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Abstract: We provide a systematic approach in obtaining an estimator asymptotically more

efficient than the popular fixed effects Poisson (FEP) estimator for panel data models with

multiplicative heterogeneity in the conditional mean. In particular, we derive the optimal

instrumental variables under appealing “working” second moment assumptions that allow

underdispersion, overdispersion, and general patterns of serial correlation. Because parameters

in the optimal instruments must be estimated, we argue for combining our new moment

conditions with those that define the FEP estimator to obtain a generalized method of moments

(GMM) estimator no less efficient than the FEP estimator and the estimator using the new

instruments. A simulation study shows that the overidentfied GMM estimator behaves well in

terms of bias and it often delivers nontrivial efficiency gains – even when the working

second-moment assumptions fail. We apply the new estimator to modeling firm patent filings

and spending on R&D, and find nontrivial reductions in standard errors using the new

estimator.

Keywords: Fixed effects Poisson; serial correlation; optimal instruments; generalized

method of moments

JEL Classification Code: C23
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1. Introduction
The fixed effects Poisson (FEP) estimator was originally developed by Hausman, Hall, and

Griliches (1984) (hereafter, HHG) in their study of the effects of firm-level R&D spending on

patent filings. HHG used the method of conditional maximum likelihood estimation (CMLE)

to estimate the parameters in the conditional mean. In deriving the CMLE, HHG assumed that,

conditional on the unobserved heterogeneity and the history of the covariates, the outcome

variable is independent over time with a Poisson distribution. HHG showed that, conditional

on the covariates and the sum of the counts over time, the joint distribution of the counts is

multinomial and does not depend on the heterogeneity. Therefore, standard maximum

likelihood theory applies, and the asymptotic theory assuming a fixed number of time periods

is standard. Hahn (1997) verified that the FEP estimator achieves the semiparametric

efficiency bound under the full distributional and conditional independence assumptions.

Wooldridge (1999) showed that the consistency of the FEP estimator only requires correct

specification of the conditional mean function up to a multiplicative heterogeneity term. In

particular, any kind of variance is allowed along with any kind of serial dependence. In fact,

the outcome variable need not even be a count variable: it can be any nonnegative outcome,

including a continuous outcome or corner solution response. Thus, the FEP estimator is to

multiplicative panel data models what the linear FE estimator is to linear models with additive

heterogeneity.

Under the weak assumption that the conditional mean function is differentiable in the

parameters, Wooldridge (1999) established Fisher consistency of the FEP. Specifically,

Wooldridge showed that the score has a zero conditional mean (evaluated at the true parameter

value) when the structural conditional mean – that is, conditioned on unobserved heterogeneity
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– is correctly specified. The zero conditional mean property of the score leads to additional

moment conditions that can be exploited in generalized method of moments (GMM) estimation

to obtain estimators asymptotically more efficient than the FEP estimator. Unfortunately, the

extra moment conditions proposed by Wooldridge (1999) are essentially ad hoc: they are not

based on any notion of optimality. Consequently, the GMM approach to estimating

multiplicative panel data models has not caught on: FEP estimation with the fully robust

standard errors derived in Wooldridge (1999) is much more common. Some recent examples

include McCabe and Snyder (2014, 2015), Schlenker and Walker (2016), Krapf, Ursprung, and

Zimmermann (2017), Castillo, Mejia, and Restrepo (2018), and Williams, Burnap, Javed, Liu,

and Ozalp (2020).

Given that the FEP estimator is fully robust to distributional misspecification and serial

independence, it is natural to wonder about its asymptotic efficiency under assumptions

weaker than the full set of assumptions used by Hahn (1997). Recently, Verdier (2018) showed

that the Poisson distributional assumption and conditional independence are not necessary for

the FEP estimator to achieve Chamberlain’s (1987, 1992) efficiency bound. In particular,

Verdier (2018) showed that it is sufficient to impose the Poisson assumption that the variance

equals the mean and that the outcomes are serially uncorrelated conditional on heterogeneity

and the covariates. While weaker than the HHG assumptions, they are still restrictive. The

assumption that the variance equals the mean, even after conditioning on unobserved

heterogeneity, is very special. For example, the most common parameterization of the gamma

distribution violates equality of the variance and mean. Moreover, serial correlation in the

idiosyncratic errors of linear unobserved effects models is pervasive, and it is known how to

exploit serial correlation in fixed effects versions of generalized least squares (GLS) to
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improve efficiency over the usual fixed effects estimator – see, for example, Im, Ahn, Schmidt,

and Wooldridge (1999). It seems natural to search for analogous improvements over the FEP

estimator in the presence of serial correlation and more flexible variance-mean relationships.

In this paper, we relax the second moment assumptions that are implied by the traditional

HHG assumptions and derive the optimal instruments, thereby showing how to obtain an

estimator that achieves Chamberlain’s (1992) lower bound. Our efficiency result is new, and

includes the Verdier (2018) result as a special case. The variance assumption we use to derive

the optimal instruments is appealing because, conditional on the observed covariates and

unobserved heterogeneity, it allows for underdispersion (relative to the Poisson) or

overdispersion. In the spirit of the popular generalized estimating equations (GEE) approach –

see Liang and Zeger (1986) – we assume constant conditional correlations, but allow for any

pattern of serial correlation. One important difference from the GEE literature is that our

assumptions are more “structural” in the sense that we state the second moment assumptions

conditional on the unobserved heterogeneity, consistent with the idea that in the conditional

expectation we want to control for unobserved heterogeneity. This is analogous to the linear

model with an additive, unobserved effect when the working correlation matrix of the

idiosyncratic errors is assumed to be constant but is otherwise unrestricted.

In order to obtain parametric forms for the optimal instruments, we supplement the flexible

second moment assumptions for the response variable with moment assumptions about the

multiplicative heterogeneity. These parametric assumptions are fairly flexible and are

commonly used in the literature, particularly in traditional and correlated random effects

environments when one needs to impose distributional assumptions on the heterogeneity in

order to obtain consistent estimators. Here, we impose first and second moment assumptions in
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order to obtain the optimal instruments.

We must emphasize that the estimator based on the optimal instruments – which we refer to

as the “generalized FEP (GFEP) estimator” – does not require any assumptions for consistency

and asymptotic normality beyond those used by the FEP estimator. That our new estimator is

just as robust as the FEP estimator in terms of consistency is important, as it is unfair to claim

efficiency improvements if the new estimator is not as robust as the popular, robust FEP

estimator. In order to emphasize the robustness of our estimator, we use the term “working”

assumptions when referring to assumptions used only to obtain the optimal instruments. If the

working assumptions are correct, then we have a just identified estimator that is more efficient

than the FEP estimator.

If any of the working assumptions are incorrect, the “optimal” instrumental variables (IVs)

are no longer optimal, and so the GFEP no longer achieves Chamberlain’s lower bound.

Therefore, we have two estimators that are consistent under the same assumptions but efficient

under different working assumptions. To ensure that we have an estimator that is at least as

efficient than both the FEP estimator and the GFEP estimator, we combine the two sets of

moment conditions. With K parameters this gives K overidentifying restrictions. The

overidentifying restrictions are useful for testing the conditional mean specification – not the

working assumptions, as those are not being used for consistency.

To summarize, this paper has three primary contributions. First, we relax the second

moment assumptions implied by the traditional fixed effects Poisson setting and obtain optimal

instruments under an appealing set of second moment working assumptions, including

allowing for general patterns of serial correlation. Second, we operationalize the estimator by

imposing additional working assumptions on moments of the heterogeneity distribution,
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resulting in a GMM estimator that is computationally simple and is guaranteed to be

asymptotically more efficient than both the FEP estimator and the GFEP estimator. Third, we

significantly relax the conditions under which the FEP estimator achieves the asymptotic

variance lower bound, allowing for both underdispersion and overdispersion in the variance

conditional on observed covariates and unobserved heterogeneity.

The underlying asymptotic theory in this paper is for the microeconometric setting that

treats the number of time periods, T, as fixed, and lets the cross section dimension, N, increase

without bound. We assume random sampling in the cross section dimension but impose no

restrictions on the time series dependence. We do not provide formal regularity conditions

because the asymptotic theory is standard. We do assume smoothness so that certain

derivatives – in particular, that of the conditional mean function – exist and are continuous.

The rest of the paper is organized as follows. Section 2 presents the conditional mean

model and summarizes the consistency result for the FEP estimator. Section 3 derives the

optimal instruments under two working variance assumptions, including an unrestricted (but

constant) conditional correlation matrix. Section 4 shows how to implement the GFEP

estimator and the GMM estimator that combines the two sets of moment conditions. Section 5

provides promising simulation evidence comparing the FEP, GFEP, and GMM estimators

under serial correlation with both underdispersion and overdispersion in the variance. In

Section 6 we apply the new estimators to a firm-level data set on patent filings and R&D

spending. Section 7 contains concluding remarks.

2. Model and Background
We consider a balanced panel data setting where, for each i, y it,xit,c i : t  1,2, . . . ,T

is a random draw from the population. We observe the nonnegative response variable y it ≥ 0
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and xit, a 1  K vector. The scalar c i is the unobserved heterogeneity. As is usual in fixed

effects environments, the elements of xit must have variation across t for at least some

population units. Typically xit would include dummy variables indicating different time

periods to allow for flexible aggregate time effects. The entire observed history of the

covariates is xi  xi1,xi2, . . . ,xiT. As mentioned in the introduction, we are treating T as fixed

in the asymptotic analysis. Therefore, because we assume random sampling in the cross

section, relevant assumptions can be stated for a random draw i from the population.

The substantive assumptions that we make throughout the paper are that the model of the

conditional mean is correctly specified, the heterogeneity is multiplicative, and the covariates

are strictly exogenous conditional on c i. These are all captured by the following.

Assumption Conditional Mean (CM): For t  1, . . . ,T and some 
o
∈ RP,

Ey it|xi,c i  Ey it|xit,c i  c imtxit,o
,     (2.1)

where mtxt,  ≥ 0 is continuously differentiable on RP for all xt ∈ Xt, the support of xit. 

As discussed in Wooldridge (1999), for consistency of the FEP estimator one can get by

with continuity over the parameter space, but we impose assumptions that imply asymptotic

normality and easy calculation of asymptotic efficiency bounds. See Newey and McFadden

(1994) or Wooldridge (2010, Chapter 12) for formal regularity conditions. In terms of

smoothness, assuming mtxit,  is twice continuously differentiable is sufficient and is almost

always true in practice.

The leading case of the conditional mean function is

Ey it|xit,c i  c i expxito
,     (2.2)

where xit can include time period dummies to allow different intercepts inside the exponential
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function. Naturally, xit can also include nonlinear functions of underlying explanatory

variables, including squares and interactions. Given the choice in (2.2), P  K, but we also

allow more general mean functions. Because we want to allow arbitrary dependence between

c i and xit, we need time variation in the latter for at least some units in the population. This

permits, for example, interactions among variables that have some time variation and others

that do not.

Strict exogeneity conditional on the unobserved effect c i is implied by the first equality in

(2.1). This assumption is restrictive – for example, it rules out lagged dependent variables – but

it is much less restrictive than the strict exogeneity assumption typically used in the GEE

literature because of conditioning on c i. In the typical GEE approach the strict exogeneity

assumption is stated as Ey it|xi  Ey it|xit. [For a discussion of GEE from an econometrics

perspective, see Wooldridge (2010, Section 13.11.4).] Using iterated expectations, if (2.1)

holds then

Ey it|xi  Ec i|ximtxit,o
,

and the latter expression is not Ey it|xit if Ec i|xi ≠ Ec i.

The multiplicative formulation using the exponential function in (2.2) can be obtained from

Ey it|xit,ai  expai  xito


where c i ≡ expai. In applications where Py it  0  0, it is important to use (2.2) to allow

for the possibility that c i  0, which then implies y it  0, t  1,2, . . . ,T. Remember, we are

only assuming y it ≥ 0; no other restrictions are imposed on the support of y it. A model such as

(2.2) is sensible when y it has no natural upper bound.

In FEP estimation, the following residual function, first studied by HHG, plays an
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important role:

uit ≡ y it − niptxi,,     (2.3)

where ni ≡ ∑r1
T

y ir and

ptxi, ≡ mtxit,

∑
r1
T

mrxir,
.     (2.4)

As convenient shorthand, we write mit  mtxit, and pit  ptxi,. We can stack the

pit into the T  1 vector pxi, and write

ui  yi − pxi,ni  yi − pxi,1T
′ yi  IT − pxi,1T

′ yi,     (2.5)

where ui is the T  1 vector with tth element uit and 1T is the T  1 vector with all

elements unity. As shown in Wooldridge (1999) under Assumption CM.1,

Euio
|xi   0.     (2.6)

Further, the score of the quasi-log-likelihood function for random draw i can be written as

si  ∇pxi, ′Wxi,ui     (2.7)

where

Wxi,  diag pi1−1, pi2−1, . . . , piT−1     (2.8)

is T  T. It follows immediately that

Esio
|xi   0,     (2.9)

and this translates, under standard regularity conditions, into the consistency and

N -asymptotic normality of the FEP estimator. For emphasis, only Assumption CM is needed

for consistency and asymptotic normality, and fully robust inference using a sandwich

estimator is essentially trivial.

10



Wooldridge (1999) also notes that the conditional moment restrictions in (2.6) leads to

uncountably many unconditional moment restrictions beyond those used by the FEP estimator,

which are given by

Esio
  0.

In the next section we derive the optimal instruments under a set of second moment

assumptions.

3. Optimal Instruments under Second Moment Assumptions
Given the moment conditions in (2.6), we can apply Chamberlain’s (1992) semiparametric

efficiency bound to obtain an asymptotically efficient estimator. Define

Doxi ≡ E∇uio
|xi      (3.1)

and

Voxi ≡ Varuio
|xi .     (3.2)

Under regularity conditions of the kind found in Newey and McFadden (1994), Newey (2001)

extended Chamberlain (1992) by allowing Voxi to be singular and showed that the efficient

estimator that uses only (2.6) has asymptotic variance

E Doxi ′Voxi−Doxi
−1,     (3.3)

where Voxi− denotes any generalized inverse (g-inverse), which means

VoxiVoxi−Voxi  Voxi. Because Voxi is symmetric, a symmetric g-inverse always

exists, and it simplifies notation to take Voxi− to be symmetric. Below we obtain an explicit

formula for a symmetric g-inverse. Given a random sample of size N and knowledge of Doxi

and Voxi, an estimator ̂
OPT

that achieves this lower bound solves the exactly identified
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moment equations

∑
i1

N

Doxi ′Voxi−ui ̂
OPT

 0.     (3.4)

Of course, this estimator is infeasible because Doxi and Voxi are generally unknown. In

principle, both can be nonparametrically estimated. However, especially given the often large

dimension of xi, nonparametric estimation of many conditional means, variances, and

covariances hardly seems worth it just to improve asymptotic efficiency over the FEP

estimator. Plus, the finite-sample properties of the the resulting estimator could be poor. Our

goal here is to obtain simple formulas for the optimal IVs, Z∗xi ≡ Voxi−Doxi. under

reasonably flexible parametric second moment assumptions that have antecedents in the count

data literature.

To find Doxi, note that

∇ui  −∇pxi,ni,     (3.5)

where, for each t, we can write

∇pit  ∑
r1

T

mir

−1

∇mit − ∑
r1

T

∇mir pit .

Therefore,

∇pi  ∑
r1

T

mir

−1

∇mi − pi1T
′ ∇mi

 ∑
r1

T

mir

−1

IT − pi1T
′ ∇mi     (3.6)

Further, because
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Eni|xi,c i  c i ∑
r1

T

miro


we have

E∇uio
|xi,c i   −c iIT − pio

1T
′ ∇mio



Now, let

cxi ≡ Ec i|xi.

Then we have shown

Doxi  −cxiIT − pio
1T

′ ∇mio
,     (3.7)

which is the first piece needed to derive the optimal instruments. The unknown function in

Doxi, cxi, is the conditional mean in the heterogeneity distribution; all other functions are

known up to 
o
.

Next, consider Voxi−. First, we can write

Voxi ≡ Varuio
|xi   VarIT − pio

1T
′ yi|xi

≡ IT − P iiIT − P i
′     (3.8)

where

 i ≡ Varyi|xi     (3.9)

is assumed to be nonsingular (with probability one) and Pi ≡ pio
1T

′ is T  T. Because the

pito
 sum to unity across t, it is easily shown that Pi is an idempotent (but not symmetric)

matrix with rankPi  1.

In establishing that the FEP estimator is asymptotically efficient under the Poisson first and

second moment assumptions, Verdier (2018) shows that the symmetric matrix
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Voxi−  i
−1 − i

−1pio
 pio

 ′i
−1pio


−1pio

 ′i
−1

 i
−1 − i

−1mio
 mio

 ′i
−1mio


−1mio

 ′i
−1     (3.10)

is a generalized inverse of Voxi. The second equality in (3.10) follows by the definition of

pio
 and by cancelling terms. We can use this expression to find a simple formula for the

optimal instruments under Assumption CM. By simple multiplication it is easily seen that

pio
 ′Voxi−  0

and so

Doxi ′Voxi−  −cxi∇mio
 ′Voxi−.     (3.10)

The expression for the optimal instruments in (3.10) is not directly applicable because

c and Vo are unknown, with the latter depending on the unknown i. We now impose

assumptions on the structural variance-covariance matrix, Varyi|xi,c i, that lead to useful

simplifications. The first restriction is on the diagonal elements.

Assumption Working Variance 1 (WV.1): For t  1, . . . ,T, there exists   0 such that

Vary it|xi,c i  Vary it|xit,c i  Ey it|xit,c i  c imito
.     (3.11)

Assumption WV.1 is motivated by the count data literature, where the assumption that the

variance is proportional to the mean is commonly used in generalized linear models (GLM)

and GEE settings; see, for example, McCullagh and Nelder (1989), Liang and Zeger (1986),

Hardin and Hilbe (2012), and Wooldridge (2010, Section 13.11). Again, one important

difference between our setting and the standard GEE setting is that we state the first and

second moments conditional on the unobserved heterogeneity, c i, in addition to the observable

variables, xi. Once the population is effectively partitioned on the basis of xi,c i, the so-called
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“GLM variance assumption” is more appealing. We do not restrict the value of

  Vary it|xit,c i/Ey it|xit,c i, and so the y it can exhibit underdispersion or overdispersion

relative to the Poisson distribution. This variance-mean relationship also holds for one popular

parameterization of the negative binomial distribution (which implies overdispersion), and can

hold for continuous outcomes as well, such as a common parameterization of the gamma

distribution.

The second working assumption is on the conditional correlation matrix.

Assumption Working Variance 2 (WV.2): For a T  T symmetric, positive definite matrix R

(with unity down the diagonal),

Corryi|xi,c i  R.      (3.12)

Assumption WV.2 is motivated by the GEE literature, where a constant conditional

correlation matrix is the leading example of a working correlation assumption. We do not put

restrictions on the elements of R, ts  Corry it,y is|xi,c i, other than those that ensure R is a

valid correlation matrix. The special case of no serial correlation conditional on xi,c i is

R  IT. One could impose an exchangeability restriction on R, as is common in the GEE

literature, but that is less attractive here because we are conditioning on c i (which would often

be assumed to be an explanation for an exchangeable structure without conditioning on c i).

With large N and small T, there is little reason to impose restrictions on R. Again, an important

difference with the GEE literature is we condition the correlation matrix on c i as well as xi –

which makes R  IT more tenable (but still unnecessary).

We can combine Assumptions WV.1 and WV.2 into a working variance-covariance matrix

conditional on xi,c i:
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Varyi|xi,c i  c iM i
1/2RM i

1/2,     (3.13)

where M i ≡ diagmi1o
,mi2o

, . . . ,miTo
 and

M i
1/2  diag mi1o

 , mi2o
 , . . . , miTo

 is the obvious matrix square root. If not

for conditioning on the unobserved heterogeneity c i, (3.13) has a structure very familiar from

the GEE literature on estimating conditional means of count variables with longitudinal data.

In stating Assumptions WV.1 and WV.2, we have opted not to include a “o” subscript on 

or R. This decision requires a brief explanation. For deriving the optimal instruments, we are

assuming the existence of “true values.” However, when we discuss implementation of our

new estimator in Section 4, we do not assume Assumptions WV.1 or WV.2 are in force. To

ensure that the focus is on estimating 
o
, and to simplify the notation, we omit the “o”

subscripts on the parameters in the working assumptions.

Before deriving the optimal instruments, we first obtain i  Varyi|xi and provide a

useful expression for its inverse. As shorthand, let mi be the T  1 vector of mito
, and define

M i
1/2 as above. We use mi to denote the T  1 vector containing the square roots of the

mito
. In stating the next lemma, let

c
2xi  Varc i|xi.

Lemma 3.1: Under Assumptions CM, WV.1, and WV.2,

Varyi|xi  i  cxiM i
1/2RM i

1/2  c
2ximimi

′,     (3.14)

which is positive definite. Further,

i
−1  1

cxi
M i

−1/2 R−1 − c
2xi

cxi  c
2xi mi

′R−1 mi

R−1 mi mi
′R−1 M i

−1/2. 
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Proofs of all results are given in the appendix. Establishing the formula for  i uses the law of

total variance (for matrices). Positive definiteness of i follows because the first term in (3.14)

is positive definite under WV.1 and WV.2 and the second is always positive semi-definite. As

shown in the appendix, the formula for i
−1 applies a result due to Sherman and Morrison

(1950).

Now we can state the main optimal instrument result.

Theorem 3.1: Under Assumptions CM, WV.1, and WV.2, a symmetric generalized inverse of

Voxi is

Voxi−  1
cxi

M i
−1/2 R−1 − 1

mi
′R−1 mi

R−1 mi mi
′R−1 M i

−1/2.     (3.15)

Further, the optimal T  K matrix of instruments, Z∗xi, is

Z∗xi ′ ≡ ∇mio
 ′M i

−1/2 R−1 − 1
mi

′R−1 mi

R−1 mi mi
′R−1 M i

−1/2,     (3.16)

where, again, mi and M i are evaluated at 
o
. We have dropped the minus sign in Doxi as that

does not affect the optimal choice. 

The optimal instrument matrix in (3.16) has a rather remarkable feature: it does not depend

on the constant  measuring dispersion nor on the conditional first two moments of the

heterogeneity distribution, cxi and cxi – even though i
−1 depends on all of these

quantities and Doxi depends on cxi. Under the working variance matrix assumptions, the

optimal instruments depend only on 
o

and R. We have a natural preliminary estimator of 
o
,

namely, the FEP estimator. Estimating R is much more challenging, and for that we will

introduce additional working assumptions – something we take up in the next section.

An interesting special case of Theorem 3.1 is when the y it : t  1,2, . . . ,T are
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conditionally uncorrelated, an assumption with a long history in linear and nonlinear

unobserved effects models. Traditional treatments of linear unobserved effects models – often

called “random effects” models – include the assumption that idiosyncratic shocks are serially

uncorrelated, which implies that, conditional on xi,c i, the y it : t  1,2, . . . ,T are

uncorrelated. In using joint maximum likelihood to estimate popular nonlinear models with

unobserved heterogeneity – random effects probit and ordered probit, random effects

multinomial logit, random effects Tobit, random effects version of Poisson and negative

binomial models, among others – it is almost always assumed that the y it : t  1,2, . . . ,T are

independent conditional on xi,c i; see Sections 13.9, 15.8, 17.8, and 18.7 in Wooldridge

(2010).

Corollary 3.1: Under Assumptions CM, WV.1, and WV.2 with R  IT, the FEP estimator is

efficient among estimators that use only Assumption CM for consistency. 

Corollary 3.1 is a new result that shows the FEP estimator is asymptotically efficient for

any   0 in Assumption WV.1 provided there is no serial correlation. Conditional on xi and

c i, any amount of constant underdispersion or overdispersion is allowed. Therefore, Corollary

3.1 improves on Verdier (2018), who imposed   1 – the value that holds for the Poisson

distribution. That FEP is asymptotically efficient for any  while allowing for arbitrary

dependence between c i and xi is very satisfying and allows us to make an interesting

connection with the cross-sectional GLM literature. As pointed out in Wooldridge (2010,

Section 13.11.3), the cross-sectional version of Assumption WV.1 implies that the Poisson

QMLE is asymptotically efficient among estimators that use only correct specification of the

conditional mean function for consistency. We now have a panel data version of this result

under the no serial correlation assumption R  IT. Given that Corollary 3.1 allows
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overdispersion and underdispersion, it seems very unlikely that there are weaker conditions

under which the FEP estimator is asymptotically efficient.

4. Operationalizing Optimal IV Estimation
From Theorem 3.1, in order to obtain a feasible optimal IV estimator under Assumptions

CM, WV.1, and WV.2, we need a preliminary consistent estimator of 
o

and we either need to

know R or have a consistent estimator of it. If we want to impose a specific structure on R –

say, an AR(1) model with a known AR(1) parameter – then (3.16) can be used after replacing


o

with ̂
FEP

(the clear choice for a first-stage estimator of 
o
). Remember, imposing such a

restriction when it is incorrect would not affect consistency of the method of moments

estimator; but the estimator would not be asymptotically efficient. Generally, we want to

estimate R without imposing any restrictions.

In order to ignore the first-stage estimation when obtaining the asymptotic variance of

N ̂
OPT

− 
o

, the first-stage estimators of 
o

and R should be N -consistent – a weak

requirement because we are assuming random sampling and smooth moment and objective

functions. See Wooldridge (2010, Chapter 14) for discussion. As mentioned earlier, it is very

natural to use the FEP estimator as the initial estimator of 
o
. Estimation of R is more difficult

because it is the (working) correlation matrix conditional on the unobserved heterogeneity, c i,

in addition to xi.

The key to estimating R is the relationship in (3.14). To see how (3.14) can be used, define

a T  1 vector of errors

vi ≡ yi − Eyi|xi  yi − cximi.     (4.1)

Then
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Evivi
′|xi  cxiM i

1/2RM i
1/2  c

2ximimi
′,     (4.2)

which we can write in matrix error form as

vivi
′  cxiM i

1/2RM i
1/2  c

2ximimi
′  Si

with

ESi|xi  0.     (4.3)

Next, define

ki ≡ Eyi|xi  cximi,     (4.4)

and let Ki be the diagonalized version of ki. Then

vivi
′ − c

2ximimi
′   Ki R Ki  Si     (4.5)

and so

Ki
−1/2vivi

′ − c
2ximimi

′ Ki
−1/2/  R  Ki

−1/2SiKi
−1/2/.     (4.6)

By (4.3) and iterated expectations, the second term in (4.6), Ki
−1/2SiKi

−1/2/, has a mean of

zero. Therefore, we have shown

R  −1E Ki
−1/2vivi

′ − c
2ximimi

′ Ki
−1/2 .     (4.7)

Combining (4.7) with (3.16) shows that  appears as a multiplicative factor in Z∗xi, and

therefore does not affect the optimal choice of instruments.

Equation (4.7) for R suggests simply computing the sample analog of the matrix inside the

expected value. However, we must deal with the fact that the matrix depends on three

unknown quantities: the parameter , the conditional mean function c (which appears in

the definition of vi), and the conditional variance function c
2.

20



There are different ways to approach estimation of c. For example, under Assumption

CM,

Eni|xi,c i  c i ∑
r1

T

miro
     (4.8)

and so

E ni

∑
r1
T

miro


xi  cxi.     (4.9)

Alternatively, we can write

E T−1∑
t1

T
y it

mito


xi  cxi.     (4.10)

Because we have available N -consistent estimators of 
o
, expressions (4.9) and (4.10) show

that c is nonparametrically identified. In fact, we can use these expressions to motivate a

nonparametric estimator. Using ̂
FEP

as the initial estimator of 
o
, we construct a dependent

variable, ni/ ∑r1
T

m̂ir , where m̂ir  mir ̂
FEP

, and use it in a cross-sectional nonparametric

regression to obtain ̂c.

For c
2, the law of total variance implies

Ev it
2 |xi  Vary it|xi  EVary it|xi,c i|xi   VarEy it|xi,c i|xi 

 Ec imito
|xi   Varc imito

|xi 

 cximito
  c

2ximito
2,     (4.11)

where we impose the working variance Assumption WV.1. Given that cxi is identified from

the previous argument, this expression identifies  and c
2. In fact, after obtaining

(semiparametric) residuals v̂ it  y it − ̂cximit ̂
FEP

, we can use the squared residuals, v̂ it
2 ,
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as the dependent variable in nonparametric estimation of c
2. Therefore, a semiparametric

approach to estimating the optimal IVs is available under Assumptions CM, WV.1, and WV.2.

For practical reasons, our suggestion is to avoid estimating either c and 2

nonparametrically. Remember, we only need to estimate these conditional moments to obtain

IVs more efficient than those used by the FEP estimator. The dimension of

xi  xi1,xi2, . . . ,xiT is often large. We can reduce the dimension by using a nonparametric

Mundlak (1978) device, which would have c and 2 depending only on time averages

x̄i ≡ T−1∑
r1
T xir. Nevertheless, estimating a conditional variance along with a conditional

mean when K is even moderately large is still challenging, both theoretically and practically. It

would involve choosing at least two tuning parameters. From a robustness perspective, we

cannot improve over the FEP estimator because it is consistent under Assumption CM.

High-dimensional nonparametric estimation seems unnecessary to improve over the usual FEP

estimator in the presence of serial correlation and under- or overdispersion, especially if one

factors in finite-sample considerations. Instead, we draw on the literature on models for

nonnegative responses to suggest working assumptions for the conditional mean and variance

of the heterogeneity – as summarized, for example, in Wooldridge (2010, Section 18.7.3).

For concreteness, and because it is by far the leading case, we now assume that

mito
  expxito

. Other forms of mito
 are easily handled, but the formulas and

connections with other literatures is not as straightforward.

Assumption WH.1: For known 1  Q functions hxi, a scalar , and  a Q  1 vector,

cxi ≡ Ec i|xi  exp  hxi.      (4.12)

The leading case is to use the (nonredundant) time averages of xit : t  1, . . . ,T, which is an
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extension of the Mundlak (1978) device to the nonlinear case, so that hxi  x̄i. But we can

also use Chamberlain’s (1980) less restrictive version, or we can include, say, unit-specific

second moments. It seems sensible to use something relatively simple as we are only using

WH.1 to generate instruments.

When we combine Assumption WH.1 with the exponential conditional mean for

Ey it|xi,c i, we obtain, by iterated expectations,

Ey it|xi  exp  hxiexpxito
  expxito

   hxi.

The parameters in this conditional mean function can be consistently estimated using a variety

of methods. A simple approach is to exploit equation (4.9) or (4.10) using exponential mean

functions. After obtaining the FEP estimator ̂
FEP

, estimate  and  by a cross sectional

Poisson regression with mean function exp  hxi and one of the dependent variables

ni

∑
r1
T exp xir̂FEP

or T−1∑
t1

T
y it

exp xit̂FEP

.     (4.13)

Even if the original y it are count variables – and there is no presumption that they are – neither

of the regressands in (4.13) would be a count variable. Of course, this is of no consequence

because of the robustness of the Poisson QMLE for estimating the parameters of the

conditional mean regardless of the nature of the dependent variable (provided it is

nonnegative).

Alternatively, 
o
, , and  can be estimated jointly using the pooled Poisson QMLE. The

pooled Poisson QMLE is completely robust to distributional misspecification and serial

correlation. Of course, to preserve consistency of the resulting method of moments estimator

we do not need Assumption WH.1 to hold; we are using it to estimate the optimal instruments
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derived earlier.

The second working assumption on the heterogeneity distribution imposes a restriction on

the variance-mean relationship.

Assumption WH.2: For   0,

c
2xi ≡ Varc i|xi  cxi2  exp  hxi2.      (4.14)

Assumption WH.2 is very common in settings with nonnegative, continuous heterogeneity

(including so-called random effects Poisson and negative binomial models). The condition that

the variance is proportional to the square of the mean holds for the natural parameterizations of

the gamma and lognormal distributions, and holds whenever

c i  qicxi     (4.15)

for qi ≥ 0 and independent of xi, without any further restrictions on the distribution of qi. Like

Assumption WH.1, Assumption WH.2 is not needed for consistent estimation using the method

of moments estimator but only to estimate the optimal instruments under the working

Assumptions WV.1 and WV.2.

Using Assumptions CM, WV.1, WH.1, and WH.2 we can obtain estimating equations for 

and . First, note that

Ev it
2 |xi  k it  k it

2     (4.15)

where

k it ≡ Ey it|xi  expxito
   hxi

An immediate implication of equation (4.15) is
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E v it

k it

2

xi    k it,     (4.16)

which is the basis for estimating variance parameters in common cross-sectional models where

heterogeneity is assumed independent of the covariates. A simple way to operationalize the

conditional mean is

v̂ it  y it − k̂ it  y it − exp xit̂FEP
 ̂  hxi̂ ,     (4.17)

where ̂ and ̂ are from one of the Poisson regressions described in equation (4.13). Then ̂

and ̂ are, respectively, the intercept and slope in the pooled simple regression

v̂ it
2

k̂ it

on 1, k̂ it, t  1, . . . ,T; i  1, . . . ,N.     (4.18)

It is clear from equation (3.16) that ̂ does not appear in the optimal instruments, but we need

to estimate  in order to obtain ̂. In order to conclude the working assumptions are a

reasonable approximation to reality, both ̂ and ̂ should be nonnegative. If one of them is

negative (most likely ̂) then ̂ should be set to zero. Because ̂ drops out of the optimal IVs,

we need not estimate it when we set ̂  0. Nevertheless, one may be curious about the

estimated amount of overdispersion when  is set to zero. With   0, the estimate of  is

simply

̂  NT−1∑
i1

N

∑
t1

T

v̂ it
2 /k̂ it ,     (4.19)

and this is guaranteed to be nonnegative. However, as mentioned above, ̂ does not affect

estimation of the optimal IVs when   0.

When we add Assumptions WH.1 and WH.2 to the previous assumptions, we obtain a
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simple form for R:

R  −1E Ki
−1/2vivi

′ − kiki
′ Ki

−1/2/ ,

which leads immediately to the method-of-moments/plug-in estimator

R̂  1
̂

N−1∑
i1

N

K̂i

−1/2 v̂iv̂i
′ − ̂k̂ik̂i

′ K̂i

−1/2.     (4.20)

By a standard application of the uniform weak law of large numbers [Wooldridge (2010,

Lemma 12.1)], R̂ p
→ R. For each t ≠ s, the correlations are estimated as

̂st  1
̂

N−1∑
i1

N
v̂ isv̂ it − ̂k̂ isk̂ it

k̂ isk̂ it

.     (4.21)

From the definition of ̂ and ̂ obtained from (4.18), it is easily seen that ̂tt  1 for

t  1, . . . ,T, and so this estimator imposes the logical requirement that a correlation matrix

must have unity down its diagonal.

If we set   0, R̂ reduces to

R̂  1
̂

N−1∑
i1

N

K̂i

−1/2
v̂iv̂i

′K̂i

−1/2.     (4.22)

With this choice of R̂, we can make a direct connection with the GEE literature by ignoring the

presence of c i and working off the first two conditional moments of yi given xi – see, for

example, Liang and Zeger (1986) and Wooldridge (2010, Sections 13.11.4 and 18.7.3).

Namely, under the full set of working assumptions with   0,

Ey it|xi  expxito
   hxi  k it, t  1, . . . ,T

Vary it|xi  Ey it|xi, t  1, . . . ,T
Corryi|xi  Ki

1/2RKi
1/2

    (4.23)
    (4.24)
    (4.25)
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This collection of moment assumptions is precisely what is used in GEE applications of

Poisson regression (whether or not y it is a count variable), with the addition of the vector of

functions hxi. We emphasize that these are all working assumptions in the current context.

Not even the conditional mean function in (4.23) is assumed to hold for consistency because

(4.23) is obtained from Assumptions CM and WH.1, whereas we are only require Assumption

CM for consistency. We impose Assumptions WH.1 and WH.2 in order to estimate R and then

to estimate i. Provided it leads to a positive definite estimate, we prefer (4.20) because it is

the correct expression under all of the working assumptions.

Under Assumption CM and the full set of working assumptions, we can estimate the

optimal IVs, for each i, as

∇m̂i
′M̂ i

−1/2 R̂−1
− 1

m̂i

′R̂−1 m̂i

R̂−1 m̂i m̂i

′
R̂−1 M̂ i

−1/2,     (4.26)

where “^” means the quantity is evaluated at a first-round estimator, most likely ̂
FEP

, and R̂ is

from (4.20) or, if necessary, (4.22). This results in a just identified set of equations. However,

without the full set of working assumptions, this choice of IVs is not guaranteed to improve

over the FEP estimator because of its dependence on R̂. A somewhat subtle point is that (4.26)

is not even optimal under Assumptions CM, WV.1, and WV.2 because consistency of R̂ for R

generally requires correct specification of the heterogeneity mean and variance – that is,

Assumptions WH.1 and WH.2. As mentioned previously, if we did not have to estimate R, we

could use (4.26) with R̂ replaced by R. Naturally, we want to use the data to provide an

estimator of R better than just guessing. Incidentally, expression (4.26) shows that the

estimator ̂ has no direct effect on the optimal IVs because it factors out as a constant.

In order to ensure improvements over FEP, our recommendation is to stack the FEP and the
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new “optimal” IVs to form an expanded IV matrix, and use GMM with an optimal weighting

matrix. The resulting estimator, which we simply call the “GMM estimator,” is guaranteed to

be asymptotically at least as efficient as the FEP and GFEP estimators; usually it is strictly

more efficient than both. In other words, the T  2K matrix of IVs is Ẑi, written in transposed

form as

Ẑi

′


∇m̂i
′M̂ i

−1/2 IT − p̂i p̂i

′ M̂ i

−1/2

∇m̂i
′M̂ i

−1/2 R̂−1
− 1

m̂i
′R̂−1 m̂i

R̂−1 m̂i m̂i

′R̂−1 M̂ i

−1/2     (4.27)

Given this choice of Ẑi, the mechanics of GMM are straightforward. After obtaining ̂
FEP

,

obtain the T  1 residual vectors

ũi  yi − p xi, ̂FEP
ni.     (4.28)

Then, given the estimators of , , , , and R described above, obtain the 2K  2K matrix,

̂  N−1∑
i1

N

Ẑi

′ũiũi
′Ẑi.     (4.29)

Assuming ̂ is positive definite (which generally holds with probability approaching one), the

optimal GMM estimator, ̂
GMM

, solves

min
∈RK

∑
i1

N

ui ′Ẑi ̂
−1 ∑

i1

N

Ẑi

′ui     (4.30)

Because we have chosen very smooth mean, variance, and correlation functions, the

consistency and N -asymptotic normality are standard; see, for example, Wooldridge (2010,

Chapter 14). Remember, ̂
−1 is an (estimated) optimal weighting matrix given the choice of

instruments; the standard GMM inference does not require that Ẑi is optimal. A nice byproduct
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of the GMM estimation is we can use the overidentification test, which has K

overidentification restrictions, to test Assumption CM.

It may be helpful to summarize the estimation steps, which also serves to illustrate the

relatively simplicity of the estimator.

Procedure 4.1 (GMM Estimation):

1. Use FEP estimation to obtain ̂
FEP

.

2. Use ̂
FEP

to construct one of the dependent variables in (4.13). Given a choice of hxi,

with the leading case being hxi  x̄i, use cross-sectional Poisson regression to obtain ̂ and

̂.

3. Compute the fitted values, k̂ it  exp xit̂FEP
 ̂  hxi̂ , and the residuals v̂ it in

(4.17). Run the simple regression in (4.18) to obtain ̂ and ̂. If ̂  0, set ̂  0.

4. Compute the estimated correlation matrix, R̂, as in (4.20).

5. Construct the “optimal” IVs as in (4.27).

6. Use the IVs from step (5) in an overidentified GMM estimation with optimal weighting

matrix. 

5. A Small Simulation Study
We now present the results of a small Monte Carlo simulation to demonstrate the efficacy

of the improved GMM estimator. The conditional mean model, which has an exponential form,

includes three time-varying explanatory variables and multiplicative heterogeneity. We

consider two conditional distributions for the outcome variable, y it. In the first case, y it is a

count variable generated as

y it|xi,c i,e i  Poissonc i expxit  e it,     (5.1)
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where e i  e i1,e i2, . . . ,e iT ′ is distributed as multivariate normal with unit variances. In order

to generate serial dependence in y it : t  1, . . . ,T conditional on xi,c i,

e it : t  1,2, . . . ,T follows an AR(1) process with first-order correlation  ∈ 0,0.25,0.75.

This autoregressive process generates no conditional dependence when   0 and fairly strong

time series dependence when   0.75. Because of the inclusion of e it, the conditional

distribution Dy it|xi,c i is not Poisson; in fact, it exhibits overdispersion because expe it is

integrated out in obtaining Dy it|xi,c i. However, consistency of all estimators requires only

that that Ey it|xi,c i has the exponential form with multiplicative c i.

The strictly exogenous explanatory variables, xit, are generated as a trivariate, stationary

vector autoregression, where the stochastic term is an independent multivariate standard

normal distribution with autocorrelation parameter 0.125. The processes xi  xi1, . . . ,xiT  and

e i are independent. The vector  is set to ′  0.15,0.25,0.35 (where we drop the o

subscript to make the tables easier to read).

To generate correlation between c i and xi, we first use an exponential version of the

Mundlak (1978) device and an exponential distribution:

c i|xi  Exponentialexp  x̄i.     (5.2)

Under this specification, the working assumptions WH.1 and WH.2 are both satisfied with

hxi  x̄i and, in the case of WH.2,   1.

We estimate the parameters in the heterogeneity moments using a two-step pooled Poisson

QMLE with the FEP estimator as the first-stage estimator of . The estimates ̂ and ̂ are

estimated via the pooled OLS regression in equation (4.18) and R̂ is estimated as in (4.20).

When R̂ is not positive definite for a particular draw, we set ̂  0 and estimate R̂ as in (4.22)

(in which case the value of ̂ plays no role in the estimation of ). This situation occurs
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between 60% and 80% of the simulations.

We use N  300, T ∈ 4,8, and 1,000 replications in the simulations. The findings are

reported in Table 1.
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Table 1. Conditional Poisson Distribution

Bias SD RMSE

FEP GEFP GMM FEP GEFP GMM FEP GEFP GMM

  0 T  4 1 0. 15 0. 002 −0. 004 0. 000 0. 082 0. 075 0. 072 0. 082 0. 075 0. 072

2 0. 25 0. 001 −0. 011 −0. 003 0. 083 0. 078 0. 072 0. 083 0. 079 0. 072

3 0. 35 −0. 001 −0. 016 −0. 005 0. 083 0. 079 0. 075 0. 083 0. 081 0. 075

T  8 1 0. 001 −0. 010 −0. 005 0. 052 0. 044 0. 041 0. 052 0. 045 0. 041

2 0. 000 −0. 020 −0. 011 0. 053 0. 044 0. 042 0. 053 0. 049 0. 044

3 0. 001 −0. 027 −0. 014 0. 051 0. 045 0. 042 0. 052 0. 052 0. 045

  0. 25 T  4 1 −0. 007 −0. 016 0. 008 0. 081 0. 074 0. 072 0. 081 0. 076 0. 073

2 −0. 003 −0. 014 0. 004 0. 082 0. 075 0. 070 0. 082 0. 077 0. 070

3 0. 002 −0. 015 0. 003 0. 079 0. 075 0. 070 0. 079 0. 077 0. 070

T  8 1 −0. 001 −0. 014 −0. 007 0. 051 0. 045 0. 042 0. 051 0. 047 0. 043

2 0. 000 −0. 021 −0. 010 0. 048 0. 044 0. 040 0. 048 0. 049 0. 042

3 −0. 001 −0. 029 −0. 015 0. 051 0. 046 0. 043 0. 051 0. 054 0. 046

  0. 75 T  4 1 −0. 001 −0. 007 −0. 003 0. 057 0. 054 0. 051 0. 057 0. 055 0. 051

2 0. 005 −0. 008 0. 001 0. 060 0. 058 0. 052 0. 061 0. 059 0. 052

3 0. 001 −0. 014 −0. 002 0. 060 0. 059 0. 053 0. 060 0. 060 0. 053

T  8 1 0. 001 −0. 012 −0. 004 0. 043 0. 035 0. 034 0. 043 0. 037 0. 034

2 −0. 001 −0. 023 −0. 011 0. 044 0. 036 0. 034 0. 044 0. 043 0. 036

3 −0. 002 −0. 032 −0. 015 0. 047 0. 038 0. 036 0. 047 0. 050 0. 039
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Some general patterns emerge from Table 1. First, the FEP estimator shows very little bias,

and its bias is almost always smaller than the GFEP and GMM estimators. The GFEP estimator

generally shows the most bias – as high as nine percent in some cases. Still, we only have

N  300, which is not especially large. Interestingly, the bias in the GMM estimator – which

combines both sets of moment conditions – is well below that of the GFEP estimator. The bias

in both the GFEP and GMM estimators appears to increase with T. Overall, the bias in the

GMM estimator seems acceptable, especially given the small N.

The GMM estimator always has the smallest sampling standard deviation, sometimes being

about 80% of the FEP standard error. The SD of the GFEP estimator falls in between that of

the FEP and GMM estimators. In a few cases the FEP estimator has smaller root mean squared

error (RMSE) than the GFEP estimator. The asymptotic theory of GMM estimation implies

that the GMM estimator is asymptotically more efficient than FEP or GFEP because, in the

setting of the simulation, the entire set of working assumptions does not hold, and so GFEP

does not use the optimal IVs. The ranking of the estimators in terms of the root mean squared

error favors the GMM estimator in every case.

To see how the estimators perform when y it is a continuous outcome, we generated y it as

y it|xi,c i,e i  Gammaexpxit  e it,c i ,     (5.3)

where the gamma distribution is parameterized so that Ey it|xit,c i,e i  c i expxit  e it, as

before. The conditional variance is Vary it|xit,c i,e i  c i
2 expxit  e it. We use the same

process in (5.2) to generate c i. The simulation findings are reported in Table 2.
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Table 2. Conditional Gamma Distribution

Bias SD RMSE

FEP GEFP GMM FEP GEFP GMM FEP GEFP GMM

  0 T  4 1 0. 15 0. 000 −0. 006 −0. 002 0. 090 0. 087 0. 081 0. 090 0. 087 0. 081

2 0. 25 0. 003 −0. 008 0. 003 0. 089 0. 085 0. 080 0. 089 0. 085 0. 080

3 0. 35 0. 001 −0. 014 0. 000 0. 090 0. 088 0. 083 0. 090 0. 089 0. 083

T  8 1 0. 000 −0. 012 −0. 006 0. 056 0. 049 0. 048 0. 056 0. 051 0. 048

2 −0. 001 −0. 019 −0. 009 0. 052 0. 050 0. 047 0. 052 0. 054 0. 048

3 −0. 001 −0. 027 −0. 014 0. 054 0. 051 0. 048 0. 054 0. 058 0. 050

  0. 25 T  4 1 0. 002 −0. 007 0. 002 0. 086 0. 082 0. 078 0. 086 0. 082 0. 078

2 −0. 003 −0. 016 −0. 004 0. 085 0. 082 0. 077 0. 085 0. 084 0. 078

3 0. 002 −0. 014 −0. 001 0. 086 0. 084 0. 081 0. 086 0. 085 0. 081

T  8 1 0. 000 −0. 013 −0. 006 0. 057 0. 050 0. 048 0. 057 0. 052 0. 048

2 0. 000 −0. 019 −0. 009 0. 055 0. 050 0. 048 0. 055 0. 053 0. 049

3 −0. 001 −0. 033 −0. 017 0. 058 0. 053 0. 051 0. 058 0. 062 0. 053

  0. 75 T  4 1 0. 001 −0. 006 0. 000 0. 069 0. 067 0. 063 0. 069 0. 067 0. 063

2 0. 000 −0. 012 −0. 001 0. 074 0. 072 0. 067 0. 074 0. 073 0. 067

3 0. 000 −0. 016 −0. 001 0. 070 0. 072 0. 064 0. 070 0. 074 0. 064

T  8 1 0. 001 −0. 014 −0. 005 0. 049 0. 041 0. 040 0. 049 0. 044 0. 040

2 0. 000 −0. 023 −0. 008 0. 048 0. 042 0. 039 0. 048 0. 048 0. 040

3 −0. 001 −0. 034 −0. 013 0. 050 0. 046 0. 043 0. 050 0. 057 0. 045
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The general pattern found in Table 1 continues to hold in Table 2. The FEP estimator

generally has the lowest bias, although the GMM estimator also does well with bias. The

GFEP estimator, which uses only the “optimal” IVs, shows more bias – again, sometimes on

the order of more than nine percent. In terms of precision and RMSE, the GMM estimator

outperforms FEP and GFEP in all scenarios, although the gains are modest in some cases.

We tried several additional scenarios, including cases where Assumption WH.2 is violated

– by drawing c i from a Poisson distribution – and cases where, conditional on xi,c i – y it is an

underdispersed gamma random variable. In the former case, we found only minor differences

among the estimators, although sometimes the FEP estimator outperformed the other two in

terms of RMSE. In the latter case, where we did not allow serial correlation, the estimators

perform very similarly. As a final set of simulations, we misspecified the conditional mean

Ec i|xi in (5.2) by letting the mean depend on the average of the first and last time periods

rather than x̄i. In other words, Assumption WH.1 is violated. The GMM estimator uniformly

performed the best based on RMSE and exhibited biases on the order of those reported in

Tables 1 and 2. These simulations are available upon request from the authors.

6. Empirical Example
In this section we apply the FEP, GFEP, and GMM estimators to the patents-R&D data set

used in Martin (2017), who updated the HHG (1984) data to include N  848 firms for the

T  8 years 1996 to 2003. Martin (2017) estimates a static model for the patents-R&D

relationship using the FEP estimator. Here we estimate a model that includes two lags of the

natural log of R&D, which means in estimation we use data for 1998 through 2003. The

estimated second lag is small and statistically insignificant in all cases, but we include it to

make precision comparisons even when an estimated coefficient is not statistically significant.
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We include a full set of year dummies.

The results for the three estimation methods are given in Table 3, with the coefficients on

the year dummies suppressed. In addition to the estimated elasticities for the contemporaneous

effect and each of the two lags, the long-run elasticity estimates and standard errors are also

provided.

Table 3. Estimates of the Patents-R&D Relationship

Outcome Variable: Number of Patents Assigned
(1) (2) (3)

FEP GFEP GMM
logrnd

0.0468
0. 1604

0.0500
0. 1288

0.0418
0. 1763

logrnd_1
0.0386
0. 0596

0.0537
0. 1053

0.0333
0. 0705

logrnd_2
0.0706
−0. 0009

0.0599
0. 0191

0.0350
0. 0022

Long-Run Elasticity
0.0976
0. 2191

0.0881
0. 2532

0.0679
0. 2490

As is well known in the empirical literature on the patents-R&D relationship, estimating

the distributed lag coefficients precisely is challenging because R&D spending tends to move

slowly over time (after removing aggregate trends). This is especially true with fixed effects

methods, which rely on within-firm variation. Each of the three estimation methods produces a

positive and statistically significant estimate of the impact effect, with the GMM estimator

providing the most precise estimate (0.176 with SE  0.042). Of the three estimates of the

coefficient on the first lag, only the GMM estimate is statistically significant at the usual 5%

significance level (t  2.12). The GMM standard error is notably below the GFEP standard

error and also less than the FEP standard error. That the FEP standard errors on logrnd and

logrnd_1 are below those of the corresponding GFEP standard errors suggests that the
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working assumptions used to generate the “optimal” IVs are violated. By contrast, the

preferred GMM estimator that combines the two sets of moment conditions has notably more

precision than the other two estimators.

The long-run (LR) elasticity is of some interest in these studies. The estimated LR

elasticities for FEP, GFEP, and GMM are 0.219, 0.253, and 0.249, respectively, which are

reasonably close when accounting for sampling error. Notably, the standard error for the GMM

estimate is only about 70% of the FEP standard error and about 77% of the GFEP standard

error. This represents a substantial improvement in precision by using the new GMM estimator

compared with the FEP estimator for estimating the LR elasticity. Moreover, the efficiency

gains are in line with the simulations in Section 5 – and actually a bit better in the application,

perhaps reflecting a more complicated conditional variance or pattern of serial correlation, or

more complicated conditional moments for the heterogeneity.

7. Summary and Conclusion
We have characterized the optimal instruments in a multiplicative panel model under a

general set of working assumptions. The variance-mean relationship, conditional on

unobserved heterogeneity as well as covariates, is allowed to be any positive number. The

conditional correlation matrix is assumed to be constant but is otherwise unrestricted. Under

these assumptions, the optimal IVs depends only on the unknown correlation matrix, R (and

the value of the conditional mean parameters, 
o
). In the special case that R  IT, we show

that the FEP estimator achieves the asymptotic efficiency bound for any amount of

overdispersion or underdispersion. Even by itself, this result represents an important

improvement in our understanding of the efficiency properties of the popular FEP estimator.

When R is not the identity matrix, it is possible to improve on the FEP estimator.
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To operationalize the optimal IVs in order to exploit serial correlation, we add working

first and second moment assumptions on the conditional heterogeneity distribution. These

assumptions are common in literatures that allows nonnegative heterogeneity in cross-sectional

and panel data models. We show that estimating the optimal IVs is straightforward, and

suggest a GMM approach that is guaranteed to improve asymptotic efficiency whether or not

serial correlation is present. Our simulations show that the GMM estimator that combines the

FEP moment conditions and the new “optimal” moment conditions has very good bias

properties and provides nontrivial efficiency gains – even when the cross-sectional sample size

is only N  300. In our empirical example, we find the GMM estimator produces a standard

error of the long-run elasticity 30% lower than the FEP estimator – a nontrivial improvement.

Our results and new estimator are appealing for cases where N is substantially larger than

T, as we have used the standard microeconometric setting where T is fixed in the asymptotic

analysis. Fernández-Val and Weidner (2017) and Chen, Fernández-Val, and Weidner (2020)

have proposed quasi-MLEs that allow more heterogeneity. However, consistency requires

T →  along with N → , and necessarily restricts the amount of time series heterogeneity and

dependence.
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Appendix
This appendix collects together proofs of the formal results stated in the text.

Proof of Lemma 3.1

From equation (3.13), Assumptions WV.1 and WV.2 imply

Varyi|xi,c i  c iM i
1/2RM i

1/2.

By the law of total variance,

Varyi|xi  EVaryi|xi,c i|xi   VarEyi|xi,c i|xi 

 E c iM i
1/2RM i

1/2 xi  Varc imi|xi

 cxiM i
1/2RM i

1/2  c
2ximimi

′.     (A.1)

To simplify notation in what follows, write i ≡ cxi, i
2 ≡ c

2xi. To derive i
−1, we apply

an implication of Sherman and Morrison (1950): For a nonsingular T  T matrix A and T  1

vector b,

A  bb′−1  A−1 − 1
1  b′A−1b

A−1bb′A−1,     (A.2)

which can be verified by direct multiplication. Take A ≡ iM i
1/2RM i

1/2 and b ≡ imi in

(A.2) and note that iM i
1/2RM i

1/2 −1
 M i

−1/2R−1M i
−1/2/i and M i

−1/2mi  mi .

Therefore,
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i
−1  1

i
M i

−1/2R−1M i
−1/2

− 1
1  i

2 mi
′R−1 mi /i

i
2R−1 mi mi

′R−1/i2

 1
i

M i
−1/2R−1M i

−1/2

− i
2

i  i
2 mi

′R−1 mi

i
2R−1 mi mi

′R−1/i

 1
i

M i
−1/2 R−1 − i

2

i  i
2 mi

′R−1 mi

R−1 mi mi
′R−1 M i

−1/2.

Proof of Theorem 3.1

Simplify the notation by defining Di ≡ Doxi, Vi ≡ Voxi, i ≡ cxi, i
2 ≡ c

2xi,

and drop dependences on 
o
. With this simplified notation,

Vi
−  i

−1 − i
−1mimi

′i
−1mi

−1mi
′i

−1

and, from Lemma 3.1,

i
−1  1

i
M i

−1/2R−1M i
−1/2 − i

2

ii  aii
2

M i
−1/2R−1 mi mi

′R−1M i
−1/2

where ai ≡ mi
′Ri

−1 mi . Therefore, because M i
−1/2mi  mi ,

i
−1mi  1

i
M i

−1/2R−1 mi −
i

2

ii  aii
2

M i
−1/2R−1 mi mi

′R−1 mi

 1
i

M i
−1/2R−1 mi −

aii
2

ii  aii
2

M i
−1/2R−1 mi

 1
i

− aii
2

ii  aii
2

M i
−1/2R−1 mi


i  aii

2 − aii
2 

ii  aii
2

M i
−1/2R−1 mi

 1
i  aii

2
M i

−1/2R−1 mi

Also,
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mi
′i

−1mi  1
i  aii

2
mi

′R−1 mi  ai

i  aii
2 .

It follows that

i
−1mimi

′i
−1mi

−1mi
′i

−1  1
aii  aii

2
M i

−1/2R−1 mi mi
′R−1M i

−1/2

Plugging into Vi
− gives

Vi
−  1

i
M i

−1/2R−1M i
−1/2 − i

2

ii  aii
2

M i
−1/2R−1 mi mi

′R−1M i
−1/2

− 1
aii  aii

2
M i

−1/2R−1 mi mi
′R−1M i

−1/2

 1
i

M i
−1/2R−1M i

−1/2 − i  aii
2

aiii  aii
2

M i
−1/2R−1 mi mi

′R−1M i
−1/2

 1
i

M i
−1/2R−1M i

−1/2 − 1
ai

M i
−1/2R−1 mi mi

′R−1M i
−1/2 ,

which completes the result for Vi
−. From (3.10), the optimal IVs are

Di
′Vi

−  −i∇mi
′Vi

−  − 1
 ∇mi

′ M i
−1/2R−1M i

−1/2 − 1
ai

M i
−1/2R−1 mi mi

′R−1M i
−1/2 ,

and we can drop −1/ and factor out M i
−1/2 to get the result. 

Proof of Corollary 3.1

Putting R  IT into (3.16) and using simple algebra gives the optimal IVs as

Z∗xi ′  ∇mio
 ′ M i

−1 − 1
∑

r1
T

mir

1T1T
′ .

We show that this choice of instruments leads to the FEP first order condition, as expressed by

Wooldridge (1999), using the definition of Wi given in Section 2:

∇pio
 ′Wi  ∇mio

 ′ IT − 1Tpio
 ′ M i

−1

To see the equivalence, note that
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1Tpio
 ′M i

−1  1
∑

r1
T

mir

mi

mi



mi

M i
−1  1

∑
r1
T

mir

1T1T
′

and so

∇pio
 ′Wi  ∇mio

 ′ M i
−1 − 1

∑
r1
T

mir

1T1T
′  Z∗xi ′. 
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