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Abstract

I consider linear panel data models with unobserved factor structures when the number of time periods

is small relative to the number of cross-sectional units. I examine two popular methods of estimation:

the first eliminates the factors with a parameterized quasi-long-differencing (QLD) transformation. The

other, referred to as common correlated effects (CCE), uses the cross-sectional averages of the independent

and response variables to project out the space spanned by the factors. I show that the classical CCE

assumptions imply unused moment conditions that can be exploited by the QLD transformation to derive

new linear estimators, which weaken identifying assumptions and have desirable theoretical properties. I

prove asymptotic normality of the linear QLD estimators under a heterogeneous slope model that allows

for a tradeoff between identifying conditions. These estimators do not require the number of independent

variables to be less than one minus the number of time periods, a strong restriction when the number of

time periods is fixed in the asymptotic analysis. Finally, I investigate the effects of per-student expenditure

on standardized test performance using data from the state of Michigan.
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1 Introduction

The prevalence of panel data in modern economics has led theorists and practitioners to pay more attention

to unobserved and interactive heterogeneity in linear models. A popular representation of unobserved effects is

the linear factor structure
∑p

j=1 ftjγji where ftj is a time-varying macro effect or “common factor” and γji is an

individually heterogeneous response or “factor loading”. Except under highly-specific circumstances, the usual

within transformation is insufficient in controlling for these unobserved effects. Previous theoretical treatments

have relied on asymptotic expansions where the number of time periods T grows large with the number of

cross-sectional units N . As the vast majority of microeconometric data sets have only a few time periods, the

recent literature assumes T is fixed while N goes to infinity.

One of the most popular approaches is the common correlated effects (CCE) estimator of Pesaran (2006).

He assumes an additional reduced form model where the covariates are a linear function of the common factors

plus a matrix of independent idiosyncratic errors. The pooled CCE estimator comes from the OLS regression

that estimates unit-specific slopes on the cross-sectional averages of the dependent and independent variables.

CCE is similar to a fixed effects treatment that seeks to eliminate the factors and remove a source of both

endogeneity and cross-sectional dependence. Consistency and asymptotic normality was originally proved for

sequences of N and T going to infinity. Recent work extends the CCE framework to a fixed-T setting. Vos and

Everaert (2021) derive a fixed-T consistency correction for the dynamic CCE estimator but requires T → ∞

for asymptotic normality. Westerlund et al. (2019) provide the first asymptotic normality derivation of pooled

CCE when T is fixed and N → ∞.

Despite its theoretical rigor and practicality, the CCE estimator is ad hoc in the sense that it is not derived

from the fundamental moment conditions of the model. This fact implies that the pure factor structure in the

covariates cannot improve efficiency for the CCE estimator because it is irrelevant from a population information

perspective, despite being necessary for consistency. As other fixed-T
√
N -consistent estimators exist that do

not require this assumption, it is worth investigating how else the CCE assumptions can be used in estimation.

I use the quasi-long-differencing (QLD) transformation of Ahn et al. (2013) to explore the implications of this

model and show that the additional ignored CCE pure factor moments are relevant for the estimation of the

parameters of interest in the main equation1.

Ahn et al. (2013) choose a particular normalization of the unobserved factors that induces a smaller set of

estimable parameters. They include these parameters in their QLD transformation that can then asymptotically

eliminate the space spanned by the factors. While they did not originally assume a pure factor structure in the

covariates, I use their transformation to study the CCE model and estimator and demonstrate its shortcomings.

1The ‘quasi-long-differencing’ terminology was not present in the original paper but others have adopted it since; see Juodis
and Sarafidis (2018) for example. The name comes from the fact that the transformation subtracts a linear combination of future
variables from current ones.
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I show that the reduced form pure factor model provides information for estimating the parameters of interest,

which is ignored by the pooled CCE estimator. Further, the CCE estimator generally uses more factor proxies

than necessary that can lead to inefficiency. Any attempt to reduce the number of proxies is essentially arbitrary.

I also demonstrate how the literature’s current understanding of the factor loadings causes problems for inference

under model misspecification, which I correct for. Finally, the CCE estimator requires more time periods than

one plus the number of covariates to be well-defined, a highly restrictive assumption in microeconometric settings.

For example, an intervention analysis with only pre-treatment, treatment, and post-treatment observations,

classical CCE would require the treatment indicator to be the only regressor. My estimation suggestions will

not require this restriction and allow an arbitrary number of covariates.

Another potential source of heterogeneity in linear models comes from the slope coefficients on the observed

variables of interest. Pesaran (2006) proves fixed-T consistency of the mean group CCE estimator under random

slopes but assumes they are independent of everything else in the model. Asymptotic normality requires T → ∞

and pooled CCE is studied under constant slopes2. I prove fixed-T consistency and asymptotic normality of

my new pooled and mean group QLD estimators. I show that the first-stage estimation of the QLD parameters

does not affect consistency, which mirrors the pooled OLS result of Wooldridge (2005), who assumes known

factors. To the best of my knowledge, this paper is the first to consider arbitrary random slopes in the context

of fixed-T panels with factor-driven endogeneity.

The rest of the paper is structured as follows: Section 2 discusses the model of interest. Section 3 provides

the assumptions that underlie the model and discusses implementation of the QLD-based estimators. Section

4 introduces random slopes. Section 5 provides simulation evidence for the finite-sample properties of the

QLD estimators. Section 6 compares the pooled QLD estimator to two-way fixed effects (TWFE) and CCE

in estimating the effect of education expenditure on standardized test performance using a school district-level

data set from the state of Michigan. Section 7 concludes with a brief summary and suggestions for future

research.

2 Model

This section lays out the models considered in Westerlund et al. (2019) and Ahn et al. (2013), the fixed-T

CCE and QLD approaches respectively. Throughout the paper, the equation of interest is

yi = Xiβ0 + F0γi + ui (1)

2Westerlund and Kaddoura (2022) prove asymptotic normality assuming T is fixed, but they make the same independent random
slope assumptions as in Pesaran (2006).
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where yi is a T×1 vector of outcomes, Xi is T×K matrix of covariates, F0 is a T×p0 matrix of factors common

to all units in the population, γi is a p0 × 1 vector of factor loadings, and ui is a T × 1 vector of idiosyncratic

shocks. A ‘0’ subscript denotes the true or realized value of an unobserved parameter. The K × 1 vector β0 is

the object of interest and the factor structure F0γi is treated as a collection of nuisance parameters. p0 is then

unobserved because F0 and γi are unobserved. However, we can consistently test for p0 so it will be treated

as known. Simulation evidence from this paper and others also suggests that overestimating p0 does not cause

inconsistency in QLD estimation. p denotes the number of factors specified by the econometrician.

I define p0 as the number of factors whose loadings correlate with Xi. This interpretation is similar to

Ahn et al. (2013) and implicit to the CCE model as discussed in the following section. One justification of

this interpretation is to write the full error as D0ρi + ϵi where D0 is a possibly infinite dimensional matrix of

common factors and ϵi is a vector of idiosyncratic errors. Then F0γi is the set of variables from D0ρi that are

correlated with Xi and the rest are absorbed into the error. However, it is entirely likely that γi is correlated

with the other loadings that are uncorrelated with Xi. For this reason, I allow the loadings and errors to

correlate. The factors are treated as constant. I could alternatively treat them as random and independent of

the cross-sectional data like in Westerlund et al. (2019).

2.1 Common Correlated Effects

The CCE model in Pesaran (2006) and Westerlund et al. (2019) adds an additional reduced form equation

that represents the relationship between the covariates and the factor structure:

Xi = F0Γi + Vi (2)

where Γi is a p0 × K matrix of factor loadings and Vi is a T × K matrix of idiosyncratic errors. Assuming

that the idiosyncratic errors have mean zero, CCE estimates the factors with the matrix F̂ = (y,X) where

(y,X) = 1
N

∑N
i=1(yi,Xi) are the cross-sectional averages of yi and Xi.

The pooled common correlated effects (CCEP) estimator of β0 treats the cross-sectional averages as

having unit-specific slopes and can be represented as

β̂CCEP =

(
N∑

i=1

X ′
iMF̂

Xi

)−1 N∑

i=1

X ′
iMF̂

yi (3)

where M
F̂
= IT − F̂ (F̂ ′F̂ )+F̂ ′. Here ′+′ denotes a Moore-Penrose inverse, which can be replaced by a proper

inverse in samples where F̂ ′F̂ has full rank. Pesaran (2006) derives the CCEP estimator under the following
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intuition: first, write Zi = (yi,Xi). The two models in equations (1) and (2) imply

E(Zi) = F0E(Ci)Q (4)

where Ci = (γi,Γi) and Q is constant and positive definite. M
F̂

then asymptotically eliminates the space

spanned by F0, including F0γi. All moment conditions are written in terms of the general index i because I

assume the data is randomly sampled.

Westerlund et al. (2019) show that M
F̂
generally converges to the space orthogonal to both F0 and a random

term that is a function of the model’s idiosyncratic errors. For the sake of simplicity, suppose that M
F̂

p→ MF0

as is the case when p0 = K + 1. Then the CCEP estimator is based on the moment conditions

E(X ′
iMF0

(yi −Xiβ)) = 0

Assuming E(Vi) = 0 as in Pesaran (2006) and Westerlund et al. (2019), the reduced form portion of the CCE

model also implies E(MF0
Xi) = 0. Since the CCE approach estimates no parameters in this additional set of

moments, they are uninformative for estimating β0. I use a parameterized QLD transformation to get value

from additional CCE moments.

Pesaran (2006) assumes the idiosyncratic errors in both equations are mutually independent and independent

over time. He also assumes random sampling of the factor loadings as well as independence between the loadings

and the idiosyncratic errors. Westerlund et al. (2019) assume the errors are still mutually independent, but

allow arbitrary unconditional serial correlation in both ui and Vi. However, their main departure comes in the

factor loadings. They assume the loadings form a constant sequence with no restriction other than a full rank

requirement on their sums. This assumption allows more general sampling schemes and an arbitrary relationship

between {γi}∞i=1 and {Γi}∞i=1.

A particularly harsh restriction of the CCEP estimator is the rank condition required for the denominator.

M
F̂

is a residual-maker matrix and so it has rank T − (K+1). The restriction T > K+1 is practically binding

regardless of the asymptotic analysis. Even if T is large in a given sample, it must still bound the number of

covariates, which is often large in microeconometric applications. Also, when K + 1 > p0, the CCEP estimator

unnecessarily removes variation from the data which could improve precision of the estimator. I address both

of these problems in Section 3.2.

2.2 Quasi-long-differencing

Ahn et al. (2013) do not assume the pure factor structure in Xi. They start with equation (1) then param-

eterize the factors for the purpose of eliminating them. Before discussing how this process works, I introduce
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the ‘rotation problem’, a well-known issue in the factor literature. Since both F0 and γi are unobservable, they

cannot be separately identified. To see why, consider any nonsingular p × p matrix A. Then F0Γi = F ∗Γ∗
i

where F ∗ = F0A and Γ∗
i = A−1Γi. We can only hope to identify the factors up to an arbitrary rotation of their

linear subspace. Ahn et al. (2013) suggest the following p20 normalizations based on a row-reduction rotation:

F0 = (Θ′
0,−Ip0

)′ (5)

where Θ0 is a (T − p0)× p0 matrix of unrestricted parameters. The given normalization is irrelevant because I

am not interested in estimating F0. It is also not unique as any p2 normalization can be imposed. In this case,

I only assume that the factors are full rank; the normalization chosen merely reflects this fact. The parameters

Θ0 are not interesting by themselves, but allow us to eliminate the factors via a convenient reparameterization.

Given the normalization of the general factor matrix F0 in equation (5), Ahn et al. (2013) define the quasi-

long-differencing (QLD) matrix3

H(θ0) =



IT−p0

Θ′
0


 (6)

The pure factor structure in equation (4) can thus be used for estimating the parameters in equation (5). If we

assume Xi = F0Γi + Vi where E(Vi) = 0, then

E(H(θ0)
′Zi) = 0 (7)

where θ0 = vec(Θ). I also define H0 = H(θ0) for notational convenience. I show explicitly in the following

section how and when these additional moments are useful for the purpose of identification and efficiency, which

demonstrates the usefulness of the QLD transformation in studying the CCE model.

The QLD transformation can also be used to exploit moment conditions implied by assumptions on the

loadings. This paper takes a “fixed effects” approach in allowing the factor loadings to be arbitrarily correlated

with each other and the idiosyncratic errors. If one wishes to maintain that the factor loadings are constant or

3The name comes from equation (4) of Ahn et al. (2013). The s’th element of H(θ0)′ui subtracts a linear combination of the
last (T − p0) elements of ui from uis.
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independent as in Westerlund et al. (2019) and Pesaran (2006), we have the additional moment conditions:

E((H ′
0Vi)⊗H ′

0(yi − Viβ0)) = 0 (8)

E((H ′
0Vi)⊗ (yi −Xiβ0)) = 0 (9)

E(Xi ⊗H ′
0(yi − Viβ0)) = 0 (10)

E(H ′
0(yi − Viβ0)) = 0 (11)

E(H ′
0Vi) = 0 (12)

Equations (8)-(12) list (T − p0)((T − p0)K+2TK+K+1) moment conditions that displays the strength of the

CCE assumptions made in current applications. Again, CCEP only uses the moments E(X ′
iMF0

ui) = 0. Even

if one wanted to work with the CCE estimator, the first four sets of moment conditions are valid because they

include β0. The last set of moments is irrelevant to CCE because there are no parameters in E(MF0
Vi) = 0 to

estimate.

Another point of interest comes from the fact that the above equations can all be derived under varying

identifying assumptions. Instead of assuming purely fixed (or independent) loadings, we may have reason to

believe the loadings in the main equation are independent of the errors in the reduced form equation. Then the

second equation is valid, but the third may not be. Further, if we believe the loadings are independent of each

other, we could simply demean them and exploit a zero correlation restriction:

E((Xi − E(Xi))⊗ ((yi − E(yi))− (Xi − E(Xi))β0)) = 0 (13)

where the means can easily be estimated by the usual sample average4. This section demonstrates the point

that the CCE model implies many unused moment conditions, some of which can be derived under even weaker

assumptions than those made in fixed-T CCE analysis.

3 Estimation

I now state this paper’s primary assumptions. The first assumption defines the model of interest. The second

set specifies the pure factor structure in Xi similar to Westerlund et al. (2019).

Assumption 1 (Linear population model):

(i)yi = Xiβ0 + F0γi + ui.

4This set of moments relies on the factor loadings having a common mean. Westerlund et al. (2019) does not make this restriction.
However, all work in the current paper is done assuming random sampling.
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Assumption 2 (CCE reduced form equations):

(i)Xi = F0Γi + Vi .

(ii)(γi,Γi,Vi,ui) are independent and identically distributed across i with finite fourth moments.

(iii)E(Vi) = 0 and E(ui|Vi) = 0.

(iv)Rk(F0) = p0 and Rk(E([γi,Γi])) = p0 ≤ K + 1.

Assumption 1 defines the relevant population model. Assumption 2 specifies the pure factor assumption

similar to Pesaran (2006) andWesterlund et al. (2019). Unlike these CCE analyses, I do not require independence

between the errors in the main or reduced form equations. In fact, I only restrict E(ui|Vi) = 0 but place no

assumptions on the conditional distribution D(Vi|ui). This assumption allows for heteroskedasticity conditional

on both observables and unobservables in both sets of errors which, while common in the fixed-T GMM literature,

is ruled out in the CCE approaches of Pesaran (2006) and Westerlund et al. (2019).

I assume the factor loadings are random and iid in the cross section. I could relax this assumption at the

cost of notational complexity.Westerlund et al. (2019) show that more general sampling techniques are allowed

in the asymptotic analysis5. For example, I could replace Assumption 2(iv) with Assumption C of Westerlund

et al. (2019). However, I do not assume (γi,Γi) is orthogonal to (ui,Vi). While this assumption is reasonable

as the factor structure is supposed to represent correlation between Xi and the full error Fγi +ui, it can fail if

the model is misspecified. I show in Section 3.2 that
√
N -consistent estimation is possible even if 1

N

∑N
i=1 Vi⊗γi

does not converge to zero due to model misspecification.

As discussed earlier, I do not require T > K + 1, unlike the CCEP estimator. I directly use the moments

E(H ′
0Zi) = 0 to remove the factors and only require K ≥ p0 + 1, a restriction also made by Pesaran (2006)

and Westerlund et al. (2019). As long as there are enough time periods to cover all the unobserved effect,

my procedure can allow for an arbitrarily large number of covariates, subject to the usual bounds applied to

non-regularized regressions. I also discuss in Section 3.2 how to include known factors like a heterogeneous

intercept that decreases the number of relevant factors and makes the assumption even less restrictive.

3.1 CCE Moment Conditions

I now look at the moment conditions implied by Assumption 2. Equation (4) of Section 2, E(H ′
0Zi) = 0

whereZi = (yi,Xi), implies that Assumption 2 provides information on θ0 that leads to more efficient estimation

of β0 and provides a first-stage estimator, which negates the need for the full joint estimator of Ahn et al.

(2013). I first consider identification of θ0 from the pure factor structure alone to show that it in fact yields

valid moments. As in Ahn et al. (2013), p is the number of factors specified by the econometrician.

5I refer the reader to their online appendix
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Lemma 1. Under Assumption 2, θ0 is identified by E(H(θ)′Zi) = 0 if and only if p = p0.

All proofs are contained in the Appendix.

We can use Lemma 1 to provide an estimator of θ0 based on the covariates alone. Let Ĥ = H(θ̂),

Aθ = E(vec(H ′
0Zi)vec(H

′
0Zi)

′), and Dθ = E(∇θvec(H
′
0Zi)) where ∇θ is the gradient with respect to θ.

Theorem 1. Suppose Assumption 2 holds, and let θ̂ be the GMM estimator based on E(vec(H ′
0Zi)) = 0 using

a consistent estimator of the optimal weight matrix. Then

(i)
√
N(θ̂ − θ0)

d→ N(0,
(
D′

θA
−1
θ Dθ

)−1
).

Now suppose that Âθ
p→ Aθ using a consistent first-step estimator of θ0.

(ii)If p0 = p then N−1
(∑N

i=1 vec(Ĥ
′Zi)

)′
Â−1

θ

(∑N
i=1 vec(Ĥ

′Zi)
)

d→ χ2((T − p0)(K + 1− p0)).

(iiii)If p0 > p, then N−1
(∑N

i=1 vec(Ĥ
′Zi)

)′
Â−1

θ

(∑N
i=1 vec(Ĥ

′Zi)
)

p→ ∞.

The proof comes from standard theory; see Hansen (1982). The estimator of the optimal weight matrix is

Âθ = 1
N

∑N
i=1 vec(H(θ̃)′Zi)vec(H(θ̃)′Zi)

′ where θ̃ is a consistent first-stage estimator of θ0.

It is entirely possible there are variables in the data set that are linear in the factors but not relevant for

estimation. In this case, one can simply use them to estimate θ0 but drop them from the estimating equation.

Further, if relevant variables are not linear in F0, they should be dropped from the estimation in Theorem 1.

This can occur if there are polynomial or interactive functions of the covariates in the estimating equation. Vos

and Westerlund (2019) study this case in the context of CCE.

I also note that the just identified case p0 = K + 1 corresponds to a simple M-estimator:

Corollary 1. When p0 = K + 1, the estimator θ̂ solves

Ĥ ′(y,X) = 0

Corollary 1 provides important robustness properties in Section 3. For now, I point out how Theorem 1 can

help test for p0. There are (T − p0)(K + 1) moments and (T − p0)p0 parameters; when K + 1 > p0, we have

overidentifying restrictions to test for p0. Ahn et al. (2013) recommend testing for p0 by first setting p = 0

and setting H = IT . If the hypothesis is rejected using the statistic in part (ii) of Theorem 1, move to p = 1.

Continue until the null hypothesis cannot be rejected. I refer the reader to Section 3 of Ahn et al. (2013) for

additional details and tests. I follow a similar approach to testing based on the moments in Theorem 1.

I now demonstrate that the additional reduced form moments generally improve efficiency of estimating

β0 by providing non-redundant moment conditions. The following theorem completely characterizes when

the moments E(H ′
0Xi) = E(H ′

0Vi) = 0 are partially redundant for estimating β0 using moments given by
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applying QLD to the main population equation, meaning its asymptotic variance is the same with or without

the additional moments. I do not include E(H ′
0yi) = 0 in the reduced form because the efficiency result would

require additional assumptions on V ar(ui). Let gi1(β,θ) = vec(Xi)⊗H(θ)′(yi−Xiβ) and gi2(θ) = H(θ)′Xi.

Define D11 = E(∇βgi1(β0,θ0)), D12 = E(∇θgi1(β0,θ0)), and Ω11 = V ar(gi1(β0,θ0)).

Theorem 2. Given Assumptions 1 and 2, suppose E(ui|Xi) = 0 and the Identifying Assumption in the

Appendix hold. Then the moment conditions E(gi2(θ0)) = 0 are partially redundant for estimating β0 if and

only if

D′
12Ω

−1
11 D11 = 0 (14)

Proof.See Appendix for proof. The extra assumption is only needed so that (β′
0,θ

′
0)

′ are identified by E(gi1(β0,θ0)) =

0 and are equivalent to the Basic Assumptions of Ahn et al. (2013). I assume E(ui|Xi) = 0 whereas Assump-

tion 2 implies the weaker E(ui|Vi) = 0. I make the stronger exogeneity assumption for simplicity, though the

moment conditions in gi1 could be reformulated with H ′
0Vi ⊂ wi.

There is no reason to believe equation (14) holds in general, and so the additional moments improve the

efficiency of estimating β0 among the given class of estimators. Trivial cases where equation (14) holds includes

θ0 being known to the researcher and p0 = 0.

Theorem 2 generally demonstrates that the reduced form equations can be used to improve efficiency

for estimators that use just the equation of interest. This class of estimators includes CCEP, which uses

E(X ′
iMF0

ui) = 0. As mentioned earlier, the CCEP estimator cannot make use of the moments E(MF0
Xi) = 0

because there are no additional parameters6. While QLD introduces (T −p0)p0 additional parameters, the extra

moments in E(H ′
0Xi) = 0 will often lead to overidentification and provide benefits in terms of efficiency and

testing.

3.2 Pooled and Mean Group QLD

The QLD GMM approach of Ahn et al. (2013) can select appropriate instruments for a given time period.

However, an abundance of moment conditions can induce finite-sample bias and local stationary points in the

GMM objective function. This section introduces the linear pooled and mean group estimators based on the

QLD transformation. They allow for a variety of rank and exogeneity conditions that are especially useful

when the researcher includes heterogeneous slopes in the model, like in Section 4. I propose first estimating the

parameters θ0 using the pure factor structure assumed in Zi and then running the relevant regressions using

6Theorem 2 could easily be rewritten in terms of the CCE transformation, with the result in equation (14) being largely
unchanged save for the notation.
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the “defactored” data Ĥ ′yi and Ĥ ′Xi:

β̂QLDP =

(
N∑

i=1

X ′
iĤĤ ′Xi

)−1 N∑

i=1

X ′
iĤĤ ′yi (15)

The pooled quasi-long-differencing (QLDP) estimator defined by equation (15) is the pooled OLS estimator

from regressing Ĥ ′yi on Ĥ ′Xi. A similar estimator was mentioned in Breitung and Hansen (2021) but not

formally studied. The mean group quasi-long-differencing (QLDMG) estimator can be obtained by

running the T − p observation time series regression Ĥ ′yi on Ĥ ′Xi for each i, and then averaging each of the

N estimates:

β̂QLDMG =
1

N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′yi (16)

It should be noted that Ĥ ′ can be used to “defactor” any variables that are linear in F0 and not just those used

in the estimator of θ0. This observation allows for 2SLS estimation using outside instruments.

Intuitively, the mean group estimator should allow for arbitrarily correlation between the random slopes and

covariates at the cost of rank assumptions and precision. To see how, note that imposing iid random slopes βi

on the population model implies

β̂QLDMG =
1

N

N∑

i=1

βi +
1

N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′(F0γi + ui) (17)

Then given an appropriate uniform law of large numbers applies to Ĥ (as shown in the Appendix), the mean

group QLD estimator is consistent for E(βi) regardless of the correlation between Xi and βi.

If the model is thought to have homogeneous slopes, one should generally choose the pooled estimator over

the mean group one. I ignore its asymptotic properties until Section 4 when I introduce random slopes. However,

the pooled QLD allows us to relax the rank conditions used in Ahn et al. (2013) and Westerlund et al. (2019).

Instead of E(vec(Xi) ⊗ H ′
0(yi − Xiβ0)) = 0, we can use the moments E(X ′

iH0H
′
0(yi − Xiβ0)) = 0. This

residual represents a just-identified system of moments, requires no outside instruments, and allows E(γiγ
′
i)

and E(γi) to be completely arbitrary.

As discussed earlier, the QLD transformation does not remove more variation from the data than necessary.

The CCE transformation, M
F̂
, is the same even if the econometrician knows p0. The QLD transformation

efficiently uses information on the number of factors, which is consistently estimable. Simulations in Section 5

demonstrate that the QLDP estimator is often more efficient than the CCEP estimator.

Before proving asymptotic normality, I point out that the case of p = K+1 implies a powerful algebraic fact

about the pooled QLD estimator: it is the same whether or not the researcher includes common variables in the

regression. That is, all variables that do not vary over i are irrelevant to the estimation of β0, which includes
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time dummies. Further, the pooled QLD residuals are the same with or without the inclusion of common

variables. Note that I say p = K + 1 instead of p0 = K + 1 as the following theorem is purely algebraic and

independent of model specification or statistical properties.

Let W be a (T − p) × q matrix of common variables, and let (α̃′, β̃′)′ be the estimates from the pooled

regression of Ĥ ′yi on Ĥ ′[W ,Xi]. Finally, let ϵ̂i = (yi − Xiβ̂QLDP ) and ϵ̃i = (yi − Xiβ̃ − Wα̃) be the

associated residuals.

Theorem 3. Suppose p = K + 1. If Rk(Ĥ ′W ) = q, then

(i)β̂QLDP = β̃.

(ii)α̃ = 0.

(iii)ϵ̂i = ϵ̃i.

The above result suggests that when p = K + 1, the QLD matrix suffices to remove all unobserved time

effects in the population, even those which do not interact with the heterogeneity. The intuition is similar to the

‘zero sum’ class of estimators studied by Westerlund (2019). The result follows explicitly because the first-stage

FOC is Ĥ ′[y,X]. In fact, the proof in the appendix demonstrates we could drop yi from the initial estimator

of θ0. This result is novel and only recently shown to apply to CCE estimators where it is crucial to use X as

a cross-sectional average; including y is unnecessary (Brown et al. 2021).

It may appear that Theorem 3 only applies in very special scenarios; however, simulation evidence in the

Appendix suggests that overestimating p0 does not cause inconsistency. These results bolster the simulation

evidence from Ahn et al. (2013) that suggests the same thing when using their GMM estimator. Breitung and

Hansen (2021) also demonstrate that the Ahn et al. (2013) estimator performs well under the BIC method of

estimating p0, which has a tendency to overestimate the number of factors. Overestimating p0 includes the

case of incorrectly estimating factors when p0 = 0. Under strict exogeneity, CCE and QLD procedures will be

consistent because their factor proxies are just functions of the exogenous variables. Reporting the QLDP that

takes p = K + 1 could then serve as a robustness check if the estimated p0 is less than K + 1. This fact is

explored in a brief simulation study in Section 5.2.

I now show asymptotic normality for the QLDP estimator. I demonstrate how first-stage estimation of θ0

can affect the asymptotic distribution and show why ignoring this problem leads to incorrect standard errors

even when the QLDP estimator is asymptotically normal. A similar problem occurs in CCE estimation; see

Brown et al. (2021). The full proof of asymptotic normality is given in the Appendix, so I will only sketch the

problem here.
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Let AP = E(V ′
i H0H

′
0Vi). I show in the Appendix that

√
N(β̂QLDP − β0) = A−1

P

(
1√
N

N∑

i=1

X ′
iĤĤ ′(F0γi + ui)

)
+ op(1)

After a mean value expansion about θ0, and using the results from Theorem 1, the normalized estimator is

√
N(β̂QLDP − β0) = A−1

P

1√
N

N∑

i=1

(V ′
i H0H

′
0ui +GPri(θ0)) + op(1)

where ri(θ0) is derived from Theorem 1 and GP = E(∇θX
′
iH(θ)H(θ)′(F0γi + ui)) evaluated at θ = θ0.

GP = 0 when E(ui ⊗ Vi) = 0, E(ui ⊗ Γi) = 0, and E(Vi ⊗ γi) = 0.

I only need exogeneity of Vi with respect to ui for asymptotic normality, so the other assumptions only

simplify the asymptotic variance. In fact, one could only assume exogeneity on the last p0 elements of the

differenced quantities, but this assumption is difficult to interpret. I now state the general asymptotic normality

result assuming p = p0 is known due to Theorem 1.

Theorem 4. Given Assumptions 1 and 2, suppose that

(i)AP = E(V ′
i H0H

′
0Vi) has full rank.

(ii)E(V ′
i H0H

′
0ui) = 0.

Then β̂QLDP
p→ β0 and

√
N(β̂QLDP − β0)

p→ N(0,A−1
P BPA

−1
P )

where BP = E((V ′
i H0H

′
0ui +GPri(θ0))(V

′
i H0H

′
0ui +GPri(θ0))

′). If E(ui ⊗ Γi) = 0 and E(Vi ⊗ γi) = 0,

then GP = 0.

Remark (Joint estimation): The two-step procedure is less efficient than joint GMM estimation using

E(X ′
iH0H

′
0(yi − Xiβ0)) = 0 and E(H ′

0Zi) = 0 unless p = K + 1; see Prokhorov and Schmidt (2009).

However, the p = K + 1 case confers the advantage of invariance to common variables from Theorem 3 and

appears consistent even when p0 < p. There are also optimization issues involved in joint estimation because

the moments that identify β0 are nonlinear in θ0. ■

Remark (Known factors): Eliminating known factors like random intercepts or polynomial time trends

can make the QLD estimators more precise. Simply remove the known factors from [yi,Xi] by regressing it,

unit-by-unit, onto the known factors, then estimate θ0 as in Theorem 1 using the residuals. This procedure is

equivalent to defining M = IT −F1(F
′
1F1)

−1F ′
1, where F1 are the known factors (like a constant or time trend),

and running estimation based on (y∗
i ,X

∗
i ) = M(yi,Xi). Further, removing known factors can make the QLDP

13



estimator more robust. According to Theorem 3, removing a random intercept and setting p = K +1 explicitly

nests the popular two-way error structure. ■

Remark (Bootstrap): While I provide analytic inference below, the standard errors can be quite com-

plicated in general.
√
N(β̂QLDP − β0) is asymptotically normal so that one can instead do inference via the

nonparametric bootstrap. Just resample over (yi,Xi), with Ĥ estimated for each new sample to account for the

first-stage estimation in the final standard errors. This procedure contrasts to Section 2 of the Supplement to

Westerlund et al. (2019) that does not estimate F̂ with each new sample. I do not provide a proof of consistency

because the problem is standard; Westerlund et al. (2019) needed a proof because the CCE projection matrix

has a reduced-rank limit. ■

The asymptotic variance can be estimated by Â−1
p B̂P Â

−1
P where

ÂP =
1

N

N∑

i=1

X ′
iĤĤ ′Xi

B̂P =
1

N

N∑

i=1

v̂iv̂i
′

Here, v̂i = X ′
iĤĤ ′ϵ̂i+GP (θ̂)ri(θ̂) where ϵ̂i = yi−Xiβ̂QLDP is the full pooled QLD residual. The gradient is

ĜP =
1

N

N∑

i=1



(IK ⊗ ϵ̂′iĤ)




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+X ′
iĤ(ϵ̂∗i

′ ⊗ IT−p0
)




(18)

ri(θ̂) = (D̂′
θÂ

−1
θ D̂θ)

−1D̂′
θÂ

−1
θ vec(Ĥ ′Zi) (19)

where a ‘∗’ denotes the last p0 elements of a T × 1 vector. The form for ri(θ̂) comes from Theorem 1 and

is derived in the proof of Theorem 4. When GP = 0, the standard errors take the usual cluster-robust form,

similar to the standard errors derived in Westerlund et al. (2019) where ĤĤ ′ is replaced by M
F̂
. However,

whenever E(Γi ⊗ ui) ̸= 0 or E(γi ⊗ Vi) ̸= 0 due to model misspecification that does not cause inconsistency,

this additional term remains in the asymptotic variance7.

Even if we assume GP = 0 along with conditional homoskedasticity and zero serial correlation in ui, the

asymptotic variance will still take the sandwich form, suggesting it is less efficient than CCE8. Even in this case,

the CCE estimator will also take the sandwich form if K + 1 > p0 by the work in Westerlund et al. (2019).

Further, consistency of a GLS-type estimator based on the QLD transformation would follow by an almost

7Suppose the researcher believes the outcome variable is a nonlinear function of the factors while the covariates exhibit a pure
factor structure. Then the reduced form equations can identify the factors, and the additional assumption E(Vi|ui) = 0 (assumed
in Westerlund et al. (2019)) guarantees consistency of the QLDP. However, H′

0
ϵi is still correlated with Xi and so we will need

the fully robust analytic standard errors derived here.
8I thank an anonymous referee for pointing this out
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identical argument to the proof of Theorem 4. This GLS estimator would be efficient when p0 is asymptotically

known by Theorem 3 of Brown (2022). I discuss these issues in the following section.

3.3 Rotation Invariance

The normalization of the factors in equation (5) is irrelevant with regards to consistency of estimating β0.

However, they may play a significant role in the finite-sample properties of the resulting GMM and linear

estimators. It is also clear from Theorem 4 that the QLDP asymptotic variance depends on H0 which itself

depends on the normalization in equation (5). The GMM estimator in Ahn et al. (2013) also suffers from this

problem. Harding et al. (2022) discuss the problem of selecting normalizations in empirical work. They provide

an estimator that is invariant to the choice of identifying normalization. They also propose an estimator

that averages over different normalizations to improve efficiency. I now discuss methods to achieve rotation

indeterminacy in the GMM and linear estimators of β0.

Instead of using the QLD matrix to construct the QLDP estimator, we could instead use the QLD parameters

to construct a direct estimator of the factor space. Let

MF (θ) = IT − F (θ)(F (θ)′F (θ))−1F (θ)′ (20)

where F (θ) given by any normalization of F0. Theorem 2.2 of Brown and Butts (2022) demonstrates that as

long as the normalization used to generate θ can be written as F (θ) = F0A where A is nonsingular (a rotation),

then

MF (θ) = MF0
(21)

That is, the residual-maker matrices generated by F0 and F (θ) are identical. This result is not surprising because

F0 and F (θ) span the same space by construction. However, it provides us with conditions under which the

normalization used to identify the factors will not affect estimation of β0 if we use the proper transformation.

Consider the following estimator:

β̃ =

(
N∑

i=1

X ′
iMF (θ̂)Xi

)(
N∑

i=1

X ′
iMF (θ̂)yi

)
(22)

where θ̂ is estimated as in Theorem 1. We are interested in the asymptotic variance of this estimator. Assuming

E(V ′
i MF0

Vi) is full rank, it is clear by the proof of Theorem 4 that

√
N(β̃ − β0) = E(V ′

i MF0
Vi)

−1

(
1√
N

N∑

i=1

X ′
iMF (θ̂)ui

)
+ op(1) (23)
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where the denominator contains the infeasible MF0
. Under the conditions in Theorem 4 that guarantee first-

stage estimation does not affect the asymptotic distribution (E(ui ⊗ Γi) = 0 and E(Vi ⊗ γi) = 0), we have

√
N(β̃ − β0) = E(V ′

i MF0
Vi)

(
1√
N

N∑

i=1

V ′
i MF0

ui

)
+ op(1) (24)

which implies that β̃ is asymptotically equivalent to the infeasible estimator that treats the factors as known.

One benefit of the QLDP over β̃ comes from Theorem 3. There is nothing in the in the first order conditions of

the the θ̂ that imply M
F (θ̂)X = 0. We may hope to construct a QLD-based estimator that retains this property

while also asymptotically invariant to the normalization inherent in estimating θ. Consider the following GLS-

type estimator:

β̂QLDGLS =

(
N∑

i=1

X ′
iĤ(Ĥ ′Ω̂−1Ĥ)−1Ĥ ′Xi

)−1( N∑

i=1

X ′
iĤ(Ĥ ′Ω̂−1Ĥ)−1Ĥ ′yi

)
(25)

where Ω̂ = 1
N

∑N
i=1 ûiûi

′
is a consistent estimator of E(uiu

′
i) using residuals constructed from an initial

first-stage estimator of β0. Theorem 4 demonstrates that first-stage estimation of θ0 does not affect the final

estimator under the additional exogeneity conditions assumed in Westerlund et al. (2019). Under the same

argument as in Theorem 3, the QLDGLS estimator is the same whether or not unit-invariant variables are

included. Further, Theorem 3 of Brown (2022) proves that the infeasible QLDGLS estimator that treats θ0 as

given is algebraically equivalent to the infeasible GLS estimator

(
N∑

i=1

V ′
i MF0

(MF0
Ω−1MF0

)−MF0
Vi

)−1( N∑

i=1

V ′
i MF0

(MF0
Ω−1MF0

)−MF0
Vi

)
(26)

which treats F0 as known. This form is different from a feasible CCE-based GLS estimator when K + 1 > p0

because CCE “overestimates” the factor space. As such, QLDGLS is guaranteed to asymptotically reach

the information bound under conditional homoskedasticity when initial estimation of θ0 does not affect the

asymptotic distribution9.

I now turn to the GMM estimator that incorporates the additional CCE moments. The joint GMM estimator

that incorporates the additional CCE moments is defined in Theorem 2, which I repeat here:

E(wi ⊗H ′
0(yi −Xiβ0)) = 0

E(H ′
0Zi) = 0

where Zi = [yi,Xi]. One approach to rotation invariance is to just start with the Ahn et al. (2013) moments

9This argument requires p0 being known, which is true asymptotically by the arguments in Ahn et al. (2013).
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and use the optimal instruments. They assume E(ui|wi) = 0 so that the instruments are strictly exogenous.

Instead of using only the first moments of wi, we could instead build a GMM estimator based on the moments

E(H ′
0ui|wi) = 0 using the instruments

E(∇H ′
0ui|wi)V ar(H ′

0ui|wi)
−1 (27)

where ∇ implies the gradient taken with respect to both β and θ. These are the optimal instruments as derived

in Chamberlain (1987). The work in Brown (2022) suggests that such an estimator would be invariant to

the normalization chosen to remove the factors. One could either estimate the moments nonparametrically or

introduce additional working assumptions to give the moments parametric forms. Using this set of moments

implies the additional CCE moments are redundant, but requires stronger conditions to implement.

We could instead identify θ0 from the CCE moments E(H ′
0Xi) = 0, but use the residual-maker matrix in

equation (20) to eliminate the factors from equation (1). This set of moments would take the form

E(wi ⊗MF (θ0)(yi −Xiβ0)) = 0 (28)

where we know that MF (θ0) = MF0
. Because θ0 appears in a highly nonlinear fashion above, it ease compu-

tational burden to first estimate θ0 using the CCE moments, then plug it in as a first-step estimator to the

moments above. This method may save on computational time at the cost of efficiency10.

4 Heterogeneous Slopes

I now consider a generalization of the population model in equation (1) that allows for random slopes.

yi = Xiβi + F0γi + ui (29)

βi = β0 + bi (30)

bi ∼ (0,Σb) (31)

The random slopes model is identical to the forms in Wooldridge (2005) and Pesaran (2006) though the former

assumes F0 is observable. Neither Ahn et al. (2013) nor Westerlund et al. (2019) consider random slopes in

their fixed-T analyses. I summarize this model in the following assumption:

Assumption 3 (Random slopes):

(i)yi = Xi(β0 + bi) + F0γi + ui.

10The joint and two-step estimators are numerically equivalent if both sets of moments are just-identified (Prokhorov and Schmidt
2009). However, there is no clear guidance on which moments to drop from either set of equations.
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(ii)(Xi, bi,γi,ui) are independent and identically distributed across i with finite fourth moments.

(iii)E(bi) = 0.

The iid sampling assumption on bi does not rule out correlation between bi and the other stochastic com-

ponents of the model. Similarly, Assumption 3(iii) places no restrictions on the correlation between bi and Xi.

It only states that bi is the heterogeneous, unobserved deviation from the population parameters β0.

Most fixed-T treatments of random slope models either exclude factors altogether or simplify the factor

structure as in a fixed effects analysis. Examples of fixed effects treatments include Juhl and Lugovskyy (2014),

Campello et al. (2019), and Breitung and Salish (2021). Though Pesaran (2006), Chudik and Pesaran (2015),

Neal (2015), Norkutė et al. (2021) allow for random slopes and arbitrary factors, they require T to grow to

infinity and make strong exogeneity conditions which I avoid11.

Before continuing with the analysis, I want to address how the random slopes model changes first-stage

estimation of θ0. The pure factor model for Zi in equation (4) now takes the form

E(Zi) = F0E(CiQi) + E(UiQi)

where Ui = [ui,Vi]. In order for the identification result in Lemma 1 to hold, we need two additional conditions.

First, Rk(E(CiQi)) = p0, which is reasonable given Assumption 1. We also need E(QiUi) = 0 which necessi-

tates E(β′
ivit) = 0 for each t, implying that bi and vit are uncorrelated but allows arbitrary correlation between

bi and (γi,Γi). We could instead estimate θ0 based on E(H ′
0Xi) = E(H ′

0Vi) = 0 and require p0 ≤ K instead

of K+1. The robustness result of Theorem 3(i) holds for p = K but parts (ii) and (iii) are not necessarily true.

Remark (Testing for random slopes): Assumption 2 allows us to test for correlated random slopes.

Assuming that p0 < K +1, we can test the model E(H ′
0Zi) = 0 using the standard overidentifying restrictions

test. The moments are zero under Assumptions 2 and 3 only when βi is uncorrelated with Vi. ■

The remainder of this section assumes θ0 is derived from the reduced form moments E(H ′
0Vi) = 0 with an

analogous result to Theorem 1 to avoid uncertainty related to the overidentifying restrictions test. I first consider

the Ahn et al. (2013) estimator in the presence of random slopes. The GMM estimator cannot estimate the

individual random slopes due to the well-known incidental parameters problem. As such, I consider estimation

that ignores the random slopes so that Xibi is absorbed into the error. The Ahn et al. (2013) expected residual

becomes

E(vec(Xi)⊗H ′
0(yi −Xiβ0)) = E(vec(Xi)⊗H ′

0Xibi) (32)

and must now be zero for identification of (β′
0,θ

′
0)

′.

11It should be noted that Chudik and Pesaran (2015), Neal (2015), Norkutė et al. (2021) consider dynamic models that will not
translate to the fixed-T mean group analysis. Still, this paper is the first to consider the static case with a factor model in the error.
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With strictly exogenous covariates, the exogeneity condition is more similar to equations (12) and (13) of

Wooldridge (2005) who considers fixed effects OLS. Wooldridge shows that pooled OLS is robust to hetero-

geneous slopes that are uncorrelated with the matrix of second moments of the defactored covariates; that

is E(X ′
iMF0

Xibi) = 0 where he also assumes F0 is known. An even simpler sufficient condition would be

E(bi|Xi) = 0, which is in fact even weaker than the random slope assumption from Pesaran (2006) who

assumes bi is independent of all stochastic components of the model.

The Ahn et al. (2013) estimator requires stronger exogeneity and rank conditions than Wooldridge (2005)

and Murtazashvili and Wooldridge (2008) because θ0 needs to be estimated along with β0. If we add Assumption

2, we are able to obtain a first stage
√
N -consistent estimator of θ0 by Theorem 1 and so joint identification of

(β′
0,θ

′
0)

′ is irrelevant. This first stage estimator allows us to substantially weaken the identification requirements

for β0, allowing for estimation under a broader class of settings. Using the given estimator θ̂ from Theorem 1,

I study the pooled QLD estimator in the context of heterogeneous slopes.

Theorem 5. Given Assumptions 2 and 3, where Rk(E(Γi)) = p0 ≤ K, suppose that

(i)AP = E(V ′
i H0H

′
0Vi) has full rank.

(ii)E(V ′
i H0H

′
0(Vibi + ui)) = 0.

Then β̂QLDP
p→ β0 and

√
N(β̂QLDP − β0)

d→ N(0,A−1
P BPA

−1
P )

where BP = E((V ′
i H0H

′
0(Vibi+ui)+GPrx,i(θ0))(V

′
i H0H

′
0(Vibi+ui)+GPrx,i(θ0))

′), GP = E(∇θV
′
i H0H

′
0(Xibi+

F0γi + ui)), and rx,i(θ0) is given in the Appendix. If E(ui ⊗ Γi) = 0, E(Vi ⊗ bi) = 0, and E(Vi ⊗ γi) = 0,

then GP = 0.

The proof is identical to the proof of Theorem 4 with the full error ϵi = Xibi + F0γi + ui. While BP does

not have the same form as in Theorem 4, the standard errors are calculated the same but with rx,i instead

of ri, and so I use the same notation. The additional rank assumption on E(Γi) allows us to estimate θ0 via

E(H ′
0Vi) = 0, which overcomes the problems of correlation between βi and Vi. The asymptotic variance of

√
N(θ̂ − θ0) and the computation of ri,x are given in the Appendix.

Consistency is not affected by the first stage estimates of θ0 even with random slopes so that the exogeneity

conditions needed are identical in spirit to Wooldridge (2005) who assumes known factors. I also do not

require independence between bi and (Xi,ui) like Pesaran (2006), but I still restrict the correlation between

Xi and bi. This condition can be weakened via mean group estimation that allows an arbitrary conditional

distribution D(bi|Xi) at the expense of much stronger rank and exogeneity conditions. I now state consistency

and asymptotic normality for the mean group QLD estimator. Again, θ̂ is derived from E(H ′
0Vi) = 0. Define
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T as the parameter space of θ0. Finally, let ai(θ) =
√∑K

k=1 σk ((X ′
iH(θ)H(θ)′Xi)−1) where {σk(D)}Kk=1 are

the singular values of the K ×K matrix D.

Theorem 6. Given Assumptions 2 and 3, where Rk(E(Γi)) = p0 ≤ K, suppose that

(i)The eigenvalues of X ′
iH(θ)H(θ)′Xi are almost surely positive uniformly over T .

(ii)Uniformly over T ,

max
{
E (ai(θ) ∥Xi∥ ∥ui∥) , E

(
ai(θ)

2 ∥Xi∥3 ∥ui∥
)}

< ∞

(iii)T is a compact subset of R(T−p0)p0 .

Then β̂QLDMG
p→ β0 and

√
N(β̂QLDMG − β0)

d→ N(0,BMG)

where BMG = E(
(
(V ′

i H0H
′
0Vi)

−1V ′
i H0H

′
0ui +GMGrx,i(θ0)

) (
(V ′

i H0H
′
0Vi)

−1V ′
i H0H

′
0ui +GMGrx,i(θ0)

)′
).

If E(bi|Vi) = 0 and E(Vi ⊗ γi = 0), then GMG = 0.

Standard errors are derived similarly to the pooled QLD estimator in Section 3.2. Let

B̂ =
1

N

N∑

i=1

(
(X ′

iĤĤ ′Xi)
−1X ′

iĤĤ ′ϵ̂iĜMGrx,i(θ̂)
)(

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′ϵ̂iĜMGrx,i(θ̂)

)′
(33)

where ϵ̂i = yi−Xiβ̂CCEMG is the mean group QLD residual and rx,i(θ̂) comes from Lemma 3 in the Appendix.

The gradient GMG can be estimated via

ĜMG =
1

N

N∑

i=1

−
(
IK ⊗ ϵ̂′iĤĤ ′Xi

)(
(X ′

iĤĤ ′Xi)
−1 ⊗ (X ′

iĤĤ ′Xi)
−1
)
(IK2 +KK)(IK ⊗X ′

iĤ)×

×




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+

+ (X ′
iĤĤ ′Xi)

−1




(
IK ⊗ ϵ̂′iĤ

)




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+X ′
iĤ (ϵ̂∗i

′ ⊗ IT−p0
)




where KK is the K2 ×K2 commutation matrix.

As discussed in Section 3.2, Theorem 6 is the first fixed-T proof of asymptotic normality for a mean group

estimator that allows for arbitrary random factors. While I believe the mean group CCE estimator can be

adjusted to allow T fixed, it has yet to be proved, as Pesaran (2006) required T → ∞. Further, it is likely that
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a modern proof using the methods of Karabiyik et al. (2017) and Westerlund et al. (2019) is required. Like

with the pooled estimator, the
√
N -asymptotic normal convergence result in Theorem 6 implies that inference

can be done via the usual nonparametric bootstrap, estimating θ̂ for each new bootstrap sample.

Remark (Order conditions): Similar to the pooled estimator, one advantage of the QLD transformation

is that it allows for more variables than the CCE when p0 is small. CCE uses (y,X) to control for the factors.

The rank of M
F̂

is generally T − (K + 1) in finite samples, regardless of the number of factors. The rank of

ĤĤ ′ is T − p and assumed to be greater than T − (K + 1) in Westerlund et al. (2019). ■

One consequence of the strong rank conditions is that we cannot allow values which take zero for all t with

positive probability. This rules out demographic dummy variables, which are common in applied microecono-

metrics. Instead, we could just split the sample and run mean group estimation on each demographic sub

sample. The estimator’s precision will suffer, but this technique allows us to estimate different slope means for

different groups in the population.

5 Simulations

This section considers the finite-sample performance of the QLD estimators compared to the GMM and

CCE estimators of Ahn et al. (2013) and Pesaran (2006) respectively. The main model is

yi = Xiβ0 + F0γi + ui

Xi = F0Γi + Vi

as in Assumptions 1 and 2. There are two variables with slopes β0 = (1, 1)′, which was picked as a arbitrary

value. I do not include random slopes as they would only serve to increase the amount of noise in the model.

Theorems 6 and 7 dictate theoretically how the estimators should perform in given scenarios. I refer the reader

to Campello et al. (2019) for simulation studies regarding the performance of pooled estimators when slopes are

correlated with the variables of interest.

The two factors are generated as AR(1) random processes with initial value from a normal distribution with

mean 1 and variance 1, having parameters 0.75 and −0.75 respectively. The factors are generated once then

fixed over repeated replications. The simulations do not substantively change if factors are repeatedly drawn12.

As described earlier, since T is small and fixed, it is the factor loadings that cause problems asymptotically and

12Additional simulations are available upon request.
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not the factors. The loadings on Xi are drawn as

Γi ∼



N(1, 1) N(0, 1)

N(0, 1) N(1, 1)




so that θ0 is identified from the reduced form moments. The loadings in yi are drawn

γi ∼



N(Γ1,1, 1)

N(Γ2,2, 1)




where Γ1,1 and Γ2,2 are the upper-left and bottom-right diagonal values of Γi. The errors ui and Vik (k = 1, 2)

are drawn from a multivariate normal distribution with mean 0T×1 and variance C where C is the correlation

matrix from an AR(1) process with parameter 0.75. That is, the two errors in Vi = (Vi1,Vi2) are both

drawn from MVN(0T×1,C) but are independent of each other and ui. Each simulation study includes 1000

replications.

Table 1 compares the Ahn et al. (2013) estimator both with and without the additional moments E(H ′
0Zi) =

0. Both estimators are computed as two-step estimators where the optimal weight matrix is calculated with a

consistent first-step estimator. The first-step estimator uses an identity weight matrix. I report the results for

each (N,T ) pair for both sets of coefficients, which are equal to one in the DGP.

Table 1: GMM estimators

Bias SD RMSE
GMM1 GMM2 GMM1 GMM2 GMM1 GMM2

N = 50 T = 3 0.0328 -0.0107 0.2326 0.1812 0.2349 0.1815
-0.0053 -0.0167 0.1719 0.1690 0.1720 0.1698

T = 4 0.0026 -0.0225 0.2997 0.1518 0.2997 0.1535
0.0781 -0.0196 0.3184 0.1424 0.3279 0.1438

T = 5 -0.0008 -0.0249 0.3702 0.1694 0.3702 0.1712
0.2631 -0.0055 0.4922 0.2057 0.5581 0.2058

N = 300 T = 3 0.0111 0.0015 0.1057 0.0594 0.1063 0.0594
0.0020 0.0015 0.0588 0.0597 0.0588 0.0597

T = 4 0.0033 -0.0020 0.1187 0.0427 0.1188 0.0428
0.0084 0.0001 0.0749 0.0414 0.0754 0.0414

T = 5 -0.0126 -0.0016 0.1633 0.0364 0.1638 0.0365
0.1903 -0.0029 0.4069 0.0367 0.4492 0.0368

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
“SD” and “RMSE” are respectively the standard deviation and root mean squared error of the estimators over all replications for
a given experiment. ‘GMM1’ refers to the Ahn et al. (2013) estimator using vec(Xi) as instruments. ‘GMM2’ uses these moments,
as well as the reduced form moments in equation (7). Both estimators are computed using an optimal weight matrix that is a
function of an initial consistent first-stage estimator.

The GMM estimator based on the Ahn et al. (2013) residual E(vec(Xi)⊗H ′
0(yi −Xiβ0)) only is GMM1,

whereas the GMM estimator using the Ahn et al. (2013) residual and the additional moments E(H ′
0Zi) = 0
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is GMM2. GMM1 uses TK(T − 2) moments while GMM2 uses an additional (T − 2)K. The GMM estimator

using both sets of moments generally outperforms the original Ahn et al. (2013) estimator in terms of root mean

square error, implying that the additional moments are practically relevant in finite samples.

Before turning to a comparison of the pooled QLD and CCE estimators, I first investigate the performance

of QLDP when p0 is misspecified in estimation of θ0. The simulation setting implies p0 = 2, so I look at the

performance of QLDP for p = 1, 2, 3. I reiterate that p0 is given by the DGP and p is the number of factors

specified by the econometrician.

Table 2: Misspecifying p0

Bias SD RMSE
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

N = 50 T = 4 0.2700 0.0078 0.0118 0.1677 0.1097 0.1466 0.3178 0.1100 0.1471
0.4024 0.0029 0.0120 0.1814 0.1097 0.1561 0.4414 0.1098 0.1566

T = 5 0.4662 0.0095 0.0154 0.3511 0.1005 0.1282 0.5836 0.1009 0.1291
0.5372 0.0058 0.0119 0.4111 0.0950 0.1228 0.6764 0.0952 0.1234

T = 6 0.1697 0.0074 0.0126 0.1534 0.0956 0.1239 0.2287 0.0959 0.1246
0.5843 0.0132 0.0200 0.1516 0.1025 0.1222 0.6036 0.1034 0.1238

N = 300 T = 4 0.2748 -0.0003 0.0000 0.0657 0.0424 0.0559 0.2826 0.0424 0.0559
0.4087 0.0024 0.0030 0.0746 0.0411 0.0587 0.4154 0.0411 0.0588

T = 5 0.5267 0.0008 0.0032 0.2545 0.0382 0.0491 0.5849 0.0383 0.0492
0.5993 0.0007 0.0038 0.2953 0.0369 0.0474 0.6681 0.0369 0.0476

T = 6 0.1484 0.0015 0.0027 0.0646 0.0392 0.0470 0.1618 0.0392 0.0471
0.6191 0.0013 0.0020 0.0596 0.0406 0.0480 0.6220 0.0406 0.0480

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
The columns refer to the QLDP estimator that uses the given value of p in the estimation of the parameters θ0. “SD” and “RMSE”
are respectively the standard deviation and root mean squared error of the estimators over all replications for a given experiment.

Table 2 gives the results for the QLDP under the different specifications. My results track with previous

simulation evidence provided by Ahn et al. (2013) and Breitung and Hansen (2021). Underestimating p0 leads

to substantial bias that does not decrease with N . However, overestimating p0 leads to only slightly worse

performance than correct specification. The bias is larger but decreases with N ; in fact, even N = 300 gives

reasonable bias for the p = 3 estimator. The p = 3 estimator also performs worse than the correctly specified

estimator in terms of standard deviation, which is not surprising. Overall, I find evidence that overestimation

of p0 does not lead to substantial bias in estimation, but underestimating p0 can.

I also consider hypothesis testing for different specifications of p. Using the same model but setting β0 =

(0, 0)′, I construct the QLDP estimators under p = 1, p = 2, and p = 3, when the true value is p0 = 2. Table

3 includes the average rejection rate for the usual Wald statistics of the individual hypothesis tests H0 : β1 = 0

and H0 : β2 = 0 against the relevant two-sided alternative. I carry out the tests at the 5% level, so the test

is considered a rejection if the p-value associated with the Wald statistic (evaluated with a standard normal

distribution) is greater than or equal to 0.975. We can see that correct specification and overestimation of p0
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leads to reasonable rejection rates when the null hypothesis is true, especially as N increases for a given T .

However, underestimating p0 gives wildly unrealistic rejection rates due to the bias caused by underestimating

p0 as described by table 2. These results further bolster the simulation evidence of Breitung and Hansen (2021)

who study the classical Ahn et al. (2013) GMM estimator.

Table 3: Inference with misspecified p0

Reject (x100)
p = 1 p = 2 p = 3

N = 50 T = 4 46.30 7.70 7.40
81.70 7.70 10.20

T = 5 79.70 7.60 9.60
78.00 6.40 6.40

T = 6 18.10 6.90 8.80
99.00 8.30 8.40

N = 300 T = 4 98.10 5.10 4.80
100.00 4.50 6.60

T = 5 99.50 4.70 6.60
99.90 4.90 4.00

T = 6 41.60 6.20 5.00
100.00 6.50 5.90

Notes. This table presents a set of simulations with 1000 replications. The DGP is identical to the DGP described at the beginning
of the section but with β0 = (0, 0)′. The columns correspond to the average rejection rate of the Wald statistic for the hypothesis
test H0 : β1 = 0 and H0 : β2 = 0 under the different specifications of p when p0 = 2. The rows within the columns correspond to
the rejection rates for the tests of the respective parameters associated with the two covariates, xit1 and xit2. I calculate the Wald
statistic using the standard errors in Theorem 4 but with GP = 0 due to the nature of the DGP. A p-value is calculated for each
statistic using a standard normal cdf. The test is considered a rejection for the test of the given parameter if the p-value is greater
than or equal to 0.975. The final value is multiplied by 100.

I now turn to comparison of the QLDP and CCEP estimators. I omit the GMM estimators from table 1

because they are outperformed by the just-identified QLDP in terms of root mean square error. Unexpectedly,

the QLDP bias is significantly lower than both GMM estimators, and its standard deviation is often significantly

lower, especially when N is smaller.

Table 4 looks at the QLDP estimator compared to the CCEP estimator where the QLD transformation is

estimated under p = p0 = 2 when K = 2 (returning the the original DGP with β0 = (1, 1)′). First note that

the CCEP is biased when T = 3 as K + 1 = 3 and this order condition is not allowed. However, the QLDP is

still consistent here. Further, the QLD estimators takes p0 as known while the CCE estimators “overestimates”

p0 with the cross-sectional averages, of which there are K + 1. One might suspect this overestimation leads to

inefficiency, which is born out by the SD of the simulations. The QLDP estimator consistently shows a 15%-

25% decline in standard deviation over the CCEP estimator. Further, the CCE identifying condition requires

T > K + 1, which causes severe bias when violated. The QLDP estimator significantly outperforms the CCEP

estimator in every setting provided.

Comparing table 4 to table 1, the QLDP performs much better than either of the GMM estimators despite

the fact that we know they are using valid instruments. That the QLDP has better finite-sample performance
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Table 4: Pooled estimators

Bias SD RMSE
CCEP QLDP CCEP QLDP CCEP QLDP

N = 50 T = 3 -0.5525 0.0082 25.9618 0.1546 25.9676 0.1548
1.2734 0.0034 12.5824 0.1555 12.6467 0.1556

T = 4 0.0118 0.0078 0.1466 0.1097 0.1471 0.1100
0.0120 0.0029 0.1561 0.1097 0.1566 0.1098

T = 5 0.0197 0.0095 0.1220 0.1005 0.1236 0.1009
0.0089 0.0058 0.1152 0.0950 0.1155 0.0952

N = 300 T = 3 0.0272 0.0024 2.7295 0.0580 2.7296 0.0581
0.9400 0.0026 3.3976 0.0585 3.5253 0.0585

T = 4 0.0000 -0.0003 0.0559 0.0424 0.0559 0.0424
0.0030 0.0024 0.0587 0.0411 0.0588 0.0411

T = 5 0.0050 0.0008 0.0464 0.0382 0.0467 0.0383
0.0027 0.0007 0.0441 0.0369 0.0442 0.0369

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
“SD” and “RMSE” are respectively the standard deviation and root mean squared error of the estimators over all replications for
a given experiment.

than the overidentified systems from Ahn et al. (2013) is most likely due to the fact that it uses a smaller, just

identified system of moments. Simulations for larger values of T give similar results and are available upon

request.

Finally, I investigate the performance of the mean group quasi-long-differencing (QLDMG) and mean group

common correlated effects (CCEMG) estimators. The QLDMG estimator is given by equation (16) and the

CCEMG estimator is identical to the QLDMG estimator but with M
F̂

in place of ĤĤ ′. Consistency is proved

in Pesaran (2006) but, like the pooled estimator, will eventually require a modern treatment that either controls

for the asymptotic degeneracy in M
F̂

like Karabiyik et al. (2017) and Westerlund et al. (2019) or assumes full

rank limits like Brown et al. (2021). Table 5 contains the results for the mean group estimators where the QLD

transformation is estimated assuming p = p0 = 2. I start at T = 5 so that T − p0 > p0 and the CCEMG

estimator is well-defined.

Despite T > 2K + 1 for each setting, the CCEMG estimator exhibits substantial bias when T = 6, though

the QLDMG estimator appears unbiased. The QLDMG outperforms the CCEMG in terms of RMSE for each N

and T besides N = 600 and T = 8. We would expect the CCEMG to perform well relative to the QLDMG as T

grows due to the incidental parameter problem in the first-stage QLD estimation. However, even for moderately

low values of N and large values of T , the QLDMG has optimistic properties.

25



Table 5: Mean group estimators

Bias SD RMSE
CCEMG QLDMG CCEMG QLDMG CCEMG QLDMG

N = 50 T = 5 -1.5703 -0.0055 34.8038 0.4837 34.8392 0.4837
-0.4832 0.0256 18.2402 0.6523 18.2466 0.6529

T = 6 0.0324 0.0056 0.4630 0.1737 0.4641 0.1738
0.0256 0.0044 0.3774 0.1820 0.3782 0.1820

T = 7 0.0187 0.0156 0.1670 0.1658 0.1681 0.1665
0.0113 0.0102 0.1628 0.1574 0.1632 0.1577

N = 300 T = 5 -1.2597 -0.0039 27.7644 0.1537 27.7929 0.1537
1.1968 -0.0030 34.6115 0.1420 34.6322 0.1420

T = 6 -0.0077 0.0039 0.2846 0.0767 0.2847 0.0768
0.0116 -0.0004 0.1768 0.0745 0.1772 0.0745

T = 7 0.0003 0.0000 0.0649 0.0641 0.0649 0.0641
0.0010 0.0009 0.0677 0.0595 0.0677 0.0595

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
“SD” and “RMSE” are respectively the standard deviation and root mean squared error of the estimators over all replications for
a given experiment.

6 Application

I evaluate the effect of expenditure per student on standardized test performance. I consider school district-

level data in the state of Michigan over the time periods 1995-2001. The state of Michigan reformed education

expenditure in 1994 to bring poorly-funded schools to parity with wealthier schools. See Papke (2005) for a

comprehensive discussion of the data and institutional details.

There are N = 501 school districts observed for T = 7 school years over 1995-2001. I present summary

statistics and descriptions for the variables of interest.

Variable Mean Standard Deviation Description

math4 0.6939 0.1515 Fraction of fourth graders who pass the MEAP math test.
avgrexp 6385.51 1034.94 Average real expenditure per pupil.
lunch 0.2886 0.1616 Fraction of students eligible for free and reduced lunch.
enroll 3112.31 7965.49 Total enrollment.

The outcome variable, math4, denotes the pass rate for fourth-grade students taking a standardized math

test and stands as a measure of student achievement. Michigan students undertake a battery of standardized

tests in elementary, junior, and secondary school. Like Papke (2005) and Papke and Wooldridge (2008), I focus

on the fourth-grade math test because it has been consistently defined and measured over the observed time

periods.

The primary variable of interest is average expenditure per pupil, as it represents the effect of additional

expenditure on test scores. Starting in the 1994/1995 school year, the state of Michigan began awarding so-called

“foundation grants” that were based on the per-student spending of the school district in the previous year. The

goal was to eventually bring schools up to a benchmark “basic foundation” amount that increased over time.
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The state started by awarding foundation grants to increase expenditure to a minimum $4200 per student or an

additional $250 per student, whichever was higher. By 2000, the minimum and benchmark amounts were equal

at $5700. Expenditures per pupil were averaged over the current year as well as the previous three, meaning

average real expenditure per pupil in 1995 is an average of expenditure in 1992, 1993, 1994, and 1995.

The equation of interest is

math4it = ci + log(avgrexpit)β1 + lunchitβ2 + log(enrollit)β3 + f ′
tγi + eit (34)

which is similar to Papke (2005). I collect lunchit, log(enroll)it, and log(avgrexp)it and use the reduced form

CCE equation from Assumption 2 to implement the pooled QLD estimator. This specification allows me to test

for the number of factors. I also use the Ahn et al. (2013) GMM function to test for p0, with and without the

CCE equations.

The effect of changes in state-level policy are usually evaluated via difference-in-differences or synthetic

control methods. However, these methods require the existence of control groups that share a common outcome

variable. Standardized tests in the United States vary across states both in terms of the content they test

and their evaluation methods. Therefore modeling and eliminating district-level heterogeneity via QLD and

CCE techniques provides a compelling way to isolate the treatment effect of interest. These factor models

also account for reasonable economic factors that affect the variable of interest. For example, districts with

higher concentrations of a given industry will be uniquely affected by macroeconomic shocks. As school funding

came primarily from local property taxes before the fulfillment of the new state policy, heterogeneous responses

to economic changes would both affect the level of real spending in the district and correlate to underlying

demographic characteristics.

Table 6 provides the p-values for testing the hypothesis H0 : p0 = p versus H1 : p0 > p.

Table 6: Testing for p0

p-values
RF2 GMM1 GMM2

p0 = 0 0.0000 0.0000 0.0000
p0 = 1 0.0000 0.0000 0.0000
p0 = 2 0.0000 0.4852 0.0000
p0 = 3 0.0000 0.1157 0.0000

Notes. This table presents the p-values from GMM overidentifying tests (as in Theorem 1) using different moment conditions.
“RF2” uses only the CCE moment conditions. “GMM1” uses only the Ahn et al. (2013) moments while “GMM2” combines both
sets.

A rejection of the hypothesis suggests more factors than the tested value, and a failure to reject suggests

the current value is correct. The titles ‘GMM1’, ‘GMM2’, and ‘RF2’ (for reduced form) refer to the respective

objective function used to test the relevant hypothesis. I stress that testing for p0 comes from a long-established
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literature, briefly described in Ahn et al. (2013). The only new concept I introduce with respect to this specific

specification test is using the reduced form moments E(H ′
0Zi) = 0.

GMM1 is just the Ahn et al. (2013) objective function. GMM2 is the Ahn et al. (2013) objective function

with the additional moments E(H ′
0Zi) = 0. Finally, RF is just the reduced form moments E(H ′

0Zi) = 0.

GMM1 suggests that the correct number of factors is p0 = 2. GMM2 and RF both reject p0 = 2 at any

reasonable confidence level, and GMM2 rejects p0 = 3, though it uses a much larger set of moments than the

other two which may decrease power. It may suffer from the same global identification problems discussed

in Hayakawa (2016), which suggests the GMM1 test will perform better practically. I stop testing at p0 = 3

because RF is just identified at p0 = 4. Regardless of the tests, the moments E(H ′
0Zi) = 0 only allow me to

estimate up to four factors. Even if p0 > 4, the QLDP nets more unobserved heterogeneity than TWFE.

For the purpose of comparison with the pooled QLD estimator, I include the TWFE estimator and the CCEP

estimator. As T = 7 and K = 3, the CCEP estimator can accommodate both X, y, and a heterogeneous

intercept in F̂ . Further, the pooled QLD estimator is computed with p = K + 1 = 4 after eliminating a

heterogeneous intercept from Xi and yi, unit-by-unit. As such, QLDP is a natural comparison to TWFE.

Theorem 3 tells us that β̂QLDP is invariant to common variables when p = K + 1 and simulation evidence

in the previous section suggests that overestimating p0 is not particularly problematic from the perspective of

bias or inference. Since it also eliminates a heterogeneous intercept, it will be consistent if TWFE is consistent,

assuming strictly exogenous covariates.

I present results in table 7 that show estimation after eliminating a heterogeneous intercept. For CCEP,

this simply amounts to F̂ = (1,y,X). For QLDP, I project out the intercept from each Xi and yi via the

within transformation before estimating. Standard errors are in parentheses while p-values are in brackets. The

reported standard errors are generated via the panel nonparametric bootstrap.

The QLDP estimator suggests substantial estimates for the effect of per student expenditures. A 10%

increase in the average expenditure per student is associated with an 8.3 percentage point increase in the math

test pass rate, which is significant at the 5% level. This estimate is more than twice as large as the TWFE

estimate and more than three halves the CCEP estimate. These results suggest that TWFE is not adequately

controlling for the heterogeneity present in the data set. Both the CCEP and QLDP estimates are statistically

significant at the 5% level. The TWFE standard errors are generally smaller than CCE and QLD because it

removes less variation from the data.

I also considered estimation via the mean group QLD and CCE estimators. However, both parameter

estimates and standard errors were unreasonable compared to the other estimators. In fact, the p-values were

significantly larger than any other reported case and suggested a critical lack of precision. Recall that the mean

group estimators require much stronger exogeneity and identifying conditions than the pooled estimators.
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Table 7: Controlling for heterogeneous intercept

TWFE CCEP QLDP

lunch -0.0419 0.0398 -0.1576

(0.0730) (0.1367) (0.1637)

[0.5658] [0.7709] [0.3381]

log(enroll) 0.0021 -0.0592 0.0268

(0.0487) (0.1497) (0.2152)

[0.9663] [0.6924] [0.8838]

log(avgrexp) 0.3771 0.5409 0.8287

(0.0704) (0.2695) (0.3785)

[0.0000] [0.0446] [0.0303]

Notes. This table presents results for the different estimators of the coefficients in equation (34). Standard errors for the respective
estimates are in parentheses. The numbers in brackets are p-values for the test of significance of the respective coefficient estimates.
The CCEP and QLDP estimators both explicitly control for a heterogeneous intercept for the sake of comparison with the TWFE
estimator. The CCEP estimator also uses the cross-sectional averages of the outcome and regressors as factor proxies. The QLDP
first-stage estimates using the within transformed outcome and regressors and sets p = K + 1 = 4.

I also conducted a simulation experiment comparing the pooled QLD estimator to the TWFE estimator

under different specifications of an additive error model. These results can be found in the Appendix.

7 Conclusion

This paper considers fixed-T estimation of linear panel data models where the errors have a general unknown

factor structure. I use the quasi-long-difference transformation studied by Ahn et al. (2013) to eliminate the

factor structure and provide moment conditions for estimation. For the purpose of comparison with the popular

pooled common correlated effects estimator, I study the moments implied by assuming a pure factor structure in

the covariates. Applying the QLD transformation to the independent variables improves efficiency of estimating

the parameters of interest in the main equation, which is information that CCEP does not use.

Current proofs of fixed-T asymptotic normality of the CCEP estimator assume loadings that are strictly

exogenous with respect to the idiosyncratic errors in the independent variables. I show that the uncorrelated

loadings assumptions implies the existence of an even larger number of moments which CCE neglects. Ultimately,

if one makes the strong assumptions sufficient for asymptotic normality of CCEP in Westerlund et al. (2019),

one should fully consider the information available for efficient estimation. Regardless, I provide robust standard

errors in a more general and appealing setting than the CCE models in Pesaran (2006) and Westerlund et al.

(2019).
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I apply the moment-based perspective to a heterogeneous slopes model similar to the original Pesaran

(2006) setting. I prove consistency and asymptotic normality of pooled and mean group estimators based on

the QLD transformation and put no restrictions on the relationship between T and K, in contrast to CCE.

These estimators are shown to outperform CCE estimators in finite samples even when N is small. The

pooled QLD estimator also has the desirable property of invariance to common variables, like time trends and

macroeconomic indicators, when the estimated number of factors equals the number of regressors. I reexamine

estimation of school district expenditures on standardized test performance and find significantly larger effects

of educational spending compared to simple fixed effects regression. These estimates are also reported up to

reasonable precision, suggesting that applied researchers are not adequately controlling for heterogeneity in their

data.

One important direction for future work concerns the overestimation of p0. It is known that CCE is robust

to K + 1 > p0. Moon and Weidner (2015) prove that principal components estimation is also robust to

overestimating the number of factors, provided T is large. However, while there is ample simulation evidence

suggesting the robustness of QLD to such a failure, a formal proof is lacking. It would also be useful to investigate

the robustness of the QLDP estimators to failure of the reduced form equation in Assumption 2. Finally, the

methods presented in this paper all assumed balanced panels. Missing data causes challenges to constructing

the CCE and QLD transformations. It is not clear how even a complete cases estimator would work, as the

cross sectional averages and first-stage estimator of θ̂ require all time periods for each unit in the sample.
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Appendix A: Proofs

Proof of Lemma 1

Assumption 2(iii) implies

E(H(θ)′Zi) = H(θ)′F0E(Ci)Q (35)

where E(Ci) = E([γi,Γi]) and Q is given in Section 2.1. Q is nonsingular and E(Ci) has full row rank by

Assumption 2(iv), so equation (35) is zero if and only if H(θ)′F0 = 0. When p = p0, H(θ)′F0 = Θ0 −Θ which

is zero if and only if θ = θ0.

Now separate the estimated parameters into the respective (T−p)×(p−p0) and (T−p)×p0 matrices (Θ1|Θ2).

Separate the true regularized parameters by rows (Θ1
0
′|Θ2

0
′)′, which are then (T − p) × p0 and (p − p0) × p0

matrices, respectively. Then for p > p0, H(θ)′F0 = Θ1
0 +Θ1Θ

2
0 −Θ2. Set Θ2 = Θ1

0 +Θ1Θ
2
0 for any value of

Θ1, so that there are infinitely many solutions that make equation (35) zero. Finally when p < p0 there are too

many parameters than can be consistently estimated. Thus there are no values of Θ that cause (35) to be zero.

These order conditions for estimation of θ0 are identical to Ahn et al. (2013).

□

Proof of Theorem 2

I first state the Identifying Assumption (IA) which comes from Ahn et al. (2013)’s Basic Assumptions:

Identifying Assumption: Rk(E(γiγ
′
i)) = p0 < T . For any T×(T−p0) matrix H0 such that Rk(F0,H0) = T ,

the following matrix has full column rank:

(E(H ′
0Xi ⊗ vec(Xi)), IT−p0

⊗ E(vec(Xi)γ
′
i))

The two equations under consideration are

E(wi ⊗H ′
0(yi −Xiβ0)) = 0 (36)

E(H ′
0Vi) = 0 (37)

I appeal to the partial redundancy results given in Section 4 of Breusch et al. (1997). In this setting, partial

redundancy of two sets of moment conditions means that the asymptotic variance of the GMM estimator of β0

based on both sets of moment conditions is the same as that of the GMM estimator which only uses the first

set. See Section 1 of Breusch et al. (1997) for examples.
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Write λ = (β′
0,θ

′
0)

′ and let λ1 = β0 and λ2 = θ0. Then λ is identified by equation (36) under IA13 and λ2 is

identified by equation (37), both facts I use in the proof. They consider a general vector of moment conditions

E(g(λ,ηi)) =



g1(λ,ηi))

g2(λ,ηi))


 = 0

where in my notation ηi = (yi,Xi,γi,Γi), g1 = H(θ)′(yi −Xiβ0 + Fγi), and g2 = H(θ)′Vi. I partition the

gradient and covariances matrices as

D =



D11 D12

D21 D22




Ω =



Ω11 Ω12

Ω21 Ω22




where Dmn = E(∇λn
gm(λ,ηi)) and Ωmn = E(gm(λ,ηi)gn(λ,ηi)

′). Equation (37) is partially redundant for

estimating β0 if and only if

D21 −Ω21Ω
−1
11 D11 = (D22 −Ω21Ω

−1
11 D12)(D

′
12Ω

−1
11 D12)

−1(D′
12Ω

−1
11 D11)

by Theorem 7 of Breusch et al. (1997). As ui is mean independent of Xi, Ω21 = 0 and Ω12 = 0 so that the

necessary and sufficient condition of partial redundancy is

D21 = D22(D
′
12Ω

−1
11 D12)

−1(D′
12Ω

−1
11 D11)

Since g2(λ,ηi) is not a function of β0, we also have D21 = 0. Assumption PF gives that D22 has full column

rank so that D22(D
′
12Ω

−1
11 D12)

−1 is left-invertible. Therefore the redundancy condition becomes

D′
12Ω

−1
11 D11 = 0

□

13See Section 3 of Ahn et al. (2013).

32



Proof of Theorem 3

By Corollary 1, the first-stage estimator θ̂ solves Ĥ ′[y,X] = 0.

N∑

i=1

X ′
iĤW = NX

′
ĤW = 0

by Corollary 1, so Ĥ ′Xi and W are uncorrelated in the sample. Thus β̃QLDP = β̂QLDP . Using the same

argument,

α̃ =

(
N∑

i=1

W ′ĤĤ ′W

)−1 N∑

i=1

W ′ĤĤ ′yi

= N
(
W ′ĤĤ ′W

)−1

W ′ĤĤ ′y = 0

As α̃ = 0 and β̃ = β̂QLDP , we have ϵ̃i = ϵ̂i.

□

Proof of Theorem 4

I start with the proof of consistency. The centered QLDP estimator is written as

β̂QLDP − β0 =

(
1

N

N∑

i=1

X ′
iĤĤ ′Xi

)−1(
1

N

N∑

i=1

X ′
iĤĤ ′(F0γi + ui)

)

The denominator equals its infeasible counterpart 1
N

∑N
i=1 V

′
i H0H

′
0Vi up to a Op(N

−1/2) term by Theorem 1

and the moment bounds. The inverse exists with probability approaching one by condition (i) of the theorem.

Thus the denominator is a Op(1) term so consistency depends on the numerator.

The difference between the numerator and its infeasible counterpart is

1

N

N∑

i=1

X ′
i(ĤĤ ′ −H0H

′
0)(F0γi + ui) =

(
1

N

N∑

i=1

(F0γi + ui)
′ ⊗X ′

i

)
vec(ĤĤ ′ −H0H

′
0) = Op(1)op(1)

The sum converges to its finite expectation by the moment bounds from Assumption 2(ii). vec(ĤĤ ′−H0H
′
0) =

Op(N
−1/2) by Theorem 1. The infeasible numerator, 1

N

∑N
i=1 X

′
iH0H

′
0(F0γi + ui), is op(1) as H

′
0F0 = 0 and

1
N

∑N
i=1 X

′
iH0H

′
0ui = op(1) by condition (iii), so we have β̂QLDP − β0 = op(1).

Before deriving the asymptotic distribution of the QLDP, I need the following lemma:
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Lemma 2. Let ϵi = F0γi + ui. Then

∇θ(X
′
iH0H

′
0ϵi) = (IK ⊗ u′

iH0)




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+ V ′
i H0 (ϵ

∗
i
′ ⊗ IT−p0

) (38)

where xij is the j’th column of Xi and v∗ = (vT−p0+1, ..., vT )
′ is the last p0 elements of the T × 1 vector v.

Proof.I omit the pure factor notation for simplicity and work with the full matrix Xi. Proposition 5.4 of

Dhrymes (2013) gives

∇θ(X
′
iH(θ)H(θ)′ϵi) = (ϵ′iH(θ)⊗ IK)∇θ(X

′
iH(θ)) +X ′

iH(θ)∇θ(H(θ)′ϵi) (39)

where I follow standard notation in writing the derivative of the n × m matrix A with respect to the k × 1

vector α as ∇αA = ∇αvec(A). The row vectors of ∇αA are then the 1 × k gradient vectors of the elements

of vec(A) with respect to α.

In order to derive the various derivatives, I first start with the case of an arbitrary T×1 vector v = (v1, ..., vT )
′.

As described in Section 3.1, H(θ)′ = (IT−p0
,Θ) where θ = vec(Θ). I write the p0 column vectors of Θ as

Θ = (θ1, ...,θp0
) where each column can be written as θj = (θj1, ..., θj,T−p0

)′. These definitions give the

expression

H(θ)′v =




v1 + θ11vT−p0+1 + ...+ θp1vT

...

vT−p0
+ θ1,T−p0

vT−p0+1 + ...+ θp,T−p0
vT




(40)

The expression above is similar to that derived below equation (4) of Ahn et al. (2013). They write the

terms as the dot product between the rows of H(θ)′ and v∗. However, I expand the sums so that the gradient

is easier to see. Taking the gradient of the r’th element of H(θ)′v with respect to θj gives

∇θj
(vr + θ1rvT−p0+1 + ...+ θp0rvT ) = (0, ..., 0, vT−p0+j , 0, ..., 0)

where the only nonzero term is in the r’th column. Thus differentiating with respect to the j’th vector gives

∇θj
H(θ)′v =




vT−p0+j 0 . . . 0

0 vT−p0+j . . . 0

...
. . .

...

0 . . . . . . vT−p0+j




= vT−p0+jIT−p0
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Putting together the T − p0 gradients gives

∇θH(θ)′v = (vT−p0+1IT−p0
, ..., vT IT−p0

) = v∗′ ⊗ IT−p0
(41)

Equation (41) implies ∇θH(θ)′ϵi = ϵ∗i
′⊗IT−p0

. Handling H(θ)′Xi is done similarly. Writing the covariates

in terms of its column vectors Xi = (xi1, ...,xiK) where now the subscript on xik denotes the T × 1 vector of

observations for variable k of individual i, we can see that

H(θ)′Xi = (H(θ)′xi1, ...,H(θ)′xiK)

which implies that

vec(H(θ)′Xi) =




H(θ)′xi1

...

H(θ)′xiK




H(θ)′xik is a (T − p0)× 1 vector so its gradient follow the same form as equation (41). Thus

∇θvec(H(θ)′Xi) =




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




Filling in the gradient in equation (39) gives our final answer.

Returning to the main proof of asymptotic normality, the pooled QLD estimator can be written as

√
N(β̂QLDP − β0) =

(
1

N

N∑

i=1

X ′
iĤĤ ′Xi

)−1(
1√
N

N∑

i=1

X ′
iĤĤ ′(F0γi + ui)

)

As before, he denominator equals AP up to a Op(N
−1/2). The inverse exists with probability approaching one

by condition (i) of the theorem. Thus asymptotic normality depends on the numerator.

Write the full error as ϵi = F0γi + ui so that we study the asymptotic distribution of 1√
N

∑N
i=1 X

′
iĤĤ ′ϵi.

Mean value expansion about θ0 gives

1√
N

N∑

i=1

X ′
iĤĤ ′ϵi =

1√
N

N∑

i=1

V ′
i H0H

′
0ui +GP

√
N(θ̂ − θ0) + op(1)

where GP = E(∇θX
′
iH0H

′
0ϵi) and is derived explicitly in Lemma 2. The estimator θ̂ is derived in Theorem

1 as based on the moments E(vec(H ′
0Zi) = 0. It is a GMM estimator using the optimal weight matrix

35



Âθ = 1
N

∑N
i=1 vec(H̃

′Zi)vec(H̃
′Zi)

′ where H̃ = H(θ̃) uses an initial estimator. The first order conditions of

the GMM optimization problem give

(
N∑

i=1

∇θvec(Ĥ
′Zi)

)′

Â−1
θ

(
N∑

i=1

vec(Ĥ ′Zi)

)
= 0

where ∇θvec(Ĥ
′Zi) = (z∗

i,1 ⊗ IT−p0
, ..., z∗

i,K+1 ⊗ IT−p0
)′ comes from Lemma 1. Interestingly, this gradient is

free of any parameters and thus the same regardless of the estimator.

Write Dθ = E(∇θvec(H
′
0Zi)) and Aθ = E(vec(H ′

0Zi)vec(H
′
0Zi)

′), the notation from Theorem 1. Using

another standard mean value expansion gives

√
N(θ̂ − θ0) =

1√
N

N∑

i=1

(D′
θA

−1
θ Dθ)

−1D′
θA

−1
θ vec(H ′

0Zi) + op(1) (42)

The derivations above allow me to write the estimator as

√
N(β̂QLDP − β0) = A−1

P

1√
N

N∑

i=1

(V ′
i H0H

′
0ui +GPri(θ0)) + op(1) (43)

where ri(θ0) = (D′
θA

−1
θ Dθ)

−1D′
θA

−1
θ vec(H ′

0Zi). Thus we have

√
N(β̂QLDP − β0)

d→ N(0,A−1
P BPA

−1
P ) (44)

where BP = E((V ′
i H0H

′
0ui +GPri(θ0))(V

′
i H0H

′
0ui +GPri(θ0))

′).

□

Proof of Theorem 5

Now the asymptotic variance depends only on the moments E(H ′
0Vi) = 0.

Lemma 3. Suppose Assumption 2 holds and Rk(E(Γi)) = p0 and let θ̂ be the GMM estimator based on

E(vec(H ′
0Xi)) = E(vec(H ′

0Vi) = 0 using a consistent estimator of the optimal weight matrix. Then

√
N(θ̂ − θ0)

d→ N(0,
(
D′

x,θA
−1
x,θDx,θ

)−1

).

and rx,i(θ0) = (D′
x,θA

−1
x,θDx,θ)

−1D′
x,θA

−1
x,θvec(H

′
0Vi), where Ax,θ = E(vec(H ′

0Vi)vec(H
′
0Vi)

′) and Dx,θ =

E(∇θvec(H
′
0Vi)) is derived in Lemma 2.

□
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Proof of Theorem 6

I first consider the proof of consistency. Facts about uniform convergence shown for consistency will be taken

for granted in the proof of asymptotic normality.

As a technical aside, I do not differentiate between the Euclidean vector norm and the Frobenius matrix

norm in terms of notation. It does not affect the proof as the two norms are compatible in the sense that

∥Ax∥E ≤ ∥A∥F ∥x∥E where A is a n × m matrix, x is a m × 1 vector, and the F and E subscripts refer to

Frobenius and Euclidean respectively. Further, since both norms are submultiplicative, it does not matter for

the point of this proof. As such the notation should be clear from the context. Finally, all statements involving

random quantities are assumed to hold almost surely unless stated otherwise.

The QDMG estimator can be written as

(β̂QLDMG − β0) =
1

N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′(F0γi + ui) +

1

N

N∑

i=1

bi

=
1

N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′(F0γi + ui) +Op(N

−1/2)

where Ĥ = H(θ̂), θ̂
p→ θ0 by Theorem 1. As 1

N

∑N
i=1 bi = Op(N

−1/2) by the CLT, consistency of the QLDMG

does not depend on the correlation between bi and (Xi,γi,ui). However, since the rate of convergence is
√
N ,

it will affect the asymptotic distribution. This fact is handled later in the proof.

I write Zi(θ) = (X ′
iH(θ)H(θ)′Xi)

−1X ′
iH(θ)H(θ)′(F0γi +ui) for convenience. The goal of this section is

to show that

1

N

N∑

i=1

Zi(θ̂)
p→ E(Zi(θ0)) = 0 (45)

By Theorem 21.6 of Davidson (1994), the convergence result in equation (45) is implied by conditions:

θ̂
p→ θ0 (46)

sup
θ∈B0

∥∥∥∥∥
1

N

N∑

i=1

Zi(θ)− E(Zi(θ))

∥∥∥∥∥ = op(1) where B0 is some open set about θ0. (47)

where ∥.∥ denotes the Euclidean L2 norm for vectors and Frobenius norm for matrices. Consistency of θ̂

holds by Theorem 1 so that uniform convergence is the only condition that needs to be verified. I show

uniform convergence via a traditional argument that demonstrates both pointwise convergence in probability

and stochastic equicontinuity (SE).

Pointwise convergence in probability follows from the WLLN by the moment bounds and sampling assump-

tions in Assumption 3. {X ′
iH(θ)H(θ)′Xi}i≥1 is a sequence of positive definite random matrices for all possible
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values of θ by condition (i) of the theorem. Thus for each θ, {Zi(θ)}i≥1 is well-defined and iid. By the WLLN,

1
N

∑N
i=1 Zi(θ)

p→ E(Zi(θ)) which is 0 when θ = θ0.

For the purpose of verifying SE of the random sequence, I show that the following Lipschitz condition of

Theorem 21.11 from Davidson (1994) holds: for some random sequence {BNi}i≥1 with bounded expectations

and real function h such that h(x) → 0 as x → 0, there exists n ∈ N such that

1

N

∥∥∥(Zi(θ)− E(Zi(θ)))− (Zi(θ̇)− E(Zi(θ̇)))
∥∥∥ ≤ BNih(∥θ − θ′∥) (48)

for all θ, θ̇ ∈ T and N ≥ n, where all stated inequalities hold almost surely as stated above.

I start with the stochastic component Zi(θ)−Zi(θ̇). It will make sense to write Zi(θ) = A(θ)−1B(θ) where

Ai(θ) = X ′
iH(θ)H(θ)′Xi

Bi(θ) = X ′
iH(θ)H(θ)′(F0γi + ui)

We then have

∥∥∥Zi(θ)−Zi(θ̇)
∥∥∥ =

∥∥∥Ai(θ)
−1Bi(θ)−Ai(θ̇)

−1Bi(θ̇)
∥∥∥

≤
∥∥∥Ai(θ)

−1Bi(θ)−Ai(θ̇)
−1Bi(θ)

∥∥∥+
∥∥∥Ai(θ̇)

−1B(θ)−Ai(θ̇)
−1B(θ̇)

∥∥∥

We can bound the second normed value on the right-hand side. Let D(θ, θ̇) = H(θ)H(θ)′ −H(θ̇)H(θ̇)′.

The Frobenius norm of a matrix is equal to the square root of the sum of its squared singular values (see, for

example, Horn and Johnson (2012)). Thus
∥∥A(θ)−1

∥∥ = ai(θ) > 0 and we have

∥∥∥Ai(θ̇)
−1Bi(θ)−Ai(θ̇)

−1Bi(θ̇)
∥∥∥ =

∥∥∥Ai(θ̇)
−1(Bi(θ)−Bi(θ̇))

∥∥∥

≤ ai(θ̇)
∥∥∥X ′

iD(θ, θ̇)(Fγi + ui)
∥∥∥

≤ ai(θ̇) ∥Xi∥ ∥Fγi + ui∥
∥∥∥D(θ, θ̇)

∥∥∥

Turning now to the other term from the triangle inequality, note that condition (i) of the theorem implies A(θ)
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is nonsingular for any θ in the parameter space. Then

∥∥∥Ai(θ)
−1Bi(θ)−Ai(θ̇)

−1Bi(θ)
∥∥∥ =

∥∥∥
(
Ai(θ)

−1 −Ai(θ̇)
−1
)
Bi(θ)

∥∥∥

=
∥∥∥
(
Ai(θ̇)

−1Ai(θ̇)Ai(θ)
−1 −Ai(θ̇)

−1Ai(θ)Ai(θ)
−1
)
Bi(θ)

∥∥∥

=
∥∥∥Ai(θ̇)

−1
(
Ai(θ̇)−Ai(θ)

)
Ai(θ)

−1Bi(θ)
∥∥∥

≤
∥∥∥Ai(θ̇)

−1
∥∥∥
∥∥∥Ai(θ̇)−Ai(θ)

∥∥∥
∥∥Ai(θ)

−1
∥∥ ∥Bi(θ)∥

As before,
∥∥∥Ai(θ̇)

−1
∥∥∥
∥∥Ai(θ)

−1
∥∥ = ai(θ̇)ai(θ). ∥Bi(θ)∥ = ∥X ′

iH(θ)H(θ)′(Fγi + ui)∥ where ∥(Fγi + ui)X
′
i∥

is bounded in expectation.

Condition (iii) implies that supθ∈T ∥H(θ)H(θ)′∥ < τ for some τ < ∞. Finally note that

∥∥∥Ai(θ̇)−Ai(θ)
∥∥∥ =

∥∥∥X ′
iD(θ̇,θ)Xi

∥∥∥

≤ ∥Xi∥2
∥∥∥D(θ, θ̇)

∥∥∥

as D(θ, θ̇) = −D(θ̇,θ). Putting everything together yields

1

N

∥∥∥Zi(θ)−Zi(θ̇)
∥∥∥ ≤ 1

N

(
ai(θ̇) ∥Xi∥ ∥(F0γi + ui)∥+ τai(θ̇)ai(θ) ∥Xi∥3 ∥(F0γi + ui)∥

)∥∥∥D(θ, θ̇)
∥∥∥

Clearly
∥∥∥D(θ, θ̇)

∥∥∥→ 0 as
∥∥∥θ − θ̇

∥∥∥→ 0. In the language of Davidson (1994)’s Theorem 21.11,

N∑

i=1

BNi =
1

N

N∑

i=1

∥Xi∥ ∥(F0γi + ui)∥ ai(θ̇) (1 + τai(θ) ∥Xi∥)

The random variables here have identical moments by Assumption 2(ii) and the bound on ai(θ) holds uniformly

over T by Condition (ii) so that

E(

N∑

i=1

BNi) = E
(
∥Xi∥ ∥(F0γi + ui)∥ ai(θ̇) (1 + τai(θ) ∥Xi∥)

)

= O(1)

as the expectation is finite. Looking to equation (38), we have

∥∥∥(Zi(θ)− E(Zi(θ)))−
(
Zi(θ̇)− E(Zi(θ̇))

)∥∥∥ ≤
∥∥∥Zi(θ)−Zi(θ̇)

∥∥∥+
∥∥∥E(Zi(θ)−Zi(θ̇))

∥∥∥

As norms are convex,
∥∥∥E((Zi(θ)−Zi(θ̇))

∥∥∥ ≤ E(
∥∥∥Zi(θ)−Zi(θ̇)

∥∥∥) which is bounded by the same argument as
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above. I have thus verified SE and so β̂QLDMG − β0 = op(1).

Turning to asymptotic normality, I need a lemma on the mean value expansion of the QLDMG estimator

like in Theorem 4.

Lemma 4. Let ϵi = Xibi + F0γi + ui. Then

∇θ(XiH0H
′
0Xi)

−1X ′
iH0H

′
0ϵi = − (IK ⊗ ϵ′iH0H

′
0Vi)

(
(V ′

i H0H
′
0Vi)

−1 ⊗ (V ′
i H0H

′
0Vi)

−1
)
(IK2 +KK)(IK ⊗ V ′

i H0)∗

∗




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+

+ (V ′
i H0H

′
0Vi)

−1



(IK ⊗ ϵ′iH0)




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




+ V ′
i H0 (ϵ

∗
i
′ ⊗ IT−p0

)




where KK is the K2 ×K2 commutation matrix.

Proof.Like in Lemma 2, I omit the factor structure Xi = F0Γi + Vi and derive the above form with respect to

just Xi. The factor structure is substituted in later after the lemma. Assumption 2 and conditions (i) and (ii)

imply that the inverse of X ′
iH(θ)H(θ)′Xi is differentiable about θ0. Proposition 5.16 of Dhrymes (2013) gives

∇θ(X
′
iH0H

′
0Xi)

−1 = −
(
(X ′

iH0H
′
0Xi)

−1 ⊗ (X ′
iH0H

′
0Xi)

−1
)
(∇θX

′
iH0H

′
0Xi)

The differential of the X ′
iH(θ)H(θ)′Xi can be worked out via 13.19(b) of Abadir and Magnus (2005):

dvec(X ′
iH(θ)H(θ)′Xi) = (IK2 +KK)(IK ⊗X ′

iH(θ))dvec(H(θ)′Xi)

The associated gradient was worked out in the proof of Theorem 5. Thus we have

∇θ(X
′
iH0H

′
0Xi)

−1 = −
(
(X ′

iH0H
′
0Xi)

−1 ⊗ (X ′
iH0H

′
0Xi)

−1
)
(IK2 +KK)(IK ⊗X ′

iH0)




xi
∗
1
′ ⊗ IT−p0

...

xi
∗
K

′ ⊗ IT−p0




The product rule of the gradient is given in Proposition 5.4 of Dhrymes (2013) and the gradient ∇θX
′
iH0H

′
0ϵi

comes form Lemma 2 in the proof of Theorem 4.
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The
√
N -normalized estimator is

√
N(β̂QLDMG − β0) =

1√
N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′ϵi

where ϵi = Xibi + F0γi + ui. I write the estimator in terms of its full error because the asymptotic variance

generally depends on the correlation between bi and the other terms. I derive the asymptotic variance in full,

with a simpler form under stronger exogeneity conditions. I apply a mean value expansion to the above sum

and get

1√
N

N∑

i=1

(X ′
iĤĤ ′Xi)

−1X ′
iĤĤ ′ϵi =

1√
N

N∑

i=1

(V ′
i H0H

′
0Vi)

−1V ′
i H0H

′
0ϵi +GMG

√
N(θ̂ − θ0) + op(1)

where GMG comes from Lemma 4. Thus

√
N(β̂QLDMG − β0) =

1√
N

N∑

i=1

(
(V ′

i H0H
′
0Vi)

−1V ′
i H0H

′
0ϵi +GMGrx,i(θ0)

)
+ op(1) (49)

where rx,i(θ0) = (D′
x,θA

−1
x,θDx,θ)

−1D′
x,θA

−1
x,θvec(H

′
0Vi) comes from Lemma 3. We then have

√
N(β̂QLDMG − β0)

d→ N(0,BMG) (50)

where BMG = V ar
(
(V ′

i H0H
′
0Vi)

−1V ′
i H0H

′
0ϵi +GMGrx,i(θ0)

)
.

□

Appendix B: Comparison to TWFE

Theorem 3 suggests a certain robustness property for the QLDP estimator with respect to the traditional

TWFE estimator. If the factor structure gives the traditional two-way error f ′
tγi+uit = γi+ft+uit, the QLDP

can accommodate the time and individual fixed effects without Assumption 2 holding. If one regresses out a

heterogeneous intercept and estimates θ̂ assuming p = K + 1, the QLDP estimator will be consistent even if it

is nonlinear in the unobserved effects.

I first demonstrate that TWFE is inconsistent in the presence of an arbitrary factor structure. The DGP is

the same as Section 5.1 so that the QLDP results are identical to table 2.

TWFE performs poorly as expected. I now generate the data according to the two-way error model so that

yit = xit1 + xit2 + t+ γi + uit
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Table 8: AR(1) factor structure

Bias SD RMSE
K = 2 TWFE QLDP TWFE QLDP TWFE QLDP

N = 50 T = 3 0.0791 0.0082 0.1366 0.1546 0.1578 0.1548
0.8684 0.0034 0.1339 0.1555 0.8787 0.1556

T = 4 0.1148 0.0078 0.1351 0.1097 0.1773 0.1100
0.8321 0.0029 0.1330 0.1097 0.8427 0.1098

T = 5 0.1116 0.0095 0.1290 0.1005 0.1706 0.1009
0.8107 0.0058 0.1302 0.0950 0.8211 0.0952

N = 300 T = 3 0.0765 0.0024 0.0528 0.0580 0.0929 0.0581
0.8851 0.0026 0.0513 0.0585 0.8865 0.0585

T = 4 0.1089 -0.0003 0.0527 0.0424 0.1210 0.0424
0.8321 0.0024 0.0527 0.0411 0.8337 0.0411

T = 5 0.1119 0.0008 0.0529 0.0382 0.1238 0.0383
0.8055 0.0007 0.0530 0.0369 0.8073 0.0369

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
“SD” and “RMSE” are respectively the standard deviation and root mean squared error of the estimators over all replications for
a given experiment.

where t is the time effect and γi ∼ N(1, 1) is the individual effect. The covariates are generated as

xit1 ∼ Poisson(|ci + t|)

xit2 ∼ U(0, log((ci + t)2))

so that Assumption 2 does not hold. The simulation results in table 6 compare TWFE to QLDP when θ̂ is

computed with p = K + 1 (despite the fact that p0 = 1) and after removing a random intercept for Xi and yi

unit-by-unit. That is, let M be the T × T within transformation. I compute θ̂ and β̂QLDP with y∗
i and X∗

i

where y∗
i = Myi and X∗

i = MX. The time effects are irrelevant because the QLDP estimator is the same

regardless of whether or not they are controlled for in the regression.

While the TWFE estimator is clearly superior in terms of both bias and standard deviation when N is small,

the QLDP shows promising results. When N = 300, the two estimators are nearly indistinguishable in terms of

their bias. The QLDP’s RMSE is inflated because of its higher variance, but this result is unsurprising as it is

a more conservative estimator that is trying to eliminate more heterogeneity. However, it performs comparably

well even though it removes more variation from the data than is needed.
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Table 9: TWFE specification

Bias SD RMSE
TWFE QLDP TWFE QLDP TWFE QLDP

N = 50 T = 4 -0.0004 -0.0044 0.0284 0.0388 0.0284 0.0390
-0.0006 -0.0013 0.0184 0.0276 0.0184 0.0277

T = 5 -0.0010 -0.0022 0.0240 0.0300 0.0240 0.0301
0.0000 -0.0015 0.0142 0.0196 0.0142 0.0197

T = 6 -0.0004 -0.0022 0.0199 0.0251 0.0199 0.0252
0.0007 -0.0013 0.0126 0.0157 0.0127 0.0157

N = 300 T = 4 -0.0003 -0.0004 0.0106 0.0142 0.0106 0.0142
0.0003 -0.0005 0.0061 0.0086 0.0061 0.0086

T = 5 -0.0001 -0.0004 0.0092 0.0116 0.0092 0.0116
-0.0002 -0.0001 0.0054 0.0072 0.0054 0.0072

T = 6 0.0001 0.0001 0.0082 0.0105 0.0082 0.0105
-0.0002 -0.0005 0.0048 0.0065 0.0048 0.0065

Notes. This table presents a set of simulations with 1000 replications. Each table consists of a single data generating process where
N and T vary. The two rows for a given pair of N and T are the values associated with estimators of each of the two coefficients.
“SD” and “RMSE” are respectively the standard deviation and root mean squared error of the estimators over all replications for
a given experiment.
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