefficients, F

is a T × m0 vector of unobservable common factors, γi and Γi are m0 × 1 and m0 × k matrices,

respectively, of factor loadings, and εi and Vi are T × 1 and T × k matrices, respectively, of

idiosyncratic errors. The k × 1 vector βi is assumed to be randomly distributed across i with a

common mean β, which is the main object of interest. The products Fγi and FΓi are referred

to as “interactive effects”, because they interact factors, or time effects, with loadings, or in-

dividual effects. Because these effects enter both (1) and (2), Xi is endogenous, and therefore

estimation of (1) is nontrivial.

While there are other approaches that can be used to obtain consistent estimates of β, in the

present paper we focus on the common correlated effects (CCE) approach of Pesaran (2006),

which is one of the simplest and most popular approaches around. The idea in this approach

is to use the cross-sectional averages of all the observables to estimate (the space spanned by)

F and to estimate β by ordinary least squares (OLS) conditional on those averages. However,

while certainly simple, the use of all available averages is likely excessive. As in classical model

selection problems, removal of redundant factor estimates is expected to reduce noise and in-

crease precision (see Brown et al., 2022, for a formal proof). Moreover, many economic models

have a natural role for factors and thus determining which factor estimates that matter is of

interest in its own right. Because of these and other reasons, the problem of how to determine

which factor estimates to retain in factor models has attracted considerable interest, so much so

that it has given rise to a separate strand of literature. Most of this literature supposes that the

panel data set is large in the sense that both N and T should be allowed to grow without bound

(see, for example, Bai, 2009, Moon and Weidner, 2015, and Pesaran, 2006).1 Taking advantage

of the largeness of the sample, many techniques are available for determining which factors to

include. Prominent examples are information criteria, such as those developed by Bai and Ng

(2002), and ratios of eigenvalues, such as those of Ahn and Horenstein (2013).

One problem with the approaches just described is that the large-N, large-T condition is

rarely met in practice. Take the so-called “wage curve” model (Blanchflower and Oswald,

1See Ahn et al. (2013), and Robertson and Sarafidis (2015) for some exceptions in the generalized method of
moments (GMM) context.

2



1994), which relate worker’s wages to the rate of unemployment, and is one of the most com-

mon motivating example of interactive effects models in the literature (see, for example, Ahn et

al., 2013, and Robertson and Sarafidis, 2015). Here the factor loadings may represent workers’

unobservable skills and the factors would represent the price of these skills. The problem with

this example, as with many other common empirical examples in the literature (see, for exam-

ple, Ahn et al., 2013), is that the data employed are almost always of the micro type. That is,

while N is large, T is not, which means that many existing approaches are not really applicable.

Another problem is that while there are many studies that propose consistent factor selec-

tion procedures, in practice there is often considerable disagreement between different proce-

dures, and the resulting estimators of β can be very sensitive in this regard (see, for example,

Ahn and Horenstein, 2013, and Moon and Weidner, 2015, for discussions).2 Such disagree-

ments indicate that there is much uncertainty over the selected factors. As far as we are aware,

however, there are no formal statistical tests available that can be used in the CCE context that

accounts for this uncertainty.

The present paper can be seen as a reaction to the above discussion. The purpose is to

develop a test that is suitable for testing hypotheses about the factors in CCE when T is fixed

and only N is large. The test can be used to test if a subset of the cross-sectional averages is

enough to capture the factors, or if there are observable time series variables that can be used

for this purpose. The test can also be used to sequentially determine the smallest set of averages

needed to estimate the factors. The asymptotic properties of the test when used in these three

ways are investigated in Section 2 and in Section 3 we provide an empirical illustration using

as an example the US wage curve. Section 4 concludes. All assumptions, proofs and results of

secondary nature are provided in the online appendix, which also contains a small-scale Monte

Carlo study.

2Brown et al. (2022) show that the asymptotic distribution of the CCE estimator depends on which factors are
used for estimation.
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2 The test and its asymptotic properties

2.1 Testing estimated factors

Denote by Zi = [yi, Xi] the T × (k + 1) matrix of observables. The usual CCE estimator of the

space spanned by F is given simply by Z, where A = N−1 ∑
N
i=1 Ai for any generic matrix Ai.

3 In

this paper, however, we want to entertain the possibility that not all k + 1 averages are needed

in the estimation. Let us therefore denote by m the number of averages actually included. Let

M ⊆ {1, ..., k + 1} be the index set corresponding to the selected averages, and denote by SM

the (k + 1) × m matrix of zeros and ones that selects these averages from Z. We also define

M = {1, ..., k + 1} as the set of all averages, such that SM = Ik+1. The rank of SM is given by m

and the number of selected averages is the cardinality |M| = m. The estimator of the space of

F that we will be considering in this paper is given by

F̂M = ZSM. (3)

The model to be estimated is (1) with F̂M in place of F and ignoring the heterogeneity of βi;

yi = Xiβ + F̂Mgi,M + ei, (4)

where gi,M is a m × 1 vector of factor loadings and the T × 1 vector ei is a composite error term

capturing not only the original regression error εi but also the heterogeneity of βi and the error

coming from the estimation of the factors. One of the challenges we face is how to construct a

test that accounts for everything that goes into ei. The CCE estimators of β and gi,M in (4) are

given by

β̂M =

(
N

∑
i=1

X′
iMF̂M

Xi

)−1
N

∑
i=1

X′
iMF̂M

yi, (5)

ĝi,M = (F̂′
MF̂M)+F̂′

M(yi − Xi β̂M), (6)

where MA = IT − A(A′A)+A′ = IT − PA for any T-rowed matrix A and (A′A)+ is the Moore–

Penrose inverse of any matrix A′A (if A is not of full column rank).

3An implicit assumption here is that Z1, . . . , ZN are the only data available and hence that the only factor
candidates available are given by Z. This is not necessary. A common scenario in practice, which we discuss at
length in the empirical illustration of Section 3, is that in addition to Z there are time series, including common
deterministic terms such as a constant and linear trend, that can be viewed as observed common factors. If this is
the case, we simply append the observed factors to F̂M.
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It is standardly assumed in model selection problems (and elsewhere) that the largest model

considered is not under-specified (see Bai and Ng, 2002, for an example in the pure factor model

context). We do the same.4 This means that asymptotically the factor estimator based on all

k + 1 averages, F̂M = Z, spans the space of F.

We want to test the null hypothesis that asymptotically F̂M, a subset of all k + 1 averages,

spans the space of F. If the null hypothesis is correct, then the excluded averages are redundant

and can hence be removed, which is expected to reduce noise and increase precision. If, on

the other hand, the null hypothesis is false, then F̂M do not span the space of F. This means

that some of the excluded averages are not redundant and that they are in fact necessary for

consistent estimation of the factor space. They should therefore be retained.

Easy as it may sound, testing if F̂M spans the space of F is a nontrivial task. An obvious

problem with the test approach described in the last paragraph is that it is not really feasible

since F is unobserved. However, we have assumed that asymptotically F̂M spans the space of

F. In this sense, observing F̂M is as good as observing F. This motivates implementing the

test of whether F̂M spans the space of F as a test of whether F̂M spans the same space as F̂M.

Unfortunately, the fact that F is unobserved is not the only challenge we face. Another prob-

lem that arises is that the dimensionality of F̂M is not the same as that of F̂M. Moreover, even

if one compares two estimates of the same dimension that span the same factor space, they

will not be equal asymptotically but only equal up to a certain rotation. In order to overcome

these problems, in this paper we test if F̂Mgi,M is asymptotically equal to F̂Mgi,M. The use of

the estimated common components as opposed to the estimated factors not only resolves the

difference in dimensionality and rotational indeterminacy issues, but also reduces the dimen-

sion of the object being tested. The change of object therefore has many advantages. However,

there is also a cost in that while F̂M is consistent provided only that N is large, gi,M is not.

Interestingly enough, this inconsistency is not detrimental in any way, as we will now show.

In order to describe the proposed test statistic, it is useful to define the T × 1 vector of

4Our formal assumptions are laid out in full in Section A of the online appendix.
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common component differences

∆i,M = F̂Mĝi,M − F̂Mĝi,M. (7)

A consistent non-parametric estimator of the covariance matrix of this vector is given by

Σ̂M =
1

N − 1

N

∑
i=1

(∆i,M − ∆M)(∆i,M − ∆M)′. (8)

One possibility for a test statistic is given by Σ̂
−1/2
M

√
N∆M, a T × 1 vector.5 This test statistic is

suitable when wanting to test the equality of the estimated common components at each point

in time, and is feasible when T is very small. As T increases, however, so does the number

of tests that can possibly be computed.6 In order to circumvent this problem, we propose

combining the point-wise test statistics. Specifically, the following combination statistic based

on summing across the individual point-wise test statistics is proposed7:

TM =

√
N1′T×1∆M

σ̂M
, (9)

where 1T×1 = [1, ..., 1]′ is a T × 1 vector of ones, and

σ̂
2
M = 1′T×1Σ̂M1T×1. (10)

The object being tested is the span of F̂M. At times, it will be useful to be able to make this

dependence on F̂M explicit. We will then write T(F̂M) for TM

The assumptions that we will be working under in this section are largely the same as

in Westerlund and Kaddoura (2022), and are laid out in Section A of the online appendix.

Theorem 1 summarizes the large-N properties of the TM statistic under these assumptions. In

order to formally define the null and alternative hypotheses of this test, it is useful to denote by

M0 the smallest set of m0 averages that are rotationally consistent for F.8 We can think of M0 as

5Here Σ̂M = Σ̂
1/2
M Σ̂

1/2′
M with Σ̂

1/2
M being the lower triangular Choleski factor.

6A large T is also likely to lead to poor small-sample performance, because of the need to compute and invert

the T × T matrix Σ̂M.
7Our choice of combination statistic is motivated mainly by the fact that the use of the sum enables a straight-

forward asymptotic analysis. Alternatively, one could consider order statistics (or indeed any other summary
measure). The asymptotic theory of such statistics is, however, notoriously difficult, especially in cases such as
this when the point-wise statistics are not independent.

8The formal definition of M0 can be found in Section A of the online appendix.
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the index set corresponding to the “correct” averages. In this notation, the null and alternative

hypotheses being tested here are given by H0 : M ⊇ M0 and H1 : M ⊂ M0, respectively.

Theorem 1. Suppose that Assumptions 1–7 are met.

(a) If H0 holds, then TM → N(0, 1) as N → ∞.

(b) If H1 holds, then TM = Op(
√

N).

Theorem 1 (a) implies that TM is asymptotically correctly sized under H0;

lim
N→∞

P(|TM| > z
α/2) = α, (11)

where zα = Ψ−1(1 − α) is the (1 − α)-th quantile of the standard normal cumulative distribu-

tion function, here denoted Ψ(x). If H1 is true, so that F̂Mgi,M is different from F̂Mgi,M even

asymptotically, then TM = Op(
√

N) by Theorem 1 (b). It follows that

lim
N→∞

P(|TM| > z
α/2) = 1. (12)

Power therefore tends to one.

2.2 Estimating M0

The TM test can be used to determine M0. In principal components analysis the process of

determining which factors to include is simplified by the fact that the estimated factors are

ordered by the fraction of the total variation in the regression errors they explain. The cross-

sectional averages considered here are by contrast unordered. This is a problem in the sense

that selection calls for the evaluation of 2k+1 − 1 models, which is likely a big number. If k+ 1 =

10, the number of candidate models is 1, 023, and when k + 1 = 20, this number increases to

1, 048, 575. Even with very fast computers, evaluating 2k+1 − 1 models may not be practical.

And even if it is, the precision of the selection procedure is likely to decrease as the number of

candidate models increases.

We therefore look for a test-based procedure to determine M0 that does not require eval-

uation of all 2k+1 − 1 models. As a source of inspiration, we look at the statistical literature
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on variable selection in high-dimensional models (see, for example, Fujikoshi, 2022, and the

references provided therein). Kick-one-out (KOO) methods, originally proposed for use with

information criteria, reduce the number of computational statistics from 2k+1 − 1 to k + 1. The

general idea is that if the criterion value for the subset with one variable removed from the full

set is greater than that of the full set, the removed variable is selected. In the present context,

this means that we should exclude one average at a time and only retain those averages for

which there is no evidence against H0. The below test procedure is similar in spirit to the one

considered by Fujikoshi and Sakurai (2019).

Sequential estimation of M0:

1. Set j = 1, M̂ = M and Mj = M \ {j}.

2. Compute TMj
= T(F̂Mj

).

3. Denote by cN a “critical value” such that cN → ∞ and cN/
√

N → 0. If |TMj
| ≤ cN, set

M̂ = M̂ \ {j}, whereas if |TMj
| > cN, M̂ is untouched.

4. If j < k + 1, set j = j + 1 and go back to step 2, whereas if j = k + 1, the procedure is

stopped.

A word about cN. Assume for a moment that the step-2 test was carried out using the

conventional critical value based on the standard normal distribution, z
α/2, instead of cN. The

limiting behaviour of TMj
in the above sequential setup is dictated by Theorem 1. Hence, since

TMj
is divergent if truly important averages are kicked out, with probability approaching one

the set of averages retained in the sequential procedure will not be smaller than M0. However,

since the probability of rejecting a true null hypothesis is given by α, the probability of selecting

too many averages will not be zero, and therefore the set of retained averages will tend to be

larger than M0 even asymptotically. The use of a diverging critical value eliminates the risk

of over-specification, which means that consistency is possible, provided that cN/
√

N → 0.

Theorem 2 formalizes this.
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Theorem 2. Suppose that Assumptions 1–7 are met. Then, as N → ∞,

P(M̂ = M0) → 1.

As far as we are aware, the sequential test-based procedure considered here is the first that

enables consistent estimation of M0 in the CCE context when T is fixed and only N is large. A

naturally consistent estimator of the number of factors, m0 = |M0|, is given m̂ = |M̂|.

2.3 Testing known factors

As Bai and Ng (2006) point out, it may be appealing to associate estimated factors with ob-

served time series variables as this enables economic interpretation, although admittedly in

CCE the estimated factors are already quite easy to interpret (see Stauskas and Westerlund,

2022, for a discussion). We therefore want to be able to test if the observed variables span the

space of the factors. This is similar to the testing problem considered in Section 2.2 and the

solution is similar, too.

Suppose we observe G, a T × m matrix of economic time series variables. Analogously to

the situation faced in Section 2.2, while we are ultimately interested in the relationship between

G and F, we do not observe F and so we replace it with F̂M, which we know asymptotically

spans the same space. The hypothesis to be tested is therefore that G spans the space of F,

which we implement as a test of whether asymptotically G and F̂M span the same space. The

test statistic is the same as in Section 2.2, except that we replace F̂M with G, that is, we use

TG = T(G).

Theorem 3. Suppose that Assumptions 1–7 are met. Then TG has the same asymptotic properties as

TM in Theorem 1.

Which variables include in G is not always obvious. One implication of Theorem 3 is that

TG can be applied in the same sequential fashion as TM in Section 2.3 to determine the variables

that span the space of F.
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3 Empirical illustration

In this section, we illustrate the usefulness of the TG test using as an example the US wage

curve. Westerlund et al. (2019) employ three estimators of this curve; namely, (i) regular OLS,

(ii) OLS based on treating US real gross domestic product, consumer price index and industrial

production as observable factors, and (iii) CCE. All three estimators include cross-section fixed

effects. The main finding is that the evidence of a wage curve gets weaker as the generality of

the allowable interactive effects increases, which is taken to imply that CCE is relatively more

suitable. There is, however, little in the way of formal statistical evidence to suggest that CCE

is superior to the other, simpler estimators considered.

The present illustration is motivated by this last observation. The purpose is to test if fixed

effects alone or together with the observed factors asymptotically span the space of the esti-

mated CCE factors. If they do there is no need to use CCE. This possibility suggests that there is

another, competing interpretation of the reported variation in the wage curve evidence; namely,

that is it a result of increased variability brought about by over-specification of the factor space.

The data set used is the same as in Westerlund et al. (2019), and is taken from the Panel

Study of Income Dynamics. It comprises T = 7 biannual observations (2002–2014) for N =

888 male household heads between 25 and 65 years of age. The dependent variable is log

real wages, and the included regressors are unemployment, education, working experience

and experience squared (see, for example, Card, 1999, for a similar line-up).9 Because of high

correlation between the averages of experience and experience squared, the CCE estimator is

implemented using only the averages of wages, unemployment, education and experience. A

vector of ones is also included, which is tantamount to allowing for household fixed effects.

The total number of factor estimates is therefore equal to five.

The |TG| value for testing whether asymptotically fixed effects alone are enough to estimate

the factor space is equal to 62.51 and if we also include the observed factors said test value

equals 48.21, which are both highly significant even at the conservative 1% significance level.

We therefore conclude that the two sets of observed factors are not enough to capture the un-

9We refer to Westerlund et al. (2019) for a more detailed description of the data.
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known factors, which is consistent with the interpretation of Westerlund et al. (2019) that the

variation in the results is due to model under-specification when the observed factors are used.

4 Conclusion

In this paper, we introduced a simple test that can be used to test hypotheses about the factors

in CCE. The new test can be used to test if a subset of the averages asymptotically span the

space of the unobserved factors, or if there are observable variables that span the same space.

The test can also be used sequentially to determine the smallest set of averages needed to span

the factor space.
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