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Abstract

Predictive AI is increasingly used to guide decisions on agents. I show that even a

bias-neutral predictive AI can potentially amplify exogenous (human) bias in settings

where the predictive AI represents a cost-adjusted precision gain to unbiased predic-

tions, and the final judgments are made by biased human evaluators. In the absence

of perfect and instantaneous belief updating, expected victims of bias become less likely

to be saved by randomness under more precise predictions. An increase in aggregate

discrimination is possible if this effect dominates. Not accounting for this mechanism

may result in AI being unduly blamed for creating bias.

1 Introduction

Predictive algorithms are increasingly used in important decisions with economic and pol-

icy consequences. For example, lending institutions use machine learning models to assess

creditworthiness. Criminal justice systems use predictive recidivism algorithms to predict re-

cidivism risks and guide bail decisions on defendants. Police departments use predictive

policing algorithms to predict crimes and guide the deployment of law enforcement per-

sonnel into neighborhoods.1

How can predictive algorithms exacerbate discrimination? Existing literature recog-

nizes two primary channels - biased model design or biased training data (see Barocas and

Selbst, 2016; Cowgill et al., 2020). In this paper, I show the existence of a third channel.

Predictive algorithms often represent an improvement over status-quo prediction technol-

ogy in terms of cost-adjusted precision gain (noise-reduction). I show that a bias-neutral

precision gain of the unbiased prediction technology can potentially amplify exogenous

*I thank Robert Clark, Nahim Zahur, and Shota Ichihashi for guidance and suggestions. I am also thankful

for excellent feedback from James G. MacKinnon, Nicholas Brown, Luke Rawling, Chi Danh Dao, and others

in the IO Working Group at Queen’s University. Any limitations of the paper are solely my own.
1i.e., COMPAS is a predictive-recidivism AI used in the criminal justice system of several US states.

GOTHAM is a predictive-policing software that has been used by the police departments of several US and
European cities.
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bias originating in human evaluators. The human-origin bias can be ascribed to either

taste-based discrimination (Becker, 1957) or inaccurate statistical discrimination (Bohren

et al., 2022).

This counter-intuitive result arises from human-machine interactions. In almost all set-

tings where predictive algorithms are used, they function as ‘decision-aids’ or ‘prediction

machines’ and not ‘decision-makers’, with ample room for human judgment (see Agarwal

et al., 2018, Kleinberg et al., 2018).2 However, when addressing the question of how pre-

dictive algorithms can exacerbate discrimination in the realized outcome, the literature has

mostly ignored human-machine interactions and focused on biased predictions originating

in the algorithm. In this paper, I build a simple model of this human-machine interaction

- how machine predictions map to decision outcomes. I then show that an unbiased pre-

diction technology can potentially amplify exogenous human-origin bias and exacerbate

discrimination as it gets more precise.

Not accounting for this channel may result in predictive AI being unduly blamed for

‘creating’ bias. Consider the following as a motivating example. In many settings, what

often follows the adoption of predictive AI is an empirical assessment of its impact on dis-

crimination. Discrimination can increase either due to bias creation by predictive AI or ampli-

fication of exogenous human bias by predictive AI. Existing literature does not disentangle the

two. However, this distinction is important as it naturally leads to different conclusions

regarding potential remedies. For example, if discrimination increases under predictive

AI due to bias creation, potential solutions may include de-biasing the underlying model

and the training data. If, on the other hand, discrimination increases due to amplification of

exogenous bias, potential solutions may include reducing the scope of human discretion. In

addition, this misattribution increases the risk of society preemptively moving away from

a potentially beneficial technology.

Consider a simple model of algorithm-assisted decisions. An unbiased prediction tech-

nology produces signals of agents’ qualifications (e.g. creditworthiness), and biased hu-

man evaluators make the final allocation decisions. I conceptualize the adoption of pre-

dictive AI as a bias-neutral precision gain for the prediction technology. Abstracting away

from machine bias simplifies the demonstration of what happens to discrimination due to

bias-neutral precision gain only, which is the focus of this paper. The earlier motivating

example clarified that the relevant setting of this paper deals with short time horizons.

Hence, I restrict human bias to be non-adaptive to the switch to predictive AI. This entails

relaxing the assumption of perfect and instantaneous belief updating by human evalua-

tors. Several features commonly found in relevant settings justify this modeling choice.

For example, the ‘black box’, ‘trade secret’ and ‘race blind’ nature of predictive AI and

2This is perhaps partly explained by society’s distrust of AI as the final decision-maker in many settings.
Others argue that AI has a comparative advantage in predictions while humans have a comparative advantage
in judgment (Korinek, 2023).
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machine learning models, limited ex-ante information (regarding noisiness of predictions

and extent of precision gain from predictive AI), and little or no feedback. Literature has

found that belief updating may be slow, or fail altogether when these features are present

(see, Bohren et al., 2022).

In the model, there are agents (i.e. loan applicants) with two observable group identi-

ties (i.e. race). Qualification to receive a penalty (adversarial treatment, i.e. being denied

a loan) is based on an unobserved qualifying variable (i.e. default probability) that nature

draws from the same distribution for both groups. An assigning authority (i.e. financial

institution) deploys noisy prediction technologies to map the unobserved qualifications to

predicted qualifications - which are sums of ‘signals’ (true qualification) and ‘noise’ (mean-

zero normally distributed prediction errors). Human evaluators observe both the group

identities and the predicted qualifications of agents and add their human judgment to make

final allocation decisions. The representative human evaluator is biased against agents of

one of the two group identities. Thus, bias originates in this model only through human

evaluators and is exogenous to the prediction technology. Allocation decision is modeled

as a cutoff rule on scores, which is a sum of human judgment (bias parameter) and model-

predicted qualifications - comprising of signals and noise. Due to the bias in human judg-

ment, agents from the discriminated group face a stricter cutoff on the realized predictions.

I show that, as the prediction technology becomes more precise (less noisy), expected

victims of bias become (weakly) less likely to be saved by randomness. Expected victims of bias

are agents from the discriminated group that are expected to be assigned to the penalty

based on their true qualification draws, but would not be expected to be assigned to the

penalty if they were from the non-discriminated group. Expected victims of bias get saved

by randomness if they get negative noise draws large enough in magnitude to take their

realized predictions below the cutoff.

As a result, discrimination (conditional on qualification) is non-decreasing for the ex-

pected victims of bias as the prediction technology becomes more precise. This result holds

irrespective of the shape of the qualification distributions and parameter values. This is

the main result of this paper. If the aforementioned effect dominates, it is possible for ag-

gregate discrimination to increase under a more precise prediction technology.

As far as the net effect of increasing precision on aggregate discrimination is concerned,

there are other effects at play. In general, discrimination may increase or decrease depend-

ing on parameter values for agents from the discriminated group other than the expected

victims of bias. Thus, the net effect of precision gain on aggregate discrimination may get

canceled out. I find that the net effect cancels out if the discrimination-precision sensitiv-

ity function 3 is symmetric. When this function is not symmetric, aggregate discrimination

3Marginal effect of precision gain on discrimination.
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may increase or decrease, and this effect is amplified if the prediction technology before AI

adoption was noisy, if the size of the precision gain is large, and if the intensity of human

bias is large. The symmetry of this function is sensitive to parameter values. In general, ag-

gregate discrimination arising from exogenous human bias become more likely to increase

with a bias-neutral precision gain if the relative mass of expected victims of bias is large and

if the distribution of qualifications is centered near the cutoff. Whether this happens or not

depends on parameter values and the shape of the qualification distribution.

In terms of relation to literature, there is a growing economics and computer science

literature on algorithmic fairness as it has come to the forefront of policy debate. The

prospect of increasing prediction accuracy explains the rapid adoption of prediction algo-

rithms (see Agarwal et al., 2018, Brynjolfsson et al., 2018). Several empirical works claim

to find evidence of bias being present in algorithm-assisted decisions in lending (Bartlett

et al., 2022), criminal sentencing (Arnold et al., 2018), health (Obermeyer et al., 2019), and

hiring (Datta et al., 2015). In contrast, other empirical and theoretical works have shown

algorithms do not necessarily lead to more discrimination and can be welfare-improving

and bias-reducing (see Kleinberg et al.,2018; Rambachan et al. 2020, Avery et al.2023).

Overall, the question of whether predictive AI increases or decreases discrimination has

been an empirical one.

The contribution of this paper is in showing the existence of a channel through which

even unbiased predictive AI can exacerbate discrimination. My analysis also sheds light

on conditions when discrimination can increase or decrease in response to a bias-neutral

precision gain. The rest of the paper is organized as follows: Section 2 presents a simple

model of algorithm-assisted decision-making, taking into account human-machine inter-

actions. Section 3 presents closed-form results. Section 4 concludes.

2 Model

In this section, I present a simple stylized model of the typical human-machine interac-

tions through which predictions on agents get mapped to realized outcomes. This applies

to settings where predictive algorithms are used as decision aids with human evaluators

making the final call. To succinctly demonstrate how an unbiased predictive AI can am-

plify exogenous bias, I shut off both bias in the data and bias in the algorithm and allow

bias to exist in human evaluators who are exogenous to the prediction model. The model

is general and applies to a wide range of settings (i.e. lending, health, hiring, criminal jus-

tice, insurance). Without loss of generality and for expositional simplicity, let the setting

be in lending.

Loan applicants. Consider loan applicants (agents) indexed by i with observable group

identities (i.e. race) Ri ∈ {W,M} denoting whites and minorities. Loan denial Ti ∈ {0, 1}
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(treatment) is based on unobserved default risk Yi (latent variable).4 Let Yi be absolutely

continuous with respect to the Lebesgue measure. Without loss of generality, let nature

draws Yi from the same underlying distribution for both groups with support in the [0, 1]

interval. Restriction of Yi to [0, 1] interval is to give Yi a probability interpretation. Also,

note the simplifying assumption of Yi draws coming from the same distribution for both

groups shuts off ‘accurate statistical discrimination’.

Financial Institutions. A financial institution (assigning authority) uses a two-step proce-

dure for loan allocation. In step one, it uses a prediction technology that maps unobserved

Yi to predictions denoted by Ŷi. In step two, evaluators (humans) employed by the assign-

ing authority observe the predictions Ŷi and add human judgment to decide whether to

assign Ti (loan denial) to applicants or not. 5

Prediction Technology. Prediction technology Ŷ maps unobserved Yi of applicants to pre-

dicted Ŷi. Predictions Ŷi can be additively separated into signals (true default risk) Yi, and

noises ϵi drawn from a normal distribution N(0, σ). Thus, the prediction technology is

unbiased as E[Ŷi] = Yi.
6 In other words, discrimination in this model does not originate

from the prediction technologies.

Impact of Adoption of Predictive AI. Adoption of predictive AI makes the prediction

technology more precise (less noisy). Consider a precision parameter η = 1
σ

. σ goes down

and η as a result of the adoption of predictive AI. The predictive AI is bias-neutral. 7

Evaluators. Evaluators observe both group identities Ri and predicted default risks Ŷi of

applicants. Representative evaluator applies subjective human judgment to the predic-

tions Ŷi to map them to scores Si. Score Si, therefore, is the sum of machine predictions

and human judgment. Bias µi, arising from subjective human judgments, gets added in

the mapping from predictions Ŷi to scores Si. Without loss of generality, I focus on dis-

crimination against minority applicants. Let, (µi|M) = µ, µ > 0 and (µi|W ) = 0.8 Assign-

ment to treatment is conceptualized as a cutoff rule on the scores Si: assign to treatment if

Si > λ ∈ (0, 1). Evaluators know that the prediction technology is unbiased and that the

predictive AI is bias-neutral. However, the evaluator does not have perfect knowledge of

4To illustrate My model, I focus on penalties or ‘adversarial treatments’, which are unfavorable to the
agents (i.e. loan denial, bail denial, hiring rejection). Yi is a measure of ‘disqualification’ in this setup. This is
without loss of generality, as any ‘favorable treatment’ can be reverse-coded.

5Note, there may be ‘pure’ fintech lenders where algorithms may make allocation decisions with no hu-
mans in the loop. This model does not apply to those settings.

6Legal requirements often explicitly prohibit prediction algorithms to condition on race or proxies of race
that are uncorrelated with the underlying qualifications. For example, credit scoring models in the US, see the
Equal Credit Opportunity Act.

7This assumption allows isolating the effect on discrimination attributable to precision gain only.
8Note, (µi|) is a slight abuse of notation with a more formal expression being (µi|Ri = M) Also, while

the subjective human judgment can contribute more than just the bias parameter, for this stylized model any
contribution other than the bias is normalized to zero.

5



what goes on as inputs into the prediction algorithms. 9 The human-origin bias µ can arise

either from taste-based discrimination (Becker, 1957) or from inaccurate statistical discrim-

ination (Bohren et al., 2022). The associated microfoundations and the microfoundations

for the bias parameter µ and the cutoff λ are discussed later in this section.

Simplified model. The setup can be captured succinctly by the following equation:

Score, Si =

human judgment
︷ ︸︸ ︷

µ · I(Ri = Minority)+

machine prediction
︷ ︸︸ ︷

Yi + ϵi
︸ ︷︷ ︸

Ŷi

; ϵi ∼ N(0, σ2),

Cutoff Rule, Ti = I(Si > λ),

Adoption of AI: σ ↓ (η =
1

σ
↑). (1)

As can be seen from the model in equation (1), the scores are assumed to be additively

separable into human judgment (first term) and machine predictions (second composite

term). The machine predictions are further additively separable into signals (truths) and

noises (prediction errors). Note, this is a static, short-run model, in the sense that µ does

not adjust to the adoption of predictive AI.

Several features prevent µ from adjusting instantaneously to the adoption of predic-

tive AI in the short run. First, due to the ‘black box’ nature (lack of interpretability) of AI

and machine-learning algorithms, evaluators cannot foresee how the predictions Ŷi would

change under predictive AI. Second, designs of most algorithmic prediction models are

guarded as trade secrets. Therefore, it is not an unrealistic assumption to think of human

evaluators as lacking perfect information about what variables go into the construction

of the predictive algorithms.10 Third, perfect anticipation of how Ŷi would change after

the adoption of predictive AI requires knowing σ (which is inherently unobservable as Yi

are unobservables) and the extent of precision gain achieved by the predictive AI. Fourth,

evaluators may not necessarily know or believe a priori that the predictive AI is more pre-

cise, as model improvements often take place at the back-end and such changes may not

be communicated or understood well enough by the evaluators at the front-end.11 Finally,

9Due to the black box nature of prediction algorithms and the trade secret nature of commercial prediction
models, such information is generally undisclosed.

10For example, FICO scores are widely used by financial institutions in the United States to assess credit-
worthiness. The exact design and construction of the model are guarded as a trade secret. FICO only discloses
five broad components that go into the construction of the model and their weights for the representative
individual.

11Consider a prediction model that switched from using logistic regression to XGBoost, which is an ad-
vanced machine learning algorithm. For human evaluators, there is ‘front-end equivalence’ as they were
getting predictions before and they would be getting predictions after. Due to the lack of interpretability of
machine learning models, evaluators may not be able to understand the implications and may not necessarily
believe a priori the new algorithm to be more precise. See, Monahan et al. (2020) for an example, which found
that about 5% criminal judges in Virginia reported relying primarily on risk scores, compared to 38% reporting
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in most institutional settings of relevance, human evaluators make fast decisions in high

volumes with the possibility of exhaustion and little scope to receive feedback on their

decisions (see Cowgill 2019). Literature has found that belief updating may be slow, or

fail altogether in presence of these features (see, Bohren et al., 2022). Over long enough

horizons, µ can still adjust to the increase in precision due to the adoption of predictive AI,

but the presence of these features perhaps justifies considering µ to be static in the short

run. Next, I highlight some trivial propositions that arise directly from the model.

Proposition 1. The bias parameter µ shifts the effective cutoff on the realized predictions Ŷi

to the left by µ for the discriminated group.

(Ti|W ) = I(Ŷi > λ).

(Ti|M) = I(Ŷi > λ− µ). (2)

From Proposition 1, while both groups face a cutoff of λ on the scores (Si), for minorities,

this translates to an ‘effective cutoff’ of λ− µ on the realized predictions (Ŷi).
12

Proposition 2. The measure of minorities that is expected to be assigned to treatment (i.e.

denied loan) is 1− F (λ) and the associated measure for whites is 1− F (λ− µ). 13

Pr(E[Si|W ] > λ) = Pr(Yi > λ) = 1− F (λ).

P r(E[Si|M ] > (λ− µ) = Pr(Yi > λ− µ) = 1− F (λ− µ). (3)

Thus, to fall in the group ‘expected to be denied loan’, whites face a cutoff (on Yi), λ

while minorities face, λ− µ.

Proposition 3. The measure of expected victims of bias or marginal minorities, those expected

to be denied loans based on their Yi draws, but would not be so if they were white, is given

by F (λ)− F (λ− µ).

Microfoundation for the cutoffs and the bias parameter. The bias parameter µ can arise

either from taste-based discrimination (Becker, 1957) or from inaccurate statistical discrim-

ination (Bohren et al., 2022). First, consider an expected profit-maximizing financial in-

stitution that wants to maximize a value function V . From an approved loan, it gets an

expected payoff π(Yi). Financial institution’s maximization problem:

relying on own judgment only, and 54% reporting relying equally on both.
12This follows directly from (1). Note, for whites, the same effective cutoff λ applies to both scores (Si) and

predictions (Ŷi).
13F denotes the CDF of the distribution of Yi which is the same for both groups.
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max
Y ∗

V = E

∫ Y ∗

0
π(Yi)dY, (4)

where, π′(Yi) < 0, π(0) > 0, π(1) < 0. These assumptions ensure:

∃ : Y ∗ ∈ [0, 1] s.t. Y ∗ = argmax V,

π(Y ∗) = 0,

π(Yi) ≥ 0 ∀ Yi ≤ Y ∗,

π(Yi) < 0 ∀ Yi > Y ∗. (5)

The financial institution gets a positive payoff for approved loans to applicants with

the lowest possible default risk (Yi = 0), and a negative payoff for loans to applicants with

the highest possible default risk (Yi = 1). The payoff function is decreasing in default risk

Yi. Therefore, there exists an optimal cutoff default risk level below which the financial

institution would want to approve all loans and above which it would want to approve

none of the loans. The financial institution, however, cannot solve this problem as Yi can-

not be observed. It employs prediction technology to generate predictions Ŷi, and human

evaluators (loan officers) to make the final allocation decision.

Now, consider an expected-utility-maximizing representative evaluator employed by

the financial institution who cares to maximize the financial institution’s value function.

Thus, there is a mapping from the financial institution’s expected profit function π to the

representative evaluator’s expected utility function u. The representative evaluator solves

the following:

max
Y ∗

W
,Y ∗

M

U = UW + UM =

∫ Y ∗

W

0
uw(E[Ŷi|W ])dY +

∫ Y ∗

M

0
um(E[Ŷi|M ]))dY. (6)

UW and UM denote the aggregate utility functions from approving loans of white and

minority applicants, respectively. Note, the representative evaluator’s problem has observ-

ables as inputs; algorithm-predicted default risks Ŷi and race Ri. For whites, the represen-

tative evaluator’s incentives are perfectly aligned with those of the financial institution.

I abstract away from any principal-agent problems for the non-discriminated group. For

minorities, I restrict principal-agent problems to those originating only due to the bias of

human evaluators (either arising from animus or incorrect beliefs). These restrictions al-

low me to illustrate the results in a tractable and succinct manner.

Let, the mappings from π to u be such that u′(Yi) < 0, u(0) > 0, u(1) < 0. This ensures:

∃ : Y ∗

W , Y ∗

M ∈ [0, 1]. (7)
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Under (pure) taste-based discrimination, (see Becker, 1957), the representative evalu-

ator does not believe that minorities are more likely to default compared to whites when

they have the same predictions Ŷi. However, the representative evaluator has animus to-

wards minorities and receives additional disutility from approving their loan. Thus,

E[Ŷi|M ] = E[Ŷi|W ] = Yi,

um(Yi) < uw(Yi) ∀ Ŷi. (8)

Under (pure) inaccurate statistical discrimination, (see Bohren et al., 2022), the repre-

sentative evaluator does not have animus towards minorities but has an inaccurate belief

that minorities are more likely to default, and this belief does not converge to the truth.

Bohren et al., (2022) show how inaccurate subjective beliefs about the distributions of qual-

ifications and signals by groups can persist even with learning and belief updating rules

(both Bayesian and non-Bayesian). While learning can mitigate inaccurate beliefs in some

settings, there is little or no feedback on the decisions being made in many other settings,

leading to learning traps where inaccurate beliefs can persist (see Lepage, 2020; Bordalo

et al., 2016). Bohren and Hauser (2021) showed inaccurate beliefs about the distributions

of qualifications and signals may lead to ‘incorrect learning’ so that those beliefs may not

converge to the true distribution. Inaccurate beliefs can arise due to heuristics (see Bohren

and Hauser, 2021), or lack of information (i.e. failing to account for selection, see Hübert

and Little, 2020). In this setup, this can translate to:

um(Yi) = uw(Yi) ∀ Ŷi,

E[Ŷi|M ] > E[Ŷi|W ] = Yi. (9)

Recall in this regard the earlier assumptions that the representative evaluator knows

that the prediction algorithms are blind to group identities (cannot condition on race and

their proxies that are unrelated to creditworthiness due to legal restrictions). Furthermore,

the evaluator does not know the exact set of variables that enter the prediction algorithms

as inputs. 14 Hence, to account for the perceived differences in the distribution (mean)

by group identities, the representative evaluator adds E[Ŷi|M ] − E[Ŷi|W ] to the realized

predictions of minorities.

Under either taste-based discrimination or inaccurate statistical discrimination, it fol-

14As a counterexample, if the representative evaluator knew that the predictive AI conditions on a previ-
ously unaccounted variable that is correlated with group identity (and creditworthiness), they may adjust the
bias parameter accordingly.
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lows that:

∃ : Y ∗

W , Y ∗

M ∈ [0, 1] s.t. Y ∗

W = argmax UW ,

Y ∗

M = argmax UM ,

Y ∗

M < Y ∗

W . (10)

Let, Y ∗

W = λ and Y ∗

W = λ− µ.

Thus, we have the cutoff λ and the bias parameter µ arising out of the representative

evaluator’s expected utility maximization problem.

Discussion on the Model. Existing literature recognizes two primary sources of biased

allocations or amplification of bias under predictive algorithms - biased models or biased

data. In this paper, I study whether a predictive AI that is unbiased by design and uses

unbiased training data can still amplify exogenous human bias through noise reduction of

the predictions. In constructing the model, I, therefore, shut off the possibility of bias aris-

ing from the predictions. Since I focus on showing the ‘existence’ of this counter-intuitive

channel, the model is decidedly simple and abstracts from many complexities. The setup

in the model is general and applies to a wide range of settings (i.e. financial institutions

granting loans, criminal justice systems granting bail to defendants, law enforcement de-

partments selecting neighborhoods to raid, similar settings in health, insurance, environ-

mental regulations, food safety regulations etc.). The two-step allocation process with

‘humans-in-the-loop’ is almost ubiquitous in all settings where predictive AI is used. In the

model, the bias parameter µ stays fixed in response to a switch to the less-noisy prediction

technology (predictive AI). In this regard, My model is decidedly static and applies to short

time horizons. Several features commonly observed in the relevant settings (highlighted

earlier) motivate relaxing the assumption of accurate and instantaneous belief updating

by human evaluators.

3 Results

In this section, I present closed-form results. But first, I define some key terms and pro-

vide graphical intuition for the main propositions of this paper. I define discrimination and

aggregate discrimination as follows:

Definition 1 (Discrimination) Conditional on Yi draws, the difference between whites and

minorities in their loan approval (non-denial) probabilities.

Discrimination = [Pr(Yi + ϵi < λ)− Pr(Yi + ϵi < λ− µ)|Yi]. (11)

Definition 2 (Aggregate Discrimination) Aggregate measure of discrimination obtained

by integrating discrimination over the support of Yi.

10



Aggregate discrimination =

∫

Yi

(discrimination) dY. (12)

The question I explore within the framework of this model is what happens to (1) dis-

crimination (conditional on Yi) and (2) aggregate discrimination as the prediction technology

becomes more precise.

3.1 Response of discrimination to increasing signal precision

First, I address the question of what happens to discrimination as prediction technology

becomes more precise. I illustrate the main ideas graphically to build intuition and follow

it up with closed-form results afterward. Figure 1 shows how the two different cutoffs on

realized predictions faced by whites and minorities create three partitions on the support

of Yi.

0 λ− µ λ 1

Region 1:
Expected
approval

irrespective of race

Region 2:
Expected

denial
only if Minority

(Expected
victims
of bias)

Region 3:
Expected

denial
irrespective of race

Figure 1: Three regions (partitions) on the support of Yi

Recall, λ is the cutoff on predictions faced by whites, whereas λ − µ is the cutoff faced

by minorities. Applicants are denied loans if their realized predictions Ŷi fall above their

effective cutoff. In other words, applicants are better off if their realized predictions fall

below their group-specific cutoff. In the first region are applicants who are not expected to

be denied loans irrespective of their race. Recall in this regard that E[Ŷi] = Yi as the pre-

diction technology is unbiased. In the second region are expected victims of bias or marginal

minorities. Note, in the absence of any prediction errors (perfect predictions), all of these

agents would be denied loans if they are from a minority background but not if they are

white. In the third region are applicants who fall above both cutoffs. They are expected to

be denied loans irrespective of their group identities. Under perfectly precise predictions

(zero prediction error) outcome of applicants will exactly match their expected outcome

delineated in Figure 1. The presence of noise, however, may cause realized outcomes to

differ from expected outcomes. In Figure 2, I plot ‘true’ Yi draws (same as expected predic-

tions) on the X-axis and realized predictions Ŷi, comprising of both signals (Yi) and noises

11



(ϵi) on the Y-axis.

Figure 2: Yi against Ŷi and realized victims of bias

The vertical and horizontal lines at λ and λ − µ denote the two cutoffs on expected

default risks Yi(= E(Ŷi)) and realized predictions Ŷi respectively. On the X-axis, the ver-

tical lines also demarcate the three regions introduced earlier in Figure 1. The red-shaded

area represents realized discrimination - applicants whose realized predictions are below the

cutoff for minorities but above the cutoff for whites, meaning they would be denied loans

conditional on their realized signals Ŷi only if they are minorities but not if they are whites.

Figure 3 builds upon Figure 2 and shows what happens to discrimination as σ approaches

0 in the limit with simulated data. Under perfect predictions (right panel), all applicants

fall on the 45-degree line going through the origin.

Figure 3: What happens to discrimination as σ → 0
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First, note that in the limiting case when σ → 0, realized discrimination goes down in

regions 1 and 3, but goes up in Region 2 (for marginal applicants). This shows that pre-

cision gain can have a disparate impact on discrimination, causing discrimination (condi-

tional on Yi draws) to go up for certain subgroups of minorities and go down for others. 15.

Second, note that under noisy predictions (left panel), some minority applicants from all

three regions may become realized victims of bias, but under perfectly precise predictions

(right panel), only marginal minority applicants who are expected victims of bias (Region 2)

become realized victims of bias. This is because under noisy predictions (left panel) some

minority applicants from Region 2 (marginal minorities) get lucky and get saved by random-

ness. This means they get a negative noise draw large enough in magnitude to take their

realized predictions below the cutoff for minorities λ − µ. This luck factor goes away as

randomness decreases under precise predictions. Thus, it seems to indicate that there ex-

ists a subgroup of minorities - marginal minorities whose true Yi draws are below the cutoff

for whites but above the cutoff for minorities, for whom discrimination gets worse, at least

weakly. Note, for the simulated case shown in Figure 3, the net effect on discrimination

mostly cancels out, but this is not always the case. I shed light on when this does not cancel

out so that an aggregate increase or decrease in discrimination becomes possible later in

this section. These observations build the intuition for two main propositions of this paper.

The two main propositions and their closed form proof follow after a brief analysis of the

welfare effect on applicants by race as σ → 0, which is shown in Figure 4.

Figure 4: Welfare effect on applicants by race as σ → 0

The left and right panels of Figure 4 shows the welfare effect on whites and minorities,

respectively, in the limit as noise σ goes to zero. The points represent applicants under

noisy predictions and use the same simulated data shown in Figure 3. Under noiseless

15Subgroups (regions) in this context are based on true Yi draws

13



predictions, applicants find themselves on the 45-degree line going through the origin.

The shaded boxes denote ‘worse off’, ‘better off’, and ‘same off’ areas. For example, in the

left panel, white applicants who are in the top-left green box get denied loans under noisy

predictions as their realized predictions are above the cutoff for whites, λ. However, if their

expected predictions are realized, they would drop vertically along the Y-axis until they are

on the 45-degree line. If the noise goes to zero, they would thus find themselves to be bet-

ter off as they would be below the cutoff λ and no longer be denied loans. This deviation

between realized and expected predictions under noisy predictions is due to randomness,

and these applicants ‘get unlucky’ under noisy predictions. Overall, we see that in the

limit as noise σ goes to zero, for this simulated data, the effects seem to almost cancel out

on the extensive margin such that the aggregate effect is almost neutral. There are almost

equal numbers of applicants who are better off and who are worse off from both whites

and minorities. However, depending on parameter values, the effects may not always

cancel out. The question of when it is more likely for aggregate effects to not cancel out is

addressed later in this section. Now, based on the insights from Figure 3, I introduce the

main propositions of this paper and some associated definitions.

Proposition 4. Expected victims of bias or marginal minorities become less likely to get ’saved

by randomness’ as predictions become more precise.

Definition 3 (Expected Victims of Bias or Marginal Minorities) are minority applicants

whose Yi draws are below the cutoff on the prediction for whites (λ) but above that for

minorities (λ − µ).16 They are ‘marginal’ minorities in the sense that they are expected to

be denied loans but would not be so if they were white. This is expressed mathematically

as follows:

Yi s.t. Yi ∈ (λ− µ, λ]; Ri = M. (13)

Definition 4 (Saved by Randomness.) Expected victims of bias are saved by randomness if in

the mapping from Yi to Ŷi they get negative noise draws (prediction errors) large enough in

magnitude to take their realized predictions Ŷi below their group-specific cutoff (λ− µ).17

This is expressed mathematically as follows:

Yi s.t. Yi ∈ (λ− µ, λ]; Ri = M ; Ŷi = Yi + ϵi < λ− µ. (14)

Proof of Proposition 4.

Pr(expected victims of bias saved by randomness) =

Pr(ϵ < λ− µ− Yi|Yi ∈ (λ− µ, λ]). (15)

16They correspond to Region 2 as shown in Figure 1.
17If this outcome materializes, they escape becoming realized victims of bias.
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As λ− µ− Yi < 0 ∀ Yi ∈ (λ − µ, λ], this probability is always increasing in σ (de-

creasing in precision parameter η) for noise draws ϵi drawn from mean-zero distributions

where extreme outcomes are less likely. i.e. For ϵi drawn from normal:

dΦ
(
λ−µ−Yi

σ

)

dσ
= ϕ

(
λ− µ− Yi

σ

)

·
−(λ− µ− Yi)

σ2
> 0. (16)

Thus, the probability that expected victims of bias are saved by randomness is non-

decreasing in noise variance (decreasing in signal precision) for noise draws ϵi drawn from

mean-zero distributions where extreme outcomes are less likely. (Q.E.D.)

This shows the existence of a channel through which aggregate discrimination can po-

tentially increase under more precise predictions (if this effect dominates).

Proposition 5. Discrimination is non-decreasing in precision for expected victims of bias.

Proof of Proposition 5.

Recall the definition of discrimination (conditional on Yi) in (11). For normally dis-

tributed noise draws, this translates to:

Discrimination = [Pr(Yi + ϵi < λ)− Pr(Yi + ϵi < λ− µ)|Yi],

= Φ(
λ− Yi

σ
)− Φ(

λ− µ− Yi

σ
). (17)

Differentiating with respect to σ and η = ( 1
σ
):

d(Discrimination)

dσ
= ϕ(

λ− µ− Yi

σ
)(
λ− µ− Yi

σ2
)− ϕ(

λ− Yi

σ
)(
λ− Yi

σ2
). (18)

d(Discrimination)

dη
=

d(Discrimination)

d( 1
σ
)

= 2[ϕ(
λ− Yi

σ
)(λ− Yi)− ϕ(

λ− µ− Yi

σ
)(λ− µ− Yi)]. (19)

The sign of the term in (19) and its interaction with the distribution of Yi determines

whether there will be a net increase or decrease in aggregate discrimination under a more-

precise prediction technology. Table 1 shows the sign of the term in (19) over the three

regions (conditioning sets) of the support of Yi defined in Figure 1.
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ϕ(λ−Yi

σ
) (λ− Yi) ϕ(λ−µ−Yi

σ
) (λ− µ− Yi)

d(Discrimination)
dη

Region 1

0 ≤ Yi ≤ λ− µ
+ ++ ++ + +/-

Region 2

λ − µ < Yi ≤ λ
+ + + − +

Region 3

λ < Yi ≤ 1
++ − + −− +/-

Note: ‘++’ and ‘−−’ used to denote >> 0 and << 0 in a relative sense

Table 1: Sign of d(discrimination)
dη

over three regions

It is clear from Table 1 that discrimination is always and unambiguously non-decreasing

for expected victims of bias (Region 2) as predictions become more precise (Q.E.D)

Note, this is true for this model setup irrespective of the distribution of Yi and param-

eter values (bias parameter µ, cutoff λ). The effect of precision gain on discrimination for

other regions is ambiguous, going up for some draws of Yi while going down for others.

Note, however, that (19) can be evaluated numerically for any given parameter values. I

evaluate (19) holding fixed cutoff λ = 0.5 and human bias parameter µ = 0.1, and varying

starting σ (before AI adoption) over the support of Yi (range from 0 to 1, spaced at 0.01

interval) in Figure 5.

Figure 5: Rate of change in discrimination (conditional on Yi) for precision gain
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Figure 5 shows the rate of change in discrimination (conditional on Yi) for a small in-

crease in precision gain evaluated over the support of Yi. Discrimination is increasing with

signal precision when the function is above the zero line and vice versa. The two red verti-

cal lines at λ and λ−µ represent the effective cutoffs for whites and minorities, respectively.

The area in between them, therefore, indicates the range of Yi draws of expected victims

of bias (Region 2). Note in this region, the function is always non-negative for all param-

eter values. This is consistent with the closed-form result of Proposition 5. In Regions 1

and 3, the function is positive over some intervals and negative over others depending on

parameter values. The role of starting precision level (and noisiness) becomes clear from

Figure 5. If existing prediction technology is already very precise (σ small), small preci-

sion gains do not lead to a large rate of increase or decrease in discrimination. However, if

existing prediction technology is noisy, even a small precision gain (due to the adoption of

AI) can lead to a large rate of increase or decrease in discrimination. In Figure 6, I show the

sensitivity of the (19) in response to changes in parameter values λ and µ. Figure 6 thus

contains versions of Figure 5 with different values of λ and µ, respectively.

Figure 6: Sensitivity of rate of change of discrimination to parameter values

As can be seen from Figure 6, changes in λ (cutoff) holding everything else constant

effectively shift the function to the left or right, whereas changes in µ (bias intensity) hold-

ing everything else constant change the size of Region 2 (where the function is always

non-decreasing) and the spread of the function. The implication is that, if the mass of Yi is

large in Region 2 relative to the other regions, aggregate discrimination can increase with
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precision gain as the effect on Region 2 will dominate (i.e. if Yi is normally distributed with

cutoff λ at 0.5).

The takeaway from this subsection is that, discrimination is always non-decreasing in

precision gain for marginal minorities, and aggregate discrimination can increase if their

relative mass is large such that this effect dominates. I shift focus to what happens to

aggregate discrimination under more precise predictions in the next subsection.

3.2 Response of aggregate discrimination to increasing signal precision

The net effect on aggregate discrimination depends not only on the function d(Discrimination)
dη

,

but also on the distribution of Yi, and the extent of precision gain. First, in Figure 7, to as-

sess the responsiveness of aggregate discrimination to increasing signal precision, I show

the definite integral of the d(Discrimination)
dη

function for different σ over the support of Yi

(with λ and µ fixed at 0.5 and 0.1 respectively). Note, the functions in Figure 7 are the

definitive integrals of the functions in Figure 5. At Yi = 1, if this integral ends above the 0

line, aggregate discrimination is increasing with precision and vice versa.

Figure 7: Sensitivity of aggregate rate of change of discrimination to parameter values

From the figure, we see that the net change in aggregate discrimination cancels out if

starting noisiness of the prediction technology (before AI adoption) is small, but not when

it is large enough. Comparing this figure with Figure 5, it becomes clear that when the un-

derlying d(Discrimination)
dη

function that is integrated over is not symmetric over the support

of Yi, the aggregate effect on discrimination does not cancel out. From Figure 6, it can be

seen that the d(Discrimination)
dσ

function is more likely to become asymmetric if the starting

noisiness level before AI adoption σ is large, if the bias parameter µ is large, and if the cut-

18



off parameter λ is further away from the center of support of Yi. Under these conditions, a

change in precision is more likely to have a sizable impact on aggregate discrimination. In

general, aggregate discrimination can be expected to increase with a precision gain if the

mass of Region 2 is large relative to the mass of Regions 1 and 3. The effect is intensified if

the starting noisiness level before AI adoption σ is large and if the magnitude of precision

gain is large.

I evaluate
∫

Y

d(Discrimination)
dη

over a parameter space as follows:

µ ∈ {0.01, 0.02, . . . , 0.2} bias parameter.

σ ∈ {0.01, 0.02, . . . , 0.25} noise standard deviation.

λ ∈ {0.25, 0.5, 0.75} cutoff.

Yi ∼ U(0, 1), N(0.5,
0.5

3
), β(2, 5) distribution.

In the parameter space considered, the bias parameter µ is allowed to vary at 0.01 in-

tervals over the range [0.01, 0.2]. To put this in perspective, µ = 0.1 means the human

evaluator adds a 10% penalty to the machine-predicted default risk for minorities. The

noise parameter σ is allowed to vary at 0.01 intervals over the range [0.01, 0.25]. σ = 0.01

and σ = 0.25 means a signal-to-noise ratio of 50 and 2 respectively for the median appli-

cant18 with default risk Yi of 0.5. The three cutoff values considered are 0.5, 0.25, and 0.75.

The three different distributions for Yi considered are uniform, normal, and right-skewed

distributions. Note, N(0.5, 0.53 ) makes the shape of the distribution to be normal while re-

stricting approximately 99.5% of the draws of Yi within the [0, 1] interval (to maintain a

probability interpretation of default risks). The β(2, 5) distribution makes the distribution

of Yi right-skewed with the mode at 0.2 while restricting Yi within the [0, 1] interval. This

distribution has some empirical relevance, as the empirical distribution of credit scores

is left-skewed, and the default risk Yi in this setting can be interpreted as negative credit

scores.

In Figure 8, I show how
∫

Y

d(Discrimination)
dη

changes over the parameter space using a

3D plot, holding fixed λ = 0.5. The X-axis denotes bias parameter µ, the Y-axis denotes the

baseline noise level of the prediction technology before AI adoption σ and Z-axis shows the

change in the aggregate rate of change of discrimination in response to a small increase in

precision. Different colors are used to denote the three different distributions. The shaded

gray surface denotes zero on the Z-axis and is the zero-impact reference line.

18assuming a symmetric distribution of Yi
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Figure 8: Sensitivity of aggregate rate of change in discrimination to parameter values

It can be seen from Figure 8 that over this parameter space, the aggregate rate of change

in discrimination for a small increase in precision is increasing in µ and σ. As expected,

the effect is largest for the normal-shaped distribution of Yi. This is because for the cutoff

λ set at 0.5, the relative mass of region 2 is largest under normal N(0.5, 0.53 ), followed by

under right-skewed β(2, 5) distribution. Also, the effect is negligible for small values of µ

and σ, as for these values, the function d(Discrimination)
dη

is symmetric (Figure 5), so that the

net effect cancels out.19

Figure 9 shows the sensitivity to the change in the cutoff parameter λ, by setting it to

0.25 (left panel) and 0.75 (right panel), respectively. It is seen that a decrease in the rate of

change in aggregate discrimination is also possible at large values of σ and µ.

19Recall, the net increase in discrimination in Region 2 gets counteract by the net decreases in discrimina-
tions in Regions 1 and 3 when this function is symmetric.
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Figure 9: Sensitivity of aggregate rate of change in discrimination to the cutoff parameter

The result of Figure 9 is better understood by comparing the graphs with the corre-

sponding d(Discrimination)
dη

graph in Figure 6 for λ = 0.25 and λ = 0.25 respectively. Figure

10 and Figure 11 place them side by side for convenience. As can be seen in Figure 10, at

λ = 0.25, Region 2, where discrimination increases in response to precision gain, is cen-

tered at 0.25−µ
2 . The mass of right-skewed β(2, 5) distribution is concentrated at and near

0.2. As a result, the increase in the aggregate rate of change in discrimination is larger for

the β(2, 5) distribution. For the normal N(0.5, 0.53 ) distribution, the mass is concentrated

at and near 0.5 where the d(Discrimination)
dη

function is non-positive for λ = 0.25. As a re-

sult, this negative effect dominates for the normal-shaped distribution, and there is a net

decrease in the aggregate rate of change of discrimination with respect to precision when

µ and σ become large.

Figure 10: Sensitivity of rate of change in aggregate discrimination at λ = 0.25
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The interpretation of Figure 11 is similar. At λ = 0.75, Region 2, where discrimination

increases in response to precision gain, is centered at 0.75−µ
2 . The increase in the aggregate

rate of change in discrimination is larger for the normal N(0.5, 0.53 ) distribution as the rela-

tive mass near Region 2 is larger for this distribution. In contrast, the right-skewed β(2, 5)

distribution is concentrated at and near 0.2 where the d(Discrimination)
dη

is non-positive. As a

result, the negative effect dominates for this distribution as σ and µ becomes large.

Figure 11: Sensitivity of rate of change in aggregate discrimination at λ = 0.75

The takeaway from this subsection is that precision gain is neutral to aggregate discrim-

ination when the first derivative of discrimination with respect to precision is symmetric

over the support of the qualification distribution. Otherwise, aggregate discrimination can

be either increasing or decreasing in precision gain. The aforementioned function becomes

more likely to be asymmetric and more asymetric as bias intensity increases, the noisiness

of the baseline prediction technology (before the adoption of predictive AI) increases, and

the cutoff is further away from the center of the support of the qualification distribution.

When the aforementioned function is asymmetric, whether aggregate discrimination is in-

creasing (or decreasing) depends on whether the mass of the distribution of qualifications

is concentrated near the regions where discrimination increases (or decreases). In general,

aggregate discrimination is increasing in precision gain if the relative mass of marginal mi-

norities (or expected victims of bias) is large, and this is more likely if the distribution of the

qualifications is centered near the cutoff.

4 Conclusion

In this paper, I analyze what happens to discrimination, originating in exogenous bias,

as unbiased prediction technology becomes more precise. I study this for settings where

the prediction algorithm functions as decision aids and human evaluators who are biased
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against minorities but not against whites function as final decision makers. This setting

with humans in the loop is quite ubiquitous. However, the role of this human-machine

interaction has not been studied extensively in the algorithmic bias literature.

The adoption of predictive AI is conceptualized as a bias-neutral precision gain for the

prediction technology. While the model I study applies to a wide range of settings where

predictive AI is used, I consider the setting to be in lending for demonstration. Discrim-

ination is defined as the difference in the probability of getting loan approvals between

whites and minorities who are otherwise identical in terms of underlying default probabil-

ity. Aggregate discrimination is defined as the integral of discrimination over the support

of default probabilities.

I show that, in absence of accurate and instantaneous belief updating, which is the

likely case in short time horizons over which empirical evaluation of predictive AI’s im-

pact on discrimination takes place, discrimination is non-decreasing in precision gain for

marginal minorities near the cutoff. Marginal minorities are the expected victims of bias, mi-

nority applicants who are expected to be denied loans, but would not be expected to be

denied loans if they were white. This result arises due to the fact that marginal minorities

become less likely to be ’saved by randomness’ under more precise predictions. This is a

strong result as it holds for all parameter values and the choice of underlying distributions

of default probabilities.

The relaxation of the assumption of accurate and instantaneous belief updating, at least

in short time horizons, is further motivated by several features found in the relevant set-

ting being studied. These features are the black-box, trade-secret, and race-blind nature of

predictive algorithms and the limited information and feedback available to human eval-

uators who make high-volume decisions in fast-paced environments with the possibility

of exhaustion.

If the first derivative of discrimination (conditional on default probability) with pre-

cision is symmetric or near-symmetric over the support of default risk distribution, the

increase in discrimination for the marginal minorities mostly cancels out in aggregate, as

there are other minority applicants for whom discrimination decreases. Otherwise, aggre-

gate discrimination can either increase or decrease in response to precision gain, and the

magnitude of the effect is increasing in bias intensity, noisiness of the prediction technol-

ogy before the adoption of predictive AI, and the extent of precision gain. In general, an

increase in aggregate discrimination is possible if the relative mass of marginal minorities is

large (compared to other minorities), if the distribution of default probabilities in concen-

trated near the cutoff, and if the first derivative of discrimination (conditional on default

probability) with precision is asymmetric.
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The contribution of this paper is twofold. First, it shows a bias-neutral precision gain

of an unbiased prediction algorithm can have a disparate impact on discrimination in

the short run, decreasing discrimination for some while increasing discrimination for the

marginal minorities who are worse off or at least the same off, but never better off. Second,

it shows the counter-intuitive result that even a bias-neutral precision gain of an unbiased

prediction algorithm can potentially amplify exogenous (human) bias, resulting in an ag-

gregate rise in discrimination. It also elucidates the underlying mechanism through which

this counter-intuitive result arises. Not accounting for this mechanism may result in AI

being unduly blamed for creating bias when the impact of prediction AI is being evalu-

ated. Such evaluation often takes place shortly after the adoption of predictive AI and

justifies the modeling choice of a short time horizon. Not understanding this mechanism

has pitfalls for society at large, especially when fear and distrust of AI is high, as this may

inadvertently thwart or slow down the adoption of a beneficial technology.
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