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Abstract

For linear regression models with cross-section or panel data, it is natural to assume that
the disturbances are clustered in two dimensions. However, the finite-sample properties of
two-way cluster-robust tests and confidence intervals are often poor. We discuss several
ways to improve inference with two-way clustering. Two of these are existing methods for
avoiding, or at least ameliorating, the problem of undefined standard errors when a cluster-
robust variance matrix estimator (CRVE) is not positive definite. One is a new method
that always avoids the problem. More importantly, we propose a family of new two-way
CRVESs based on the cluster jackknife. Simulations for models with two-way fixed effects
suggest that, in many cases, the cluster-jackknife CRVE combined with our new method
yields surprisingly accurate inferences. We provide a simple software package, twowayjack
for Stata, that implements our recommended variance estimator.
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1 Introduction

The use of two-way cluster-robust variance estimators for linear regression models was indepen-
dently proposed by Miglioretti and Heagerty (2006), Cameron, Gelbach, and Miller (2011), and
Thompson (2011). Although it has been widely used in empirical work, the asymptotic theory
to justify two-way clustering is quite recent. See, among others, Davezies, D’Haultfeeuille, and
Guyonvarch (2021), MacKinnon, Nielsen, and Webb (2021), Menzel (2021), Chiang, Kato, Ma,
and Sasaki (2022), Chiang, Kato, and Sasaki (2023), Chiang, Hansen, and Sasaki (2023), and
Yap (2024). The finite-sample properties of statistical inference are much less well understood
for two-way clustering than for one-way clustering. For an up-to-date discussion of the latter,
with recommendations for empirical practice, see MacKinnon, Nielsen, and Webb (2023a).

The jackknife variance estimator has been around for a very long time (Tukey 1958; Efron
1981; Efron and Stein 1981). The cluster jackknife CRVE (sometimes called the CVj estimator)
for linear regression models with one-way clustering was proposed in Bell and McCaffrey (2002)
and has been available in Stata for many years. Nevertheless, it has not been studied or applied
much until very recently. In part, this is because Bell and McCaffrey (2002) followed MacKinnon
and White (1985) by computing the CVj3 estimator in a way that is efficient when all clusters
are very small but extremely inefficient when any clusters are large; see MacKinnon, Nielsen,
and Webb (2023b). This seems to have given many investigators the erroneous impression that
CV3 is very expensive to compute, even though the Stata implementation uses a method that is
reasonably efficient when the number of clusters is not too large. However, it is not as efficient
as the method discussed in MacKinnon, Nielsen, and Webb (2023¢) and implemented in the
Stata package summclust (MacKinnon, Nielsen, and Webb 2023d).

In Section 2, we discuss the linear regression model with two-way clustering. Two existing
CRVEs are discussed, along with their theoretical and practical deficiencies. For the CRVE
that is theoretically soundest, the chief deficiency is that it may not be positive definite in finite
samples. We discuss two ways to overcome this problem. One is the eigen-decomposition method
suggested in Cameron, Gelbach, and Miller (2011). The other is a new and extremely simple
procedure which can readily be implemented using existing software.

In Section 3, we show how to extend the cluster jackknife CRVEs discussed in MacKinnon,
Nielsen, and Webb (2023b) and Hansen (2023) to two-way clustering. Based on what is known
about the finite-sample performance of cluster jackknife CRVEs for one-way clustering, it seems
very likely that inference based on them will be more conservative, and usually more reliable,
than conventional inference in the two-way case as well. Some theoretical arguments to support
this conjecture are provided in Section 4.

In Section 5, we use simulation experiments to study the finite-sample performance of several
procedures for inference. Using the cluster jackknife methods of Section 3 in combination with

either of the procedures discussed in Section 2 often performs much better than existing methods



for cluster-robust inference. In Section 6, we apply several methods to two empirical examples.
The results that we obtain are entirely consistent with the simulations in Section 5. We conclude
that, while conventional methods probably do not yield reliable inferences for these examples,

our preferred methods based on the cluster jackknife probably do. Finally, Section 7 concludes.

2 Cluster-Robust Variance Estimation in Two Dimensions

Consider the linear regression model
y=XB+u, (1)

where y and u are N x 1 vectors of observations and disturbances, X is an N x k matrix of
covariates, and 3 is a k x 1 parameter vector. The model is assumed to have two dimensions of
clustering, where the numbers of clusters in the two dimensions are G and H, respectively. It is

illuminating to rewrite (1) in terms of the intersections of the two clustering dimensions:
ygh:Xgh,B—l—ugh, gzl,...,G, hzl,,H (2)

Here the vectors y,, and u,, and the matrix X, contain, respectively, the rows of y, u, and
X that correspond to both the g cluster in the first clustering dimension and the hA*™" cluster
in the second clustering dimension. Similarly, we use y,, X,, and u, to denote vectors that
contain the rows of y, X, and u for the ¢'" cluster in the first dimension, and vy, X}, and uy,
to denote the corresponding rows for the A" cluster in the second dimension. The vector y,
contains the subvectors y,; through y,pq.

We use N, to denote the number of observations in cluster g for the first dimension, IV, to
denote the number of observations in cluster i for the second dimension, and N, to denote the
number of observations in the intersection of cluster g in the first dimension with cluster A in
the second dimension. We assume that N, > 1 and N > 1. Thus, the number of observations
in the entire sample is

a H G H
N=2 Ny=> No=2> N
g=1 h=1 g=1h=1
Note that some of the intersections may be empty, so that Ny, might well equal 0 for some
values of g and h. The number of non-empty intersections is I < GH.

Various score vectors play key roles in cluster-robust inference. The score vector for the entire
sample is s = X Tu. The score subvector for cluster g in the first dimension is s, = X u,, and
the score subvector for cluster h in the second dimension is s, = X, u;. Thus there are G score
vectors s, and H score vectors s;,. The score subvector for intersection gh is sg, = X gThugh.

The variance matrix of the scores can always be written as

G H
=BEX uu'X)= > Y E(sgsiu). (3)

g,9'=1h,h/=1



Under two-way clustering, it must be the case that
E(sgnsy) =0 if ¢ #gand b #h, (4)

but the covariances may be arbitrary when either g = ¢’ or h = h’. The variance matrices for

the score subvectors s, s, and sy, are respectively denoted

3, = E(sgsT), 3 = E(shs;), and X, = E(sghs;h). (5)

g

From (4) and (5), it is evident that

G H G H
=) 3,4+) 5, -> ) 2. (6)
g=1 h=1 g=1h=1

This follows from the inclusion-exclusion principle. The third term in (6) is essential to avoid
double-counting, but, as we shall see, it causes practical difficulties for estimating 3.

As usual, the OLS estimator of 8 is 8 = (X TX) X Ty, and the OLS residual vector is .
The subvectors of @ for cluster g, cluster h, and the intersection gh are denoted u,, i, and

Uy, respectively. From standard arguments for sandwich variance matrices,
Var(B) = (X' X)'S(X X)) = Vo + Vi -V, (7)

where the component matrices are

Vo= (XTX)" (Z zg) (XTx)"! (8)
Vi = (XTX)‘1<}L§12}L> (XTX)™!, and (9)

G H
Vim (X707 X302 (XX (10
The empirical analog of (7) is the three-term two-way CRVE
Vi = Ve + Vi = Vi, (11)

where the subscript “1” identifies this as a CV; estimator, by analogy with the HC; estimator
of MacKinnon and White (1985). The three variance estimators on the right-hand side of (11)
correspond to (8), (9), and (10). The natural way to estimate them is to use the empirical score

subvectors 84, 85, and 84, which take the same form as the actual score subvectors, but with @



replacing u. We obtain the CV; estimators

- — G

Ve = (GC_;(i\)T(Nl_) k’) (XTX)fl (; §g§;> (XTX)*lj (12)

g, = AN 1) T xy-1 H.§.§ Tx) ! an

Vi = (H—l)(N_k)(X X) (hzl h h)(X X)™, and (13)
— G H

V= <XTX>—1( > ;gghg;) (XTX) "

The leading scalar factors here are analogous to the scalar factor for the usual one-way CRVE.
Since some of the intersections may contain no observations, some of the §,, may not exist. In
practice, it may therefore be advisable to replace the double summation in (14) with a single
summation over all non-empty intersections.

The superscript “(3)” on V) in (11) emphasizes that this estimator has three terms, which
correspond to the three terms in (6). Because V; is subtracted from the sum of Vi and Vj, the
matrix ‘71(3) is not necessarily positive definite in finite samples. This problem is not trivial, and
there is more than one way to deal with it.

One approach, suggested in Cameron, Gelbach, and Miller (2011) and implemented in Stata
18, is to compute the eigenvalues of ‘71(3), say A1,...,Ax. When any of them is not positive,
‘71(3) is replaced by the eigen-decomposition ‘71(3+) = UATU', where U is the k x k matrix
of eigenvectors and A" is a diagonal matrix with typical diagonal element )\;r = max{\;,0}.
In practice, it may be numerically safer to compare the eigenvalues with a very small positive
number, say 7, and define )\j as max{\;,n}. In our programs, we use = 107'%. Doing this
ensures that ‘71(3+) is positive definite, albeit just barely so.

This approach is not entirely satisfactory. Wald statistics and t¢-statistics based on ‘71(3+)
are computable, but they may be extremely large. Even when this does not happen, and all
quantities of interest can be computed using ‘71(3), replacing ‘71(3) by ‘71(3+) can change all the
standard errors. Moreover, the standard error of any element of ,@ , say Bj, is not invariant to
nonsingular transformations of the remaining columns of the matrix X. Thus, for example,
precisely how fixed effects or other dummy variables are specified may affect the standard error
of @j, even though ﬁAj itself is invariant to such reparametrizations.

A simpler way to avoid the problem that ‘71(3) may not be positive definite is to replace it
by the two-term estimator

‘71(2) =Va+ Va. (15)
This estimator has been studied in Davezies, D’'Haultfeeuille, and Guyonvarch (2021). It omits
the third term in (11) and therefore involves double-counting. The justification for omitting V;

is that, under a strong regularity condition, it becomes asymptotically negligible as both G' and



H tend to infinity. Because

A,

‘71(3) _ ‘71(2) —V (16)
is positive definite, it follows that a Wald statistic or t-statistic based on ‘71(2) will always be
larger than the same statistic based on ‘71(3).

Unfortunately, the conditions for ‘71(2) to yield asymptotically valid inferences are much
stronger than the ones needed for ‘71(3) to do so. MacKinnon, Nielsen, and Webb (2021) considers
three cases and shows that ‘71(2) yields asymptotically valid inferences in only one of them.
Whenever the scores are actually independent, or whenever they are only correlated at the

intersection level, ‘71(2) yields test statistics that are asymptotically too small. In this case,
Vo~ Vi ~ V. Therefore,

Vi =V + Vi~ 2V, (17)
whereas
VO =Ve+ Vg~ Vi = Vi (18)

Thus, in this case, ‘71(2) is approximately twice as large as ‘71(3), and twice as large as it should be.
The use of “~” in (17) and (18) is deliberately informal, since we did not take limits or introduce
any factors of the sample size in (7). For a rigorous treatment, see MacKinnon, Nielsen, and
Webb (2021, Theorem 1). The result (17) suggests that ‘71(2) is also likely to perform poorly in
finite samples when much of the intra-cluster correlation is at the intersection level.

We now propose a third way to avoid cases in which test statistics based on the three-term
estimator ‘71(3) are not positive. Our proposal is simply to compute three test statistics and use
the one that takes the smallest positive value. For the hypothesis that R8 = r, the three Wald

statistics are

Wy = (RB—r) (RV"RT) " (RB — ),
We=(RB—7) (RVGR") " (RB —r), and (19)

A

Wy =(RB—7r) (RVFR) " (RB —7).

The statistic we propose to use is
Winin = min {maX{Wg, 0}, Wg, WH}, (20)

where max{W3, 0} equals 0 whenever Wj is either negative or undefined, as it can be when ‘71(3)
is not positive definite. By using Wy, defined in (20), we not only avoid Wald statistics that
are not positive numbers but also Wald statistics that are misleadingly large. In a particular
sample, one or more diagonal elements of Vi may randomly happen to be just a little smaller
than the sum of the corresponding elements of Vi and Vi. Thus ‘71(3) can yield extremely large
test statistics which are completely misleading.

In most cases, it is not necessary to calculate the entire Vl(s) matrix. Only the rows and

columns needed for the Wald statistic have to be calculated. Of course, when there is only one



restriction, we can use a t-statistic instead of a Wald statistic. In this case, we just need to find
the largest of the three standard errors and calculate a t-statistic using that standard error. Since
this is by far the most common case, we will refer to our procedure as the “max-se” procedure.

Henceforth, we denote the variance and standard error estimators based on ‘71(2) and ‘71(3) as
CV1(2) and CV1(3) estimators, respectively, the ones based on ‘71(3+) as CV{3+) estimators, and the
ones implicit in (20) as CV™ estimators. In the scalar case, CV{™™ = max{V\*¥), Vg, Vi }.
This explains the “(max)” superscript and also makes it clear that, asymptotically, the CVl(S),
CV1(3+), and CVl(maX) estimators must be identical whenever the scores are positively correlated
in either or both of the G and H dimensions.

In most cases where it makes sense to specify 3 as in (3), the CV{S), CV1(3+), and CVl(max)
estimators will have exactly the same asymptotic properties. They may or may not be identical
in practice. In fact, there are cases where they may differ greatly. This seems to be most common
when there is very little intra-cluster correlation and/or the number of clusters is small, and/or

the number of regressors is large, as we shall see in Section 5.

3 Two-Way Cluster Jackknife CRVEs

The component CRVEs defined in (12), (13), and (14) all have the form of the widely-used CV;
estimator. However, recent work by MacKinnon, Nielsen, and Webb (2023b) and Hansen (2023)
strongly suggests that, in the one-way case, it is better to use a CRVE based on the cluster
jackknife, which is analogous to the HC3 estimator of MacKinnon and White (1985). The key
idea of the cluster jackknife is to compute G (or H or I) sets of parameter estimates, each of which
omits one cluster at a time, and then compute a CRVE using the variation among these estimates.

Let J € {G, H,I}, and let j denote the corresponding lower-case letter. The OLS estimates

of B when each cluster in the J dimension is omitted in turn are
BY = (XX - X[X) "X Ty - X]y;), j=1,....J (21)
Then the component cluster jackknife variance matrix estimators are

T2LS~B9 B9 — B)T for (j.J) = {0.C}. (W HY. (i1}, (22)

J=1

OrIK
Vit =

J

Thus the three-term jackknife CRVE is
O = VIS 2

which is analogous to (11). The subscript “3” here follows the usual notation for jackknife vari-

ance matrices; see MacKinnon, Nielsen, and Webb (2023b). There is also a two-term jackknife

max)

CRVE and, more interestingly, one that is analogous to the CVl( estimator. We refer to the
three CRVEs based on the cluster jackknife as CVS?, CV{Y, and CV{™™,



The CRVEs defined in (22) are not the only cluster jackknife variance matrix estimators.
Instead of computing variances around B , one can instead compute them around (in the two-
way case) the three sample averages, 87 = J~* Zle B(j). This makes the alternative CRVEs a
little smaller than the ones given in (22). Because simulation experiments in Bell and McCaffrey
(2002) and MacKinnon, Nielsen, and Webb (2023b) suggest that, in the one-way case with G
clusters, inferences based on the alternative jackknife CRVE are almost identical to ones based
on VGJK, we do not study the former in this paper.

Computing the component CRVEs in (22) that are needed for cvi®, ovET) and V™™ is
more work than computing the ones in (12), (13), and (14) that are needed for cv®, oviEn),
and CVl(maX), especially when the number of non-empty intersections, I, is large. Nevertheless,
it should be manageable in most cases. The first thing is to calculate the cluster-level matrices

and vectors
X]TXJ and X]—'ryj> j:L...,J, fOl" {jaj}:{gaG}a{haH}a{Zal} (24)

These quantities can be computed for the intersections with a single pass over the N observa-
tions. The ones for the G and H dimensions are just summations of the ones for the appropriate
intersections. The three sets of 8¢ can then be computed using (21) for the three clustering di-
mensions. Unfortunately, this may be expensive when both k and I are large, because computing
the delete-one-cluster estimates for the intersections involves inverting I different k x k matrices.

In many cases, the regression model (1) will include fixed effects in the G and H dimensions;

that is, two-way fixed effects. If so, it may be rewritten as
y = ZB,+ D + D"§ +u. (25)

Here the matrix Z, which has p columns, corresponds to the actual explanatory variables (which
should not include a constant term), and 3, contains the elements of B for those variables. The
matrices D¢ and D contain dummy variables for the fixed effects in dimensions G and H,
respectively. Collectively, these have G+ H — 1 columns, say G for D¢ and H — 1 for D¥. Thus
X =[Z D¢ D¥],and k=p+G+H — 1.

For the model (25), there is an important computational issue. It is impossible to invert the
matrices X "X — X X, and X' X — X,/ X}, in (24), because for each of them the row and
column corresponding to the fixed effect for cluster g or cluster h contains only zeros. There
are two ways to deal with this issue. The simplest is just to replace the inverse in (21) by a
generalized inverse. Then all of the coefficients except the fixed effect for the omitted cluster
can be computed, and the latter is set to zero. Thus, whenever there are two-way fixed effects,
% J(é) in (23) can only be calculated as a p X p matrix instead of a k x k matrix.

Instead of using a generalized inverse, it seems natural to partial out the cluster fixed effects

before computing the one-way CRVEs. However, this must be done with great care. It is valid



to partial out cluster fixed effects in the G dimension when calculating VZX, but it is invalid to
partial them out when calculating either V7¥ or V;’K. The problem is that, after the cluster
fixed effects in the G dimension have been partialed out, the observations for every cluster in
the H and [ dimensions generally depend on observations in some or all of the other clusters
in those dimensions. Thus B(h) and B(i) would not actually be vectors of delete-one-cluster
estimates. Similarly, it is invalid to partial out fixed effects in the H dimension when calculating
cither V¥ or VX,

The I dimension is always the most expensive one to deal with, because it involves the largest
number of clusters, and it is not valid to partial out fixed effects in either the G or H dimensions
when calculating VIJK. Thus, even though it would be possible to partial out the fixed effects for
dimension GG when computing the B(Q) and the fixed effects for dimension H when computing
the B (h)_ it is probably not worth the additional programming complexity.

It is conventional to employ the Student’s ¢ distribution with min{G,H} — 1 degrees of
freedom to obtain P values or critical values for t-statistics based on CV1(3). As in the one-way
case, it seems reasonable to use the same distribution for ¢-statistics based on C\/?E?’) as well, and
this is the approach that we take.

However, at least two other approaches could in principle be used. For one-way clustering,
Bell and McCaffrey (2002) proposed a way to obtain approximate critical values for CV;-based
t-tests using a t distribution with an estimated degrees-of-freedom parameter; see also Imbens
and Kolesar (2016). For the two-way case, one could in principle use the same sort of approximate
critical value. However, we are not aware of any method for obtaining such a critical value for
t-statistics based on two-way clustering. This is an area for future research.

The wild cluster bootstrap (Cameron, Gelbach, and Miller 2008; Djogbenou, MacKinnon,
and Nielsen 2019) has been widely used for inference with one-way clustering, and MacKinnon,
Nielsen, and Webb (2021) suggested using it for two-way clustering as well. That paper simply
uses the usual wild cluster bootstrap for one of the G, H, or I dimensions to generate the

)_based t-tests for both the actual and bootstrap samples.

bootstrap samples and computes CV1(3
More recently, Hounyo and Lin (2024) proposes a wild bootstrap DGP that gives positive weight
to both dimensions. All these bootstrap methods usually lead to more reliable inferences than
simply using Student’s ¢ critical values, but they do not always perform particularly well, and
none of them is theoretically satisfactory. No existing wild bootstrap DGP for models with two-
way clustering can actually replicate the intra-cluster covariances in the residuals, because it
appears to be impossible to do so.

In the absence of any satisfactory alternative, we currently recommend using the cluster
jackknife together with critical values based on the Student’s ¢ distribution with min{G, H} — 1
degrees of freedom. As we shall see in Section 5, this approach often works remarkably well.

Whether combining the jackknife with a bootstrap procedure would perform even better is a topic



for future research; see MacKinnon et al. (2023b) for evidence on this with one-way clustering.

Computing the three-term cluster-jackknife estimator for the two-way fixed-effects model (25)
can be costly when GG and H are not fairly small. The cost of forming the X ]T X; matrices and
the Xy, vectors is roughly O(Nk*) = O(N(G+ H +p—1)*), because X has k = p+G+H — 1
columns. Since (21) has to be computed G+ H + I ~ G+ H + GH times, the cost of computing
the cluster-jackknife estimates after the X ]T X matrices and X ]T y; vectors have been formed is
roughly O(GHK?*) = O(GH(G + H + p —1)?) = O(G*) if G =~ H. A few timing experiments
suggest that this approximation may provide a reasonable guide in practice.

Much of the computational cost of the two-way cluster jackknife arises from the fact that
there are GH intersections. When [ << GH, the cost can be greatly reduced if the empty
intersections are skipped when calculating the delete-one-cluster estimates using (21).

The largest values of G, H, and GH in the experiments of Section 5 are 45, 36, and 1620,
respectively. With 90,000 observations and p = 10, each replication took about 1.7 seconds on
one core of a 13" generation Intel i9 processor using Fortran. The vast majority of the CPU
time was used to compute the delete-one-cluster estimates, mainly for the intersections. Similar
computations might take either more or less time using R or Stata, depending on how many
cores could be effectively utilized. These timings, together with the result that computer time is
approximately O(G*), suggest that it may not be feasible to compute three-term cluster-jackknife
variance matrices for the model (25) when max{G, H} exceeds 300 or so, unless min{G, H} is a

max

much smaller number or I << GH. Of course, CVl( ) will probably work well enough in such
cases that more sophisticated methods are not needed.

Computing the three-term cluster-jackknife estimators may also be infeasible if p, the number
of explanatory variables in (25), is too large. Even when G and H are not large, the X ]T X;
matrices are k X k, with £k = p+ G + H — 1. For large enough p, and hence k, the repeated
computations in (21) can become burdensome. Since there is no reason to expect CVl(maX) to work

well in such cases, this is a more serious problem than having a large number of intersections.

4 Robustness of the Cluster Jackknife CRVE

In this section, we discuss why two-way cluster jackknife CRVEs perform better in finite samples
than conventional CRVEs. The key reason seems to be that the former handle cluster size
variation, and heterogeneity more generally, better than the latter do. This is particularly
important for three-term estimators, as we explain.

Properties of classic jackknife variance estimators are well known. However, for the cluster
jackknife, the only analysis of theoretical properties that we are aware of is Hansen (2023).
In the context of the linear regression model with one-way clustering, it shows that a certain
cluster jackknife variance estimator (which is not quite the same as ‘%, but should usually be

very similar) is never downward biased. Moreover, the associated t-tests and confidence intervals

10



have worst-case size, or coverage, that is controlled by the Cauchy distribution. In contrast,
variance estimators based on CV; can be severely downward biased, the associated ¢-tests have
worst-case size of one, and the associated confidence intervals have worst-case coverage of zero.

It has been known for some time that the downward bias of one-way CV;-based variance
estimators is negatively associated with the number of clusters and positively associated with
the extent to which they are heterogeneous in size and leverage (Djogbenou, MacKinnon, and
Nielsen 2019; Boot, Niccodemi, and Wansbeek 2023). In many two-way designs, clusters vary
greatly in size and/or leverage in one or both dimensions. Thus, when Vi and Vi are based
on CVip, one or both of them is likely to be seriously downward biased. However, because
V; is normally based on a much larger number of clusters, its downward bias is likely to be
comparatively moderate. In consequence, when V} is subtracted from the sum of Vi and Vi to
form ‘A{(g), there is a good chance that the latter will be very severely biased.

In contrast, when Vi and Vj are based on CV3, the results of Hansen (2023) suggest that
neither of them is likely to suffer from much downward bias, although either or both may be
upward biased. It is possible that V; may be upward biased in this case, but since it is normally
based on a much larger number of clusters, any such bias is likely to be modest, and subtracting

®) jtself. These arguments suggest that Vg(?’) is more

it is not likely to cause downward bias in ‘73
likely to be positive definite than Vl(?’) and that tests based on ‘%(3) should be more reliable than
ones based on ‘A{(g)

The above arguments suggest that, if the sample is heterogeneous in only one dimension, so
that only one of Vi and Vi is severely downward biased, then the downward bias in ‘A/i(?’) is likely
to be relatively moderate. This case probably occurs quite often in panel settings, where samples
(and cluster sizes) are often heterogeneous across cross-sectional units but homogeneous across
time periods. In such cases, we would still expect CV3-based estimators to be more accurate
than CV;-based ones, but probably by a smaller margin than in cases with double heterogeneity.

The reason why CVj estimators are less biased than CV; estimators can be seen as follows.

Observe that the (one-way) cluster-jackknife CRVEs in (22) can be rewritten as

J—-1

VjIK J XTX (ZSJ ]T> XTX)?I for {j7 J} = {97G}7 {th}7 {i7[}7 (26)

where the modified score vectors §; are defined as
= X" M;'a, (27)

and M;; denotes the (j, 7)™ block of Mx = Iy — X(X"X)'X". For a proof of equality of
(22) and (26), see MacKinnon, Nielsen, and Webb (2023b, pp. 675-676). The modified score
vectors in (27) are normalized by the factor M ! ; in order to undo some of the shrinkage caused
by least squares. Since the M;; are inversely related to cluster leverage (MacKinnon, Nielsen,

11



and Webb 2023c), the cluster jackknife CRVE puts more weight on clusters with high leverage
compared with the CV; estimator. This accounts for the smaller bias of the former relative to
the latter, because high-leverage clusters are relatively more important in determining the actual
variance of the estimator.

In empirical research, it is very commonly found that some intersections of the two clustering
dimensions contain no observations. The possibility of empty intersections can be important for
two-way clustering, but it cannot arise for one-way clustering. To examine the importance of
empty intersections, consider two hypothetical samples, each with G = H = 10. Thus there
are 100 intersections. For one sample, no intersections are empty, but 70 of them contain just 1
observation. For the other sample, there are 70 empty intersections. Now consider the cluster
jackknife estimator, VIJK. In the first sample, it is based on 100 terms. Since dropping just one
observation should not change B (@) very much, the terms in the summation in (22) corresponding
to the tiny intersections must all be very small. In the second sample, the cluster jackknife
estimate is based on just 30 terms. The terms that were small in the first sample have vanished,
which seems to be a small difference. The only other difference between the two samples is that
the leading factor in ‘A/}JK will be 99/100 in the first sample and 29/30 in the second, which
seems inconsequential. Thus the cluster jackknife estimator handles empty intersections in a

reasonable fashion.

5 Simulation Experiments

Almost all of our experiments deal with the two-way fixed-effects model (25). The number of
coefficients is k = p+ G + H — 1, but we focus on tests of a single coefficient, say ;. Although
(25) is very widely used, many existing simulation experiments for two-way clustering do not
include cluster fixed effects. This is probably because, when the intra-cluster correlations are
generated by a random-effects model, cluster fixed effects absorb all of them. For example, the
experiments in Cameron, Gelbach, and Miller (2011, Section 3.1) and MacKinnon, Nielsen, and
Webb (2021) do not include fixed effects. In contrast, the placebo-regression experiments in
Section 3.2 of the former paper use actual data instead of a random-effects model, and they do
include two-way fixed effects.

In order to generate data for the model (25), the disturbances must be generated in a way
that allows for two-way intra-cluster correlation that is not removed by cluster fixed effects. We

use factor models of the form
. 1 1 o
Zghi = O—gsg + Ohfh + Unghi if ¢ is Odd> (28)

2 2 o s
Zghi = 0¢85 + on &), + 0cCgni if 4 is even.

Here &, and & are random effects, distributed as N(0, 1), which apply respectively to the odd-

numbered and even-numbered observations within the g cluster in the G’ dimension. Similarly,
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&l and €2 are random effects which apply to the odd-numbered and even-numbered observations
within the A" cluster in the H dimension. The (gni are independent standard normals.

The values of 0,4, 03, and o, determine the amount of correlation for the odd-numbered and
even-numbered observations within each cluster, and hence the correlations within and across
the clusters in the GG, H, and I dimensions. There will be no correlation for observations that
belong to different clusters in the G and H dimensions. Instead of specifying o, and o}, directly,
we specify them as functions of correlations p, and p,, with o; = (p;/(1 — p;))'/? for j = g, h.

2 1/2

To ensure that the z,,; have variance unity, the value of o, is (1 — 02 — 03)

p . This constrains

pg and p, not to be too large.

The factor model (28) provides a simple way to generate data for a model with two-way fixed
effects. It is based on a one-way DGP used in MacKinnon, Nielsen, and Webb (2023e) and can
be interpreted in a variety of ways, depending on the nature of the data. The idea is that there
are two types of observations within each cluster in each dimension, and all the intra-cluster
correlation is within each type. For example, with clustering at the geographical level, there
might be two sub-regions. With clustering at the industry level, there might be two types of firm.
The key assumption is that the researcher knows which cluster an observation belongs to in each
dimension, but not which type. Including cluster fixed effects explains some of the intra-cluster
correlation by estimating averages of £, and &2 for each G cluster and averages of &, and &} for
each H cluster, but it does not explain all of it. Thus cluster-robust inference is still needed.

In several of the experiments, we focus on cluster size variation. Following MacKinnon
and Webb (2017) and Djogbenou, MacKinnon, and Nielsen (2019), the cluster sizes in the G

dimension are given by

N exp(v9/G)
! > exp(vi/G))’

where [z] denotes the integer part of x. The value of Ng is then set to N — Zf:_ll N,. The

formula (29), perhaps with a different value of =, is also used in the H dimension. Assuming

—1,...,G—1, (29)

that the distributions are independent, Ny, ~ N,N,/N. In a final step, the cluster sizes are
adjusted to ensure that they are all integers with N = Zgazl N, = Zthl Ny, = Zle Zthl Ngp,.
The way in which the regressors are generated inevitably affects the finite-sample properties
of every cluster-robust test statistic. The differences between asymptotic and finite-sample
distributions arise mainly from the discrepancies between the disturbance vector w and the
residual vector @ = Mxu, where Mx = Iy — X(X T X)X T. We use (28) to generate the
regressor matrix Z in (25) as well as the disturbances. In most experiments, we set pi = pj; = 0.2
for the regressors and p; = pp = 0.1 for the disturbances. We use these values because, in
practice, regressors often display more intra-cluster correlation than residuals. For this base

case, we deliberately avoid situations, to be discussed below, in which the amount of intra-cluster
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Figure 1: Rejection frequencies as functions of how cluster sizes vary

Rej. Freq. (a) v varies in both dimensions Rej. Freq. (b) ~ varies in the G dimension
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Notes: There are N = 10,000 observations, with G = 15, H = 12, and I = 180. The regressors and disturbances
are generated using (28), with py = pj = 0.2 for the regressors and p, = p, = 0.1 for the disturbances. The
regressand is generated using (25) with all coefficients equal to 0. The vertical axis shows rejection frequencies
for t-tests at the .05 level based on the t(min{G, H} — 1) distribution. In Panel (a), v is the same in both
dimensions. In Panel (b), the value of v is 0 for the H dimension and varies for the G dimension. The values of
p and k are 10 and 36. There are 100,000 replications.

correlation is very small.

The first set of experiments focuses on cluster size variation, determined by the parameter
in (29). Figure 1 shows rejection frequencies for eight different ¢-tests from 18 experiments with
G =15, H = 12, and N = 10,000. In Panel (a), the value of v is varied simultaneously from
0.0 to 4.0 in both dimensions. In Panel (b), v = 0 for the H dimension, and v varies from 0.0
to 4.0 for the GG dimension. In these experiments, the number of regressors is p = 10. All tests
would have performed better if this had been a smaller number. The effects of varying p will be
investigated below.

In Panel (a), when all clusters are (approximately) the same size (the leftmost point on
the horizontal axes), t-tests based on the classic CV1(3) variance matrix estimator over-reject
noticeably, as do those based on CVl(maX). Rejection frequencies are considerably lower for CV1(3+),
and lower still for CV{?. In contrast, t-tests based on the CV{Y and CV{™™ estimators are very
close to nominal size, while those based on CV§3+) and CV;EZ) under-reject substantially. As the
value of v increases, all the CV; rejection frequencies rise sharply, while those for the CVj tests
hardly change. Using the max-se procedure has almost no effect when cluster sizes vary little,
but it modestly reduces rejection frequencies for CV; tests when they vary a lot.

In Panel (b), the overall patterns are similar. However, as predicted in Section 4, rejection
frequencies increase less rapidly when « just increases in the G dimension than when it increases
in both dimensions. In both panels, as must be the case, t-tests based on two-term variance
estimators always reject less often than ¢-tests based on three-term ones. This is a good thing
for the CV; tests, but not for the CVj3 ones.
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Figure 2: Rejection frequencies as functions of disturbance correlations

Rej. Freq. (a) G=15, H=12,p=5 Rej. Freq. (b) G=30, H=24,p=12
0.15 ] CV{3) CVI(Q) _________ 0.15 ] CV?():s) CVPEZ) _________
: CV{3+) _____ CV;{IH&X) .......... : CV§3+) _____ CVéHlaX) ..........
0.10 —
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0.00 — T T | T 1P 0.00 — T | T | 1P
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Notes: In Panel (a), N = 10,000, with G = 15, H = 12, I = 180, and p = 5. In Panel (b), N = 40,000,
with G = 30, H = 24, I = 720, and p = 15. In both panels, v = 2 in both dimensions. The p regressors are
generated using (28) with py = pp = 0.2. The disturbances are generated in the same way, but with p; = pp = p,
which varies from 0.000 to 0.010 by 0.001, from 0.010 to 0.100 by 0.010, and from 0.120 to 0.200 by 0.020. The
regressand is generated using (25) with all coefficients equal to 0. The vertical axis shows rejection frequencies
for t-tests at the .05 level based on the ¢(min{G, H} — 1) distribution. The horizontal axis shows p, which is

graphed on a square-root scale. There are 100,000 replications.

One possibly surprising feature of Figure 1 is how much the 3+ tests based on the eigen-
decomposition differ from the ordinary three-term tests. This happens because, with 36 coeffi-
cients to estimate (26 of them fixed effects), the three-term variance matrices are always singu-
lar. This will inevitably happen for models with cluster fixed effects or with large numbers of
regressors for other reasons. For CVy, the 3+ variant performs better than the usual three-term
test, but for CVj, it performs worse, under-rejecting about as much as the two-term test.

Except for quite small values of 7, the intersections in these experiments vary greatly in size.
For example, when both values of v equal 2, which is the base case for many of our subsequent
experiments, the smallest intersection contains 6 observations, and the largest contains 253. The
sizes of the intersections vary much more than those of the G clusters, which range from 223
to 1443, or the H clusters, which range from 282 to 1769. Although these numbers depend on
the way in which we generate cluster sizes, it is inevitable that, when the cluster sizes vary in
both dimensions, the sizes of the intersections vary more dramatically.

As MacKinnon, Nielsen, and Webb (2021) shows, test statistics based on the two-term vari-
ance estimator are asymptotically too small whenever the scores are asymptotically uncorrelated
beyond the intersection level. This suggests that they are likely to under-reject severely when
the amount of intra-cluster correlation is very small. In Figure 2, we vary both values of p for
the disturbances from 0.000 to 0.200. For clarity, the horizontal axis uses a square root trans-
formation. The numbers of clusters, observations, and regressors are larger in Panel (b) than in

Panel (a); see the notes to the figure.

15



Figure 3: Rejection frequencies as functions of regressor correlations

Rej. Freq. (a) py and pj vary together Rej. Freq. (b) p; = 0.1 and pj; varies
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Notes: In both panels, N = 10,000, with G = 15, H =12, I = 180, p =5, and v = 2 in both dimensions. The
disturbances are generated using (28) with p; = pp = 0.1. The regressors are also generated using (28), but the
p® parameters vary. In Panel (a), they both vary together between 0.00 and 0.30. In Panel (b), pj = 0.10, and
py. varies between 0.00 and 0.40. The regressand is generated using (25) with all coefficients equal to 0. The
vertical axis shows rejection frequencies for t-tests at the .05 level based on the ¢(min{G, H} — 1) distribution.
There are 100,000 replications.

Several results stand out in Figure 2. For small values of p, the rejection frequencies of
the three-term tests are much higher than those of the corresponding max-se tests. This is
particularly true for the CV; tests. For the smallest values of p, the two-term tests under-
reject to an extreme extent, as the theory in MacKinnon, Nielsen, and Webb (2021) predicts.
Interestingly, so do the eigen-decomposition tests. In fact, in both panels, the two-term and 3+
tests perform very similarly. In both panels and for all values of p, the CVs-based tests reject
less than the corresponding CV;-based tests. Except for the smallest values of p, the CV§3) and
CV{™™ tests are very similar in Panel (a) and identical in Panel (b), and they perform very well.

For the smallest values of p in these experiments, there were a number of replications for
which the three-term variance of 3; was negative. This happened more often for G = 15 than
for G = 30, and more often for CV; than for CV3. Since we could not calculate the t-statistic for
these replications, we classified them as rejections. In the most extreme case, when p = 0.000
for G = 15 (G = 30), this happened 2.60% (0.24%) of the time for CV\¥ and 2.1% (0.16%)
for CV§3). These numbers declined sharply as the value of p increased.

It is not only the correlations of the disturbances that matter. In Figure 3, we vary the
correlations of the regressors, either in both dimensions, in Panel (a), or just in the H dimension,
in Panel (b). Although they may seem small, the largest values of the p® parameters here are
not far short of the largest possible values; see the discussion below (28). The horizontal axis
does not use a square-root scale as Figure 2 did, because the dependence on p* for small values
is not as extreme as the dependence on p in that figure.

It is clear from Figure 3 that the way in which the regressors are distributed can have
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Figure 4: Rejection frequencies as functions of number of regressors
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Notes: There are 10,000 observations in Panels (a) and (c) and 40,000 in Panels (b) and (d). The number of
ordinary regressors (p) varies from 1 to 16. They are generated using (28) with v = 2 and pg = pp, = 0.2. The
disturbances are generated in the same way, but with p, = p, = 0.1. In Panels (a) and (b), the regressand
is generated using (25) with all coefficients equal to 0. In Panels (c) and (d), all the fixed effects are replaced
by a constant term. The vertical axis shows rejection frequencies for t-tests at the .05 level based on the
t(min{G, H} — 1) distribution. There are 100,000 replications.

substantial effects on rejection frequencies. Every test except CV1(3) and CV3(3) can either over-
reject or under-reject, depending on the values of the two p* parameters. The two three-term
tests always over-reject, although only very slightly for C\/ég) in Panel (a) for p* > 0.05. The
most reliable tests are the ones based on CV§3) and, especially, CV§maX). This is particularly the
case for larger values of the p® parameters, where all the CV;-based tests over-reject substantially.
Panels (a) and (b) are quite similar when both p® parameters, or just pj, are large, but the two
panels differ substantially when the intra-cluster correlations are small.

Figure 4 shows that the number of regressors, p, also matters. In Panels (a) and (c¢), G = 15,
H =12, and N = 10,000. In Panels (b) and (d), G = 30, H = 24, and N = 40,000. In all
panels, p varies from 1 to 16. As it increases, the rejection rates for the CV; tests increase, but
those for the CVj tests decrease slightly. In all panels, the max-se tests perform nearly the same
as the three-term tests. Throughout Figure 4, the CVS¥ and CV{™ tests perform very well.

In the lower two panels, the 26 or 53 fixed effects are replaced by a constant term. Rejection
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Figure 5: Rejection frequencies as functions of number of clusters
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Notes: The value of G varies from 10 to 45 by 5, with H = 4G/5 and v the same in both dimensions. There
are 10,000G H/180 observations, so that N varies from 1,111 to 90,000. The regressors are generated using (28)
with pg = pj = 0.2. The disturbances are generated in the same way, but with p; = p, = 0.1. The regressand is
generated using (25) with all coefficients equal to 0. The vertical axis shows rejection frequencies for t-tests at
the .05 level based on the ¢(min{G, H} — 1) distribution. There are 100,000 replications.

frequencies for the CV; tests still increase with p, but more slowly, while those for the CVj3 tests
still decrease, at about the same slow rate. In these two panels, the 3+ tests are nearly identical
to the ordinary three-term tests. These are the only experiments in which we omit the fixed
effects. Their presence evidently has a large impact on the performance of the 3+ tests but a
fairly modest effect on that of the other tests.

We would expect all the results to improve as the number of clusters increases, as happens in
Figure 4. Therefore, in Figure 5, G varies from 10 to 45 by 5, H is always equal to 4G /5, and N
is proportional to GH, so that the sizes of the intersections are roughly constant. In Panel (a),
p = 5. Here, CV¥ and CV™™ and to a lesser extent CVS™, always over-reject, but they
improve steadily as G (and H) increase. CVI™) over-rejects less severely than CV(® for the
smallest values of GG, but the former is almost indistinguishable from the latter for G > 15. In
contrast, CV?EB') always works almost perfectly, with CV§max) yielding virtually identical results
for G > 15. By what seems to be coincidence, CV1(2) also works well.

In Panel (b) of Figure 5, p is increased to 15. The CV;-based tests now over-reject much more
severely, but tests based on CV§3) and CngaX) perform extremely well. In contrast, tests based on
CV§2) and CV3(3+) are almost identical and always under-reject. Clearly, omitting the intersection
term or using the eigen-decomposition is helpful for CV;, because the three-term tests over-
reject, but harmful for CV3, because the three-term tests are approximately sized correctly.

Figure 4 suggests that rejection frequencies for all the CV; tests increase fairly rapidly with
p, the number of regressors that are not fixed effects, while those for all the CVj tests decrease

quite slowly. We conjecture that this is happening because all the regressors are correlated
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Figure 6: Rejection frequencies as functions of number of extra binary regressors

5{?2 Freq. (a) Binary regressors at observation level OR?Z Freq. (b) Binary regressors at intersection level
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Notes: In both panels, N = 10,000, G = 15, H = 12, and v = 2 in both dimensions. There is one continuous
regressor, like the ones in Figures 1-5. In addition, there are ¢ binary regressors, which equal 1 with probabil-
ity 0.5. These vary independently at the observation level in Panel (a) and at the intersection level in Panel (b).
The vertical axis shows rejection frequencies for t-tests at the .05 level based on the ¢(min{G, H} — 1) distribu-
tion. There are 100,000 replications.

within clusters in one or both dimensions. Thus, as the number of regressors increases, more
and more of the intra-cluster correlation in the disturbances is explained by the regressors, so
that less of it remains in the residuals.

In order to investigate this conjecture, we modify the way in which we generate the regres-
sors. The first one (the test regressor) is generated as before, but then we generate an addi-
tional ¢ binary regressors which equal 0 or 1 with probability 0.5. In one set of simulations, they
are completely independent across observations. In a second set, they are generated at the in-
tersection level, identical within each intersection and independent across intersections.

Figure 6 shows rejection frequencies as a function of ¢, which varies from 0 to 30. In both
panels, the test based on CV3maX) performs best, over-rejecting slightly for all values of q. The
tests based on CV§3), CV1(3+), and CV1(2) perform nearly as well, with the former two over-
rejecting slightly and the latter under-rejecting slightly. The value of ¢ has very little effect on
most of the tests.

The differences between Figure 4 and Figure 6 are striking. In the former, all the regressors
are correlated within both the G and H clusters. We saw there that adding more regressors
with this property can substantially increase rejection frequencies for CV; tests and slightly
decrease them for CVj tests. In contrast, adding more regressors that are uncorrelated across
observations or across intersections has almost no effect on rejection frequencies. Empirical
applications of two-way clustering often involve many controls. Whether or not these controls
exhibit substantial correlation in either dimension can evidently be important.

Up to this point, the data for all of our experiments have been generated in such a way

that I = GH. In other words, there have been no datasets with empty intersections. But
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Figure 7: Rejection frequencies as functions of fraction of empty intersections
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Notes: In Panel (a), N = 6,000. In Panel (b), N = 12,000. The disturbances are generated using (28) with
pg = pn = 0.1. There are 5 continuous regressors, which are generated using (28) with pg = pj = 0.2, along
with 5 binary regressors, which vary at the intersection level and equal 1 with probability 0.25. The fraction of
empty intersections varies on the horizontal axis. The vertical axis shows rejection frequencies for t-tests at the
.05 level based on the ¢(min{G, H} — 1) distribution. There are 100,000 replications.

empirical examples with two-way clustering often involve empty intersections. In the next set of
experiments, we therefore change the DGP so that intersections can be empty. The details are
somewhat complicated and not of much interest. There is a parameter which, as it increases,
causes the fraction of empty intersections to increase from zero to an upper limit that depends
on G, H, and how the clusters vary in size. We perform two sets of experiments. In both of
them, the 15 clusters in the G dimension are generated from (29) with v = 2. In the first set
H =10, and in the second set H = 20. The maximum observed number of empty intersections
is 87 (out of 150) in the first set and 257 (out of 300) in the second set.

Figure 7 shows rejection frequencies as functions of the fraction of empty intersections. This
fraction evidently matters, especially for the CV;-based tests, although not dramatically so in
these experiments. As usual, t-tests based on CV?EmaX) always perform best, and in fact they
perform extremely well. Some of the other tests perform quite poorly. As a rule, tests that
over-reject or under-reject when there are no empty intersections do the same thing to a greater
extent when there are many empty intersections.

Since some of the tests tend to over-reject and others tend to under-reject under the null
hypothesis, it is inevitable that the former will appear to have more power than the latter.
Figure 8 shows power functions for all eight tests. The functions never cross, so there is nothing
surprising here. For every alternative, the ranking of the tests by power is identical to their
ranking by rejection frequencies under the null hypothesis. Thus the fact that all of the CV;
tests appear to be more powerful than any of the CVj3 tests simply reflects that the former are

over-sized under the null. In this experiment, the power functions for CV{™ and CV{™™) are
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Figure 8: Power functions for eight tests
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Notes: There are 10,000 observations, with G = 15, H = 12, p = 10, and v = 2 in both dimensions. The
regressors are generated using (28) with Py = Py = 0.2. The disturbances are generated in the same way, but
with pg = pp, = 0.1. The regressand is generated using (25) with 8; > 0 and all other coefficients equal to 0. The
vertical axis shows rejection frequencies for t-tests at the .05 level based on the ¢(min{G, H} — 1) distribution.
There are 100,000 replications.

indistinguishable from those for CV?) and C\/ég), respectively. All the tests evidently reject with
probability one when f; is sufficiently large.

6 Empirical Examples

In this section, we study two empirical examples that apply very different types of two-way

clustering with clusters that behave in different ways across the two clustering dimensions.
6.1 The Tsetse Fly in African Development

In a fascinating paper, Alsan (2015) studies the effects of the tsetse fly on African development.
The key explanatory variable is the “tsetse suitability index,” or TSI, which measures the extent
to which climate (temperature and humidity) is suitable for the tsetse fly to thrive. There are
seven dependent variables, which measure various aspects of economic and political development.
Each of these is regressed on the TSI, whose coefficient is denoted /3, and on eleven other variables
in the columns labeled “(4)” in Table 1 and “(8)” in Table 3 of Alsan (2015). The former uses
one-way clustering by “cultural province” and the latter uses two-way clustering by cultural
province and country. There are 44 countries and either 43 or 44 cultural provinces, depending
on the regressand. Since the total number of observations varies between 315 and 485, most
clusters are quite small, and there are many empty intersections. The number of non-empty

intersections varies between 112 and 142.
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Table 1: Empirical results for tsetse fly example

Panel A: Conventional CRVEs P values
Dependent variable B HC, OVl CVi-G Cvi-H  cv®  ov® gylme)
Large animals —0.2310 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000
Intensive agriculture —0.0905 0.0080 0.0087 0.0020 0.0045 0.0321 0.0003 0.0045
Plow use —0.0572 0.0096 0.0171 0.0149 0.0791 0.1496 0.0715 0.0791
Female participation ~ 0.2057 0.0001  0.0001 0.0014 0.0001 0.0099 0.0009 0.0014
Log pop. density —0.7446  0.0000 0.0002 0.0023 0.0005 0.0182 0.0028 0.0028
Indigenous slavery 0.1013 0.0060 0.0137 0.0160 0.0162 0.0834 0.0157 0.0162
Centralization —0.0746  0.0727 0.0460 0.0395 0.0471 0.1482 0.0365 0.0471
Panel B: Jackknife CRVEs P values
Dependent variable 3 HC;  CVil CVeG CVeH VP vl cvim)
Large animals —0.2310 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000
Intensive agriculture —0.0905 0.0092 0.0130 0.0044 0.0123 0.0549 0.0027 0.0123
Plow use —0.0572 0.0124 0.0220 0.0207 0.1422 0.2112 0.1365 0.1422
Female participation ~ 0.2057 0.0001  0.0002 0.0036 0.0008 0.0239 0.0051 0.0051
Log pop. density —0.7446  0.0000 0.0005 0.0060 0.0021 0.0357 0.0090 0.0090
Indigenous slavery 0.1013 0.0077 0.0247 0.0353 0.0496 0.1462 0.0575 0.0575
Centralization —0.0746 0.0798 0.0564 0.0545 0.0817 0.1925 0.0751 0.0817
Panel C: Cluster diagnostics Coeflicients of variation

partial leverage B (9) G*
Dependent variable  culture country intersect culture country intersect culture country
Large animals 1.2877  1.1571 1.7094 0.0323 0.0271 0.0173 23.18 16.25
Intensive agriculture  1.2875  1.1572  1.7095 0.0513 0.0591 0.0336 23.20 16.27
Plow use 1.2877  1.1571  1.7094 0.0643 0.1035 0.0365 23.18 16.25
Female participation 1.6073  1.4962 2.0302 0.0507 0.0444 0.0248 20.84 13.71
Log pop. density 1.3241  1.2277 1.8453 0.0540 0.0481 0.0258 20.88 15.51
Indigenous slavery 1.3307  1.2431 1.7912 0.0710 0.0774 0.0376 22.71 15.84
Centralization 1.3189  1.1751 1.7403 0.0780 0.0861 0.0442 22.76  16.20

Notes: Estimates correspond to Table 1 (4) and Table 3 (8) from Alsan (2015). Panels A and B show coefficient
estimates and P values. CV-G is clustered by cultural province, CV-H is clustered by country, and CV-I is
clustered by intersection. P values for HC standard errors are based on the ¢(N — 13) distribution. P values for
CV-G, CV-H, and CV-I are based on the ¢(G — 1), t(H — 1), or t(I — 1) distributions, respectively. P values for

V§3+) are

two-way clustering are based on the ¢(min{G, H}) distribution. In all cases, the P values based on C
identical to those based on CVg()S) to the number of digits reported. Panel C shows coefficients of variation for
partial leverage and omit-one-cluster coeflicients by both clustering dimensions and their intersection, as well as

the effective number of clusters, G* = G*(0), computed by twowayjack.
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In Table 1, we report P values based on sixteen different standard error estimates, eight
using conventional standard errors (Panel A) and eight using jackknife ones (Panel B). Because
the ordinary three-term and eigen-decomposition three-term standard errors are identical in all
cases (to the number of digits reported), we only report the former.

Even though the clusters are quite small (the largest is 63, which is for clustering by country
when the dependent variable is the log of population density), the way in which we cluster
often makes a substantial difference. Not clustering at all sometimes leads to extremely small
P values, as does one-way clustering by intersection. Clustering in two dimensions often, but not
always, leads to larger P values than clustering in just one dimension. For two-way clustering,
the cluster jackknife P values are never smaller than the conventional ones, and they are mostly
considerably larger.

Panel C of Table 1 presents a number of the summary statistics calculated by twowayjack
for this example. Specifically, it presents coefficients of variation for the partial leverages of the
TSI variable and for the B(g) for clustering by cultural province, country, and intersection. It
also displays the effective number of clusters G* = G*(0) for the two primary dimensions (Carter
et al. 2017; MacKinnon et al. 2023c). These diagnostics can help to explain why some of the
P values in Panels A and B differ by more than others. The notable P value differences between
CVIm™ and V™™ occur for ‘plow use,’ ‘indigenous slavery,” and ‘centralization. For these
three variables, we see the largest coefficients of variation for the omit-one-country estimates,
and, to a slightly lesser extent, for the omit-one-culture ones.

The results of Section 5 suggest that CV{™™ vields the most reliable P values. The CV{™*
P value for TSI is less than 0.05 for four of the seven dependent variables. In contrast, the CV;
P values for one-way clustering by cultural province used in Alsan (2015) are less than 0.05 for
all seven variables in Table 1 (4), and the ones for two-way CVl(?’) clustering are less than 0.05
for six of them in Table 3 (8). Thus, although there is still a good deal of evidence that the TSI

matters for a variety of outcomes, the evidence is not quite as strong as it originally seemed to be.
6.2 Minimum Wages in Canada

Our second example examines the relationship between minimum wages in Canada and the log
of hourly earnings. We focus attention on men between 18 and 24 years of age who immigrated
to Canada less than ten years ago. Our sample contains 28,599 observations for the years 2008
to 2019. Except for a few federally-regulated industries, minimum wages in Canada are set
at the provincial level. They tend to change infrequently, and they never go down. In fact,
although our sample contains observations for 1440 province-month pairs, the minimum wage
variable takes on only 63 unique values.

The equation we estimate is

logearn,,,., = a + Blogmw,,,, + 7 bigcity;,,., + 0 age;,,,, + year, + month,, + prov, + €pm, (30)

23



Table 2: Empirical results for minimum wage example

Panel A: Conventional CRVEs
HC, CVi-I CVi-G CVi-H ov®  ov®  ovih cylme)

P values 0.0000 0.0000  0.0041 0.0034 0.0261 0.0140 0.0141 0.0140
Placebo rej. freq.  0.8947 0.6301  0.5958 0.3018 0.1454 0.2431 0.2431 0.2319

Panel B: Jackknife CRVEs
HC; CVsl  CVy3-G CVe-H v ovl® vl cyim)

P values 0.0000 0.0001  0.0125 0.0565 0.1116 0.0808 0.0810 0.0808
Placebo rej. freq.  0.8947 0.5725  0.5432 0.0896 0.0254 0.0649 0.0649 0.0572

Panel C: Cluster diagnostics Coeflicients of variation
partial leverage B (9) G*
year province intersect year province intersect year province
Log earnings 0.0607 1.1909 1.1794 0.1061 0.1577 0.0232  6.51 4.49

Notes: There are 28,599 observations, 12 year (G) clusters, 10 province (H) clusters, and 120 intersection (I)
clusters. The coefficient estimate for the log minimum wage is B = 0.2934. The first row in each of Panels A and B
reports P values using HC standard errors based on the #(28,564) distribution, P values for one-way clustering
based on the ¢(11), ¢(9), or ¢(119) distributions, as appropriate, and P values for two-way clustering based on the
t(9) distribution. The second row reports rejection frequencies for 100,000 placebo regressions. Panel C reports
coefficients of variation for partial leverage and omit-one-cluster coefficients by both clustering dimensions and

their intersection, as well as the effective number of clusters, G* = G*(0), computed by twowayjack.

where logearn;p,,; is the log of hourly earnings for individual ¢ in province p in month m of
year t, logmwy,,; is the log of the minimum wage, bigcity;pn: is a dummy for being in one of
nine large cities, age;pm: is a dummy for being 22 to 24, and the remaining regressors are year
fixed effects, month-within-year fixed effects, and province fixed effects. The total number of
regressors, including the constant term, is 35.

This example is one for which reliable cluster-robust inference is likely to be difficult. We
cluster by year and province, but there are only 12 years and 10 provinces. The year clusters
are reasonably homogeneous in size; they vary from 2051 to 2723 observations. But the province
clusters are very heterogeneous; they vary from 163 (P.E.I.) to 6554 (Ontario). Although there
are no empty intersections, the smallest contains just 3 observations, and the largest contains 710.

Table 2 contains three panels. Panel C presents some cluster diagnostics, calculated using
twowayjack. The coefficients of variation are quite revealing. For partial leverage, there is
considerable variation across provinces and intersections, but very little across years. For the
B (9) there is modest variation when leaving out a province or a year, but very little when leaving
out an intersection cluster.

These features of the sample suggest that many methods, perhaps all methods, will not

yield reliable inferences. In order to investigate this conjecture, we employ placebo-regression

24



simulations as advocated by MacKinnon, Nielsen, and Webb (2023a, Section 3.5). These are
similar in spirit to the “placebo laws” simulations of Bertrand, Duflo, and Mullainathan (2004).
For each of 100,000 simulations and each province, we generate a sequence of values of a placebo
regressor that resembles the actual minimum wage sequences: The value tends to stay constant
for a while and then rise by a random amount from time to time in a fashion that is correlated
across provinces. This placebo regressor is then added to regression (30), and we calculate sixteen
P values for its coefficient based on all sixteen standard errors used for the actual regression. If
regression (30) is correctly specified and any particular way of obtaining P values is valid for
our sample, then the fraction of the time that the placebo-regression P value is less than 0.05
should be very close to 0.05, subject to experimental error.

Panels A and B of Table 2 show both the actual P values and rejection frequencies for the
placebo regressions for all sixteen methods. The conventional P values in Panel A imply that
the minimum wage is significant at the 0.01 level for all the one-way clustering methods and at
the 0.05 level for all the two-way methods. However, the placebo-regression rejection frequencies
vary from 15% to 89%), suggesting that none of the conventional P values should be believed.

In contrast, the jackknife P values in Panel B are greater than 0.05 for one-way clustering by
province and for the two-way clustering methods. The placebo-regression rejection frequencies
for the one-way methods vary between 9% and 89%, suggesting that they should not be trusted.
For the two-term two-way estimator CVPEZ), the placebo rejection frequency is just 2.5%, which
is in line with existing theory (Section 2) and some of our simulations (e.g. Figure 2). For
the three-term cluster jackknife estimators, the placebo rejection frequencies are between 5.7%
and 6.5%, which is remarkably good in view of the small numbers of clusters and the cluster
diagnostics. For these methods, the P value is 0.081. Thus the most reliable methods all suggest

that the evidence for the effect of the minimum wage in this sample is fairly weak.

7 Conclusions

It is common to assume that the disturbances in linear regression models are clustered in two
dimensions. Unless the regressor(s) of interest are uncorrelated in one or both dimensions, it is
therefore necessary to employ a cluster-robust variance estimator that allows for two-way clus-
tering. Unfortunately the most widely-used cluster-robust variance matrix estimator (CRVE),
CV1(3), due to Cameron et al. (2011), is not guaranteed to be positive definite. Inferences based
on it are known to be seriously unreliable in finite samples (MacKinnon et al. 2021).

In Section 2, we discuss several ways to avoid, or at least ameliorate, the problem of undefined
standard errors when a CRVE is not positive definite. Most importantly, we propose a new and
simple solution to this problem. For tests of a single restriction, it just involves using whichever
of three standard errors is the largest. Two of these are based on one-way clustering in each of

the two dimensions, and the third is a three-term two-way standard error. Asymptotically, the
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latter should always be the largest of the three when there really is two-way clustering, but it
may not be the largest (and may indeed not be defined) in finite samples. In many cases, our
so-called max-se procedure yields results identical to those from the corresponding three-term
two-way CRVE, but it can yield substantially lower (and more accurate) rejection frequencies
in some cases.

The second, and in our view more important, contribution of the paper is to propose and
study two-way cluster-jackknife CRVEs. Recent work on the cluster-jackknife, or CV3, CRVE for
one-way clustering (Hansen 2023; MacKinnon et al. 2023b, ¢) suggests that it can perform much
better in finite samples than the usual CV; CRVE. It therefore seems attractive to extend it to the
two-way case. This is remarkably simple. We just need to perform three sets of cluster-jackknife
calculations, one for each of the two dimensions, and then a third one for their intersections. In
many cases, this is straightforward, although cluster fixed effects do raise some computational
issues (Section 3), and the calculations can be costly when the number of intersections is large,
especially when there are cluster fixed effects. We provide a Stata package called twowayjack
that implements our methods and also calculates some cluster diagnostics (MacKinnon et al.
2023c); see Appendix A.

In Section 5, we study rejection frequencies for ¢-tests based on eight different cluster-robust
standard errors. Four of them are of the usual CV; type, and the other four are of the CVj3 type.
In most cases, tests based on the CV3; max-se standard error yield the most reliable inferences.
Even when they do not, they only perform slightly worse than whatever procedure(s) perform
better, and they are usually much more reliable than all of the CV;-based tests.

Because most of our simulations involve two-way cluster fixed effects, three-term variance
matrices based on either CV; or CVj3 tend to be singular, so the versions that use an eigen-
decomposition (Section 2) can differ greatly from the versions that do not. This always reduces
rejection frequencies, which is a good thing for CV; tests but usually a bad thing for CVj tests.
Tests based on two-term variance matrices usually reject even less frequently than tests based on
three-term variance matrices with the eigen-decomposition. Thus we do not recommend using
tests based on either CV§2) or CV§3+).

Our simulations show that precisely how the data are generated can have a large effect on
finite-sample performance. All the tests are most likely to perform poorly when the number of
clusters in either dimension is small, cluster sizes vary greatly, there are many empty intersec-
tions, the number of regressors that are clustered in one or both dimensions is large, or either
the disturbances or the regressor(s) of interest are only weakly correlated in both dimensions.
In many of these cases, alternative test statistics tend to perform quite differently.

In practice, it can often be illuminating to employ placebo regression simulations, as in
Section 6.2. These will show how well alternative tests perform for the particular model and

dataset under study. It is probably safe to rely on CV{™-based tests if they perform well in
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these simulations, or perhaps on some other tests if they perform better.

Appendix: The twowayjack Package

We have written a package twowayjack for Stata that implements the variance estimators
discussed in this paper. The package relies on our earlier package summclust (MacKinnon et al.
2023¢), and it calculates both CVS™) and CVI™™ for the coefficient of interest, as well as
confidence intervals and P values.

The package also provides coefficients of variation for several diagnostic measures as described
in MacKinnon et al. (2023c). For the two primary clustering dimensions and their intersections,
it calculates the coefficients of variation for the cluster sizes, leverage, partial leverage, and omit-
one-cluster estimates, B(g). In addition, it displays the number of clusters G' and the effective
number of clusters G* = G*(0) from Carter et al. (2017). The latest version may be obtained
from https://github.com/mattdwebb/twowayjack. The data and programs used in the paper
may be found at http://qed.econ.queensu.ca/pub/faculty/mackinnon/twowayjack/.

A.1 Syntax

The syntax for twowayjack is

twowayjack varlist, cluster(varlist) [fevar(varlist) sample(string)]
Here varlist contains a list of variables. The first one is the dependent variable, the second
is the regressor for which standard errors and P values are to be calculated, and the remaining
ones are all the other continuous and binary regressors. Categorical variables to be treated as

fixed effects should be listed using the fevar option.

cluster(varlist) is mandatory, where varlist contains the two variables by which obser-

vations are clustered. The program returns an error if exactly two variables are not specified.

fevar(varlist). Categorical variables to be included in the model as fixed effects should
be listed here. They are handled equivalently to i.varlist in a regression model. Since this
option uses a generalized inverse, CV3 can be calculated even when some of the omit-one-cluster

subsamples are singular. This always happens with cluster-level fixed effects.

sample (string) limits the sample. Use the text you would enter after an “if” in a regression

command. For instance, sample(female==1) is equivalent to “if female==1"
A.2 Tllustration

In this section, we highlight how the package can be called using an example from the webuse
dataset nlswork. The outcome of interest is hours worked. The independent variable of interest
is vismin, which is set to 0 if a person is white, and 1 otherwise. In part because hours vary
with age, and across industry, we cluster by both age and industry.

The first commands load and clean the dataset.
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webuse nlswork, clear
keep if inrange(age,25,35)

gen vismin = inrange(race,2,3)

For comparison purposes, the native Stata regression results with one-way clustering are ob-

tained from the command:
reg hours vismin south i.age i.birth_yr i.year i.ind , cluster(ind)

This yields the results:

Linear regression Number of obs = 13,754
F(10, 11) =
Prob > F = .
R-squared = 0.0659
Root MSE = 9.6979

(Std. err. adjusted for 12 clusters in ind_code)

I Robust
hours | Coefficient std. err. t P>t [95% conf. intervall]
_____________ o
vismin | 1.054672 .4202197 2.51 0.029 .1297746 1.979569

[additional output truncated]

We can instead estimate the same model with two-way clustering using twowayjack:
twowayjack hours vismin south , fevar(age birth_yr year ind) cluster(age ind)
The output is:

TWOWAYJACK
Reference: James G. MacKinnon, Morten (. Nielsen, and Matthew D. Webb

Jackknife inference with two-way clustering

Two-way cluster jackknife variance estimation.

Cluster summary statistics for vismin when clustered by age and ind_code.

Regression Output

s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper
_________ e e e
CVimax | 1.054672  0.420220 2.5098 0.0309 0.223377 1.885967
CV3max | 1.054672 0.521628 2.0219 0.0708 -0.107587 2.216931



Coefficients of Variation, G, and Gx

dimension | Ng Leverage Partial L. Dbeta no g G Gstar
___________ e
age | 0.0987 0.1813 0.0927 0.0431 11 10.90
ind_code | 1.1815 0.8823 1.1849 0.1565 12 5.21
intersect | 1.1507 0.8925 1.1657 0.0173 132 56.26
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