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1 Introduction

In the standard linear panel data model with additive unobserved heterogeneity, it is well known that numerous

transformations can be used to eliminate the heterogeneity prior to estimation. The most common methods are

the within and first-differencing transformations. Similarly, when the heterogeneity appears as a multiplicative

term in the conditional mean like in certain Generalized Linear Model settings, modified within and differencing

transformations can control for the heterogeneity and provide moment conditions for estimation. There exist

other transformations that control for heterogeneity but are clearly absurd. For example, multiplying all the

data by zero eliminates the heterogeneity along with all information for estimation. For a less trivial example,

suppose the population model is linear with a single additive effect. Then second-differencing is still consistent

but less efficient than first-differencing. These examples raise the question of how to evaluate methods for

eliminating heterogeneity while preserving information for estimation.

This paper considers conditional mean models with unobserved heterogeneity. The general framework en-

compasses a large class of both linear and strictly nonlinear models, examples of which are given in Section 2.1.

The models are referred to as “semiparametric” in the sense that nothing is assumed about the relationship

between the heterogeneity and observables other than regularity conditions needed for asymptotic analysis. In

place of assumptions on the conditional distribution of the heterogeneity, these models often require a transfor-

mation to eliminate or control for the unobservables.

I provide a unified framework for comparing such transformations in terms of the information they preserve.

I show that transformations yielding conditional moment restrictions, given certain regularity assumptions,

will provide the same
?
N -asymptotic efficiency bound if they have equal rank. This result is useful because

once the researcher has multiple transformations that satisfy the conditions in my theory, they can choose one

based solely on concerns of feasible inference, computational demand, and finite-sample bias reduction. I also

demonstrate that for the examples in this paper, infeasible transformations that are functions of unobservables

are often available to eliminate heterogeneity. An additional implication of my results is that once a researcher

has a feasible transformation that is the same rank as the infeasible one, they do not need to search for additional

transformations in order to reach the efficiency bound of the infeasible moment restrictions.

As mentioned above, the within and first-differencing transformations are the most common in the linear

panel case for eliminating additive heterogeneity. When the covariates are strictly exogenous with respect to

the idiosyncratic errors, these transformations provide conditional moment restrictions that can be exploited for

estimation of the population parameters. For a given conditional variance matrix, Arellano and Bover (1995)

suggest that Generalized Least Squares (GLS) on the demeaned equations is equivalent to the efficient 3SLS

estimator. This claim was later proven in Im et al. (1999) along with a proof that the GLS estimators on the

demeaned and first-differenced data are equivalent.
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Their result shows that two commonly used methods of estimation preserve the same information in the

linear case. However, they limit their investigation to a small number of estimators and only allow for a single

time-invariant individual effect. My approach nests the results of Im et al. (1999), but also applies to more

general interactive fixed effects models. Because some of the estimators for these models rely on nonlinear

first-step estimation, it is beneficial to show that two transformations have the same information bound, so the

empirical researcher can choose the one that is easier to compute and has better finite-sample properties.

One approach to estimation of nonlinear models with a multiplicative heterogeneity term is the fixed effects

Poisson (FEP) estimator. Hausman et al. (1984) derive the FEP as the conditional maximum likelihood

estimator of a multinomial distribution1. Wooldridge (1999) shows that the FEP is in fact consistent under

a much weaker strict exogeneity assumption due the likelihood’s implicit transformation of the data. Another

approach is the generalized next-differencing transformation first studied by Chamberlain (1992) and Wooldridge

(1997), which subtracts from a time period the next period outcome, weighted by the quotient of the mean

functions. While generalized next-differencing was originally proposed for a sequential exogeneity setting, I

study it here in the context of strict exogeneity. To the best of my knowledge, this paper is the first to show

information equivalence between these two transformations.

In Section 2, I define information equivalence in a first order asymptotic sense. The efficiency bounds studied

will apply to “small-T” settings where asymptotics are derived with T fixed as N Ñ 8. I then derive sufficient

conditions under which transformations of the data that yield moment restrictions for estimation preserve the

same information. This result is general and can apply to a number of finite and asymptotic settings. In Section

3, I apply the main result from Section 2 to a nonlinear multiplicative model, a linear model with an unknown

factor structure, and a linear random trend model. Section 4 discusses implementation of the efficiency bound

associated with a given transformation. Section 5 provides concluding remarks along with potential directions

for future research.

2 Information Equivalence

In what follows, pyi,xi, ciq is assumed to be randomly sampled. The matrix pyi,xiq is T ˆ p1 ` Kq and

observable whereas the random pˆ 1 vector ci is unobservable. All statements involving expressions of random

variables hold with probability one. Finally, I assume regularity conditions suitable for asymptotic analysis such

as bounds on the higher-order moments of the data.

1Similar to the linear fixed effects estimator, the FEP estimator is a true fixed effects procedure as it can be derived by estimating
via pooled Poisson regression and treating the multiplicative terms as parameters to estimate.
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2.1 Model

The following conditional mean assumption specifies the empirical setting:

Assumption CM: For t “ 1, ..., T ,

Epyit|xi, ciq “ mtpxit,β0, ciq (1)

where mtpx, ., cq : RK Ñ R is a known twice-differentiable function for every x P Xt and c P C, where Xt and C

are the respective supports of xit and ci. �

Equation (1) specifies a nonlinear semiparametric conditional mean function with strictly exogenous covari-

ates where β0 is a K ˆ 1 vector of parameters2. The mean function itself is allowed to vary over time periods.

Assuming the function is known up to its first and third arguments is equivalent to saying that it is correctly

specified. That is, if pxi, ciq were observed, estimation would be trivial. The heterogeneity is also allowed to

enter the mean function in any arbitrary way. In the linear panel case, the simplest and most common specifica-

tion is an individual-specific intercept. In nonlinear cases, the heterogeneity is often included as a multiplicative

term.

I do not place any identifying assumptions directly on mt. These implicit identification conditions will

come later in the form of rank assumptions. Essentially, the results contained in this paper apply to nontrivial

empirical situations. For example, consider a model yi1 “ ci ` βyi2 where ci is an individual-specific intercept

and yi2 is an indicator variable associated with a treatment or policy intervention. If ci has a mass point at

zero, it must be the case that there is variation, so that yi1 ‰ 0 for all i.

The following examples illustrate some common empirical settings for which Assumption CM applies:

Example 1 (Linear model with additive effects): Consider the following specification:

Epyit|xi, ciq “ ci ` xitβ0

This model is common among applied microeconometric researchers. Im et al. (1999) show that the 3SLS

estimator of β0 using the differenced covariates as instruments is algebraically equivalent to GLS estimators

based on both the within and differenced transformed residuals. This example is discussed in Section 3.3.

We can include multiple individual effects loaded onto macro shocks in the form

Epyit|xi, ciq “ c1
ift ` xitβ0

where c1
ift “ řp

r“1
cirfrt and ft is observable. An example of the general setting is the random trend linear

2In this context, nonlinear does not mean ’strictly nonlinear’, but can also include linear models.
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model.

Epyit|xi, ci, aiq “ ci ` ait ` xitβ0

The standard approach to estimation is to first-difference the outcomes to yield another linear model with only

an additive individual effect. If strict exogeneity is assumed with respect to xi, we have the same empirical

setting as above, and so the same analysis will apply. I discuss the general model in Section 3.2. �

Example 2 (Exponential mean): Consider the following mean function:

Epyit|xi, ciq “ exppci ` xitβ0q

The exponential mean function is most popularly employed to study count data. The most common estimator of

the parameters in this model is the FEP estimator. Wooldridge (1999) shows that Assumption CM is sufficient

for identification using the following transformation:

yit ´
˜

Tÿ

s“1

yis

¸ ˜
exppxitβ0q

řT

s“1
exppxisβ0q

¸

This transformation will be referred to as the generalized within transformation and provides the basis of the

FEP estimator since it shows up in the score function of the Poisson QMLE and has an expectation of zero

conditional on xi. Another possible transformation is

yit ´ yi,t`1

exppxitβ0q
exppxi,t`1β0q

which I refer to as the generalized next-differencing transformation. Both of this transformations are studied in

generality in Section 3.1.

In an analogy to the linear setting, I also discuss an exponential random trend model:

Epyit|xi, ci, aiq “ cia
t
i exppxitβ0q

which can be motivated by the form Epyit|xi, ci, aiq “ exppγi ` αit ` xitβ0q. This model has received no

attention in the econometric literature to the best of my knowledge. However, it may have practical applications

to treatment effect analysis. Wooldridge (2022) considers estimation of treatment effect parameters in nonlinear

mean models under generalized parallel trends assumption. Including a multiplicative random trend would

weaken the parallel trends assumption needed for identification of average treatment effects. I discuss how the

results of this paper could apply to such a model in Section 3.1. �

Example 3 (Production functions): Suppose the dependent variable is firm output which follows the given
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production technology:

Qit “ exppǫit ´ ciqLβ1

it K
β2

it

where pL,Kq are labor and capital stock respectively. The heterogeneity can be written expp´ciq. If Epǫit|ci, Lit,Kitq

is assumed constant3, then the transformations studied in Section 3 can be used for estimation of the param-

eters and average partial effects under weak assumptions on the heterogeneity term. This example serves as

an interesting bridge between the linear and nonlinear specifications as production theory can be stated in the

above nonlinear fashion, but production function estimation is often carried out after log-linearization for which

the results of Im et al. (1999) would apply. The specific form of the error is reminiscent of a stochastic frontier

model with a time-invariant inefficiency term. See Section V of Amsler et al. (2009). �

For the general treatment of the paper, I consider transformations of the mean function that provide moment

conditions for estimating β0. Assumption MAT characterizes such matrix transformations:

Assumption MAT: Let L ď T , and let Apx,βq be an L ˆ T matrix that satisfies

Apxi,β0qEpyi|xi, ciq “ 0 (2)

and is differentiable in β over the interior of its parameter space for every x P X . �

A is a residual maker matrix that is zero at the true parameter value β0. I assume L ď T , which corresponds

to the examples studied in Section 3. While L ą T is theoretically possible and would rely on the same theory

of g-inverses employed in this paper, I do not consider such a case. In fact, cases of the examples in Section 3

where L ą T often correspond to linearly dependent and hence redundant sets of moment conditions.

Under the previous assumptions,

EpApxi,β0qyi|xiq “ EpApxi,β0qEpyi|xi, ciq|xiq “ 0 (3)

by iterated expectations. We can thus use equation (3) as the basis of a GMM estimator of β0, where any

function of xi can be used as an instruments for Apxi,β0qyi to improve efficiency. Note that A could contain

external instrumental variables that do not appear in the mean function. This more general case is considered

in Section 2.2.

I note that whenever the heterogeneity is additively or multiplicatively separable, there always exists an

infeasible transformation that satisfies Assumption MAT. For example, suppose Epyit|xi, ciq “ ciftpxi,β0q for

some set of nonlinear functions tftuTt“1
. Then the residual-maker matrix from regressing on the stacked vector

3The value of Epǫit|Lit,Kitq is allowed to differ over time as long as it is not a function of observables. The researcher can then
just specify time dummies in the mean function to capture the temporal change.
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cifpxi,β0q “ pcif1pxi,β0q, ..., cifT pxi,β0qq1 produces the relevant conditional moment restrictions4. However,

this estimator is generally difficult to work with because it is a function of unobservables and highly nonlinear in

the parameters of interest. I prove in a later section that this matrix provides the same asymptotic information

bound as the FEP estimator, where robust inference is possible through a variety of canned statistical packages.

This fact demonstrates the importance of a general theory: once we find a feasible transformation with the same

rank as the infeasible one, we can implement an efficient estimator that is at least asymptotically equivalent to

the infeasible information bound.

The following lemma demonstrates a useful fact for characterizing information equivalent transformations

and has clear parallels in the linear model case. First define mipβq “ pmtpxi1,β, ciq, ...,mT pxiT ,β, ciqq1.

Lemma 1. Suppose Apx,βq is an L ˆ T matrix satisfying Assumption MAT. Then for any px0, c0q P X ˆ C

such that |mtpx0

t ,β0, c
0q| ą 0 for some t, RankpApx0,β0qq ă T .

Proof. See Appendix for proof.

The theory for choosing optimal instruments is well-known: when the conditional variance is nonsingular,

the optimal GMM estimator uses instruments pV arpApxi,β0qyi|xiq´1Ep∇βApxi,β0qyi|xiqq1. However, in most

nontrivial cases whenA is TˆT , the conditional variance matrix ofApxi,β0qyi is singular even when V arpyi|xiq

is nonsingular; I consider such examples in Section 3. I make one additional assumption on the transformation

studied that allows for such a generality. Assumption SYS specifies consistency of a particular linear system

that is necessary for the definition of the asymptotic efficiency bound. It will allow us to use a certain class of

generalized inverses when the conditional variance is singular.

Assumption SYS: The system V arpApxi,β0qyi|xiqF pxiq “ Ep∇βApxi,β0qyi|xiq is consistent in F pxiq and

EpF pxiq1V arpApβ0qyi|xiqF pxiqq is nonsingular for a given solution. �

Consistency of a linear system only requires the existence of a solution and not necessarily uniqueness.

In fact, Section 3 considers relevant cases for which uniqueness does not hold. Assumption SYS is posed in

Newey (2001) for studying censored and truncated regression. It holds trivially when the conditional variance is

nonsingular, in which case case the unique solution is V arpApxi,β0qyi|xiq´1Ep∇βApxi,β0qyi|xiq. The results

in Chamberlain (1987) and Newey (2001) show that the semiparametric efficiency bound for estimating β0 using

equation (3) and Assumptions CM, MAT, and SYS is

E
`
Ep∇βApxi,β0qyi|xiq1V arpApxi,β0qyi|xiq´Ep∇βApxi,β0qyi|xiq

˘´1
(4)

where ”´” denotes a symmetric g-inverse5. That is, no
?
N -consistent estimator of β0 based on equation (3)

4The case of interactive fixed effects is similar and handled in Section 3.2.
5A g-inverse for matrix Ω is a matrix Ω

´ such that ΩΩ
´

Ω “ Ω. This condition is weaker than the Moore-Penrose inverse
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has a smaller asymptotic variance than (4).

Theorem 5.2 in Newey (2001) shows that the efficiency bound in (4) is invariant to the choice of symmetric

g-inverse under Assumption SYS. If the conditional variance is nonsingular, then the g-inverse can be replaced

by a proper inverse as in Chamberlain (1987). Otherwise, any g-inverse will work as long as the consistency

assumption holds. The matrix in (4) is also equivalent to the asymptotic variance of the GMM estimator based

on the moment conditions in (3), using the optimal instruments pV arpApxi,β0qyi|xiq´Ep∇βApxi,β0qyi|xiqq1.

The system is just identified and so no weight matrix is required for the asymptotic bound. Realizing this

efficiency bound is the subject of Section 4.

The rest of the paper is concerned with studying transformations of the observed data that provide the

same semiparametric efficiency bound as defined in (4). The following definition characterizes the types of

transformations I consider:

Definition: Let Assumption CM hold, and let Apxi,βq and Bpxi,βq be LˆT and M ˆT , respectively. Given

A and B satisfy Assumptions MAT and SYS, the matrices are information equivalent transformations if

their semiparametric efficiency bounds given by (4) are equal. �

Information equivalence defined above is an equivalence relation on the set ofKˆK real-valued matrices since

it is defined via matrix equivalences. This fact will be used in Section 3 to show information equivalence between

general forms of applied transformations. Information equivalence is similar to the definition of redundancy of

moment conditions as given by Breusch et al. (1999). However, the results in this paper are not direct

consequences of their redundancy results, as I allow the moment conditions to have singular covariance matrices.

2.2 General Equivalence Result

I now prove a unifying theory of information equivalence. Consider the empirical setting proposed in Section

2.1 where Assumption CM holds. I suppose there is a T ˆT matrix Mpzi,βq satisfying Assumptions MAT and

SYS, where zi is allowed to include any element of xi and outside instruments. Dropping the arguments and

writing Mi “ Mpzi,β0q for simplicity, we have the following moment conditions:

EpMiyi|ziq “ 0 (5)

Equation (5) includes the case of unconditional moment restrictions.

I denote Vi “ Epyiy
1
i|ziq and let Bi “ Bpzi,β0q be a J ˆT matrix such that EpBiyi|ziq “ 0. The following

assumptions are pivotal for the general result of this section, so I refer to them as Assumptions GR.1 and GR.2.

which requires three other non-redundant properties. It is worth noting that the Moore-Penrose inverse is unique, but a g-inverse
is not necessarily; this fact will be used to prove the main results in Section 3. For a general treatment of g-inverses, see Rao and
Mitra (1978).
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Assumption GR.1: BiMi “ Bi and RankpMiViM
1
iq “ RankpMiq “ J ă T . �

Assumption GR.2: RankpBiViB
1
iq “ RankpBiq “ J . �

The notation for Mi in Assumption GR.1 is motivated by the standard notation for a residual maker matrix.

In fact, one possible sufficient condition for Assumption GR.1 is that RankpViq “ J and that Vi shares a null

space with Bi. This assumption would also suffice for Assumption GR.2 since B1
i spans the column space of

Vi, and is relevant in linear panel models with additive heterogeneity. We can then let Mi be a residual maker

matrix from regressing on a basis vector for the null space of Bi. Another relevant setting to this paper is when

Mi “ IT ´Pi where Pi has rank T ´ J and BiPi “ 0. This setting characterizes the nonlinear models studied

in Section 3 and is also sufficient for Assumptions GR.1 and GR.2.

I now provide a lemma that is essential to the proof of the general equivalence result.

Lemma 2. B1
ipBiViB

1
iq´1Bi is a g-inverse of MiViM

1
i .

Proof. See Appendix for proof.

Theorem 1. The equality

B1
ipBiViB

1
iq´1Bi “ M 1

ipMiViM
1
iq´Mi (6)

holds for any choice of matrix Bi satisfying Assumptions GR.1 and GR.2 for the same Mi and for any g-inverse

of MiViM
1
i .

Proof. By Rao and Mitra (1971, p. 603), the expression

M 1
ipMiViM

1
iq´Mi (7)

is invariant to the choice of g-inverse as RankpMiViM
1
iq “ RankpMiq by Assumption 4. SinceB1

ipBiViB
1
iq´1Bi

is such a g-inverse by Lemma 2 and BiMi “ Bi we have

B1
ipBiViB

1
iq´1Bi “ M 1

iB
1
ipBiViB

1
iq´1BiMi

“ M 1
ipMiViM

1
iq´Mi

which is independent of Bi.

The proof of Theorem 1 is included in the text because equation (7) provides the framework for evaluating

information equivalence. To see how, I include an additional orthogonality assumption that simplifies the

efficiency bound in (4).
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Assumption ORTH: Apxi,βq is an L ˆ T matrix, L ď T , such that Apxi,βqmipβq “ 0 for all β is some

open ball about β0. �

Assumption ORTH is clearly sufficient for Assumption MAT. The transformations studied in the next section

satisfy Assumption ORTH for all values of β P R
K for which the mean function is well-defined. However it only

needs to be defined on a convex open set so that it applies with respect to differentiation. Note that ORTH does

not say anything about point identification of β0. Assumption CM guarantees EpApxi,β0qyi|xiq “ 0 only at

β0 because Epyit|xi, ciq “ mtpxit,β0, ciq. I also note that every transformation considered in Section 3 satisfies

Assumption ORTH.

The following lemma is a consequence of Assumption ORTH, and greatly simplifies the bound in (4).

Lemma 3. Let Apxi,βq satisfy Assumption ORTH. Then under regularity conditions which allow us to pass

the gradient operator through the conditional expectation,

Ep∇βApxi,β0qyi|xiq “ Apxi,β0q∇βmipβ0q

Proof. See Appendix for proof.

Note that the right-hand side of Lemma 3 is allowed to depend on unobserved heterogeneity. This fact

will be demonstrated in Section 3.1. It also allows us to say something about finite sample equivalence among

certain types of transformations. I summarize these results here:

Corollary 1. Let Apxi,βq be a Lˆ T matrix satisfying Assumptions MAT, SYS, and ORTH. Then Apxi,β0q

has the following efficiency bound:

E
´
∇βmipβ0q1Apxi,β0q1pApxi,β0qEpyiy

1
i|xiqApxi,β0q1

˘´
Apxi,β0q∇βmipβ0q

¯´1

(8)

Corollary 2. Suppose Ai and Bi are J ˆ T matrices and Mi is a T ˆ T matrix such that Assumptions GR.1

and GR.2 hold for Ai and Bi. If Ai, Bi, Mi, and the conditional gradient ∇βEpyi|ziq are independent of β,

then

∇βm
1
iA

1
ipAiViA

1
iq´1Aimipβq “ ∇βm

1
iB

1
ipBiViB

1
iq´1Bimipβq (9)

for any value of β in mipβq.

Corollary 1 allows us to directly apply the result from Theorem 1 to the relevant cases in Section 3. For

information equivalence, it will suffice to show that the relevant transformations satisfying Assumptions MAT,

SYS, and ORTH only need to satisfy a rank assumption to be information equivalent. The choice of M will

become apparent based on the empirical setting.
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Corollary 2 gives an even more powerful result than equivalence of efficiency bounds. For example, if the

moment conditions in (5) are conditional on xi, the efficient GMM estimator of β0, say pβ, solves

Nÿ

i“1

∇βm
1
iM

1
ipMiViM

1
iq´Mimip pβq “ 0 (10)

Corollary 2 tells us that the efficient estimator based on EpAiyi|xiq and EpBiyi|xiq are algebraically equivalent.

When the transformations are themselves functions of the parameters, or the mean function is nonlinear in the

parameters, implementation of the efficient instruments generally depends on first-stage estimators and this

finite-sample equivalence result breaks down. The proof of Theorem 4.2 in Im et al. (1999) uses a specific form

of the argument in the proof above.

This result does not generally apply to the nonlinear estimation problems considered in this paper because

it will require the score of the moment functions to not be functions of the underlying parameters. However,

it will demonstrate why the results on linear random trend estimators hold in finite samples. It will generally

apply to linear estimators where heterogeneity loads onto known common macro variables. This fact suggests

further applications to panel data transformations with strictly exogenous covariates, which I explore in the

next section.

3 Examples of Information Equivalence

This section considers the application of Theorem 1 to a variety of interesting empirical settings.

3.1 Multiplicative Heterogeneity

I now consider the case of a single multiplicative heterogeneous effect:

Epyit|xi, ciq “ cimtpxit,β0q (11)

This specification has grown in popularity in recent years. For example, see McCabe and Snyder (2014,

2015), Schlenker and Walker (2016), Krapf et al. (2017), Fischer et al. (2018), Castillo et al. (2020), and

Williams et al. (2020). The most common specification of equation (11) is the exponential mean function,

as demonstrated in Example 2 of Section 2.1. Often, the data generating process is a count variable with a

mass point at zero, but the model can apply to any nonnegative outcome. This assumption typically means

mtpx,β0q ą 0 for all x P X , which the rank assumptions made in this section will also imply.
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I consider the following generalized residual functions first introduced in Example 2:

uitpβq “ yit ´
˜

Tÿ

s“1

yis

¸
pitpβq (12)

ri,t,spβq “ yit ´ yis
mtpxit,βq
mspxis,βq (13)

where pitpβq “ mtpxit,βq
´řT

s“1
mspxis,βq

¯´1

. Equation (12) is reminiscent of the linear within transforma-

tion. However, the transformation in the linear case demeans using the time averages, whereas the generalized

within transformation weights by the pseudo-probability pitpβq. The generalized differencing residual in equa-

tion (13) allows a large number of differencing procedures, including next- and first-differencing, as well as fixing

t and allowing s to vary. Any generalized differencing procedure is allowed so long as it produces a full rank

transformation.

In contrast to the linear model with an additive effect, the transformations in equations (12) and (13) will

not eliminate the heterogeneity, but still create valid moment conditions. For example, taking the mean of

equation (13) conditional on pxi, ciq gives

Epri,t,spβ0q|xi, ciq “ cimtpxit,β0q ´ cimspxis,β0q mtpxit,β0q
mspxis,β0q

“ cipmtpxit,β0q ´ mtpxit,β0qq

“ 0

which still yields conditional moment restrictions by iterated expectations.

Define the respective T ˆ 1 and pT ´ 1q ˆ 1 residual vectors

uipβq “ pIT ´ pipβq11qyi (14)

ripβq “ Dipβqyi (15)

where 1 is a T ˆ 1 vector of ones and Dipβq is the T ´ 1 ˆ T weighted generalized differencing matrix that

yields the desired residuals as in (13). I refer to transformations in equations (14) and (15) as the generalized

within and generalized differencing transformations respectively. Then an iterated expectations argument

shows Epuipβ0q|xiq “ 0 and Epripβ0q|xiq “ 0. Thus equations (14) and (15) satisfy Assumption MAT and

suggest moment conditions for efficient GMM estimation that could reach their respective efficiency bounds in

(4).

As discussed in the Introduction, equation (14) is the foundation of the FEP estimator. The FEP is defined

in Hausman et al. (1984) as the MLE of a conditional Multinomial distribution with probability and count
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parameters pipβ0q “ ppi1pβ0q, ..., piT pβ0qq1 and ni. Wooldridge (1999) shows that the FEP is consistent under

Assumption CM using the fact that equation (14) has a zero conditional mean at β0 regardless of the true

distribution of yi|pxi, ciq. This robustness result helped lead to its proliferation in empirical research. As

for efficiency, Hahn (1997) shows that the FEP is asymptotically efficient under the full set of Multinomial

distributional assumptions. Verdier (2018) strengthens this result substantially by showing efficiency under just

zero conditional correlation and conditional mean-variance equality. Brown and Wooldridge (2022) extend this

result to allow arbitrary constant conditional mean-variance dispersion.

Equation (15) was first studied by Chamberlain (1992) and Wooldridge (1997) in the context of next-

differencing for nonlinear models. It can also allow for estimation of β0 under weaker forms of exogeneity, like

sequential exogeneity in the next-differencing case of s “ t ` 1, rather than the strict exogeneity implied by

Assumption CM. However, remarkably less is known about efficient estimation based on equation (15) when

compared to equation (14) in the context of strict exogeneity as studied here.

The transformations defined in (14) and (15) are clearly not the only transformations that satisfy Assumption

MAT. Consider the residual maker matrix from regressing on the mean function defined by equation (11):

pIT ´ mipβqpmipβq1mipβqq´1mipβq1q. This matrix satisfies Assumption ORTH and thus Assumption MAT

since it is algebraically orthogonal to the mean function by construction. It is also well-known that the matrix is

symmetric, idempotent, and has rank T ´ 1. I will refer to this matrix as the residual maker transformation.

It is also important to note that this transformation is equal to the the infeasible residual maker matrix from

regressing on cimipβq, thus making it equivalent to an infeasible transformation.

By Lemma 1, the conditional variance of the generalized within transformation is necessarily singular, so I

will need to show that its efficiency bound is well-defined and invariant to the choice of symmetric g-inverse.

Lemma 1 of Verdier (2018) shows that it has rank T ´ 1 at the true parameter value. This fact suggests that

deleting a row to remove the rank degeneracy leads to a transformation with a nonsingular variance matrix. Im

et al. (1999) takes this approach when showing equivalence between the within and differenced linear estimators.

Let Q be a T ´1ˆT matrix that removes any arbitrary row from a given T ˆT matrix. Then the transformation

QpIT ´ pipβ0q11q is the generalized within transformation with an arbitrary row deleted. A similar procedure

can be used to make the residual maker transformation full rank. The main result will show that information

equivalence is invariant to the row deleted.

Lemma 4 will show that the efficiency bounds of the within and residual maker transformations are well-

defined. First I will assume that Epyiy
1
i|xiq is strictly positive definite, a weaker assumption than the conditional

variance of yi itself being positive definite. Under this assumption, the conditional variance of the generalized

differencing transformation is nonsingular. Before I can verify Assumption SYS, I will need an additional rank

assumption for each respective transformation.
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Assumption RK.1: RankpDipβ0qq “ T ´ 1. �

Assumption RK.1 states that the differencing matrix has full row rank. It requires that none of the differences

used for estimation are redundant in the sense that some row or rows are linear combinations of the others.

Necessarily the researcher cannot reuse rows, and if yit is differenced from yis, then yis cannot be differenced

from yit. Further, we must have s ‰ t for each row so that D does not have any zero rows. For example,

including all pairwise differences leads to linear dependence which causes RK.1 to fail.

Assumption RK.2: LetΣi “ Epyiy
1
i|xiq be positive definite. Define V ´

i “ pΣ´1

i ´ 1

ai
Σ´1

i mipβ0qmipβ0q1Σ´1

i q

where ai “ mipβ0q1Σ´1

i mipβ0q. Then the square matrix Ep∇βmipβ0q1V ´
i ∇βmipβ0qq has full rank. �

V ´
i is a symmetric g-inverse of V arppIT ´ pipβ0q11qyi|xiq. In fact, it also satisfies the property

V ´
i

“
V arppIT ´ pipβ0q11qyi|xiq

‰
V ´
i “ V ´

i (16)

as shown in Lemma 2 of Verdier (2018) so that it is a reflexive inverse and is also clearly symmetric. Assumption

RK.2 suffices for the bound in (4) existing, as I show in the next lemma that V ´
i ∇βmipβ0q is a solution to the

system in Assumption SYS. This fact, along with the fact that V ´
i mipβ0q “ 0 and Lemma 3, gives the bound

in (4) as the expectation above. The following lemma shows that all transformations studied satisfy Assumption

SYS and so any symmetric g-inverse will suffice.

Lemma 4. Suppose Assumptions CM, RK.1, and RK.2 hold and that Epyiy
1
i|xiq is positive definite. Then

the generalized differencing, generalized within, and residual maker transformations satisfy Assumption SYS.

Further, either of the T ˆ T transformations with any arbitrary row deleted also satisfy Assumption SYS.

Proof. See Appendix for proof.

The main consequence of Lemma 4 is that the asymptotic efficiency bound is well-defined and invariant to

symmetric g-inverse for all of the transformations studied in this section. Now I can formally state the application

of the main equivalence theorem to the transformations studied in this section. First note that Assumptions CM,

RK.1, RK.2, and the positive definiteness of Epyiy
1
i|xiq are sufficient for each of the transformations studied to

satisfy Assumptions SYS and ORTH (and thus MAT) so that their asymptotic efficiency bounds are well-defined

and given by (8). Also, the equivalence among estimators based on these moment conditions is only guaranteed

to hold asymptotically because β0 enters the transformations in a highly nonlinear way.

Theorem 2. Suppose Assumptions CM, RK.1, and RK.2 hold and that Epyiy
1
i|xiq is positive definite. pIT ´

pipβ0q11q, Dipβ0q, pIT ´mipβqpmipβq1mipβqq´1mipβq1q, QpIT ´pipβ0q11q, and QppIT ´mipβqpmipβq1mipβqq´1mipβq1qq

are information equivalent and invariant to the row deleted by Q.

Proof. See Appendix for proof.
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The proof of Theorem 2 is independent of which row is deleted in choosing Q and the type of differencing

chosen in D satisfying Assumption RK.1, reinforcing the importance of the rank assumptions. As in Theorem

1, transformations with rank L ă T can be shown to be information equivalent via a similar argument, but

this fact is not directly relevant to the current results. It’s also important to note that the list of information

equivalent transformations is not necessarily exhaustive, as any T ˆ T or pT ´ 1q ˆ T matrix with rank T ´ 1

and respective orthogonality condition will be information equivalent to the transformations in Theorem 2 by

Theorem 1. Finally, I point out that the generalized within and differencing transformations are information

equivalent to the infeasible residual-maker matrix, thus demonstrating that these feasible transformations give

the same information bound as a transformation based off of unobserved heterogeneity.

Similar to the discussion after Theorem 1, the results in Theorem 2 could also apply to mean func-

tions that have already been transformed. Consider the multiplicative random trend from Example 2, yit “

cia
t
imtpxit,β0quit, where uit is an idiosyncratic error. If we assume the outcomes are bounded away from

zero, we could first divide each outcome by the previous period. We now have the multiplicative model

y˚
it “ ai

mtpxit,β0q
mt´1pxi,t´1,β0q

uit

ui,t´1

. If uit

ui,t´1

is independent of xi and ai with mean 1, we have the model from

equation (11). Then all of the transformations studied here are information equivalent on the pT ´1q ˆ1 vector

of transformed outcomes y˚
i .

As mentioned earlier, a multiplicative random trend model would weaken the generalized parallel trends as-

sumption of Wooldridge (2022) and allow for more robust estimation of treatment effect parameters. Wooldridge

assumes that pre-treatment outcome paths are parallel after applying a monotonic transformation to the mean

function. Under an exponential mean assumption, we have

log pEpyit|ci, ai,xiqq “ logpexppci ` ait ` xitβ0qq

“ ci ` ait ` xitβ0

Then the generalized parallel trends assumption of Wooldridge (2022) can hold after controlling for a unit-

specific linear trend via dividing contemporary outcomes by prior outcomes. Because we have the information

equivalence result in Theorem 2, it will be easier to derive the semiparametric efficiency bound for the nonlinear

imputation estimators in Wooldridge (2022) by comparing them to known transformations.

3.2 Linear Factor Model

This section considers linear panels with a factor-augmented error:

Epyit|xi,γiq “ xitβ0 ` f 1
tγi (17)
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where ft is a p ˆ 1 vector of common factors and γi is a p ˆ 1 vector of heterogeneous factor loadings. I

follow Ahn et al. (2013) in assuming the factors are deterministic. I stack the factors into the T ˆ p matrix

F “ pf1, ...,fT q1. If ft was known, efficient estimation of β0 is possible by considering a GLS estimator based

on the residuals MFyi “ pIT ´ F pF 1F q´1F 1qyi. However, the challenge for practitioners comes from the fact

that F is unobserved and must be estimated6.

Pesaran (2006) adds the additional reduced form equation

xi “ FΓi ` vi (18)

where Γi is a p ˆ K matrix of factor loadings and vi is a T ˆ K matrix of mean zero idiosyncratic errors. I

write zi “ pyi,xiq; under the assumptions in Pesaran (2006), equations (17) and (18) imply

Epziq “ FCQ (19)

where C is the pˆK `1 mean matrix of factor loadings and Q is a a full rank K `1ˆK `1 matrix7. Assuming

p ď K ` 1, CQ is full rank, which suggests that Epziq can control for the space spanned by F . The pooled

common correlated effects estimator (CCEP) is defined as

pβCCEP “
˜

Nÿ

i“1

x1
iM pFxi

¸´1
Nÿ

i“1

x1
iM pFyi (20)

where pF “ Z “ 1

N

řN

i“1
pyi,xiq.

Westerlund et al. (2019) shows that when T is fixed and N Ñ 8, M pF
pÑ MF ´ P´p where P´p is a

nonlinear function of the model’s errors. When p “ K ` 1 and the number of cross-sectional averages equals

the number of factors, P´p “ 0, and so the CCE transformation is asymptotically equivalent to the infeasible

factor residual-maker matrix MF . I first start with the case p “ K ` 1 so that the rank of the cross-sectional

averages equal the rank of their limit, and standard asymptotic theory will apply. I discuss the p ă K ` 1 case

after the main theorem of this section.

Another fixed-T approach comes from Ahn et al. (2013). They do not make the reduced form assumption

in equation (18). Instead, they introduce new parameters that allow them to eliminate F . They impose the

following p2 normalizations on the factor matrix:

F “ pΘ1,´Ipq1 (21)

6Estimation of F is generally impossible because both F and γi are unobserved. However, it is often possible to estimate F up
to an unobserved rotation that allows one to remove the factor structure completely.

7I assume C has full row rank for the purposes of this paper. I also assume C “ 1

N

ř
N

i“1
Ci is full rank for all N with probability

one. For a discussion about this important CCE rank condition, see Westerlund and Urbain (2013)
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where Θ is a pT ´ pq ˆ p matrix of unrestricted parameters. Let θ “ vecpΘq. They then define the quasi-long-

differencing (QLD) matrix

Hpθq “

¨
˚̋IT´p

Θ1

˛
‹‚ (22)

so that Hpθq1F “ 0.

The Ahn et al. (2013) technique involves jointly estimating pβ1
0
,θ1q1 with the use of many instruments.

However, they do not estimate the optimal instruments in their paper. Rather than considering joint efficient

estimation, I focus on the QLD transformation outside of their estimation problem and consider its asymptotic

efficiency bound. Brown (2022) shows that the QLD parameters are identified under the CCE model and

proposes a linear pooled QLD estimator to compare to the pooled CCE estimator. It is therefore fair to

compare the QLD and CCE transformation because they can both be identified using the same set of moments.

Suppose Ωi “ Epuiu
1
i|xiq is known and has full rank. Define the CCE GLS and QLD GLS estimators as

pβCCEGLS “
˜

Nÿ

i“1

x1
iMF pMFΩiMF q´MFxi

¸´1
Nÿ

i“1

x1
iMF pMFΩiMF q´MFyi (23)

pβQLDGLS “
˜

Nÿ

i“1

x1
iHpθqpHpθq1ΩiHpθqq´1Hpθq1xi

¸´1
Nÿ

i“1

x1
iHpθqpHpθq1ΩiHpθqq´1Hpθq1yi (24)

Note that the form of pβCCEGLS is equivalent to the GLS estimator based on the infeasible transformation MF

that takes the factors as given. As such, knowing that CCE asymptotically spans the same space as F tells us

that the CCE GLS estimator considered below is asymptotically the same as the infeasible GLS estimator that

assumes the factors are known.

I consider the asymptotic forms of the estimator with the limits replacing their feasible counterparts. While

a formal proof of consistency is left for future work, I note that Ωi is assumed positive definite with probability

one. As the factor loadings are assumed to have full rank for all N and as N Ñ 8, and p “ K ` 1, we would

expect convergence of pM pFΩiM pF q´ to pMFΩiMF q´ by the argument in Karabiyik et al. (2017). The QLD

GLS consistency argument is much simpler because Hpθq is positive definite by construction for any realization

of θ.

I now show that the GLS estimators are asymptotically equivalent:

Theorem 3. Suppose Assumption CM holds, Epyiy
1
i|xiq is positive definite, and RankpF q “ p ă T . Then

pβCCEGLS “ pβQLDGLS.

Proof. RankpHpθqq “ RankpMF q “ T ´ p so MF pMFΩiMF q´MF “ HpθqpHpθq1ΩiHpθqq´1Hpθq1 by

Theorem 1.
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Because Hpθq and MF are only available asymptotically, the best we can achieve is an asymptotic equiv-

alence result. However, there are still important finite-sample considerations that come from this result. As

stated earlier, the CCE estimator of MF also includes an additional term when p ă K ` 1 and is then not

asymptotically equal to the infeasible GLS estimator. Brown and Westerlund (2022) provide a simple test for

the validity of available cross-sectional averages in CCE regression. Along with the Ahn et al. (2013) tests

for p using the CCE model as in Brown (2022), this test allows researchers to choose the relevant factors in

estimation so that only p cross-sectional averages are used. They can then asymptotically achieve the efficiency

bound studied in Theorem 3 while also removing the finite-sample variability from estimating irrelevant factors8.

CCE also has clear benefits over QLD in terms of inference. Brown et al. (2022) show that the asymptotic

variance of the CCE estimator can sometimes depend on uncertainty from estimating the factors. Thus, a valid

bootstrap procedure for estimating CCE standard errors requires re-estimating the cross-sectional averages with

each new bootstrap sample. The same result will naturally hold for a two-step QLD GLS estimator, but instead

one needs to re-run the optimization procedure that estimates θ. Because estimation of θ comes from a nonlinear

and overidentified problem, computational costs of bootstrapping CCE are significantly lower than for QLD. It

is thus easier to perform inference on a CCE GLS estimator than one based on the QLD transformation, even

though both achieve the same information bound. One should care about such computational ease because the

analytic standard errors for such estimators can be difficult to compute, especially when accounting for the GLS

transformation.

3.3 Random Trend

I now consider a particular factor specification that is common in applied settings:

Epyit|xi, ci, aiq “ ci ` ait ` xitβ0 (25)

Equation (25) is often called a random trend model because the outcome variable has an unobserved hetero-

geneous response to the observable time trend9. A standard technique in dealing with the heterogeneous trend

is to first-difference. Define ∆yit “ yit ´ yi,t´1 with similar definitions for ∆xit and ∆uit. Then

∆yit “ ai ` ∆xitβ0 ` ∆uit (26)

Under the strict exogeneity assumption of Assumption CM, we have Ep∆uit|xiq “ 0 for each t ě 2. Thus

we have strictly exogenous covariates with an additive heterogeneity term. The most popular technique for

8A CCE estimator that uses irrelevant factor proxies will generally be less efficient than one that drops such proxies. This fact
holds because CCE comes from a linear regression that estimates unit-specific slopes on the cross-sectional averages. Imposing the
linear restriction that some of these slopes are zero necessarily decreases the variance of CCE.

9See Section 11.7.1 of Wooldridge (2010).
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estimating β0 in a linear model with additive heterogeneity is fixed effects estimation, which applies the within

transformation, IT´1 ´ 1

T´1
1T´11

1
T´1

where here 1T´1 is a T ´ 1 ˆ 1 vector of ones, to the first differenced

residuals ∆yit ´ ∆xitβ0.

Another way to eliminate the heterogeneity in equation (25) is to apply the first-differencing transformation

again on equation (26). This technique is often referred to as second-differencing. The regression is then run

for ∆yit ´∆yi,t´1 on ∆xit ´∆xi,t´1. Since the heterogeneous terms correspond to a known intercept and time

trend, we can also run a full fixed regression on equation (25), which treats pc1, ..., cN , a1, ..., aN q as parameters.

One final transformation to consider is the forward orthogonal deviations (FOD) operator in Arellano and

Bover (1995). This matrix applies the following transformation to the errors uit in equation (26):

pT ´ tq
pT ´ t ` 1q

ˆ
uit ´ 1

pT ´ tq pui,t`1 ` ... ` uitq
˙

(27)

The transformation can be written in matrix form as

diagpT ´ 1

T
, ...,

1

2
q1{2 ˆ

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

1 ´pT ´ 1q´1 ´pT ´ 1q´1 . . . ´pT ´ 1q´1 ´pT ´ 1q´1 ´pT ´ 1q´1

0 1 ´pT ´ 2q´1 . . . ´pT ´ 2q´1 ´pT ´ 2q´1 ´pT ´ 2q´1

...
...

...
...

...
...

0 0 0 . . . 1 ´ 1

2
´ 1

2

0 0 0 . . . 0 1 ´1

˛
‹‹‹‹‹‹‹‹‹‹‹‚

(28)

I denote this FOD transformation as the matrix F . For each of the first T ´ 1 observations, F subtracts off a

weighted mean of the rest of the independent variables. While initially studied in the context of sequential exo-

geneity and predetermined systems, I study it here in the context of strict exogeneity to determine information

equivalence. Since I am assuming first-differencing has already occurred, I consider the pT ´2q ˆ pT ´1q matrix

F which corresponds to the definition in equation (28) but only assumes T ´ 1 dependent variables instead of

T . Regardless of the number of time periods considered, F has full row rank.

To show information equivalence of the transformations described above, let D1 and D2 be the respective

pT ´ 1q ˆ T and pT ´ 2q ˆ pT ´ 1q full rank first-differencing matrices, W “ IT´1 ´ 1

T´1
1T´11

1
T´1

be the

pT ´1q ˆ pT ´1q within transformation that has rank T ´2, F be the pT ´2q ˆ pT ´1q full rank matrix defined
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similarly to equation (28), and M be the T ˆ T residual maker matrix from regressing on p1, tq. Then

D2D1Eppyi ´ xiβ0q|xiq “ EpD2D1pyi ´ xiβ0q|xiq “ 0 (29)

WD1Eppyi ´ xiβ0q|xiq “ EpWD1pyi ´ xiβ0q|xiq “ 0 (30)

MEppyi ´ xiβ0q|xiq “ EpMpyi ´ xiβ0q|xiq “ 0 (31)

FD1Eppyi ´ xiβ0q|xiq “ EpFD1pyi ´ xiβ0q|xiq “ 0 (32)

where equations (29)-(32) correspond to the residuals from the second-differencing, first-differencing then within,

first-differencing then forward orthogonal deviations, and full fixed effects transformations respectively. Thus

each of the transformations satisfy Assumption MAT and so we can apply the general theory from Section 2.2.

Theorem 4. Suppose Assumption CM holds and Epyiy
1
i|xiq is positive definite. Then D2D1, WD1, FD1

and M are information equivalent.

Proof. As D1 is full rank, RankpD2D1q “ RankpWD1q “ RankpFD1q “ T ´ 2. Since RankpMq “ T ´ 2 by

definition, the result holds by Theorem 1.

The simplicity of the proof follows from the general nature of the unified theory proved in Section 2 and thus

demonstrates its usefulness. In the language of Im et al. (1999), the GLS estimators based on the residuals in

equations (29)-(32) are algebraically equivalent for a given covariance matrix. Theorem 3 can thus be seen as a

generalization of Theorem 4.3 of Im et al. (1999).

Finally, Phillips (2020) demonstrates that matrix inversion for estimators based on first-differencing can

involve significantly more computational resources than those based on forward orthogonal deviations. He

demonstrates with simulation evidence that computational time increases quickly with T even for relatively

small values of N . While instruments need to satisfy two conditions given in Phillips (2020), which are not

necessarily assumed here, the results in Section 2 are purely algebraic and also apply to moment functions that

contain outside instruments.

4 Implementing Efficient Estimators

I now consider implementation of the efficiency bounds discussed in the paper. Given a transformation Apxi,βq

satisfying Assumptions SYS and ORTH (and thus MAT) the estimator pβA that solves

Nÿ

i“1

∇βmipβ0q1Apxi,β0q1pApxi,β0qEpyiy
1
i|xiqApxi,β0q1q´Apxi, pβAqyi “ 0 (33)

is
?
N -asymptotically normal with asymptotic variance equal to the efficiency bound given by equation (4).
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First-stage estimation of β0 can come from a GMM estimator with an arbitrary weight matrix. Second,

one needs to consistently estimate Epyiy
1
i|xiq. A nonparametric regression estimator can be used in principle,

but in practice this estimator may give highly imprecise estimates when T and K are relatively large. In the

multiplicative heterogeneity setting, Brown and Wooldridge (2022) provides a simple and attractive parametric

framework for the FEP setting. They assume V arpyit|xi, ciq “ αEpyit|xi, ciq where α ą 0 is an identified

coefficient along with a constant conditional correlation matrix.

Asymptotically justified standard errors can be derived using the familiar sample analog to the efficiency

bound in (4). The researcher can then test the validity of parts of Assumption CM. For strict exogeneity,

Wooldridge (2010, Chapter 18) suggests including functions of lead values of independent variables and running

a joint test of significance. This method’s most attractive feature is the weakness of its alternative hypothesis.

The null maintains strict exogeneity while the alternative is merely that strict exogeneity fails. It is also easy

to implement and can be tested in most standard statistical packages. However, there is no guidance on how to

choose which regressors to include or their functional forms.

Another possible way to examine strict exogeneity is via a Hausman test. The researcher could choose

a competing estimator based on the desired alternative hypothesis. In the nonlinear multiplicative example

of Section 3.1, suppose the researcher believes that Epyit|xi1, ...,xit, ciq “ mtpxit,β0q. Then the generalized

next-differencing transformation Dipβq “ pri,1,2pβq, ..., ri,T´1,T pβqq1 still provides valid moment conditions.

However, instruments designed to reach the efficiency bound in (4) will not be valid under sequential exogeneity

alone. Chamberlain (1992b) derives the asymptotic efficiency bound for moment conditions under sequential

exogeneity, and provides an implementable estimator that reaches said bound. Under the null hypothesis,

both estimators are consistent, with the generalized next-differencing estimator as in (15) being asymptotically

efficient. Under the alternative, only Chamberlain’s instruments are valid (and in fact asymptotically efficient

among
?
N -asymptotically normal estimators).

The Chamberlain estimator described in the Hausman statistic procedure is difficult to implement as the

instruments may be comprised of multiple sums of conditional moments. The researcher will need to either

greatly strengthen the assumptions of the model to allow for parametric forms of these moments or utilize a

large number of nonparametric regressions. Either way, this computational burden makes the Chamberlain

estimator difficult to implement.

Another possible application of the results involve finite-sample and computational concerns. Suppose the

researcher studying the random trend model in equation (25) has an unbalanced panel where selection into the

sample is independent of pxi,ui, ci, aiq and wants to implement the efficient estimator that makes no assumptions

on the relationship between the covariates and heterogeneity10. Despite the fact that the second-differencing

10Independent selection is not necessary to apply these results. However, the efficient instruments would need to be calculated
differently according to the setting. As such, I consider the simplest case for exposition.
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and the full within transformations yield the same efficient estimator asymptotically, missing data causes the

algebraic equivalence to break down. When an observation is missing at one time period, differencing forces the

researcher to drop the adjacent period as well. The within transformation can easily be modified to only drops

missing observations and demean with whatever is left, which leads to better finite sample performance.

Some transformations lead to much simpler inference than others. For example, I described in Section 3

how bootstrapping CCE standard errors is generally much less computationally intensive than QLD standard

errors because of the comparative first-stage estimation problems. When it comes to strictly estimation, a

similar problem holds. For example, the generalized within transformation that defines the FEP estimator

contains an inverse of the sums of the means in every moment condition, while the generalized first-differencing

transformation only contains the inverse of one function in each moment condition. Because the sum is the

same for every moment for the FEP, it may make calculating standard errors and bootstrap quantities simpler.

5 Conclusion

This paper considers linear transformations of nonlinear panel data models with unobserved heterogeneity.

When covariates are strictly exogenous in the zero conditional mean sense, such transformations provide un-

countable moment conditions exploitable for estimation. I consider specifically the asymptotic efficiency bound

for estimating the model’s parameters. This matrix specifies a lower bound for the asymptotic variance of
?
N -consistent estimators.

Transformations of the data are said to be information equivalent if they yield the same asymptotic efficiency

bound. The main result of Section 2 is a unified framework for comparing the efficiency bounds of such

transformations. It shows that, besides regularity conditions, transformations that yield conditional moment

restrictions have the same information bound as long as they have the same rank. I also simplify the form

of the efficiency bound under a general and easily verifiable algebraic orthogonality property, which helps in

determining other interesting relationships between instrumental variable estimators.

The theoretical framework is applied to show that the generalized within transformation, which provides

the basis of the FEP estimator, is information equivalent to a number of other transformations. These trans-

formations include generalizations of varying differencing techniques used in the linear panel data context such

as next-, first-, and long-differencing, as well as the infeasible residual maker matrix from regression on the

outcome variable’s mean function. It is also shown that deleting any arbitrary row from the generalized within

transformation does not lead to information loss.

I also generalize a result of Im et al. (1999) on linear models with additive heterogeneity to a factor-

augmented error structure as studied in Pesaran (2006), Ahn et al. (2013), Westerlund et al. (2019), and

Brown (2022). I show that any T ´ p rank transformation of the data that eliminates the factors is information
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equivalent to the infeasible transformation that treats the factors as known. Specifically, the QLD transformation

of Ahn et al. (2013) and the CCE transformation of Pesaran (2006) are information equivalent to the infeasible

fixed effects GLS estimator that treats the unobserved effects as known. I also show that in the case of a random

heterogeneous trend model, first-differencing twice, first-differencing and then using a within transformation,

and the true fixed effects estimator are information equivalent.

The work in this paper provides a basic framework for comparison of estimators for a broad class of nonlinear

models. I primarily consider strictly exogenous covariates so that I could compare estimators using theoretically

efficient instruments. However, the finite sample algebraic results hold regardless of validity of the instruments.

As such, the main theorem in Section 2 can apply to any comparison of efficiency for instrumental variable

estimators. There is also further work to be done considering sequential exogeneity and dynamic models. For

instance, one may hope to compare various differencing techniques in estimation of dynamic linear models in

the presence of additive heterogeneity.
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Appendix: Proofs

Proof of Lemma 1. Apx0,β0qmipβ0q “ 0 over the supports of xi and ci by Assumption MAT. As |mtpx0

t ,β0, c
0q| ą

0, Apx0,β0q has a nontrivial null space, and hence its rank is less than T .

Proof of Lemma 2. B1
ipBiViB

1
iq´1BiMiViM

1
iB

1
ipBiViB

1
iq´1Bi “ B1

ipBiViB
1
iq´1BiViB

1
ipBiViB

1
iq´1Bi “ B1

ipBiViB
1
iq´1Bi.

Since RankpB1
ipBiViB

1
iq´1Biq “ J by Assumption GR.2 and RankpMiViM

1
iq “ J by Assumption GR.1,

B1
ipBiViB

1
iq´1Bi is a g-inverse of MiViM

1
i by Theorem 2.6 of Rao and Mitra (1971).

Proof of Lemma 3. Let pitpβq “ mtpxit,βq
´řT

s“1
mspxis,βq

¯´1

, pipβq “ ppi1pβq, ..., pitpβqq1, and ni “ řT

s“1
yis.

Let 1 be a T ˆ 1 vector of ones. First I directly show the conclusion holds for IT ´ ppβq11 which satisfies the

lemma’s assumption. It also satisfies Assumption MAT, which is made clear in Section 3. I need the following

derivation:

∇βpit “ p
Tÿ

r“1

mirpxir,βqq´2p∇βmitpxit,βq
Tÿ

r“1

mirpxir,βq ´ mitpxit,βq
Tÿ

r“1

∇βmirpxir,βqq

“ p
Tÿ

r“1

mirpxir,βqq´1p∇βmitpxit,βq ´ pitpβqp
Tÿ

r“1

∇βmirpxir,βqqq

Stacking the T equations gives

∇βpipβq “ p
Tÿ

r“1

mirpxir,βqq´1p∇βmipβq ´ pipβq11
∇βmipβqq

“ p
Tÿ

r“1

mirpxir,βqq´1pIT ´ pipβq11q∇βmipβq

As Ep´ni|xiq “ ´µcpxiq
řT

r“1
mirpxir,β0q, evaluating the derivative at β0 and multiplying by Ep´ni|xiq yields

the final result.

Now let Apxi,βq be an L ˆ T matrix satisfying the assumption of the lemma. Apxi,βqpIT ´ pipβq11q “

Apxi,βq for all β near β0. Then writing gpxi,βq “ pIT ´ pipβq11qyi, we have for all β near β0

Ep∇βpApxi,βqyiq|xiq “ Ep∇βpApxi,βqgpxi,βqq|xiq

“ ∇βApxi,βqEpgpxi,βq|xiq ` Apxi,βqEp∇βgpxi,βq|xiq

Evaluating at β0 yields Ep∇βApxi,β0qyi|xiq “ Apxi,β0q∇βmipβ0q since Epgpxi,β0q|xiq “ 0 and Ep∇βgpxi,β0q|xiq “

pIT ´ pipβ0q11q∇βmipβ0q.
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Proof of Lemma 4. Write Epyiy
1
i|xiq “ Σi. Then for any T ´ 1ˆ T transformation Apxi,β0q with rank T ´ 1,

RankpApxi,β0qΣiApxi,β0qq “ RankppApxi,β0qΣ1{2
i qppApxi,β0qΣ1{2

i q1q

“ RankpApxi,β0qΣ1{2
i q

“ RankpApxi,β0qq “ T ´ 1

as Σ
1{2
i is T ˆ T and full rank. Thus the conditional variance is nonsingular and (4) holds with a proper

inverse. Any generalized differencing residual with transformation satisfying Assumption RK.1 has a nonsingular

conditional variance. This result goes for QpIT ´pipβ0q11q and QpIT ´mipβ0qpmipβ0q1mipβ0qq´1mipβ0q since

their full transformations have rank T ´ 1. Lemma 1 of Verdier (2018) shows RankppIT ´ pipβ0q11qq “ T ´ 1;

the rank of the residual maker transformation is a well-known result.

First note that V ´
i mipβ0q “ 0 by construction. As

pipβ0q11pIT ´ 1

ai
mipβ0qmipβ0q1Σ´1

i q “ 0

pIT ´ mipβ0qpmipβ0q1mipβ0qq´1mipβ0q1qmipβ0q “ 0

the conditional gradients are given as

pIT ´ pipβ0q11q∇βmipβ0q

pIT ´ mipβ0qpmipβ0q1mipβ0qq´1mipβ0q1q∇βmipβ0q

by Lemma 3. Then the systems defined by Assumption SYS for both transformations are consistent with

F pxiq “ V ´
i ∇βmipβ0q and the singularity assumption in Assumption RK.2 guarantees both efficiency bounds

exist.

Proof of Theorem 2. As mentioned in the text, Assumptions CM, RK.1, RK.2, and the positive definiteness

of Epyiy
1
i|xiq are sufficient for each of the transformations studied to satisfy Assumptions SYS and ORTH

(and thus MAT) so that their asymptotic efficiency bounds are well-defined and given by (8). Let Bi be one

of the full rank T ´ 1 ˆ T transformation (evaluated at xi and β0) studied. Bi could be the generalized

within transformation, or either the generalized within or residual maker transformation with any arbitrary row

deleted. I will prove the theorem by showing each of these transformations are information equivalent to the

full generalized within transformation via Theorem 1, and noting that a similar proof holds for the full residual

maker transformation. Write Σi “ Epyiy
1
i|xiq. Since each of the potential Bi matrices satisfy Assumption
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ORTH, its efficiency bound is given by (8):

Ep∇βmipβ0q1B1
ipBiΣiB

1
iq´1Bi∇βmipβ0qq´1

In the notation of Theorem 1, let Vi “ pIT ´ pipβ0q11qΣipIT ´ 1pipβ0q1q and Mi “ pIT ´ pipβ0q11q.

BiMi “ Bi as Bipipβ0q “ 0 by Assumption CM. Also RankpMiViM
1
iq “ RankpViq “ T ´1 “ RankpMiq,

so Assumption GR.1 holds for the same Mi regardless of Bi. As BiViB
1
i “ BiΣiB

1
i, we have RankpBiViBiq “

T ´ 1 “ RankpBiq, so Assumption GR.2 holds. Thus by Theorem 1 B1
ipBiΣiB

1
iq´1Bi “ M 1

ipMiΣiM
1
iq´Mi.

The information bound for the generalized within transformation is

Ep∇βmipβ0qM 1
ipMiΣiM

1
iq´Mi∇βmipβ0qq´1

This expression is equal to the expression in (16) by Theorem 1, so the generalized within transformation is

information equivalent to Bi. The proof for the residual maker transformation is similar with Mi “ pIT ´

mipβ0qpmipβ0q1mipβ0qq´1mipβ0q1q and Vi being the respective conditional covariance matrix.
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