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Abstract

We study cluster-robust inference for binary response models. Inference based on
the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very
unreliable. We study several alternatives. Conceptually the simplest of these, but also
the most computationally demanding, involves jackknifing at the cluster level. We also
propose a linearized version of the cluster-jackknife variance matrix estimator as well
as linearized versions of the wild cluster bootstrap. The linearizations are based on
empirical scores and are computationally efficient. Throughout we use the logit model
as a leading example. We also discuss a new Stata software package called logitjack
which implements these procedures. Simulation results strongly favor the new methods,
and two empirical examples suggest that it can be important to use them in practice.
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1 Introduction

Cluster-robust inference has been studied extensively over the past decade. A recent guide
to this literature is MacKinnon, Nielsen, and Webb (2023a). Other surveys include Cameron
and Miller (2015), MacKinnon (2019), Esarey and Menger (2019), and MacKinnon and
Webb (2020). Conley, Gongalves, and Hansen (2018) surveys a broader class of methods for
various types of dependent data. Although the literature has grown enormously, a very large
fraction of it concerns linear regression models estimated by ordinary least squares. With the
important exception of Hansen and Lee (2019), it has largely ignored nonlinear models. For
linear regression models, several different cluster-robust variance matrix estimators (CRVEs)
are available, along with a number of bootstrap methods. The finite-sample properties of
these methods can vary greatly, and quite a lot is known about most of them. However,
there exist almost no comparable results for nonlinear models.

To study the finite-sample properties of methods for cluster-robust inference for nonlinear
models, it is essential to specify a particular class of such models. It seems natural to start
with binary response models because they are widely used with the sort of cross-section and
panel datasets where cluster-robust inference is often needed. As a leading example, we focus
on the logit (or logistic regression) model.

As we show in Section 6, the only existing CRVE for logit models that is widely used
can have poor finite-sample properties. We therefore propose several alternative procedures
based on the cluster jackknife or the wild cluster bootstrap. The first cluster-jackknife pro-
cedures that we introduce are similar to the ones for linear models discussed in MacKinnon,
Nielsen, and Webb (2023c, b) and Hansen (2023), but they are more challenging computa-
tionally because nonlinear estimation is needed. We therefore introduce computationally sim-
pler procedures based on score vectors at the cluster level. These procedures, which appear to
be new, involve linearizing the first-order conditions so as to compute approximations to the
delete-one-cluster estimates needed for the jackknife. The linearized cluster jackknife estima-
tors appear to be feasible for large samples with either few large clusters or many small ones.

The same linearization methods make it possible to apply what is essentially the wild
cluster bootstrap (Cameron, Gelbach, and Miller 2008; Djogbenou, MacKinnon, and Nielsen
2019) to binary response models. We propose several new wild bootstrap methods which
can be computed using almost the same code as similar wild cluster bootstrap methods for
OLS regression. The methods that seem to work best in many cases are very similar to the
WCR-S and WCU-S bootstraps proposed in MacKinnon et al. (2023b); see Section 3.

In Section 2, we introduce the class of binary response models to which our procedures

apply, along with sandwich CRVEs for models with G clusters. These are special cases of the



conventional CRVEs discussed in Hansen and Lee (2019). We also discuss two CRVEs based
on the cluster jackknife, in which each cluster in turn is deleted from the sample so as to
obtain GG vectors of parameter estimates. Although the cluster jackknife is not new, it does
not seem to have been studied in this context. Then, in Section 3, we discuss a linearization
procedure and show how it can be used as the key part of computationally efficient jackknife
and wild bootstrap procedures, which appear to be new.

In Section 4, we discuss how to deal with cluster fixed effects. These are very commonly
encountered in models with clustered data, and all the jackknife methods need to be modified
to handle them. The paper mainly focuses on hypothesis tests, but Section 5 discusses
confidence intervals, where computational issues are important. Section 6 presents the results
of a large number of simulation experiments. Section 7 discusses two empirical examples

which illustrate the application of our proposed methods. Finally, Section 8 concludes.

2 Sandwich CRVEs for Binary Response Models

We are concerned with binary response models of the form
PgZ:Pr(ng:HXgl):F(Xgl,@), gzl,...,G, izl,...,Ng. (1)

Here yg;, which equals either 0 or 1, is the response for observation 7 in cluster g. There are
N observations, with the g*" cluster containing N, of them. The continuous, monotonically
increasing function F'(-) maps from the real line to the 0-1 interval. The best-known examples
are the logistic function and the cumulative normal distribution function. In the former case,
(1) leads to the logit model, and in the latter case to the probit model. The first derivative
of F(-) is denoted f(-). The row vector X, contains the values of k£ explanatory variables,
and the k-vector B is to be estimated. In many cases, one element of B is of particular
interest, and we wish to test a hypothesis about it or form a confidence interval. Without
loss of generality, we assume that this is the £*® element. Then B can be divided into a
(k — 1)-vector B; and a scalar f3y.

As specified in (1), the binary response model may or may not involve any intra-cluster
correlation. That will depend on just how the y,; are obtained from the probabilities given
by F(X,:8); see Section 6. For the rest of this section, we merely allow for the possibility
that intra-cluster correlation exists.

For the logit and probit models, and many others, F'(—z) = 1— F(z) for any argument z.
In what follows, we assume that this is the case. Some of our results would need to be

modified if it were not.



If y is an N-vector with typical element y,;, the log-likelihood function for (1) can be

written as

M) =

(ygi log F(XyiB) + (1 — yg:) log F(—ngﬂ))- (2)

i

G
l(y,B) = 2_:

I

The first-order conditions for B are then

Ng L . A . 2 ..
EG: 3 (ygz F(XQZB))JC(XQZB)XW =0, j=1,...,k, (3)
g=1i=1

where X,;; is the 7™ element of X ;. The score vector for the g* cluster is

5,(B) = Zg;sgi(ﬁ), where  s4,(8) = F(X,B)F(—X,:8) “

Thus the k£ equations in (3) can be rewritten as a single equation for the entire parameter
vector B, namely, § = 25:1 8, = 25:1 s,(8) = 0. Of course, if the scores were assumed
to be independent within clusters, it would be more natural to write this as the summation
of the N empirical score vectors sgi(B). But we are merely assuming independence across
clusters, with potentially arbitrary patterns of intra-cluster dependence.

Most treatments of binary response models assume that the observations are independent
or, equivalently, that each cluster contains just one observation. In that case, the asymptotic

variance matrix is readily obtained from the result that

N'2(B - Bo) = (thNAH(ﬁo))il Nmisi(ﬂo)? (5)

i=1

2y

where “=" denotes asymptotic equality, H () is the Hessian, By is the true value of 8, and
s:(Bo) is s4(Bo) for the special case in which clusters and observations coincide. This leads

to the variance matrix estimators

Vu(B)=—H(B)™" and Vi(B)=Z(B)", (6)
where I(,é) denotes the information matrix evaluated at B Asymptotically, the plim of
N~1Z(B) equals minus the plim of N"'H () by the information matrix equality. For the
logit model, Vi;(B) actually equals Vz(8) (Section 3.1), but this is not true in general.

When there is no clustering, it is not hard to show that

I(B)=X'T(B)X, (7)



where Y(8) is an N x N diagonal matrix with typical diagonal element

P(xiB)
(XiB)F(-XiB)

see, among many others, Davidson and MacKinnon (2004, Section 11.3).

Tz(ﬂ) = F (8)

The asymptotic equality (5) does not hold when there is clustering, because the rate at
which B tends to By is, in general, not N~'/2; see Djogbenou et al. (2019). Nevertheless, it
is possible to make inferences based on the CRVEs

H(B)"'S(B)H(B)™ and I(B)'S(B)Z(B) ", (9)

where 2(3) is an estimator of the expectation of the sum of the outer products of the s,(83)

with themselves; see Hansen and Lee (2019, Theorem 10). Conventional CRVEs have this

familiar sandwich form, with a matrix based on the outer product of the scores sandwiched

between two instances of something that estimates the inverse of the information matrix.
The most natural CRVE based on (9) is probably

G
CVig:  Vin(B) = o 1mH(5)71 (Z §g§gT) H(B)™ (10)

The filling in the sandwich here is the obvious estimator of E(sg(ﬁ)sg(B)T>. The degrees-
of-freedom factor is optional, but it seems reasonable to include it by analogy with the usual
CV; estimator for linear regression models. The estimator in (10) is almost the same as the
one used by Stata, which omits the factor of (N — 1)/(IV — k). We refer to it as CVig
because it is analogous to the CV; estimator and employs the estimated Hessian.

For the model (1), the contribution to the Hessian made by the gi'" observation depends

on the value of y,;. Specifically,

f,<_Xgi/6)F(_XgiB) - f2<_Xgi:3)

Hyi(B) = P X..5) XXy ify, =0, (11)
gi
H,.(8) = f’(ngﬂ)Fégf;z(ﬂ)ﬂ—) fQ(ngﬂ) X;Xgi if gy = 1. (12)

The k x k matrices with typical elements given by (11) or (12) are summed over all the
observations for which y,; equals 0 and 1, respectively, to obtain H (B)

The estimated Hessian H (B) can be replaced by its expectation. In order to take the
expectations of (11) and (12), we use the fact that E(y,;) = F(X,;8). Thus we multiply (11)
by F(—X,8) and (12) by F(X,;8), and then add them. The first terms in each of the two

numerators cancel out, since f'(—=X;8) + f'(X;8) = 0 by the symmetry of the function



f(+). This leaves just the second terms, of which the weighted sum is

. fQ(_XgiB) f2( 9113) T
(F(_Xgi/@) * ( gZB)>X X <13)

When we cross-multiply and make use of the facts that F'(X,;8) + F(—X,8) = 1 and that
f(X4iB) = f(—X4B), (13) simplifies to

_f2(Xgi:B)

which is just —Tgi(B)X;Xgi, where T ,;(8) was defined in (8). This leads to the CRVE

X;Xgi, (14)

CViz: Vig = mN — (XTTYX)" (Z 5,5 ) (X'rx), (15)
where T = Y(B). The matrix that is inverted twice here is the empirical counterpart of (7).
We refer to this estimator as CViz because it uses the information matrix Z (B) instead of
the Hessian H(8).

Cluster-jackknife variance matrix estimators for the linear regression model are discussed
in MacKinnon et al. (2023c, b) and Hansen (2023). Each cluster is deleted in turn, yielding
the vector of delete-one estimates B(g) when the g'" cluster is deleted. The jackknife CRVE is

_1G

CVs;: ‘A/E’)J — Z ,3(9) ,3) (16)

where A is the arithmetic mean of the 3. An alternative jackknife CRVE is

G-1C5 A A

CVs: —Z - B) (B9 - pB)T, (17)

which differs from (16) only because it computes the variance around B instead of 3.

The notation in (16) and (17) is descended from the use of HC3 in MacKinnon and White
(1985) to denote a heteroskedasticity-consistent variance matrix estimator based on the
jackknife. Bell and McCaffrey (2002) discusses both (16) and (17), but they are computed
in a completely different way so that they have the usual sandwich form. That method
would be computationally attractive if all the /N, were very small, but it can be extremely
expensive, or even infeasible, when any of them is large (MacKinnon et al. 2023b, Section 4).
Simulation evidence in Bell and McCaffrey (2002) and MacKinnon et al. (2023b) suggests
that, for linear regression models, CV3; and CV3 tend to be extremely similar. The former

is always at least slightly smaller than the latter, however, because the variation of the B (9)
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around their mean of 8 cannot exceed their variation around any other vector, including B .

It is inevitably costlier to compute CV3; or CV3 for a binary response model than for a
linear regression model with similar numbers of parameters, clusters, and observations, be-
cause in the former case we need to perform G + 1 nonlinear optimizations. Much of the
time, however, B should provide a good starting point for obtaining each of the B(g). Thus
the cost of computing G + 1 sets of estimates should be less than GG + 1 times as great as the
cost of computing B by itself. Moreover, unless G is extremely large, computing GG + 1 sets
of estimates will be much cheaper than any bootstrap method that requires nonlinear esti-
mation for every bootstrap sample. Note, however, that the bootstrap methods introduced
in Section 3 do not require any nonlinear estimation within the bootstrap procedure.

Another advantage of jackknife methods is that they can readily be adapted to make
inferences about smooth functions of 8. For example, if we care about § = (5/3, we simply
need to calculate & for the entire sample and 5 for each vector of delete-one estimates and
then use the analog of (16) or (17) to calculate its jackknife variance. Bootstrap methods
also have this useful feature.

The jackknife methods we propose do, however, suffer from a potentially important com-
putational problem. Suppose there exists some linear combination of the Xg;, say X 8°,

with the property that

Ygi =0 whenever X 8° <0, and (18)
Ygi =1 whenever X 3° > 0. (19)

Then it is possible to make the value of the log-likelihood function (2), which is always
negative, arbitrarily close to 0 by setting 8 = vB8°® and letting v — oo. This is precisely what
a numerical optimization routine will attempt to do, although it will normally stop with an
error message long before any element of B becomes infinitely large. In this case, the vector
X B°, which of course is not unique, is said to be a perfect classifier, since it allows us to
predict y,; perfectly for every observation in the sample.

When there is a perfect classifier, we cannot obtain well-defined estimates of all the
parameters by maximizing (2). If this happens for the entire sample, then we either need
to drop one or more regressors, obtain additional data, or use some form of regularization.
The problem for the jackknife estimators is that, even if there are no perfect classifiers for
the entire sample, there might be a perfect classifier for one or more of the subsamples.
When this happens, the values of CV3; and CV3 may become extremely large and completely
unreliable. Thus any program to compute CVs; and CV3 needs to check whether there is a

perfect classifier when any one of the GG clusters is dropped. When that happens, it should



either report that the variance matrix could not be computed or omit the offending vector(s)
of delete-one estimates and report that it has done so. In the latter case, especially if the
deleted cluster is large, C'Va; is likely to be more reliable than CVs, because B for the reduced
sample may differ noticeably from B for the full sample.

It is straightforward to base inference on CV3 or CVs;. Suppose there are r > 1 linear
restrictions. These can be written as RSB = r, with R an r X k matrix and r an r-vector.

Tests of these restrictions are commonly based on the Wald statistic
W(B) = (RS —7)"(RVR")(Rp ), (20)

where V' could be any of the CRVEs defined in (10), (15), (16), or (17). Asymptotically, as
G — o, W(B) is distributed as x?(r) under the null hypothesis.
When there is just one restriction, the signed square root of W (/) has the form of a ¢-

A

statistic. When a' is a single row of R and r = 0, such a t-statistic can be written as

b= GT(B — Bo)

“ (aTVa)/2’ (21)

With linear models it is customary to compare this with the (G — 1) distribution (Bester,
Conley, and Hansen 2011). However, both the logit command in Stata and the sandwich
package in R compare this with the N(0, 1) distribution. In the very common case in which
there is a single zero restriction, say that Sy = 0, (21) reduces to Bk/§k, where §j is the

square root of the k" diagonal element of V.

3 Methods Based on Linearization

Computing either CV3; or CV3 requires G' + 1 nonlinear optimizations. However, replacing
the B8 in (16) and (17) by estimates from a linear approximation yields cluster-jackknife
CRVESs that are much cheaper to compute. The linear approximation is based on the arti-
ficial regression for binary response models proposed in Davidson and MacKinnon (1984).
However, it can be performed without explicitly running a regression. We just need the con-
tribution to the scores, s,(8), and the contribution to the information matrix, J,(8), made

by each of the clusters. The s,(8) are given by (4), and

& FA(X,:8)
ToB) = 25X B F(—X,8)

=1

X;Xgi (22)



from (14). Then the estimates from linearizing the model around 3 are

_1G

G
b(8) - (Z Jg(ﬂ>> 3 5,(8) = 7(6)"'s(6). (23)

where J(8) = Y5, J,(B8). When the s,(8) and Jy(B) are evaluated at the true value By,
the estimate b(3y) provides a linear approximation to 8— By. This gives us almost everything
we need to compute linearized jackknife and bootstrap tests.

To compute linear approximations to the delete-one-cluster estimates, we first estimate
the model by maximizing (2). Then we form the cluster-level vectors and matrices §, = s, (B)
and J, = J,(B) using (4) and (22). The linear approximations to 3¢ — 3 when each cluster

is omitted in turn are then
b9 = (J-J,) s5-5,), g=1,...,G. (24)

We can use these approximations to compute cluster-jackknife variance matrices. The one

comparable to (17) is

CVsy,: V?,L(,é) = 4 Z b(g)g

e (25)

Nothing is subtracted from the b here, because when we evaluate (23) at ,3, the estimate
b= b(,@) is identically zero by the first-order conditions for B . We could instead subtract b,
the arithmetic mean of the 9. If we did so, we would obtain a linearized cluster-jackknife
CRVE comparable to (16). The computations in (24) and (25) used to compute CVsy, are
usually far less expensive than the ones needed to compute CVjs; see Section 7.2.

The linearization given by (23) can also be used to compute a CVy, variance matrix
similar to the CVy matrix proposed in Bell and McCaffrey (2002) and referred to there as
“bias-reduced linearization.” These matrices are generalizations of the HCy matrix of Mac-
Kinnon and White (1985). There is more than one way to compute them, only one of
which (Niccodemi et al. 2020) is feasible for large samples; see Appendix A. Because the
simulations in MacKinnon et al. (2023b) suggest that CVy very rarely performs better than
CVj (although it always performs better than CVy), we do not study CVyy, further.

It seems plausible that, except perhaps in cases where one or a few clusters are highly
influential (MacKinnon et al. 2023c), all four of the cluster-jackknife variance matrices will
yield similar inferences. We will investigate this conjecture in Section 6.

The linear approximation (23) can also be used to compute new versions of the wild
cluster bootstrap, which we refer to as “wild cluster linearized,” or WCL, bootstraps. Like

the score bootstraps proposed in Kline and Santos (2012), the WCL bootstraps are based



on restricted or unrestricted empirical scores. However, they differ in one important respect
from the Kline and Santos (2012) methods. Both procedures generate bootstrap samples
from empirical bootstrap scores, but then our WCL methods multiply those bootstrap scores
by the inverse of some version of the J matrix, in order to mimic the estimation step that
yields empirical scores for the actual model.

We now describe the bootstrap data-generating processes. To avoid having to give two
separate results for the restricted and unrestricted bootstraps, we let “%” denote either “Z” or
“2” for any x. In the first step, we multiply the score vector 8, for cluster g by random variates
U;‘b for b =1,..., B bootstrap samples. The v;‘b must have mean 0 and variance 1. In most
cases, it seems best for them to be independent draws from the Rademacher distribution,
for which v;b equals +1 and —1 with equal probabilities; see Djogbenou et al. (2019). Thus
the bootstrap score vectors are

b =vls,, g=1,...,G. (26)

The next step is to estimate the coefficient vector b by least squares:

b = (gzcjl jg> gzl 8. (27)

The vector b* is then used to compute the empirical bootstrap score vectors

W =8 J bt g=1,....G. (28)

g

These are what the bootstrap score vectors become after the model has been “estimated”
using the linearization (23).

The CV; bootstrap variance matrix can then be written as

e GIN=1) (& T
W (e <29)

and the bootstrap t-statistic that corresponds to (21) is

TExb
. a'b
= = (30)
(aTVy a)'/?
In principle, we could instead compute a CV3 bootstrap variance matrix, but using (29)
makes the bootstrap computations much faster. Transforming the bootstrap score vectors
in the way proposed in MacKinnon et al. (2023b) (see below) achieves much the same effect

as using CV3, but at far less computational cost.
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As usual, several different bootstrap P values can be computed. For cross-sectional
models estimated by least squares, where bias is generally not a problem, the symmetric
bootstrap P value is usually appropriate. It is computed as

. 1 &

Pr(t,) = =S It > |ta]), 31

< (ta) B;(Ia\ tal) (31)
where [() denotes the indicator function. We reject the null hypothesis for a test at level «

whenever ps*(ta) < a. An alternative is the equal-tail bootstrap P value

Pr(ta) = émin <§]I(t;b >t,), o (It < ta)> : (32)

Because the estimated slope coefficients for binary response models tend to be biased away
from zero (MacKinnon and Smith 1998), it might be preferable to use (32) instead of (31) for
these models. However, we did not find any real difference between them in the experiments
of Section 6.

The WCL bootstrap methods that we have just described are the analogs for binary
response models of the classic wild cluster bootstrap methods for OLS regression, which are
called WCR-C and WCU-C in MacKinnon et al. (2023b) to distinguish them from newer
variants introduced in that paper. We therefore refer to the two WCL methods as the
WCLR-C and WCLU-C bootstraps. As usual, the “R” and “U” here indicate whether the
bootstrap DGP uses restricted or unrestricted estimates. The “-C” indicates that the score
vectors are not transformed before generating the bootstrap samples.

Many of the computations for WCR-C/WCU-C and WCLR-C/WCLU-C are identical.
For the former, everything depends on the score vector contributions, X gT U4, and the nega-
tive Hessian matrix contributions, X ; X,. For the latter, everything depends in exactly the
same way on the 8, and the J,,.

This insight shows that the WCLR and WCLU bootstraps can easily be modified to make
them analogous to the WCR-S and WCU-S bootstraps proposed in MacKinnon et al. (2023b).
The modification involves replacing the empirical scores § in (26) by transformed empirical
scores based on the cluster jackknife. The “-S” in the names stands for “transformed score.”

The key equations, adapted to the present case, are
§y=58,—J,b9 g=1,...,G, (33)
for the unrestricted scores, and, assuming that the only restriction is g = 0,

§g=38,— 1,0, g=1,....G, (34)

11



for the restricted scores. Equations (33) and (34) are, respectively, analogous to (38) and
(37) in MacKinnon et al. (2023b). In (34), the matrix Jy, contains the first & — 1 columns
of J,, and the vector b\ contains the first k — 1 elements of b@. When there are r < k
linear restrictions, (34) can be replaced by a more complicated equation analogous to (34)
in MacKinnon et al. (2023b).

Using the transformed empirical scores from (33) or (34) yields what we will call the
WCLU-S and WCLR-S bootstraps, respectively. The purpose of the transformations is to
undo the distortions of the empirical scores caused by estimating B, at least to the extent
that it is feasible to do so. This should allow the bootstrap DGP to mimic the unknown true
DGP more accurately. Simulation evidence in MacKinnon et al. (2023b) suggests that the
WCR-S and WCU-S bootstraps can perform substantially better than the classic WCR-C
and WCU-C bootstraps in many cases. This also seems to be true for WCLR-S and WCLU-S
relative to WCLR-C and WCLU-C; see Section 6. In particular, confidence intervals based
on WCLU-S perform very much better than ones based on WCLU-C.

All the methods proposed in this section are implemented in the Stata package logitjack;

see Appendix B.

3.1 The Logit and Probit Models

For the probit model, the cumulative standard normal distribution function ®(-) and the
standard normal density ¢(-) play the roles of the functions F'(-) and f(-). In our simulations
and empirical examples, however, we focus on the logit model. It seems to be more widely

used and is computationally a bit simpler than the probit model. The logistic function is

1 e’
A p— p—
@ res " Tre )
and its first derivative is
eil'

The functions A(-) and A(-) play the roles of F(-) and f(-) for the logit model,

For most binary response models, the variance matrix estimators in (10) and (15) are
different. In the case of the logit model, however, they are numerically identical. From (8),
it is easy to see that a typical diagonal element of Y is simply Tgi = A(XgiB)A(—XgiﬁA).
But this is also what the absolute value of each of the factors that multiply X ;X in (11)
and (12) simplify to when they are evaluated at 3. Because the Hessian appears twice in
the sandwich estimator (10), it is only the absolute value that matters. Thus, for the logit

model, CV;7 and CV;y coincide.
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For the logit model, the score vectors defined in (4) simplify to

Ng

$0(8) = (voi = MXiB)) Xgi, 9=1,...,G, (37)

i=1
because A(x) = A(x)A(—=z). In addition, the g** contribution to the information matrix is

NQ
Jy(B) = > Agi(B)Agi (—B) X i X i, (38)
i=1
which is a bit simpler than (22). In general, the logit model is easier and somewhat cheaper

to estimate than the probit model.

3.2 The Linear Probability Model

It is not difficult to estimate a binary response model and then linearize it using (23), so as to
obtain linear approximations to the delete-one-cluster estimates. However, an even simpler
approach is to estimate a linear probability model (LPM) and use existing methods for

inference in clustered least-squares regression models. The first step is to run the regression
ygi:Xgié—i—ugi, g:]_,...7G, izl,...7Ng, (39)

where ug; is a disturbance term to be discussed below. There is nothing to ensure that
0 < X6 < 1in (39). Nevertheless, when all the P, are well away from both 0 and 1,
and all of the regressors are dummy variables, least squares typically does yield estimated
probabilities that lie in the [0,1] interval most of the time and are quite similar to the
ones from a binary response model. Thus it is common, and often not very harmful, for
investigators to estimate the LPM (39) instead of the binary response model (1).

When an LPM is appropriate, the number of clusters and (for treatment models) the
number of treated clusters are both reasonably large, and there is not too much inter-cluster
variation, we might expect inferences based on CVj, or even CVj, from (39) to be fairly
reliable (MacKinnon et al. 2023a). When any of these conditions is not satisfied, it may
be safer to use some variant of the restricted wild cluster, or WCR, bootstrap. When the
Rademacher distribution is used, the bootstrap dependent variable can take on only two
values, each with probability 1/2. If Xgig denotes the gi** fitted value from the LPM.,

evaluated at the restricted estimates, these are
The first value here is just the actual value of y4;, which is 0 or 1. But the second is either
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2ng-5 or 2Xgi5 — 1. Unless ng-S = 1/2, one of these numbers must always lie outside the
[0,1] interval. Thus, the y7; must look very different from the y,,. However, they do have
the correct expectation under the bootstrap DGP. If E*(-) denotes expectation under the

bootstrap probability measure, that is, conditional on the sample, then

%[ % 1 * 1 IN * 1 IN S IN
E (ygi) = §E (ygz> + 5(2)(571‘(s - E (ygi)) = i(Xgl(s + Xgld) = Xgi(s-
Although the bootstrap regressand (40) for the LPM may seem rather strange, it leads

to the WCR-C bootstrap score vector

N, N, < .
9 - il (ygi — X4i0) X i with prob. 1/2,
Z(ygi — Xi0) Xy = Nl o ’ ) (41)
i=1 > (X0 — y,4i) X4 with prob. 1/2.
Similarly, from (37), the WCLR-C bootstrap score vector for the logit model is
N, N, 3 .
. i (ygi — Nyi) X4 with prob. 1/2,
Z(ygi — Ngi) Xy = N ! Y . (42)
i=1 > (Agi — ygi) X i with prob. 1/2.

The WCR-C bootstrap score vector (41) and the WCLR-C bootstrap score vector (42)
look very similar. The only difference is that the former uses Xgig as the fitted value for
observation gi, and the latter uses /~\gi = A(XgiB). This suggests that, when the LPM
provides a reasonably good approximation to a logit model, inferences based on an LPM
and either variant of the WCR bootstrap are likely to be quite similar to inferences based
on a logit model and the corresponding variant of the WCLR bootstrap.

We would also expect inferences based on both variants of the WCU bootstrap to be
similar to inferences based on the corresponding variants of the WCLU bootstrap, and
inferences based on CV3 for the LPM to be similar to inferences based on both CV3; and

CVjyy, for the logit model. We will investigate these conjectures in Section 6.

4 Cluster Fixed Effects

It is very common for models where cluster-robust inference is employed to include cluster
fixed effects. This creates some important computational issues, which we discuss in this

section. The probability that y,; = 1 is now

F(X,8+ 32 5.00), (43)
h=1
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where the D;‘i are cluster fixed-effect dummies, with Dgi = 1 whenever g = h and D;’i =0
otherwise. There are k + G parameters to estimate, but interest focuses on the vector 3,
which has £ elements that do not include a constant term.

Under standard regularity conditions, it should be possible to estimate (43) by maximum
likelihood using the entire sample. But when cluster h is omitted, it will be impossible to
identify 95, because D;}Z- = 0 for all g # h. For linear regression models, MacKinnon et al.
(2023b) discusses how to compute cluster-jackknife variance matrices when there are cluster
fixed effects. The cheapest and easiest method is often to partial out the fixed effects before
running either the full-sample regression or any of the delete-one-cluster regressions. But
this partialing-out method is simply not feasible for (43), or indeed for any model that is
nonlinear in the fixed effects.

A second method, also discussed in MacKinnon et al. (2023b), is to use a generalized
inverse. For a linear regression model, this sets the coefficient §, to 0 for the regression that
omits cluster h, but B (") is the same as it would be for the partialing-out method. Whether
or not this method could be used in the case of CV3 or CV3j is unclear. It would mean using
a logit or probit estimation routine that employs a generalized inverse and relying on that
routine to do the right thing whenever one coefficient is completely unidentified. This seems
risky and heavily dependent on the software employed. However, it is possible to use the
generalized-inverse method for the linearized variance matrix estimators, CVsy, and CVspj,
since computing each of the delete-one-cluster estimates just involves a linear regression.
This is also the case for the WCLR-S and WCLU-S bootstraps, where a generalized inverse
can be used in (24) or the analogous equation for the restricted case.

A third method, which is the only one we are aware of that will work for CV3 and CV3j,
is to estimate G+ 1 different binary response models. The model for the full sample will have
k + G coefficients, but the model for each of the delete-one-cluster samples will have only
k+G —1 coefficients, because the fixed-effect dummy for the deleted cluster must be omitted.
Although this is conceptually straightforward, it may be challenging to program efficiently,
because the set of fixed effects will be different for each of the G + 1 models. As with the
other two methods, the B 9) are computed for all clusters, but the 3,(;[’ ) are not, because they
cannot be computed when g = h. This means that the cluster-jackknife variance matrices
can be computed only for B . Because this method is tricky and time-consuming, employing

any of the bootstrap methods or CVjy, is easier (and often much faster) than obtaining CVsj.
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5 Confidence Intervals

There are many ways to construct confidence intervals for binary response models. Some of
these are computationally convenient, but others are inconvenient because the models are
nonlinear. In this section, we briefly discuss several methods. The intervals that are easy to
compute will be studied in Section 6.

The simplest approach to constructing a 100(1 — «)% confidence interval, where « often

equals either 0.05 or 0.01, is to employ a symmetric interval of the form

[Bj — Cl_q/2 Se(Bj>, Bj + cl_a/gse(ﬁj)}, (44)

where Bj is the maximum likelihood estimate of the coefficient of interest, and ¢,_,/ is the
1 — a/2 quantile of some distribution. There are, in principle, many different confidence in-
tervals based on (44). The critical value ¢;_q/» might come from either the N(0,1) distri-
bution or the ¢(G — 1) distribution, and the standard error might come from any of several
different cluster-robust variance estimators or numerous different bootstrap distributions.

The standard normal distribution is the default for logit and probit models in Stata, but
quantiles of the ¢(G — 1) distribution are usually employed when constructing intervals like
(44) for linear regression models using CV; or CV; standard errors. The results in Section 6
suggest that this is always a better choice for binary response models too.

Instead of using CV; or CV;3 standard errors, we can use a bootstrap standard error based

on B bootstrap estimates, Bj*b This is simply

1/2
Sehoot(;) = <Bl_1 1; (B]*b _ 5;.‘)2> ’ (45)
where ﬁ_j* is the arithmetic mean of the Bj*b Any bootstrap DGP that does not impose the null
hypothesis can be used to generate the bootstrap samples. However, using the best-known
such DGP, namely, the pairs cluster bootstrap, would be extremely expensive, because it
would involve estimating a nonlinear model for each of B bootstrap samples. In contrast,
the wild cluster linearized bootstrap methods proposed in Section 3 are very inexpensive
when the computational tricks of Roodman et al. (2019) are employed. In principle, either
WCLU-C or WCLU-S could be used, but the latter seem to work much better; see Section 6.

Instead of using a WCLU bootstrap to estimate a bootstrap standard error from (45),

we could construct a studentized bootstrap interval of the form

[B) = ci_appser(B)). B — cipser(3)]. (46)
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Here sel(ﬁj) is the CV; standard error of j3;, and Co2 and cj_, o are the a/2 and 1 — a/2
quantiles of the distribution of the bootstrap t-statistics. For example, if B = 999 and
a = 0.05, these would be numbers 25 and 975 in the list of bootstrap t-statistics sorted
from smallest to largest. It may seem odd to use the CV; standard error in (46), because
we have argued in MacKinnon et al. (2023b) that the CV; standard error is more reliable.
But it is essential to use the same standard error in (46) as in the WCLU bootstrap itself.
The advantages of using cluster-jackknife standard errors apply to the WCLU-S bootstrap
through the transformation of the scores. This suggests that intervals based on WCLU-S
should outperform ones based on WCLU-C.

In theory, the studentized bootstrap interval (46) may perform better than the interval
(44) using bootstrap standard errors, for the same bootstrap DGP, because the former is
based on a test statistic that is asymptotically pivotal and allows the t-statistic to have an
asymmetric distribution. In contrast, the latter is not based on an asymptotically pivotal
quantity and imposes symmetry on the distribution. We shall investigate this conjecture,
and others, in Section 6.

For an unrestricted bootstrap DGP, the same set of bootstrap samples can used to form
confidence intervals for, and test hypotheses about, any coefficient or set of coefficients. In
contrast, for a restricted bootstrap DGP, a different set of bootstrap samples is needed every
time we calculate a bootstrap P value. This means that, to obtain a WCLR confidence
interval, the binary response model has to be estimated many times subject to the restriction
that (3; equals each candidate value for the limits of the interval; see MacKinnon (2023,
Section 3.4). When we attempted to implement this method, we sometimes encountered
numerical problems in the logit routine. This made it infeasible to perform simulations with
a large number of replications. We therefore decided not to include WCLR-based intervals

in our simulations, and, at present, we cannot recommend them in most cases.

6 Simulation Evidence

We have performed a large number of simulation experiments for quite a few different tests,
all for the logit model. How well the tests perform inevitably depends on many features of the
model and DGP. Nevertheless, several interesting regularities emerge from our experiments.
In particular, the classic CVi-based t-test is prone to over-reject, often severely, and it
almost always does so to a greater extent than the jackknife and bootstrap tests proposed in
Sections 2 and 3. In many circumstances, but not all, we find that CVj3 t-tests and WCLR-
S bootstrap tests are particularly reliable. In Section 7, we provide some advice about how

to proceed when alternative tests yield differing inferences.
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In order to investigate the finite-sample properties of cluster-robust ¢-tests, we need to
generate samples with intra-cluster correlation. In principle, this could be done in many
different ways. The one that we use is particularly easy to implement, since it just requires
a uniform random number generator. First, we specify a parameter ¢ between 0 and 1.
Then we generate G independent random variates v, ~ U(0,1), N independent random
variates ey ~ U(0, 1), and up to N more independent random variates v, ~ U(0,1). For all

g=1,...,Gandi=1,...,N,, we then compute

Ugi = Vg if €gi < @, and ug; = vy if €4 > ¢. (47)
Ygi = 0 if F(Xy) < ug, and yg, = 1if FI(Xy) > ug. (48)

Thus, with probability ¢, the random variate u,; is equal to vy, and, with probability 1 — ¢,
it is equal to vg;. At one extreme, when ¢ = 0, all of the u, are independent. At the other
extreme, when ¢ = 1, they all take the same value u,. The value of the binary variate y,; is
then equal to 0 with probability 1 — F'(X,;8) and to 1 with probability F'(X,;/3), as usual,
but these events are not independent across observations within each cluster unless ¢ = 0.

Most of our experiments deal with tests of a restriction on one parameter in a logit model.
The function F(X8) is given by

k—1
A(51 + 22 Bi Xgij + ﬁkng'), (49)
=
where the X,;; are binary random variables. For each j and for each g, a probability w,
between 0.25 and 0.75 is chosen at random for each replication. Then, with probability
wg, we set Xg; = 1 forall i = 1,..., Ny, and otherwise we set X ;; = 0. This design is
intended to mimic the situation, often encountered in treatment regressions, where all of the
regressors are dummies. It allows these variables to vary moderately across clusters. In most
experiments, ; = 1 for 1 < j < k. The model would fit better (worse) if these coefficients
were larger (smaller). The treatment regressor Tj; equals 1 for G; randomly chosen clusters
and 0 for the remaining Gy = G — G clusters, with g = 0 in most experiments. The
unconditional expectation of y,; is 7, which depends on the 8; and the distribution of the X;;.
When we vary it, we do so by changing (;, the constant term.

The N observations are divided among the G clusters using the formula

exp(v9/G)
N, = |N :
! 5 exp(vj/G)

=1,...,G—1, (50)

where 2] means the integer part of z. The value of Ng is then set to N — 97" Ny, This
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Figure 1: Rejection frequencies for tests at the 0.05 level as functions of G
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Notes: These experiments use 100,000 replications, with G = 12,18, 24, 30, 36, 48,60, 72, and N = 500G.
The value of G is G/6 in Panel (a) and G/2 in Panel (b). There are 7 regressors, one of which is a treatment
dummy that is assigned at random, plus a constant term. The value of ¢ is 0.1. The extent to which cluster
sizes vary is determined by the parameter 7 in (50), which equals 2. The unconditional expectation of yg; is
7 =0.316. CV; and CV;3 denote cluster-robust t-statistics based on (10) and (17), respectively.

procedure has been used in MacKinnon and Webb (2017), Djogbenou et al. (2019), and
several other papers. The key parameter here is v, which determines how uneven the cluster
sizes are. When v = 0 and N/G is an integer, (50) implies that N, = N/G for all ¢g. For
v > 0, cluster sizes vary more and more as 7 increases. The largest value that we use is 4. In
that case, when G = 24 and N = 12000, the largest cluster (1889 observations) is about 47
times as large as the smallest (40 observations). In contrast, when v = 2, the largest cluster
(1120 observations) is just under seven times as large as the smallest (163 observations).

In the first set of experiments, we let N vary from 6,000 to 36,000, with G = N /500 and
v = 2. We focus on tests of §; = 0 in the logit model with E(y,;) given by (49). These are
based on either CV; or CVj standard errors and either the N(0, 1) or the ¢(G—1) distribution.
Cluster sizes vary moderately, with v = 2. The amount of intra-cluster correlation is also
fairly modest (¢ = 0.1). We believe this is realistic, especially for models with cluster fixed
effects. For reasons of computational cost, however, our model does not have them.

Figure 1 shows rejection frequencies as functions of G for four ¢-tests. The vertical axis
has been subjected to a square root transformation in order to handle the wide range of
rejection frequencies that are observed in Panel (a). The results in this figure are striking.
When only one-sixth of the clusters are treated, all the tests over-reject substantially, even
with 72 clusters. However, when half of the clusters are treated, the most reliable test over-
rejects only very slightly, even with just 12 clusters. This test uses CVj3 standard errors and

t(G — 1) critical values. It is the most reliable test in all cases, whereas the test that uses
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Figure 2: Rejection frequencies for tests at the 0.05 level as functions of G /G
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Notes: These experiments use 100,000 replications, with NV = 12,000, G = 24, and G varying from 2 to 12.
There are 7 regressors, one of which is a treatment dummy that is assigned at random. The value of ¢ is 0.1.
The extent to which cluster sizes vary is determined by the parameter 7 in (50), and 7 is the unconditional
expectation of yg;,. CV; and CV3 denote cluster-robust ¢-tests based on the ¢(23) distribution. WCLR-S and
WCLU-S denote tests based on symmetric bootstrap P values for the transformed score versions of the wild

cluster linearized bootstrap using B = 399 bootstrap samples.

CV; standard errors and N(0, 1) critical values is always the least reliable.

We include results for N(0,1) critical values because, as of Version 18, Stata reports
P values and confidence intervals based on the N(0,1) distribution for logit models, even
though it reports ones based on the ¢(G — 1) distribution for linear regression models. Using
standard normal critical values necessarily yields higher rejection frequencies than using
t(G — 1) critical values, and the over-rejection caused by inappropriately using the latter is
not at all negligible, especially for smaller values of G. In all the remaining experiments, we
use t(G — 1) critical values for the asymptotic tests.

It is evident from Figure 1 that the number of treated clusters matters greatly. The

second set of experiments focuses on this issue. In all cases, G = 24, N = 12,000, and
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k = 8. The number of treated clusters varies between 2 and 12. The smallest value of Gy is 2
because methods based on the cluster jackknife (including the WCLR/WCLU-S bootstraps)
cannot handle the case where G; = 1, since the coefficient (3, is not identified when the single
treated cluster is omitted. The largest value is G/2 = 12 because, with clusters treated at
random, the results for G; = G| and G; = G — G, with G| < G/2, must be identical.

Figure 2 shows rejection frequencies at the 0.05 level for four of the most interesting tests
as functions of G1/G for 2 < G; < 12. In Panels (a) and (b), 7 = 0, so that all clusters are
the same size. In Panels (c¢) and (d), v = 4, so that clusters vary greatly in size. As usual,
all tests perform poorly when G1/G is small. Most of the tests over-reject in that case, but
WCLR-S under-rejects. WCR bootstrap tests for linear regression models are well known to
behave in the same way; see MacKinnon and Webb (2017, 2018) for an explanation. In all
cases, tests based on CV; standard errors and the ¢(23) distribution over-reject more than
the other tests. Tests based on CVj standard errors always perform much better.

The bootstrap tests generally perform very well for larger values of G1/G. In most cases,
the WCLU-S bootstrap tests reject more often than the WCLR-S bootstrap tests. This is
always true for small values of G; /G, but it is not true in Panels (b) and (d) for large values.
The WCLU-S bootstrap tests perform very similarly to the CVj t-tests.

Figure 3 shows rejection frequencies for some additional tests. Panels (a) and (c) are
for the same case as Panel (b) in Figure 2, and Panels (b) and (d) are for the same case as
Panel (c) in Figure 2. The top two panels compare WCLR/WCLU-C bootstrap tests with
the WCLR/WCLU-S ones already shown in Figure 2. For the WCLR bootstraps, there
are almost no differences between the two versions in Panel (a) and only small differences
in Panel (b). For the WCLU bootstraps, however, the differences are quite substantial,
especially in Panel (b). In that case, WCLR-S and WCLR-C are the clear winners for larger
values of G1/G, but WCLU-S also performs quite well when G /G is sufficiently large.

Panels (c¢) and (d) of Figure 3 compare the CVj t-test and the WCLR-S bootstrap with
three other procedures. The first of these is the t-test based on CVjyp,, which employs the
linearized cluster jackknife variance matrix in (25). It performs almost identically to the
t-test based on CV3 in both panels. We include this test in later figures as well, because it is
computationally attractive. It often performs very much like the CVj3 t-test, but not always.

The other two tests are for the linear probability model, or LPM. In Panel (d), where
m = 0.5, the LPM CVj t-test yields results that are visually indistinguishable from those for
the two t-tests of the logit model. This is not surprising, since the LPM tends to perform
much like the logit model when the average value of the dependent variable is close to one-
half, at least for models like (49) where all the regressors are dummy variables. The WCR-S

test is almost indistinguishable from the WCLR-S test. This is also not surprising in view of
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Figure 3: Rejection frequencies for tests at the 0.05 level as functions of G1/G
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Notes: See notes to Figure 2. Panels (a) and (c) are for the same case as Panel (b) in that figure, and
Panels (b) and (d) are for the same case as Panel (¢). WCLR-S and WCLU-S denote tests based on
symmetric P values with B = 399 bootstrap samples that use transformed empirical scores based on (34)
and (33), respectively. WCLR-C and WCLU-C are similar, but they employ the classic versions of the wild
cluster bootstrap that do not transform the empirical scores. CV3p, denotes a t-test based on the linearized
cluster jackknife variance matrix in (25). Two tests are based on the linear probability model. “LPM CVj3”
is a t-test using the CVj variance matrix and the ¢(23) distribution, and “LPM WCR-S” is the restricted

wild cluster bootstrap test that uses transformed empirical scores.

equations (41) and (42). To our knowledge, however, there is not at present any asymptotic
theory to justify using the wild cluster bootstrap for linear probability models.

In Panel (c), where 7 = 0.17, the LPM CVj t-test always rejects less often than the other
t-tests. For values of G1/G greater than about 0.35, it actually under-rejects slightly. The
WCR-S bootstrap test for the LPM rejects less often than the WCLR-S bootstrap test for
the logit model, albeit to a minor extent for larger values of G1/G. The strong performance
of this test may, in part, be a consequence of the fact that all the regressors are binary.

The finite-sample properties of estimators and test statistics in binary response models
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Figure 4: Rejection frequencies for tests at the 0.05 level as functions of 7
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Notes: See notes to Figures 2 and 3, where the notation used in Panels (a) and (b) is explained. In all
panels, N = 12,000, G = 24, G; = 7, and v = 2. “LPM CV;” and “LPM CV3” denote t-tests for the
linear probability model using the ¢(23) distribution. “LPM WCR-S” and “LPM WCU-S” denote symmetric
bootstrap tests for the linear probability model based on the transformed-score versions of the wild cluster

restricted and unrestricted bootstraps, respectively.

often depend on how close the average value of the dependent variable is to one-half. There-
fore, in Figure 4, G is fixed at 7, and the horizontal axis shows the value of 7, the uncon-
ditional expectation of y,,;, which is varied by changing the value of 5y in (49).

In the two left-hand panels, ¢ = 0.1, as before. In the two right-hand panels, ¢ = 0.5,
which implies a great deal of intra-cluster correlation. The top two panels report rejection
frequencies for tests of the logit model, and the bottom two panels report rejection frequencies
for tests of the linear probability model. The horizontal axis stops at 0.5 because, in this
model, the results for 7 must be the same as those for 1 — 7. There is no room in the figures

to show results for other values of G;. The t-tests tend to reject less often as (G; increases,
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but the pattern is more complicated for the bootstrap tests.

In Panel (a), the WCLR-S bootstrap test over-rejects less often than the other tests for
m > 0.15, but for very small values of 7 it over-rejects more often than all but the CV; t¢-
test. This pattern is much more pronounced in Panel (b), where the WCLR-S bootstrap test
over-rejects severely when 7 is small. It is actually the worst test for 7 < 0.05. Evidently,
the combination of high intra-cluster correlation and a dependent variable that is mostly Os
can lead to poor performance for all the tests, especially the bootstrap tests.

In Panel (a), the CVjy, t-test is indistinguishable from the CVj t-test when 7 is large,
but it rejects a little more often when 7 is small. The differences between the two tests have
the same pattern in Panel (b), but they are much greater. These results suggest that the
linearization (23) may not work well when 7 is close to 0 or 1 and there is more than a small
amount of intra-cluster correlation.

Panels (¢) and (d) of Figure 4 focus on tests for the linear probability model. The CV;
t-test for the LPM in Panel (c) performs much better than the same test for the logit model
in Panel (a), and the CVj t-test performs somewhat better for some but not all values of 7.
Both tests perform better for the LPM in Panel (d) than for the logit model in Panel (b),
although both of them, especially CV3, now under-reject for small values of .

In Panel (c), the WCR-S bootstrap test performs remarkably well for all values of 7. Tt
also performs quite well in Panel (d), over-rejecting less than any of the other tests for larger
values of w. Thus, the WCR-S bootstrap test seems to be the best one overall in this set
of experiments, even though the data were not generated by the linear probability model.
Figure 4 does not show results for the WCR-C bootstrap, but they are very similar to the
ones for WCR-S.

Up to this point, all our experiments have involved 24 clusters with an average of 500
observations per cluster. In previous work (MacKinnon et al. 2023b), we have found that
varying the average number of observations per cluster has almost no impact once that
number is moderately large. It is more interesting to vary the number of clusters. In Figure 5,
we plot rejection frequencies for six tests as functions of G /G for G = 12, 16, 20, and 24,
still with N/G = 500. For the CV3 and CVjy, t-tests in Panels (a) and (b), and the WCLU-S
bootstrap tests in Panel (e), the relationships between rejection frequencies and the fraction
of treated clusters are almost identical for all four sample sizes. They are also quite similar
for the WCU-S bootstrap tests in Panel (f). However, they are noticeably different for the
WCLR-S and WCR-S tests in Panels (c¢) and (d). As G declines, G;/G has to be larger for
the under-rejection associated with low values of G1/G to go away. That is because it is
primarily the number of treated clusters that matters for restricted wild cluster bootstrap
tests, not the fraction of treated clusters; see MacKinnon and Webb (2017, 2018).
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Figure 5: Rejection frequencies for tests at the 0.05 level for different sample sizes
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Notes: See notes to Figures 2 and 3. All panels are based on the same experiments, with v = 2, ¢ = 0.1,
and m = 0.17. There are G = 12, 16, 20, or 24 clusters, with N = 500G observations. Values of GG; range
from 2 to G/2, because the cluster jackknife cannot be computed for G; = 1.

It is hard to choose the best test in these experiments. The WCLR-S and WCR-S tests
work well for a broader range of values of G;/G than the other tests, although they under-
reject when G;/G is small. On the other hand, the two t-tests and the two unrestricted
bootstrap tests all over-reject severely for small values of G1/G, but they perform well, or
at least acceptably, for large values.

The results in Figure 5 suggest that, except for small values of G1/G, the results for
G =16 and GG = 24 tend to be very similar. Since the computations for the former case are
substantially less costly than for the latter, we use G = 16 in the next two experiments.

Figure 6 deals with the effects of cluster size variability, with 7 varying between 0 (all
cluster sizes equal 500) and 4 (cluster sizes vary greatly) on the horizontal axis. In Panels (a)
and (c), the expectation of the dependent variable is 7 = 0.50, and in Panels (b) and (d) it
is 7 = 0.081. In the top two panels, G; = 5, so that just under one-third of the clusters are
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Figure 6: Rejection frequencies for tests at the 0.05 level as functions of
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Notes: For notation, see the notes to Figures 2 and 3. There are 8,000 observations and 16 clusters, with
¢ = 0.1. All experiments use 100,000 replications, and bootstrap tests use B = 399.

treated. In the bottom two panels, G; = 8, so that exactly half the clusters are treated.

In all cases, the CV; t-test rejects substantially more often than any of the other tests,
and it does so to a greater extent as <y increases. In Panels (a) and (c), the CV3 and CVjp,
t-tests and the WCLU-S bootstrap test perform all but identically. In Panels (b) and (d),
however, the WCLU-S bootstrap test rejects a bit more often than the CVjy, t-test which in
turn rejects a bit more often than the CVjy ¢-test.

The WCR-S and WCLR-S bootstrap tests perform very similarly in Panels (a) and (c),
with the former rejecting a little bit less frequently than the latter. They are usually the
best tests here. In Panels (b) and (d), however, the WCR-S test rejects noticeably less often
than the WCLR-S test, and the latter does not perform particularly well.

Figure 7 deals with the effects of intra-cluster correlation, with ¢ varying between 0.00
and 0.50 on the horizontal axes. The top two panels set v = 0 (every cluster has 500
observations), and the bottom two panels set v = 4 (cluster sizes vary greatly). For the two
panels on the left, the expected value of the dependent variable is 0.5, and for the two panels

on the right it is 0.034. Thus Panel (a) is a case where asymptotic theory might be expected
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Figure 7: Rejection frequencies for tests at the 0.05 level as functions of ¢
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Notes: For notation, see the notes to Figures 2 and 3. There are 8,000 observations and 16 clusters, of

which 5 are treated. All experiments use 100,000 replications, and bootstrap tests use B = 399.

to perform well, and Panel (d) is a case where it might be expected to perform poorly.

In Panel (a), which is the best case, all tests except the CV; t-test perform extremely
well for small values of ¢. They would have performed even better if G, which equals 5 in
all these experiments, had been 6, 7, or 8. The performance of all tests deteriorates as ¢
increases, but the two restricted bootstrap tests always reject less than 6.0% of the time.

In Panel (b), where m = 0.034, all tests perform well when ¢ is very small, but their
performance then changes dramatically as ¢ increases. Most noticeably, the WCLR-S boot-
strap over-rejects more severely than any of the other tests for ¢ > 0.15; recall Panel (b) of
Figure 4. In contrast, the WCR-S bootstrap under-rejects quite substantially for larger val-
ues of ¢. Surprisingly, the most reliable test is the CVj t-test, which actually under-rejects
slightly for some values of ¢ and never rejects more than 6.9% of the time. The CVyy, t-test
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Figure 8: Rejection frequencies for tests at the 0.05 level as functions of G
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Notes: For notation, see the notes to Figures 2 and 3. There are between 12 and 120 clusters, with an
average of 500 observations per cluster, v = 2, and ¢ = 0.1. All experiments use 100,000 replications, and
bootstrap tests use B = 399.

is somewhat less reliable than the CV3 t-test, and the WCLU-S bootstrap test is even worse.

In Panel (c), where cluster sizes vary greatly but 7 = 0.5, the relative performance of
all the tests is similar to what we see in Panel (a), but their absolute performance is worse.
The WCR-S bootstrap test is the best performer, never rejecting more than 5.6% of the
time, followed by the WCLR-S bootstrap. The CV; t-test is the worst performer by far.
The remaining three tests are hard to distinguish from each other, but they reject noticeably
more often than they did in Panel (a).

We might expect Panel (d) to be the worst case, since it combines highly variable cluster
sizes with a small value of m = E(y,;). The WCLR-S bootstrap test does indeed over-reject
severely for large values of ¢, although it is nothing like as bad as the CV; t-test. In contrast,
WCR-S under-rejects even more than it did in Panel (b). However, the CVj t-test and the
WCLU-S bootstraps perform fairly well and in a remarkably similar way.

Figure 8 shows what happens as the number of clusters increases from 12 to 120. There
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are four cases. The fraction of treated clusters is either 1/3, in Panels (a) and (b), or 1/6, in
Panels (c) and (d). The expected value of the dependent variable is moderate (7 = 0.316) in
Panels (a) and (b) but quite small (7 = 0.081) in Panels (¢) and (d). Note that the vertical
axis is not transformed in Panels (a) and (b), because there was no need, but it is subjected
to a square root transformation in Panels (c¢) and (d).

In Panel (a), which is moderate in both dimensions of the DGP, every method improves
steadily (albeit sometimes slowly) as G increases. CVj t-tests and the three bootstrap tests
always perform much better than CV; ¢-tests. The best method, by a very small margin
for larger values of G, is the WCR-~S bootstrap. In Panel (b), 7 is more extreme, but the
fraction of treated clusters is still 1/3. The best-performing test is once again the WCR-S
bootstrap, but by a slightly larger margin than in Panel (a). The second best performer is
now the CVj t-test.

In Panels (c) and (d), where the fraction of treated clusters is only 1/6, all the methods
perform considerably worse. Because G; = 2 for G = 12 and 3 for G = 18, the WCLR-S and
WCR-S bootstraps under-reject in these two cases. The latter also under-rejects for G = 24
in Panel (d). For larger values of G, WCR-S is the best-performing test in both of the lower
panels, with WCLR-S the second best.

In Panels (b) and (d), somewhat surprisingly, most of the tests do not improve much as G
increases. Indeed, in Panel (d), most of them reject slightly more often for G = 120 than for
smaller values of GG. In additional experiments, not reported, we find that this phenomenon
occurs whenever 7 is small. In some cases, rejection frequencies do not start to fall until G
is rather large, perhaps 256 or more. This occurs for existing t-tests based on CV; as well as
for the new tests we are proposing. It seems that, when 7 is small, the asymptotic theory on
which all the tests are based may not provide a good approximation unless G is very large.

Finally, in Figure 9, we study the performance of several confidence intervals. For the
reasons discussed in Section 5, they are all based on t-statistics or unrestricted bootstrap
methods. The number of clusters varies from 8 to 64, and the number of observations from
4000 to 32,000. The top three panels show coverage, and the bottom three panels show
average length. For the left-most panels, where G;/G = 1/2 and 7 = 0.5, asymptotic theory
should perform relatively well. For the middle panels, G;/G is reduced from 1/2 to 1/4,
and, for the right-most panels, 7 is in addition reduced from 0.5 to 0.081. Thus we would
expect all methods to perform less well as we move from left to right.

The conventional interval based on CV; standard errors and t(G — 1) critical values
always has the worst coverage. It would have performed considerably worse, especially for
small values of G, if N(0, 1) critical values had been used, as Stata does. In contrast, the

interval that uses CVj standard errors under-covers very slightly in Panels (b) and (c). Using
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Figure 9: Performance of several confidence intervals as function of G
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Notes: The top panels show the coverage of five different 95% confidence intervals. The bottom panels show
the average lengths of the same intervals. Two of the intervals use standard errors from either CV; or CVj
together with critical values from the ¢(G — 1) distribution, two are studentized bootstrap intervals based
on the WCLU-C and WCLU-S bootstraps, and one uses WCLU-S bootstrap standard errors together with
t(G —1) critical values. There are between 8 and 64 clusters, with an average of 500 observations per cluster,

v =2, and ¢ = 0.1. All experiments use 100,000 replications, and the bootstrap intervals use B = 999.

CVj31, instead of CV3 standard errors does not affect the results to a discernible extent. The
WCLU-S studentized bootstrap interval performs slightly better than the CV3 interval in all
three panels. However, the WCLU-C studentized bootstrap interval under-covers noticeably
for smaller values of G. In Panel (c), the three most reliable intervals actually under-cover
slightly more as G increases. This is similar to what we saw in Panels (b) and (d) of Figure 8.

The last interval reported in Figure 9 computes a WCLU-S bootstrap standard error
using (45) and then constructs a t-statistic, which is combined with ¢(G — 1) critical values.
Surprisingly, this is often the best-performing interval, although several intervals perform
nearly identically. Of course, it is not at all clear that ¢(G' — 1) critical values should be
used here. Interestingly, whereas bootstrap standard errors from WCLU-S seem to be quite
reliable, ones from WCLU-C are always too small, leading to intervals (not shown) that
cover substantially less than the WCLU-C studentized bootstrap intervals based on the same
bootstrap samples. This should not have been a surprise. Using bootstrap samples based

on transformed residuals is evidently more important for estimating standard errors, which
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are not asymptotically pivotal, than for estimating the critical values of t-statistics, which
are; see Hall (1992).

Panels (d), (e), and (f) report the average lengths of all five intervals, although it is
often difficult to make out all five lines. The CV; intervals are noticeably shorter than
the others, which is to be expected given their under-coverage. In Panels (e) and (f), the
studentized WCLU-S interval is substantially longer than any of the others for smaller values
of GG, even though it does not have the best coverage. The interval that uses WCLU-S
bootstrap standard errors is always shorter, on average, than the studentized bootstrap one,
even though it has better coverage. This is probably because these standard errors are less
variable than the CV3 ones, especially for small G. In Panel (d), all intervals except the CV;
interval are just about the same length, on average.

Taken together, our simulation results suggest that the finite-sample performance of
cluster-robust tests and confidence intervals for logit models can vary greatly. Nevertheless,

it seems fairly safe to draw the following conclusions:

« Conventional t-tests based on the CV; variance matrix and the ¢(G — 1) distribution
generally over-reject, often severely, and the corresponding confidence intervals often

under-cover seriously. This method cannot safely be relied upon.

o Cluster jackknife, or CVjs, t-tests always appear to be more reliable than conventional
CV; t-tests. However, they can under-reject moderately in a few cases, and they can
over-reject significantly in others, especially when the fraction of treated clusters is
small, the average value of the dependent variable differs greatly from one-half, or the

amount of intra-cluster correlation is large.

o Linearized cluster jackknife, or CVjp, standard errors are much cheaper to compute

than CV3 ones. They are usually very similar, but not always.

o The WCLR-S bootstrap often performs well, but it can over-reject substantially when
there is a lot of intra-cluster correlation. When its performance can be distinguished

from that of the WCLR-C bootstrap, it almost always rejects less frequently.

o All methods can be somewhat unreliable when the binary outcomes are unbalanced,

with most equal to either 0 or 1. This can happen even when G is quite large.

o Methods based on the linear probability model, notably the WCR-S bootstrap, can
perform very well indeed. In many cases, the WCR-S and WCLR-S bootstraps yield
similar results. However, they can differ greatly when there is a lot of intra-cluster

correlation and the binary outcomes are unbalanced.

o The restricted bootstrap methods usually (but not always) perform better than the
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unrestricted ones. However, the WCLU-S bootstrap can sometimes outperform both
WCLR ones, and it often performs much better than the WCLU-C bootstrap.

» Because confidence intervals based on the WCLR bootstraps are difficult to compute,

we did not study them and cannot recommend them.

o Except in the unbalanced case, confidence intervals based on CV3 or CVj, standard
errors and the ¢(G — 1) distribution usually perform quite well. So do intervals based
on the WCLU-S bootstrap.

o If bootstrap standard errors are desired, they should always be based on the WCLU-S
bootstrap. Surprisingly, it appears that confidence intervals based on these standard
errors may be shorter and have slightly better coverage than studentized WCLU-S

bootstrap intervals.

Since all these conclusions are based on simulation experiments, they should be inter-
preted with caution. They suggest that, for any empirical application, it is always infor-
mative to report the mean of the outcome variable, the number of clusters, the number of
treated clusters (if the regressor of interest is a treatment dummy), and at least one measure
of cluster size variability (MacKinnon et al. 2023c). All of those things affect finite-sample
properties in ways that we have discussed. It may also be desirable to perform placebo re-
gression experiments, although this may require quite bit of effort; see Bertrand, Duflo, and
Mullainathan (2004), MacKinnon et al. (2023a, Section 3.5), and the next section.

7 Empirical Examples

In this section, we illustrate the tests and confidence intervals that we have discussed using
two empirical examples. The first has a relatively small sample (N = 1861) with a moderate
number of clusters (G = 34) and treatment at the cluster level. The second has a much larger
sample (N = 127,518) with a small number of clusters (G = 10), a continuous explanatory

variable, and cluster fixed effects.

7.1 Cash Incentives

Angrist and Lavy (2009) studies the impact of a randomized cash incentive on the outcome
of a high-stakes examination. A significant sum of money was offered to “low-achieving”
students in some Israeli high schools for passing the exams required to earn their high
school matriculation certificate, or Bagrut. This certificate is a prerequisite for enrolling in

university in Israel. Treatment was assigned randomly at the school level.

32



We focus on the estimates for 1861 female students who were enrolled in G = 34 schools
in the 2001 panel of the study. These are reported in Table 2, columns 5 and 6, of the original
paper. Students were offered the cash awards in G; = 16 of the schools. In addition to the
treatment dummy, the equation includes nine other explanatory variables, some of which
(notably, measures of past performance on examinations) have considerable explanatory
power. Because treatment was at the school level, school fixed effects cannot be included.

Angrist and Lavy (2009) reports estimates for both the LPM and logit model. Our results
for the former agree with the ones in the paper to the number of digits reported. Our results
for the latter do not quite agree, however, because the paper reports marginal effects rather
than coefficient estimates. However, the ¢-statistic that is implicitly reported is within the
range of the ones that we obtain.

Angrist and Lavy (2009) reports CV; standard errors for the LPM and similar ones for the
logit model. These are almost certainly more reliable than CV; standard errors. However,
because the number of clusters is quite small, cluster sizes vary considerably (from 12 to
146), and there is quite a bit of variation in partial leverage across clusters (see notes to
Table 1), CVj standard errors are likely to be more reliable than ones based on either CV;
or CV, (MacKinnon et al. 2023b).

Table 1 reports several results for a large number of methods. Of course, we do not
recommend reporting this many numbers in practice. The sixth column shows P values
calculated in many different ways, and the next two columns show the lower and upper limits
of 95% confidence intervals. For the LPM, all P values are less than 0.05, and all confidence
intervals exclude zero. For the logit model, every P value is larger than the corresponding
one for the LPM, three of them exceed 0.05, and the three confidence intervals to which the
latter correspond include zero. Overall, there seems to be modest evidence against the null
hypothesis, but the evidence is much less convincing than we might suppose if we simply
looked at the results for either CV; or CV,y and CVyy, standard errors.

The final column of Table 1 contains rejection frequencies for a placebo regression exper-
iment, where for each replication we add one additional regressor to the original model and
test the hypothesis that the coefficient on it equals zero. The placebo regressor equals 1 for 16
randomly chosen schools and 0 for the remaining 18 schools. There are 3,C16 = 2,203,961,430
ways to choose the placebo regressor. We did this 400,000 times and recorded the fraction
of rejections at the 0.05 level.

As can be seen from the last column of Table 1, several methods actually under-reject, and
no method over-rejects much more than 9% of the time. The methods that come very close
to 0.05 are the WCR-S and WCR-C bootstraps for the LPM, and the WCLR-C, WCLU-S,
and WCLU-C bootstraps for the logit model. Interestingly, t-tests based on CV3 and CVjy,
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Table 1: Effects of Cash Incentives on Passing the Bagrut

Model Method Coef.  Std. error t stat. P value CI lower CI upper Placebo

LPM CV, 0.1047  0.0444 23572 0.0245 0.0143  0.1952 0.0866
LPM  CV; 0.1047  0.0466  2.2483 0.0314 0.0100  0.1995 0.0681
LPM CV; 0.1047  0.0506  2.0695 0.0464 0.0018  0.2077 0.0454
LPM  WCR-C 0.1047 2.3572  0.0393 0.0055  0.2033 0.0530
LPM  WCR-S 0.1047 2.3572  0.0418 0.0042  0.2041 0.0497
LPM  WCU-C 0.1047 2.3572  0.0381 0.0064  0.2031 0.0603
LPM  WCU-C*  0.1047  0.0437  2.3982 0.0223 0.0159  0.1936 0.0918
LPM  WCU-S 0.1047 2.3572  0.0401 0.0053  0.2042 0.0555
LPM  WCU-S* 0.1047  0.0513  2.0400 0.0494 0.0003  0.2092 0.0430
Logit CV; 0.7164  0.3149 22746 0.0296 0.0756  1.3571 0.0794
Logit  CVy, 0.7164  0.3303  2.1687 0.0374 0.0443  1.3884 0.0607
Logit  CV; 0.7164  0.3609 1.9850  0.0555  —0.0179  1.4506 0.0373
Logit  CVsy, 0.7164  0.3592 1.9941 0.0545 —0.0145  1.4472 0.0387
Logit WCLR-C 0.7164 2.2746  0.0523 0.0464
Logit WCLR-S  0.7164 2.2746  0.0564 0.0426
Logit WCLU-C 0.7164 2.2746  0.0457 0.0151  1.4175 0.0529
Logit WCLU-C* 0.7164  0.3095  2.3142 0.0264 0.0866  1.3461 0.0846
Logit ~WCLU-S  0.7164 2.2476  0.0487 0.0042  1.4280 0.0476

Logit ~WCLU-S* 0.7164  0.3645 1.9655 0.0578 —0.0251  1.4579 0.0364

Notes: There are 1861 observations and 34 clusters. The mean of the dependent variable is 0.287. The
coefficient of variation of partial leverage across clusters is 0.9655. Two measures of the effective number of
clusters are G*(0) = 24.3 and G*(1) = 14.3; see Carter et al. (2017) and MacKinnon et al. (2023c). Methods
based directly on t-statistics use the ¢(33) distribution. Bootstrap methods use the Rademacher distribution
and 9,999,999 bootstrap samples so as to minimize dependence on random numbers. Methods with an
asterisk employ bootstrap standard errors computed using (45) and ¢-statistics based on them. Methods for
which no standard error is shown use symmetric bootstrap P values based on (31) and studentized bootstrap
confidence intervals based on (46). Entries in the rightmost column are rejection frequencies for placebo

regressions based on 400,000 replications with B = 999.

both under-reject somewhat. Reassuringly, the methods that over-reject most significantly
are the ones that yield the smallest P values for the actual dataset. These P values should
evidently not be trusted. Based on all these results, we conclude that the true P value for

the hypothesis under test is probably very close to 0.05.

7.2 Tuition Fees

There is an extensive literature about the effects of college or university tuition on educational
attainment. Many studies have examined the relationship between tuition and the likelihood

of attending college or attaining a degree; see, for example, Heller (1999).
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We examine the effects of tuition on university attendance in Canada in recent years.
Specifically, we use data from the public-use version of the Labour Force Survey (LFS), com-
bined with data on average university tuition in each province. The LFS surveys individuals
once per month, and individuals are included in the survey for six months. There is much
less variation in tuition fees across schools in Canada than in the United States, because (for
the most part) the provinces regulate them. The tuition data come from Statistics Canada
“Canadian and international tuition fees by level of study” Table 37-10-0045-01.

We use the LF'S data from 2009-2019 for males aged 20 and 21 who reside in one of the ten
provinces. The public-use version of the LFS does not give us the exact age of respondents,
so we treat them all as being the same age. We restrict the sample to the standard Canadian
university academic calendar and therefore omit responses from May through August. We

estimate the following logistic regression at the individual level:
Pr(Student;y, = 1) = A(a + B Tuition,, + YEAR, + PROV, + Xjy), (51)

where the outcome variable Student,,; equals 1 if person ¢ in province p in year ¢ is listed
as either a part-time or full-time student. The regressor of interest is Tuition,,, which is the
average domestic tuition in province p in year t expressed in thousands of Canadian dollars.
Because there are year fixed effects, we do not bother to convert these into constant dollars.

The row vector X;,; contains two binary variables. One of these equals 1 when a person
lives in any of the nine largest cities in Canada. We cannot use dummies for different
large cities because each of them is located in only one province. This would make it
impossible to estimate, say, the coefficient on Montreal when a jackknife sample clustering at
the provincial level omits the province of Quebec. The other dummy variable in X, indicates
whether someone is a citizen/permanent resident or not. The LFS includes both permanent
residents and citizens, who pay domestic tuition fees, and non-permanent residents, who pay
international tuition fees. In order to minimize the number of individuals who have to pay
international tuition fees, our sample excludes immigrants who have been in Canada for less
than ten years. We cluster by province, because our measure of tuition is constant at the
province-year level and highly persistent across years.

We initially estimated the logit model (51) and the corresponding LPM for men, women,
and both together. However, we only report results for men, because they are the only ones

for which the tuition variable appears to be significant using CV; standard errors.! Since our

!The sample of women contained 120,309 observations. The tuition coefficient was —0.0739 in the logit
model, not much more than half the value of —0.1302 shown in Table 2. The CV; standard error was slightly
larger (0.0529 instead of 0.0469), and the corresponding ¢-statistic was therefore much smaller (—1.3965
instead of —2.7745).
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Table 2: Effects of Tuition on University Attendance

Model Method Coef.  Std. error ¢ stat. P value CIlower CI upper Placebo
LPM CV; —0.0296  0.0106  —2.7899 0.0211 —0.0537 —0.0056 0.1332
LPM CV; —0.0296 0.0184 —1.6120 0.1414 —-0.0712 0.0120  0.0601
LPM WCR-C —0.0296 —2.7899 0.1414 —0.0480 0.0167  0.0658
LPM  WCR-S —0.0296 —2.7899 0.1534 —0.0480 0.0154  0.0548
LPM WCU-C —0.0296 —2.7899 0.0232 —0.0543 —0.0050 0.1018
LPM WCU-C* —0.0296 0.0101 —2.9405 0.0165 —0.0524 —0.0068 0.1502
LPM  WCU-S —0.0296 —2.7899 0.1018 —0.0651 0.0059  0.0747
LPM WCU-S* —0.0296 0.0194 1.5290 0.1606 —0.0735 0.0142  0.0508
Logit CV; —0.1302  0.0469 —2.7745 0.0216 —0.2364 —0.0240 0.1298
Logit CVj —0.1302  0.0799 —1.6301 0.1375 —0.3109 0.0505  0.0574
Logit  CV3y, —0.1302  0.0800 —1.6280 0.1380 —0.3112 0.0507  0.0575
Logit WCLR-C —0.1302 —2.7745  0.1399 0.0639
Logit WCLR-S —0.1302 —2.7745 0.1551 0.0527
Logit WCLU-C —0.1302 —2.7745 0.0210 —0.2362 —0.0243 0.0993
Logit WCLU-C* —0.1302  0.0445 —2.9244 0.0169 —0.2310 —0.0029 0.1464
Logit WCLU-S —0.1302 —2.7745 0.0912 —0.2634 0.0165 0.0724

Logit WCLU-5* —0.1302  0.0843  —1.5442 0.1569 —0.3210 0.0605  0.0485

Notes: There are 127,518 observations and 10 clusters. The mean of the dependent variable is 0.4208.
The coefficient of variation of partial leverage across clusters is 1.2113, and G*(0) = 4.575. Methods based
directly on t-statistics use the #(9) distribution. Bootstrap methods use the six-point distribution of Webb
(2023) and 9,999,999 bootstrap samples so as to minimize dependence on random numbers. Methods with
an asterisk employ bootstrap standard errors computed using (45) and ¢-statistics based on them. Methods
for which no standard error is shown use symmetric bootstrap P values based on (31) and studentized
bootstrap confidence intervals based on (46). Entries in the rightmost column are rejection frequencies for

placebo regressions based on 400,000 replications with B = 999.

objective is to illustrate the consequences of using different methods of inference, we focus on
the case where different methods yield different inferences. There are 127,518 observations
and just ten clusters. The cluster sample sizes vary from 3,402 (P.E.L.) to 37,109 (Ontario).
Thus they vary by a factor of about eleven. Note that the LFS sample sizes vary much less
than actual provincial populations. For example, as of 2019-Q4, the population of Ontario
was about 93 times the population of P.E.I.

Table 2 is similar to Table 1. It reports several quantities for a large number of methods.
One striking feature is how much P values and confidence intervals vary across methods.
Six P wvalues are less than 0.03. These are the ones for the CV; t-statistics for both the
LPM and logit models, for the WCU-C and WCLU-C bootstraps, and for ¢-statistics based
on bootstrap standard errors using those two bootstrap methods. At the other extreme, all

the restricted wild bootstrap methods yield P values greater than 0.135. So do t-statistics
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based on both WCU-S and WCLU-S bootstrap standard errors.

With only 10 clusters that vary quite a bit in size, and substantial variation in the partial
leverages, it is possible that no method is very reliable. We attempt to get a sense of which
methods work best by performing a placebo regression experiment, where a placebo regressor
is added to the original model. We generate artificial tuition series by using an AR(1) model,
which is simulated separately for each province. The only parameter that seems to matter
is the autoregressive coefficient. Reported results are for the random walk case, where this
parameter equals 1. For smaller values of this parameter, rejection frequencies tended to be
a little higher.

The rightmost column of Table 2 shows rejection frequencies for the coefficient on the
placebo regressor based on 400,000 replications. Because of the fairly large sample size, these
experiments were much more expensive than the comparable experiments in Section 7.1.
Computing the CVj3 variance matrix for the logit model is by far the most costly part of
the process, because it requires GG additional logit estimations. In fact, calculating CVj
takes about 70% of all the computer time for the placebo regression experiments of this
section. Estimating the LPM and the original logit model and performing all the bootstrap
computations, with B = 999, for both models takes only about 30% of the time. Remarkably,
the cost of calculating CVsy,, which yields results almost identical to CVj here, is only about
1/41 of the cost of calculating the latter.

There is evidently a strong, inverse relationship between the placebo rejection frequencies
and the reported P values. That was also the case for the example of Section 7.1. All
the methods with P values less than 0.05 over-reject approximately 10-15% of the time.
Conversely, the methods that perform reasonably well all yield P values greater than 0.13.
The methods that perform particularly well include the WCR-S and WCLR-S bootstraps,
along with t-tests based on WCU-S and WCLU-S bootstrap standard errors. The worst
methods for both models are the ones that use ¢t-tests based on either CV; standard errors or
WCU-C and WCLU-C bootstrap standard errors. Interestingly, methods for the logit model
and the LPM that are similar (e.g. WCLR-S and WCR-S) tend to perform almost the same
in the placebo regressions.

We conclude that, in sharp contrast to what conventional methods of inference suggest,
there seems to be very limited evidence that average tuition fees affected university atten-

dance by men in Canada during the 2009-2019 period.
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8 Concluding Remarks

In this paper, we propose several new procedures for inference in binary response models
with clustered disturbances, focusing on logit models. The default settings in R and Stata
use CV; standard errors combined with critical values from the N(0, 1) distribution, and our
simulations show that the resulting tests can over-reject severely. Conceptually the simplest
of the new procedures is to employ t-tests, or Wald tests, based on the cluster jackknife
(CV3) variance matrix, which apparently has not been studied previously in the context of
binary response models, although Stata has been able to compute it for many years.

We also propose several new procedures based on a linear approximation to the original
nonlinear model, which can be used for a wide variety of nonlinear models in addition to
binary response models. The simplest procedures involve tests based on the CVjp, variance
matrix, which is just a cluster jackknife matrix for the linear approximation evaluated at the
unrestricted estimates. Computing CVsp, can be orders of magnitude cheaper than computing
CV3 when there are large numbers of observations and /or clusters. In many cases, including
both of our empirical examples, the two variance matrices yield almost identical results, but
they can yield noticeably different ones when the linear approximation does not work well.
The same linear approximation can also be used to compute the CVyy, variance matrix, which
is analogous to the CV, matrix for linear regression models; see Appendix A.

The other new tests that we propose are variations of the wild cluster bootstrap. They
all start with the same linear approximation as CVs,. Conditional on it, they are computa-
tionally almost identical to corresponding variants of the wild cluster bootstrap for linear re-
gression models. We study four bootstrap tests. Two of these, denoted WCLR, evaluate the
linear approximation at restricted estimates, and the other two, denoted WCLU, evaluate
it at unrestricted estimates. For each of them, the classic (or “-C”) version generates boot-
strap samples directly from the cluster-level empirical scores, and the score (or “-S”) version
generates them from empirical scores that have been transformed so as to undo some of the
distortions caused by the estimation process, as proposed in MacKinnon et al. (2023b).

The WCLR/WCLU-S bootstraps employ the usual CV; variance matrix, not the cluster-
jackknife one. It would be very much more expensive to employ the latter, and simulation
results for linear models in MacKinnon et al. (2023b) suggest that, in most cases, doing so
would not lead to better finite-sample properties.

Extensive simulation experiments, in Section 6, suggest that the new procedures work
better, often very much better, than the conventional approach that uses CV; t-tests. How-
ever, which of them works best seems to vary from case to case. CV3 and CVjy, t-tests are

always more reliable than CV; t-tests. In a few cases, they are actually more reliable than

38



some or all of the bootstrap tests. In many cases, the WCLR-S bootstrap works very well.
There are a few cases in which it can perform poorly, however. This tends to happen when
the fraction of 1s in the sample is very small or very large, and when there is a lot of intra-
cluster correlation. In most cases, the WCR-S bootstrap for the linear probability model
rejects less frequently than the WCLR-S bootstrap. The difference is often tiny, but it can
sometimes be substantial, especially when the latter over-rejects noticeably.

For confidence intervals, WCLU bootstrap methods are much more convenient than
WCLR ones, because there is no need to estimate the restricted logit model multiple times.
The choice between WCLU-C and WCLU-S is very important, because intervals based on
the latter seem to provide much better coverage with small numbers of clusters. Perhaps
surprisingly, confidence intervals that combine WCLU-S standard errors with ¢(G — 1) crit-

ical values seem to work at least as well as studentized bootstrap intervals.

Appendix A: The CVy, Variance Matrix

The CVyy, variance matrix can readily be computed by combining the linearization proposed
in Section 3 with the procedure for calculating CV; given in MacKinnon et al. (2023b), which
is based on an ingenious algorithm proposed in Niccodemi et al. (2020). First, form the k x k

matrices

Ay = (JI)I]I(TT) V2 g=1,...,G, (A1)
where J,(8) was defined in (22), and

a a
J=> J,=> J,(B)=XTX (A.2)
g=1 g=1
is the empirical information matrix. Then calculate the rescaled score vectors
o= (J )AL, — Ay)VATTT) M8, g=1,...,G, (A.3)
where 8, = s,(83), and s,(8) was defined in (4). The variance matrix we want is then
A A A A G A A
CVai Vo) = ()7 (30 8,8) ) ()7 (A1)
g=1

CVar, looks very similar to CViz given in (15). It just omits the leading scalar factor and

replaces the §, by the s, given in (A.3).
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Appendix B: The logitjack Package

We have developed a Stata package called logitjack that computes the CV3y, and (option-
ally) CVj3 variance matrices and performs the WCLR-C, WCLR-S, WCLU-C, and WCLU-S
bootstraps. The latest version may be obtained from https://github.com/mattdwebb/
logitjack. The data and programs used in the paper may be found at http://qed.econ.
queensu.ca/pub/faculty/mackinnon/logitjack/.

B.1 Syntax

The syntax for logitjack is

logitjack varlist, cluster(varname) [fevar(varlist) bootstrap nonull

reps(#) jackknife sample(string)]

Here varlist contains a list of variables. The first one is the dependent variable, the second
is the regressor for which standard errors and P values are to be calculated, and the remaining
ones are all the other continuous and binary regressors. Categorical variables to be treated

as fixed effects should be listed using the fevar option.

cluster(varname) is mandatory, where varname is the name of the variable by which the

observations are clustered. For every observation, it should equal one of G positive integers.

fevar(varlist). Categorical variables to be included in the model as fixed effects should
be listed here. They are handled equivalently to i.varlist in a logit model. Since this option
uses a generalized inverse, CV3 can be calculated even when some of the omit-one-cluster
subsamples are singular. This always happens with cluster-level fixed effects. In contrast, the
Stata command jackknife: logit y x i.clustervar, cluster(clustervar) is unable
to estimate CV3. It drops every subsample because each contains a different fixed effect

which is not estimable.

bootstrap requests that bootstrap P values be computed. The default number of boot-
straps is 999. This can be changed using the reps(#) option. The weight distribution used
depends on the number of clusters. When there are 13 or more clusters, Rademacher weights
are used. When there are 12 or fewer clusters, Webb (2023) weights are used. This option re-
quests restricted versions of the wild cluster bootstrap. The nonull option instead requests

unrestricted versions.

nonull specifies that the bootstrap DGP should be unrestricted. When it is specified,
the package displays bootstrap standard errors, confidence intervals, and P values, based on
both the WCLU-C and WCLU-S bootstraps. This option has the same effect whether it is

used alone or in addition to the bootstrap option.
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reps(#) allows the number of bootstrap replications to be specified. When it is not
invoked, the bootstrap and nonull options both default to 999 replications. If this option
is invoked in isolation, then restricted versions of the bootstrap are calculated, as if boot

had been specified without nonull.

jackknife requests calculation of the CVj standard error. This is an option because
CVj3 is relatively expensive. The CV; and CVjy, standard errors are always calculated. This
option is useful when CVj is desired but the inclusion of cluster-level fixed effects causes

issues for Stata’s jackknife prefix.

sample(string) limits the sample. Use the text you would enter after an “if” in a

regression command. For instance, sample (female==1) is equivalent to “if female==1.

B.2 Illustration

In the remainder of this appendix, we illustrate the use of logitjack with an example that
employs the webuse dataset nlswork. The objective is to predict whether a person is a
college graduate. The variable of interest is a dummy variable indicating that the person is
from a southern state. There is clustering by industry, with just twelve industries.

The first commands load and clean the dataset.

webuse nlswork, clear
gen age2 = agexage

drop if race==

drop if inlist(ind,41,54)

gen white = race==

For comparison purposes, the native Stata logit estimate is obtained from the command
logit collgrad south msp white union ln wage age age2 i.ind, cluster(ind)

It yields the results

Logistic regression Number of obs = 18,919
Wald chi2(7) =
Prob > chi2 =
Log pseudolikelihood = -6873.2595 Pseudo R2 = 0.2622

41



| Robust
collgrad | Coefficient std. err. z P>|z]| [95% conf. intervall
_____________ P
south |  .3468109  .1905475 1.82 0.069  -.0266554  .7202773

The simplest logitjack command for this model is
logitjack collgrad south msp white union 1ln_wage, cluster(ind) fevar(ind)

The resulting output is:

Jackknife cluster statistics for binary response models.
Estimates for south when clustered by ind_code.
There are 18919 observations within 12 ind code clusters.

Logistic Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper
_______ o
Ccvi | 0.346811 0.190638 1.8192 0.0962 -0.072781 0.766403
CvV3L | 0.346811 0.303466 1.1428 0.2774 -0.321113 1.014735

Statistic | Ng Lin beta no g
___________ e
min | 38.00 0.050280

ql | 153.50 0.333767

median | 987.00 0.356937
mean | 1576.58 0.336269

q3 | 2318.00 0.376996

max | 6247.00 0.433176
___________ e
coefvar | 1.19 0.282305

Adding the jackknife option adds an additional row to the first table and an additional

column to the second.

logitjack collgrad south msp white union 1ln_wage, cluster(ind) fevar(ind) jack
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Logistic Regression (Output

s.e. | Coeff
Cvl | 0.346811
CvV3 | 0.346811

CV3L | 0.346811

Sd. Err t-stat
0.190638 1.8192
0.295580 1.1733
0.303466 1.1428

P value

0.0962 -
0.2654 -
0.2774 -

CI-lower

0.072781
0.303757
0.321113

0.766403
0.997379
1.014735

Cluster Variability

Statistic |

min | 38

ql | 153

median | 987.
mean | 1576

q3 | 2318

max | 6247
coefvar | 1.

The next command calculates restricted wild bootstrap P values with the default number

of replications.

logitjack collgrad south msp white union 1ln_wage, cluster(ind) fevar(ind) boot

.050280
.333767
.356937
.336269
.376996
.433176

0.282305

0.059133
0.333777
0.356958
0.337106
0.377489
0.432746

0.274484

Restricted Bootstrapped Linearized Regression Output

WCLR | Coeff Sd. Err. t-stat P value
___________ e
CLASSIC | 0.346811 0.190638 1.8192 0.4565
SCORE | 0.346811 0.190638 1.8192 0.3774

P-values calculated with 999 replications and Webb weights.

The following command is essentially the same as the last one, but it specifies an alternate

number of replications.
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logitjack collgrad south msp white union 1ln_wage, cluster(ind)///
fevar(ind) reps(1999)

Restricted Bootstrapped Linearized Regression Output

WCLR | Coeff Sd. Err. t-stat P value
___________ e
CLASSIC | 0.346811 0.190638 1.8192 0.4777
SCORE | 0.346811 0.190638 1.8192 0.4122

P-values calculated with 1999 replications and Webb weights.

The next command estimates unrestricted wild bootstrap P values and confidence intervals
with the default number of replications.
logitjack collgrad south msp white union 1ln_wage, cluster(ind) ///

fevar(ind) nonull

Unrestricted Bootstrapped Linearized Regression Output

WCLU | Coeff Sd. Err. t-stat P value
___________ e
CLASSIC | 0.346811 0.190638 1.8192 0.3323
SCORE | 0.346811 0.190638 1.8192 0.3854

P-values calculated with 999 replications and Webb weights.

Unrestricted Bootstrapped Confidence Intervals

WCLU | Coeff std.er. WCLU CI-low WCLU CI-up
_______________ o
CLASSIC-CVi-se |  0.346811  0.190638 -0.4316 1.1428

CLASSIC-WB-se |  0.346811  0.183550 ~0.0572 0.7508
_______________ o
SCORE-CV1-se | 0.346811 0.190638 -0.5141 1.2153
SCORE-WB-se | 0.346811  0.316932 -0.3508 1.0444
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In this example, the default P value from native Stata, using the N(0, 1) distribution,
is 0.069. Because G is only 12 and cluster sizes vary greatly, this is much too small. Using
any of the procedures described in this paper changes inferences noticeably. For instance, the
CV3p, and CV3 P values are both over 0.25, and the bootstrap P values are all above 0.30.
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