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1 Introduction

In this paper, we study the determination of firm- and industry-level market power in a market

with search frictions driven by matching and incomplete information and in which heterogeneous

firms compete for sales to ex ante homogeneous buyers. Matching rates and the distribution of

productivity across active firms, both of which are determined in equilibrium, generate distributions

of prices and markups that we relate to variation in the elasticity of demand at the firm level. These

distributions respond endogenously to changes in variable costs, utility from consumption, and fixed

costs of both entry and operation. We refer to these responses as pass-through and characterize

them for both individual firms and the industry average.

Our theory employs the concept of sequentially mixed search, extending that of Shi (2023) to

allow for both firm heterogeneity and a more general matching process. This enriched framework

enables us to investigate critical issues related to variations in market power among firms and across

economic conditions. For example, we characterize how search frictions allow less-productive firms

to persist in the market and analyze how their presence influences the pricing and markups of

more-productive firms. Additionally, we examine how firms with differing levels of productivity

respond distinctly to changes in cost and demand conditions and explore the implications of those

responses for average prices and markups.

In our environment with sequentially mixed search and heterogeneous firms, measures of iden-

tical households and ex ante identical firms first choose to enter one of many potentially available

submarkets where each is characterized by matching rates for both buyers and sellers and a maxi-

mum allowable price. The latter, here, is effectively a commitment on the part of firms who enter the

submarket. This process takes place under conditions of directed search, with agents understanding

the relationship between the upper limit on the posted price and the matching probabilities.

After choosing a submarket to enter and paying an entry cost, firms realize their productivity

and then decide whether to pay a fixed production cost and to operate in that submarket. Operating

firms then post a price contingent on their realized productivity and sell to those households that 1)

have an opportunity to trade with them and 2) for which this is the lowest-price opportunity that

they have. This process involves random matching and noisy search along the lines of Burdett and

Judd (1983) and is extended to incorporate firm heterogeneity as in Herrenbrueck (2017), Baggs
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et al. (2018), and Chernoff et al. (2024).

In this environment, we specify conditions under which there exists a unique sequential mixed-

search equilibrium. We characterize this equilibrium for classes of productivity distributions and

matching processes and illustrate the relationships among prices, markups, firm size, and produc-

tivity under various conditions. We also characterize the changes in the distributions of both prices

and markups that occur in response to changes in costs, both variable and fixed, and demand. In

some cases, the effects of these changes on average prices and overall market power are unambigu-

ous; in others, they are not. To shed light on the quantitative forces that can, in principle, resolve

any ambiguity, we also consider computational examples computed for parameterizations based on

empirical work in Chernoff et al. (2024).

In our theory, directed and random search play distinct roles in the determination of market

power. The process of directed search establishes a link between the relative measures of buyers and

sellers in the market, that is, market tightness. In general, lower tightness (more sellers relative to

buyers) is associated with lower markups. Effectively, buyers receive a higher share of the surplus

from trade as sellers have to “compete harder” for these buyers. This is a common finding in

directed search models in many applications and is related to the efficiency of matching in these

environments, as many authors have noted (see, for example, the survey by Guerrieri et al. (2021)).

Random search in the presence of firms with differing productivities within a submarket, how-

ever, introduces a countervailing force. Lower market tightness driven by an increase in the number

of firms, due to a reduction in costs or an increase in consumer demand, lowers the productivity

threshold for operation. That is, it allows less-productive firms to operate in the market, driving up

prices and, therefore, markups overall, thereby moving them in the opposite direction from market

tightness. This effect, that search frictions may increase market power by allowing less-productive

firms to successfully operate, thereby allowing more-productive firms to raise their markups, has

been recognized, for example, by Chernoff et al. (2024) and Menzio (2024).

Here directed search, while contributing to a positive relationship between tightness and market

power, may also contribute to this countervailing force in the opposite direction. In the random

search environments described above, the upper bound of the price distribution is determined

solely by demand, being equal either to an exogenously specified buyers’ reservation price or to

the unrestricted monopoly price in the case of downward-sloping demand (see Burdett and Judd
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(1983)). With sequentially mixed search, competition among firms determines the maximum price.

Here, that competition is among heterogeneous firms. The presence of less-productive firms in the

market, in response to a decline in market tightness, as described above, not only raises markups

for their more-productive competitors but also contributes to the increase in average prices and

markups by raising the maximum price, that is, the price posted by the least-productive firms in

the market.

Overall, average market power may be either increasing or decreasing in market tightness; that

is, it is possible for markups to rise (fall) when conditions become, in a sense, more (less) favorable

to buyers. As noted above, the overall effect of a given change can depend on quantitative factors.

Some general findings, however, do apply. Specifically, changes in marginal costs that are common

across firms, and changes in the fixed cost of entry and in buyers’ common utility from consumption

all cause market tightness and the average markup to move in opposite directions, while changes

in the fixed operating costs induce market tightness and the average markup to move in the same

direction.

We also focus on differences in market power at the firm level and how it responds to various

shocks. Thus, we examine differences in pass-through in different regions of the equilibrium price

and the markup distribution. We find that while there are strong forces inducing markups to be

increasing in firm size, in many cases markups exhibit a u-shape. That is, markups are falling in

size for the smallest, least-productive firms. These firms may also exhibit very large degrees of

pass-through relative to their more-productive peers. As those consumers purchasing from these

firms tend to be the least informed about prices, heterogeneity in markups and pass-through across

firms has implications for welfare and inequality.

Our analysis and results contribute to the literature on search, price dispersion, pass-through,

adapting the framework of Burdett and Judd (1983), as do Head et al. (2010), Head et al. (2012)

and Wang et al. (2020), and combining it with the directed search following Shi (2023). Our work,

here, is distinguished by the inclusion of firm heterogeneity in a manner similar to Herrenbrueck

(2017), Baggs et al. (2018), and Chernoff et al. (2024). Many others have extended the framework

of Burdett and Judd (1983) in related but different directions. Examples include Kaplan et al.

(2019), Menzio and Trachter (2018), and Menzio (2023).

Our work is also related to that of Nord (2023) and Menzio (2024). The former focuses on
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heterogeneity in consumers’ search efforts and characterizes the responses of prices and markups

in a model employing the structure of Burdett and Judd (1983), when individual shoppers choose

whether to observe one or two prices. The latter studies the distribution of markups in an extension

of Burdett and Judd (1983) with a Poisson search process with and without firm heterogeneity.

Our work differs from Nord (2023) in that we consider firm heterogeneity and a more general but

fixed search process. It differs from that of Menzio (2024) in that we generalize the search process

to reflect empirical evidence from Chernoff et al. (2024) and focus on pass-through at both the firm

and market/industry level.

Most importantly, however, our work differs from both Nord (2023) and Menzio (2024) in its

use of the framework of sequentially mixed search. It is this aspect of the theory that allows an

analysis of the potentially conflicting forces affecting market power and tightness described above.

Methodologically our work is thus similar to that of Shi (2023), although we diverge from the model

in that paper both with regard to the search process and in the inclusion of firm heterogeneity.

We also view our work as complementary to that found in the large literature on industry

dynamics following Hopenhayn (1992), Melitz (2003) and others, although it differs substantially in

several ways. First, imperfect competition here stems from search frictions, specifically consumers’

incomplete information regarding trading opportunities, rather than from product differentiation.

Second, markups are endogenous, heterogeneous across firms, and respond differentially to a wide

range of parameter changes and shocks. Moreover, the distribution of markups is driven by both

the nature of demand, which depends on the search process, and by the entire distribution of

firm productivity. Finally, the overall degree of market power here is determined by competition

among firms and depends on both demand and the nature and extent of heterogeneity in firms’

productivity.

The remainder of the paper is organized as follows. Section 2 describes the basic environment,

preferences, and technologies, including the extent and nature of firm heterogeneity and the match-

ing and meeting processes. Section 3 describes the nature of search and interactions among firms

and households and proves the existence and uniqueness of a sequential mixed search equilibrium.

In Section 4, the equilibrium distributions of prices and markups and the pass-through of various

shocks are characterized. We address the potential ambiguity of the qualitative results, discussed

above, in a series of computational examples in Section 5, and we conclude in Section 6.
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2 The Environment

There is a fixed measure, λ, of ex-ante identical households that consume either one or zero units

of a homogeneous good and receive utility ū if they consume. There is also a large measure of

prospective firms that can potentially produce the homogeneous good. These firms are ex ante

homogeneous but, prior to production, each may pay a fixed entry cost, fe, to draw a firm-specific

productivity parameter, z, from a common distribution, J(z), which is continuous on a connected

support, [zL, zH). We further restrict J(·) to have the property that there exists a monotonic

function G(zL/z) such that J(z) = G(zL/z). We refer to this as the monotone z-ratio property and

describe its usefulness in our discussion of firm optimization and equilibrium, below. The Pareto,

uniform, and triangular distributions are examples of distributions with this property.

Having paid the entry cost and drawn z, in order to be an active producer, the firm must pay a

common fixed production cost, δ. An active firm’s marginal production cost is constant and given

by φ
z , where z is the firm’s individual productivity parameter and ϕ > 0 is common across firms.

Previewing the equilibria we consider below, there will be a cut-off productivity level, z̃, such that

only firms that draw z ≥ z̃ will choose to be active. In this case, the distribution of productivity

among active firms is

F (z) =
J(z)− J(z̃)

1− J(z̃)
(1)

on support [z̃, zH). It is straightforward to show that if J(z) has the monotone z-ratio property

on [zL, zH), then F (z) also does on [z̃, zH). This will be useful as, in this case, a firm’s behavior

is dependent on its productivity relative to the least-productive operating firm (i.e., those with

z = z̃).

The economy is characterized by a search friction whereby households may contact firms only

randomly. We think of this as representing limitations on households’ information. First, while

households know the underlying distribution of productivity, J(z), they never directly observe any

firm’s costs. Second, they match randomly with at least one firm in a way that depends on the

relative measures of firms and households trading. Because there is a positive probability they

do not match, some firms and households will not trade in equilibrium. Finally, conditional on

matching, households receive opportunities to trade (meetings) with a random number of firms

and may choose the best trading opportunity from this set.
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Given the measures of households, λ, and firms active in the market, N , let the probabilities

with which households and firms, respectively, match with at least one trading partner be given by

b(θ) and s(θ). (2)

In (2), θ = λ
N represents market tightness, and the matching rates are derived from a constant

returns to scale (CRS) matching function, M(λ,N), where

b(θ) =
M(λ,N)

λ
= M(1, 1/θ) and s(θ) =

M(λ,N)

N
= M(θ, 1). (3)

As the matching function is CRS, the elasticity of the firm matching rate, ϵθs(θ), is less than one.

Further, we assume that the matching function is log-supermodular. This implies that ϵθs(θ) is

non-increasing in θ.

Conditional on matching with probability b(θ), a buyer has k total meetings with firms, for

k = 1, . . . ,K, with probability qk, where
∑∞

k=1 qk = 1 and K equals an integer greater than one or

infinity. It thus follows that conditional on matching with probability s(θ), a fraction qk of a firm’s

meetings are with households with k−1 other opportunities to trade. Since a household consumes,

at most, one unit of the good, it will choose to trade in, at most, one meeting. Firms, however,

may produce for and trade with multiple households.

3 Equilibrium

We consider a market organized similarly to that studied by Shi (2023) and referred to as sequen-

tially mixed search. Prior to observing their draw of z, a firm may pay the fixed cost to enter one

of potentially many submarkets that are characterized by a maximum price, p̃ ≤ ū, and matching

rates b(θ) and s(θ) for households and firms. Given a matching function (3), we may thus identify

a submarket by a maximum price, p̃, and market tightness, θ. A firm entering submarket (p̃, θ)

commits, in the event that the firm is active, to post a price, p ≤ p̃, and to produce to meet the

demand associated with the matching probabilities and meeting rates qk for all k associated with

market tightness θ. Similarly, each household also chooses to enter one submarket characterized by

a pair (p̃, θ).
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Firms take into account that, having entered submarket (p̃, θ), they will participate in a price-

posting game along the lines of the noisy search environment of Burdett and Judd (1983) as extended

to incorporate heterogeneous firm productivity and free entry by Chernoff et al. (2024). Thus, we

think of competition as taking place in two stages, with the second stage being the price-posting

game characterized by random matching between active firms and households and the first stage

being the choice of submarket (p̃, θ) by all entering firms.

3.1 The Second Stage: Price-posting with Random Matching

Prospective firms’ decisions to become active and choose a posted price, p ≤ p̃, are similar to

those described in Chernoff et al. (2024). For this reason, we relegate some descriptions of these

interactions to Appendix A and describe, here, only the main components of those interactions and

the ways in which we deviate from the environment in that paper.

At this stage, having entered submarket (p̃, θ), matching and the number of meetings are entirely

random for both firms and households. A firm receives its draw of z from distribution J(z) and

then, conditional on this draw, decides whether to pay the fixed cost δ and become active. Given p̃

and θ and its beliefs about its competitors’ prices within that submarket, each active firm posts a

price, p ≤ p̃, to maximize its expected profit. Let the endogenous distribution of prices posted by

firms in the submarket be denoted L(p; p̃, θ). Then, given the matching probability for a firm, s(θ),

and the meeting rates, qk, for all k, the expected sales revenue for a firm that posts price p ≤ p̃ is

R(p) = ps(θ)D(1− L(p; p̃, θ)), (4)

where

D(1− L(p; p̃, θ)) =
∞
∑

k=1

qkk(1− L(p; p̃, θ)) (5)

represents the expected demand, conditional on matching, for a firm that posts price p.

A firm with productivity parameter z then chooses its posted price, p, to solve

max
p≤p̃

[

p−
ϕ

z

]

s(θ)D(1− L(p; p̃, θ))− δ. (6)

Note that a firm that chooses to post the maximum allowable price, p̃, expects to sell s(θ)D(0) =
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s(θ)q1 units for a profit of

Π(p̃) =

[

p̃−
ϕ

z

]

s(θ)q1 − δ. (7)

The first-order condition for an interior solution to the profit maximization problem is given by 1

D (1− L(p(z)))−

[

p(z)−

(

ϕ

z

)]

D′
(

1− L(p(z))
)

L′(p(z)) = 0. (8)

The optimal pricing function, p(z), solves (8). Regarding the dependence of price on firm produc-

tivity, z, we have the following proposition:

Proposition 1. The optimal pricing function, p(z), is monotonically decreasing in z.

Proof: See Appendix A.

Note that given Proposition 1 and the assumption that J(z) and therefore F (z) are continuous, it

follows directly that the endogenous distribution of prices L(p; p̃, θ) will also be continuous.

As noted above, having entered and drawn productivity parameter z, a firm pays fixed cost

δ to operate in submarket (p̃, θ). Thus, all firms that expect to earn positive profits, net of the

fixed cost, will operate. Proposition 1 shows that posted prices are strictly decreasing in firm

productivity. It is then a straightforward application of the envelope theorem that firm profits are

strictly increasing in z. Thus, there will be a single productivity level, z̃, below which expected

profits are negative. Given that p̃ ≤ ū, a firm in this submarket with productivity parameter z̃ will

post price p̃ and earn zero profits, in expectation. To guarantee that such a firm exists and that

z̃ > zL, we assume
[

p̃−
ϕ

zL

]

s(θ)q1 < δ < p̃s(θ)q1. (9)

Given (9) and Proposition 1, 1 − L(p(z)) = F (z) and −L′(p(z))p′(z) = F ′(z), where F (z) is

the distribution of productivity across active firms on support [z̃, zH), as described above. In this

case, we may re-write (8):

D (F (z)) +

[

p(z)−

(

ϕ

z

)]

[

D′
(

F (z)
)

F ′(z)

p′(z)

]

= 0. (10)

1In (8) we have suppressed the notation for the price distribution’s dependence on L(·) on p̃ and θ as prior choice
of the submarket is assumed throughout this sub-section.
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As p̃ is the maximum price and z̃ is the minimum productivity parameter among firms in submarket

(p̃, θ), the solution to this first-order differential equation is

p(z) =

(

1

D
(

F (z)
)

)

(

p̃q1 + ϕ

∫ z

z̃
D′
(

F (x)
)

(

F ′(x)

x

)

dx

)

. (11)

For details of this derivation, see Appendix A.

At this point, we use the monotone z-ratio property introduced above to write the pricing

function (11) in terms of firms’ relative productivities. Recall that for distributions in this class we

may write F (z; z̃) = G(z̃/z), where G(z̃/z) is a monotonic function, and we also have F ′(z; z̃) =

−G′(z̃/z)
(

z̃/z2
)

. For this class of distributions, we may rewrite the pricing function (11) as

p(z; z̃) =

(

1

D
(

G(z̃/z)
)

)

(

p̃q1 − ϕ

∫ z

z̃
D′
(

G(z̃/x)
)

G′(z̃/x)

(

z̃

x3

)

dx

)

. (12)

Letting w ≡ z̃/x, we may then express (12) as

p (z; z̃) =

(

1

D
(

G(z̃/z)
)

)(

p̃q1 −

(

ϕ

z̃

)
∫ 1

z̃/z
wD′

(

G(w)
)

G′(w)dw

)

. (13)

From now on we index firms by their relative marginal cost, (ϕ/z)/(ϕ/z̃) = (z̃/z) = v, allowing

us to rewrite the pricing function (13) as

p(v) =

(

1

D
(

G(v)
)

)

(

p̃q1 −

(

ϕ

z̃

)
∫ 1

v
h(w)dw

)

, (14)

where h(v) = vD′(G(v))G′(v) < 0, D(G(1)) = q1 and, thus, p(1) = p̃. The firm markup, defined

as a firm’s price divided by its marginal cost, can then also be written as a function of v,

mkup(v) =
p(v)z̃

ϕv
, (15)

and expected profit:

Π(v; p̃, θ) = s(θ)

[

E

[

D (F (z))

(

p(z)−
ϕ

z

)

; p̃, θ

]]

− δ (16)

= s(θ)

∫ 1

0

[

p̃q1 −
ϕ

z̃

(
∫ 1

v
h(w)dw + vD (G(v))

)]

(−G′(v))dv − δ. (17)
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Note that the zero-profit condition that determines z̃ is

s(θ)

[

p̃−
ϕ

z̃

]

q1 = δ −→ z̃(p̃, θ) =
s(θ)ϕq1

s(θ)p̃q1 − δ
. (18)

We can then write a firm’s variable expected profits, conditional on matching, as a function of its

price, p:

E

[

D(1− L(p))

(

p−
ϕ

z

)]

= p̃c1 +

(

δ

s(θ)

)

d1. (19)

where

c1 =

∫ 1

0

(

vD(G(v)) +

∫ 1

v
h(w)dw

)

G′(v)dv + q1 (20)

d1 = −

[

1

q1

]
∫ 1

0

(

vD(G(v)) +

∫ 1

v
h(w)dw

)

G′(v)dv (21)

depend only on exogenous parameters. Here, c1 > 0 and c1 = q1(1− d1).

Given that only firms with v ≤ 1 (z ≥ z̃, as determined by the zero-profit condition (18)), will

operate and post price p(v) optimally, expected profits in submarket (p̃, θ) are

Π(p̃, θ) = s(θ)

(

c1p̃+

(

δ

s(θ)

)

d1

)

− δ. (22)

Similarly, a household entering submarket (p̃, θ) and facing the meeting process given by qk for all

k, conditional on matching, expects to pay price

E [p; p̃, θ] ≡ p̄ = c2p̃+

(

δ

s(θ)

)

d2. (23)

Again the following depend only on exogenous parameters:

c2 =

∫ 1

0

(
∫ 1

v
h(w)dw − q1

)

G′(v)dv (24)

d2 = −

[

1

q1

]
∫ 1

0

(
∫ 1

v
h(w)dw

)

G′(v)dv, (25)

where c2 > 0, d2 < 0, and c2 = q1(1− d2).
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3.2 The First Stage: Free Entry to a Submarket

Taking as given the expected outcomes in the second stage described above, a potential firm chooses

a submarket, (p̃, θ) to enter at cost fe. Similarly, each consumer chooses a single submarket to enter

in order to maximize their expected utility:

Vb = b(θ) [ū− E[p; p̃, θ]] , (26)

where the price they expect to pay is given by (23) and depends on their matching rate, b(θ), the

maximum price p̃, and the meeting process determined by qk, for all k.

In this stage, search is directed in the sense that firms, in choosing the submarket to enter, take

into account the relationship between the maximum price, p̃, and tightness in the submarket, θ.

Following the literature (see, e.g., Shi (2023), Menzio and Shi (2010), and Guerrieri et al. (2010)),

we restrict firms’ beliefs to require that buyers receive Vb in all potential submarkets. Then, using

(19)-(26), an entering firm pays fe and chooses (p̃, θ) to solve

Vs = max
p̃,θ

s(θ)

[

c1p̃+
δ

s(θ)
d1

]

− δ (27)

subject to

p̃

δ
=

1

c2

[

ū

δ
−

d2
s(θ)

−
θ

s(θ)

Vb

δ

]

. (28)

Using (28), we may define p̃(θ) and identify submarkets with θ only. This allows us to represent

the firm’s optimal submarket choice with θ∗, as follows:

θ∗ = argmax
θ

s(θ)

[

c1p̃(θ) +
δ

s(θ)
d1

]

− δ. (29)

Now consider a prospective firm’s entry decision. Firms enter until market tightness in the optimally

chosen submarket, θ∗, satisfies

(1− J(z̃(θ∗)))Vs = fe. (30)
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3.3 Equilibrium Definition, Existence, and Uniqueness

Following Shi (2023), a sequentially mixed search (SMS) equilibrium is a buyer’s value, V ∗
b ; a

collection of active submarkets, I, with associated p̃(θ∗) and z̃(θ∗) for all θ∗ ∈ I; and firms’ beliefs

across all submarkets, active or not, such that

1. In all submarkets indexed by θ, firms believe that V ∗
b satisfies (26), with p̃(θ) and z̃(θ)

determined by (28) and (18), respectively.

2. In all active submarkets, θ∗ satisfies (29).

3. Given that the total measure of buyers entering some active submarket is λ, firms enter all

active submarkets so that θ∗ satisfies (30).

Demonstrating that the firm’s objective in (29) is strictly concave is straightforward, given the

assumed properties of s(θ), the first-order condition is

s′(θ∗)ū = Vb. (31)

As such, given the assumed properties of s(θ), in any SMS equilibrium there must be a unique

active submarket as only a single θ∗ can satisfy condition 2. Also, condition 3 determines the

equilibrium measure of entering firms.

If an SMS equilibrium exists, z̃∗, p∗, V ∗
b , and θ∗ are characterized by (18), (28), (31), and (30).

Using the first-order condition, (31), to eliminate Vb

δ from the buyers’ utility constraint (28) and

the free entry condition (30) gives

p∗

δ
=

1

c2

[

ū

δ

(

1− ϵθs(θ
∗)
)

−
d2

s(θ∗)

]

(32)

fe
δ

= (1− J(z̃(θ∗))
c1
c2

[ ū

δ
s(θ∗)(1− ϵθs(θ

∗))− 1
]

, (33)

where, as noted above, ϵθs(θ) is non-increasing in θ.

Using (32) to eliminate p̃/δ from the zero-profit condition, (18), we have

s(θ∗)

(

q1
c2

[

ū

δ
(1− ϵθs(θ

∗))−
d2

s(θ∗)

]

−
ϕ

z̃δ
q1

)

= 1. (34)
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Now, (33) and (34) are a system in z̃∗ and θ∗:

H1(z̃
∗, θ∗;ϕ, δ, fe, ū) = 0 (35)

H2(z̃
∗, θ∗;ϕ, δ, fe, ū) = 0 (36)

the solution to which is an SMS equilibrium. We then have the following.

Proposition 2. Under appropriate restrictions on the parameters ϕ, ū, fe relative to the fixed cost

δ, there exists a unique SMS equilibrium. That is, there exists a unique pair, (z̃∗, θ∗), that solves

the system (35) and (36), with V ∗
b and p∗ = p̃(θ∗) satisfying (26) and (28), supported by firms’

beliefs regarding submarkets out of equilibrium, as described in part 1 of the above definition of

equilibrium.

Proof: See Appendix A.

4 Markups, Prices and Pass-Through

4.1 Markups

In this section, we examine the role of productivity heterogeneity in determining firm-level markups

in the model. In the absence of productivity heterogeneity, firm-level markups are inversely related

to firm size, as they are in the environment of Burdett and Judd (1983). This is because firms

that post the lowest prices and, therefore, have the lowest markups make more trades than firms

posting higher prices. Since prices and markups are always positively correlated, firm size and the

markup are negatively correlated. This reasoning also implies that the elasticity of demand facing

a firm is falling in its price and its markup and rising in its size.

With productivity heterogeneity at the firm level, however, an additional factor comes into

play. The distribution of productivity determines, at each productivity level, the measure of firms

with similar productivities that are therefore choosing a relatively similar price. As productivity

increases, not only does a firm’s fraction of sales fall to buyers with no alternative but the measure

of firms with comparable productivity also changes. Whether this measure rises or falls—and by

how much—depends on the shape of the productivity distribution. In particular, if the measure of
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firms falls as productivity rises, as it does with a Pareto productivity distribution, this decline puts

downward pressure on the elasticity of demand.

Thus, while consumer search generally creates a negative correlation between firm size and

the elasticity of demand, productivity heterogeneity introduces a potential countervailing positive

correlation. Consequently, in our search model, firm-level markups may vary non-monotonically in

the presence of firm-level productivity differences.

Henceforth, we find it useful to reference firms using a measure of their relative productivity,

rather than their relative cost, v. Specifically, let 1−v = z−z̃
z be our measure of relative productivity.

Multiplied by 100, this may be interpreted as the percentage deviation of a firm’s productivity from

that of the least-productive firm. The following proposition characterizes conditions under which

firm-level markups do and do not vary monotonically with relative productivity.

Proposition 3. The markup function is decreasing in relative productivity at v = 1 if and only if

θ∗ < θ̃,

where θ̃ satisfies

s(θ̃)
(

1− ϵθs(θ̃)
)

=
d2q

2
1 − 2c2q2G

′(1)

q21(ū/δ)
. (37)

Proof: See Appendix A.

As an example, consider the telephone line matching function with s(θ) = θ
1+θ . Then the upper

bound on θ in Proposition 3 is

θ̃ =

[

d2q21−2c2q2G′(1)

q2
1
(ū/δ)

].5

1−
[

d2q21−2c2q2G′(1)

q2
1
(ū/δ)

].5 (38)

In Appendix A we show that this condition (37) will hold provided the elasticity of demand

facing the least-productive firm remains below a certain threshold determined by a subset of the

economy’s parameters. In particular, the markup will be decreasing in relative productivity at

v = 1, provided the elasticity of demand of the firm with v = 1 is less than −2q2G′(1)
q1

. In this case,

the markup of the least-productive firm is above its nearest, slightly more-productive competitors.

In our environment with heterogeneous productivities for larger, more-productive firms, the

markup eventually becomes increasing in productivity as the downward effect of rising productivity
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on the elasticity of demand becomes dominant. Moreover, since the limit of the posted price as z

approaches infinity (v approaches zero) is positive, the markup approaches infinity as v approaches

zero. Thus in the model, here, with an unbounded productivity distribution, the markup will either

have a u-shaped relationship with firm size or it will be monotonically increasing in firm size.

As the elasticity of s(θ) is non-increasing in θ, the intuition for why the markup function will be

decreasing at v = 1, if equilibrium tightness is sufficiently low, is the following. With θ relatively

low, the matching rate for buyers, b(θ), is high, while that for sellers, s(θ), is low. Firms in this

case will tend to face a relatively high elasticity of demand. With fixed meeting rates, a low s(θ)

means relatively few sales overall and, thus, a small change in price leads to a relatively large

proportionate change in sales. At the same time, with s(θ) low, the least-productive firm sets a

relatively high p∗ to cover its fixed cost δ with only a relatively small number of sales. This implies

a low elasticity of demand for this firm relative to those of its nearest more-productive competitors.

Thus, its markup will be higher than those of these slightly more-productive firms.

Note that productivity heterogeneity also alters the relationship between market tightness and

the average markup. If the market conditions tend to be favorable to sellers (a high ū for example),

then N∗ will be relatively high but z̃∗ will be relatively low. A higher N∗ is associated with a lower

θ∗, a higher probability of matching for a buyer and, thus, as described above, a higher elasticity

of demand facing firms. This will tend to lead to a relatively low average markup. At the same

time, a low z̃∗ is associated with a “less-competitive” market because of the increased presence of

lower-productivity, higher-pricing firms and, therefore, a relatively high average markup. Thus, a

relatively low θ∗ in equilibrium is not necessarily associated with a low average markup. In fact,

in our computed examples below, we find that in response to the changes in most of the economy

parameters we consider, θ∗ and the average markup move in opposite directions.

4.2 Pass-Through of Cost and Demand Changes to Prices and Markups

In this section, we characterize the equilibrium variables’ responses to changes in the exogenous

parameters ū, ϕ, δ, and fe. To do so, we derive the elasticities of equilibrium variables with respect

to each of these exogenous parameters. We use those elasticities to measure the degree of pass-

through of parameter x ∈ {ū, ϕ, δ, fe} to the equilibrium variables of interest: prices and markups.

We denote the elasticity of an equilibrium variable, y(x), with respect to parameter x as ϵxy .
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First, we document the responses of firm- and industry-level prices and markups to a change

in x through both direct and indirect effects that operate through a change in θ∗ and z̃∗. We then

examine the effects on market tightness, θ∗, and the cutoff productivity parameter for operation,

z̃∗.

Before proceeding, we note that in our presentation of the computational examples in Section

5 we choose values for ū, ϕ, and fe relative to fixed costs, δ. Hence, there we are only able to

calculate prices that are scaled by δ, p(v)/δ, for example. In anticipation of those experiments,

here we derive pass-through expressions as functions of parameters and of prices scaled by fixed

costs.

4.2.1 Firm-Level Responses

We begin with firm-level prices and markups. From (14) and (15), we may derive the following

firm-level pass-through equations:

ϵxp(v) =
(

1
D(G(v))(p(v)/δ)

)

[

q1
p̄∗

δ ϵ
x
p∗ +

(

φ/δ
z̃∗

∫ 1
v h(w)dw − h(v)

(

p(v)
δ − (φ/δ)v

z̃∗

))

ϵxz̃∗

−















φ/δ
z̃∗

∫ 1
v h(w)dw if x = ϕ,

0 if x = ū, δ, fe

]

.

(39)

ϵxmkup(v) = ϵxp(v) −















1 if x = ϕ

0 if x = ū, δ, fe.

(40)

Equation (39) decomposes the impact of a change in a parameter on a firm’s price into three

components. First, a change in a parameter will change the maximum posted price in the submar-

ket, p∗. As expected, this will tend to cause firm-level prices and markups to move in the same

direction as p∗, holding other effects constant.

Next, there is a response in the composition of firms as z̃∗ responds to a change in a parameter.

Recalling that h(·) < 0, we see that the first term in the coefficient on ϵxz̃∗ is negative, resulting in

firm-level prices tending to move in the opposite direction as z̃∗ in response to a parameter shift.

The intuition for this is that when, say, z̃∗ increases and less-productive firms exit the submarket,

this puts downward pressure on the average price, making the conditions in the submarket more
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“competitive” and inducing firms to lower their prices. The second term in the coefficient on ϵxz̃∗ ,

however, is positive, resulting in firm-level prices that tend to move in the same direction as z̃∗.

The intuition here is that when z̃ increases, a firm’s relative cost, v, also increases, putting upward

pressure on that firm’s price. Overall, then, when a parameter changes, the qualitative relationship

between movements in z̃∗ and firm-level prices and markups, holding other effects constant, is

ambiguous.

The final component is a direct effect that is present only when considering a change in ϕ. As

expected, an increase in a firm’s marginal cost will tend to increase its price. The effect on a firm’s

markup, however, is ambiguous. As expected, if pass-through of a change in ϕ to the firm’s price

is greater than one (more than complete), then the firm’s markup will move in the same direction

as its price in response to a change in the common marginal cost parameter.

In Section 5, below, we demonstrate in computational experiments that the relationship between

firm productivity and firm-level price pass-through varies with the source of the parameter change.

In particular, we find generally negative relationships between firm productivity and the degree of

pass-through for movements in ϕ and δ and generally positive relationships between productivity

and pass-through for movements in fe and ū.

4.2.2 Industry-Level Responses

We now examine how industry-level variables respond to changes in economy parameters, beginning

with the maximum equilibrium price p∗, while in the previous section, we analyzed the responses of

firm-level variables. From equation (32), we may derive the following expression for pass-through

of a change in parameter x to p∗:

ϵxp∗ =

(

1

c2(p∗/δ)

)

















(

ū

δ

(

ϵθs − 1− ϵθs′
)

+
d2

s(θ∗)

)

ϵθsϵ
x
θ∗ +































− d2
s(θ∗) if x = δ

ū
δ

(

1− ϵθs
)

if x = ū,

0 if x ∈ {ϕ, fe}

















. (41)

In this expression, the term on ū/δ is non-negative because ϵθs is non-increasing in θ. The composite

parameter d2, however, is negative. Hence, it is unclear if the coefficient on ϵ∗θ in the above expression

is positive or negative. Furthermore, the direct effects of a change in δ or ū may reinforce or counter
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the effects of a change in θ∗ on p∗ in response to a change in a parameter. In our computational

examples in Section 5, we find that p∗ and θ∗ respond in the same direction to most changes in

economy parameters.

Next, we consider the effects of parameter changes on two measures of the average price: the

average transaction price, p̄, and the average posted price, p̄P . The average transaction price is

given by (23) and the average posted price, p̄P =
∫ 1
0 p(v)G′(v)dv, can be written as

p̄P = c3p
∗ + d3

δ

s(θ)
, (42)

where

c3 =

∫ 1

0

(
∫ 1

v
h(w)dw − q1

)

G′(v)

D(G(v))
dv (43)

d3 = −

[

1

q1

]
∫ 1

0

(
∫ 1

v
h(w)dw

)

G′(v)

D(G(v))
dv, (44)

with c3 > 0 and d3 < 0. Using these expressions, we may derive pass-through rates for each of

these average price measures:

ϵxp̄ =

(

1

p̄/δ

)









c2

(

p∗

δ

)

ϵxp∗ −
d2

s(θ∗)
ϵθsϵ

x
θ∗ +















d2
s(θ∗) if x = δ,

0 if x{ū, ϕ, fe}









. (45)

ϵxp̄P =

(

1

p̄P /δ

)









c3

(

p∗

δ

)

ϵxp∗ −
d3

s(θ∗)
ϵθsϵ

x
θ∗ +















d3
s(θ∗) if x = δ,

0 if x ∈ {ū, ϕ, fe}









. (46)

These expressions indicate that in response to a change in ϕ, ū, or fe, if p
∗ and θ∗ change in the same

direction, then average prices will also change in that direction (c2 > 0, c3 > 0, d2 < 0, d3 < 0).

This is intuitive: an increase in the maximum price will put upward pressure on average prices and

an increase in market tightness affords more market power to firms, also putting upward pressure

on average prices. The impact of a change in the fixed cost of production is more complicated.

We anticipate that an increase in δ will increase p∗ and because fewer firms will enter, this will

also increase θ∗, both of which will tend to increase average prices. The rise in the fixed costs of
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production will, however, increase z̃, which tends to put downward pressure on average prices.

Turning to the impact on the firms’ average markup, using equation (15), we may write this as

mkup = c4

(

p∗z̃∗

ϕ

)

+ d4, (47)

where

c4 = −q1

∫ 1

0

(

G′(v)

vD(G(v))

)

dv (48)

and

d4 =

∫ 1

0

(
∫ 1

v
h(w)dw

)(

G′(v)

vD(G(v))

)

dv, (49)

where c4 > 0 and d4 > 0. From this, we can derive pass-through for the average markup:

ϵx
mkup

=

(

c4

mkup

)(

p∗z̃∗

ϕ

)









ϵxp∗ + ϵxz̃∗ −















1 if x = ϕ,

0 if x ∈ {ū, δ, fe}









. (50)

This expression indicates that if p∗ and z̃∗ respond in the same direction to a change in ū, δ, or fe,

then the average markup will also respond in that direction. Furthermore, if p∗ and z̃∗ respond in

the same direction and if either exhibit more than complete pass-through, then the average markup

will move in the same direction as these variables.

We may also characterize the effect of a change in economy parameters on buyers’ valuations,

using equation (31):

ϵxVb
= ϵxs′ϵ

x
θ∗ +















1 if x = ū,

0 if x ∈ {δ, ϕ, fe}.

(51)

Now, since ϵxs′ < 0, we see that tightness and buyers’ utility will move in opposite directions in

response to a change in ϕ, δ, or fe, consistent with intuition. Furthermore, we demonstrate, below,

that tightness falls with ū, so the above equation implies that an increase in the utility of direct

consumption, ū, will raise the buyers’ valuations, as expected.

Finally, to characterize the responses of θ∗ and z̃∗ to changes in economy parameters, we may

differentiate equations (35) and (36) with respect to x ∈ {ϕ, δ, fe, ū}. Doing so and rearranging
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gives the following system of linear equations in ϵxθ∗ and ϵxz̃∗ :







ϵxθ∗

ϵxz̃∗






=







θ∗ ∂H1(·)
∂θ∗ z̃∗ ∂H1(·)

∂z̃∗

θ∗ ∂H2(·)
∂θ∗ z̃∗ ∂H2(·)

∂z̃∗







−1 





−x∂H1(·)
∂x

−x∂H2(·)
∂x






. (52)

We then have the following proposition, which characterizes the qualitative responses of θ∗ and

z̃∗ to changes in economy parameters.

Proposition 4. The qualitative responses of market tightness and the cutoff productivity for oper-

ation to a change in economy parameters that can be definitively determined are as follows:

(i.) ϵφθ∗ > 0, ϵφz̃∗ > 0 (ii.) ϵδθ∗ > 0 (iii.) ϵfeθ∗ > 0, ϵfez̃∗ < 0 (iv.) ϵūθ∗ < 0.

Proof: See Appendix A.

Positive pass-through to θ∗ and z̃∗ in response to a change in ϕ is consistent with intuition.

An increase in the variable cost of production should be associated with less entry; that is, with a

fall in N∗ and, so, a rise in θ∗. Similarly, it should be associated with a higher level of minimum

productivity required for profitable production; that is, with a rise in z̃. A higher entry cost

discourages entry, lowering N∗ and raising θ∗. The resulting increase in market tightness, however,

increases the probability that a firm will match with a buyer, which raises expected profits, allowing

less-productive firms to produce (z̃ falls). Finally, an increase in δ or a decrease in a household’s

utility parameter, ū, should lead to lower profits, discouraging entry and, thereby, raising θ∗.

We end this section by briefly considering pass-through in the context of a specific match-

ing function. Consider, again, the telephone line form (see Appendix C). Now the pass-through

equations for p∗ and p̄ can be written as follows:

ϵxp∗ =

(

1

c2(p∗/δ)

)

















(

ū

δ

θ∗

(1 + θ∗)2
+

d2
θ∗

)

ϵxθ∗ +































−d2
(1+θ∗)

θ∗ if x = δ

(

ū
δ

)

θ∗

1+θ∗ if x = ū,

0 if x ∈ {ϕ, fe}

















. (53)

ϵxp̄ =

(

1

p̄/δ

)

ū

δ

θ∗

1 + θ∗









ϵxθ∗

1 + θ∗
+















1 if x = ū,

0 if x ∈ {ϕ, δ, fe}









. (54)
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The second expression makes it clear that with this matching function, the average transaction

price (and the average posted price) and tightness will move in the same direction in response to

a change in ϕ, δ, or fe. Average prices may, however, move in opposite directions when ū changes,

since θ∗ falls with ū.

The intuition for why market tightness and average prices will move in the same direction with

the telephone line matching function is as follows. An increase in θ∗ is associated with a rise

in the sellers’ probability of matching and, therefore, with a fall in firms’ elasticity of demand, as

discussed above. These forces tend to increase the average price. The increase in z̃∗, however, raises

average productivity and this puts downward pressure on the average price. With the telephone

line matching function, the first effect dominates and the average price rises in response to a rise

in ϕ or δ.

5 Computational Examples

In this section, we delve deeper into the model’s properties through a series of computational

examples. These exercises enable us to investigate the qualitative behavior of the equilibrium

variables in response to changes in the economy parameters for those cases where analytical results

could not be derived in the previous section. Additionally, by selecting parameter values that

are informed by existing empirical studies, we are able to examine key qualitative features of the

model, such as whether the firm-level and average-price pass-through are incomplete. Furthermore,

we explore how firms’ pricing responses vary according to their productivity level.

5.1 Productivity, Meeting Probabilities, and Other Model Parameters

For our computational exercises, we require a specification of the ex ante productivity distribution,

J(z). In our computational experiments, we follow a large number of papers in the firm-level

heterogeneity literature in assuming that z follows a Pareto distribution with shape parameter

γ and use the estimate γ = 3.4764 from Chernoff et al. (2024) for the Canadian retail clothing

subsector.

For the meeting probabilities conditional on matching qk for all k, we use a distribution that

accommodates a fully non-parametric specification of q1 and q2, letting these parameters vary
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freely between 0 and 1, subject to the constraint that q1 + q2 < 1. We let the maximum number

of meetings be infinity and we specify that the meeting probabilities in the tail for k ≥ 3 decline

according to a power function governed by the parameter ν. That is,

qk = q3ν
k−3 for k ≥ 4, ν ∈ (0, 1) and q3 ≡ (1− q1 − q2)(1− ν). (55)

Chernoff et al. (2024) argue that this type of probability distribution over the number of meet-

ings provides a better fit to several salient features of the data when compared to other specifications

that are commonly used in the search literature, notably including the Bernoulli and Poisson distri-

butions. In Appendix E, we demonstrate that this is also the case in our setting by comparing our

results to those generated from these alternative distributions. For our computational experiments

we, again, use the estimates from Chernoff et al. (2024) for the Canadian retail clothing subsector:

q1 = 0.1842, q2 = 0.5829, and ν = 0.9651. With this process, the median number of meetings for a

matched household is two and the percentage of households that receive three or fewer such trading

opportunities is approximately 78%.

For our computational exercises, we also require values for three additional parameters relative

to the fixed costs: the household utility parameter, ū/δ, the common cost parameter, ϕ/δ, and

the cost of entry, fe/δ.
2 Specifying these parameters relative to δ reduces by one the number of

parameters we need to specify while still allowing us to calculate the elasticities with respect to

each of these three parameters and also δ. We calibrate these three parameters to target the mean

markup of 1.4096 for the clothing subsector, as reported in Chernoff et al. (2024). We are able to

exactly match this target using u/δ = 100, ϕ/δ = 34.43, and fe/δ = 1.475.

We note that this strategy can only determine one of these three parameters. However, in

Appendix D, we demonstrate that our results are qualitatively robust to other configurations of

these parameters. There, we show that our main results continue to hold for other combinations of

the parameters that also generate an average markup matching our target of 1.4096.

2The lower support of the ex-ante firm productivity distribution, zL, appears only in our free-entry condition.
We divide both the free-entry and the zero-profit conditions by zL, such that the parameter φ in our computational
examples should be implicitly interpreted as normalized relative to zL.
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5.2 Prices, Markups and Revenues

In this section, we examine the equilibrium distributions of prices, markups, and revenues, given

the model parameters chosen above. We also present plots of the markups as functions of the

measure of relative productivity described in the previous section, 1− v = (z − z̃)/z.

Figure 1 presents the prices, markups, and revenue distributions and plots markups as a function

of relative productivity.3 These figures are qualitatively consistent with several well-documented

findings in the literature. For example, in Panel D, the largely positive relationship between

markups and firm size is consistent with both empirical and theoretical research on firm het-

erogeneity and varying endogenous markups. For example, Autor et al. (2020), De Loecker et al.

(2020), and De Loecker and Warzynski (2012) use U.S. firm-level data to provide evidence that

larger firms tend to charge higher markups than smaller ones do.

In Panel B, we plot the probability density function for the log of scaled revenue. We see that our

calibrated model generates a two-tailed distribution with a broadly single-peaked density.4 While a

two-tailed log revenue distribution is a well-documented stylized fact, it is not an inherent feature of

our model. In Appendix E, we show that when we change our search process to the commonly used

Bernoulli or Poisson distributions, the log revenue distribution becomes single tailed and skewed

to the left.

With regard to the PDF of prices in Panel A, note also that when compared to these alternative

specifications of the search process, our preferred specification tends to generate a greater degree

of price dispersion. As we discuss below, the higher degree of price dispersion in our model arises

in part because some consumers are very well-informed (that is, they meet with a larger number of

firms and, thus, have many opportunities to trade). This higher degree of price dispersion arises not

as an inherent feature of our model but because our baseline parameter configuration implies that

there are some highly informed consumers and a large degree of heterogeneity in firm productivity.

In Appendix E, we present figures for various other configurations of the parameters that govern

the meeting probabilities and the shape of the productivity distribution. Our objective with those

3While we are able to derive analytical expressions for revenues and prices, the non-monotonicity of markups in
productivity make it difficult to derive the markup PDF. We therefore represent the markup distribution, using a
histogram of simulated markups.

4The upturn in the density for the very highly productive firms occurs as these firms face very similar costs and
demand conditions and so have very similar revenues.
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Figure 1: Markups, Prices and Revenues with Baseline Parameters

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search

process and the Pareto shape parameter. These plots also use the following values: φ/δ = 34.43, fe/δ = 1.475 and u/δ = 100.
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figures is to demonstrate that when we use some other parameter configurations that are commonly

used in the literature, the model exhibits counterfactual results regarding the revenue distributions

and/or markups. Thus, we believe that our baseline parameter configuration specified above is

well-suited for examining the model’s qualitative and quantitative results regarding pass-through

in the next section.

Here, we briefly outline our alternative specifications. In Appendix E, we provide more details

and graphical results. We first consider two parameter settings in which the maximum number of

prices households can observe equals two and then we examine two scenarios in which the meeting

probabilities follow a Poisson distribution. In all of these cases, the log-revenue function exhibits

highly counterfactual properties in that it is highly left-skewed. Lastly, we dramatically increase

the shape parameter in the Pareto productivity distribution (thus greatly reducing the degree of

heterogeneity in firm productivity) and demonstrate that this leads to two counterfactual results:

low levels of price dispersion and a largely negative relationship between a firm’s markup and its

size.

5.3 Pass-Through of Changes in Economy Parameters

We now turn to an examination of the firm- and industry-level variables’ quantitative responses

to changes in the four economy variables we examined analytically in Section 4. We begin with

industry-level variables as movements in those variables help us better understand the responses of

firm-level variables.

5.3.1 Pass-Through at the Industry Level

Table 1 presents the elasticities for market tightness, the cutoff productivity for operation, the

buyers’ valuation, the maximum price, our two measures of average prices, and the average markup.

For ease of exposition, we frame the discussion around movements that lead to the entry of less-

productive firms; that is, to changes in the economy parameters that lead to a fall in z̃. Thus, we

focus on adjustments in the parameters that are associated with reductions in fixed and variable

production costs, ϕ and δ or, with more-favorable demand conditions, a rise in ū. We also expect

that a rise in the entry costs, fe, will be associated with a fall in z̃. This is the case because higher

costs of entry raise θ as fewer firms enter, thereby increasing the probability that a firm will match
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with a buyer, allowing less-productive firms to produce.

Focusing on the first two rows of Table 1, note that market tightness and the cutoff productivity

for operation move in a manner consistent with both intuition and Proposition 4. A fall in the

production costs or a rise in the household utility parameter induce entry, causing N∗ to rise and

θ∗ to fall. Any of these changes makes the environment more favorable for sellers and, thus, allows

less-productive firms to operate, resulting in a reduction of z̃. A rise in the entry costs reduces

entry, raising θ∗ and again lowering z̃. Not surprisingly, the buyers’ valuation, Vb, moves in the

opposite direction as θ∗ as a buyer’s probability of matching is negatively associated with θ∗.

Turning to industry-level price measures, note that a fall in the production costs lowers both the

maximum price and average prices. This is intuitive and as we would expect from our analytical

results in the previous section (see (45) and (46)). We note that pass-through of a change in

the variable cost of production, ϕ, to average prices is incomplete, with approximately 50% of a

variable cost change being passed through. Also, as expected, a rise in the entry costs or a rise in

the household utility parameter are reflected in a higher maximum price and higher average prices.

Lastly, we consider the response of average markups. Because pass-through to average prices is

incomplete in response to a change in ϕ, the average markup rises when variable production costs

fall. This is to be expected in our environment with market power arising from households having

imperfect information regarding prices, but it is also affected by the presence of firm heterogeneity.

In contrast, average markups fall when fixed production costs fall, a result primarily driven by the

rise in the elasticity of demand associated with the fall in market tightness. A small increase in the

entry costs slightly lowers the average markup as less-productive firms enter the market. Finally,

a rise in ū is associated a rise in the average markup, which is intuitive: more-favorable demand

conditions allow for higher average markups.

5.3.2 Pass-Through at the Firm Level

We now turn our attention to our primary issue of interest, the response of firm-level prices to

changes in economy parameters. We seek to quantify how those responses vary across firms ac-

cording to their size and productivity. Figure 2 depicts firm-level price pass-through for incumbent

firms in response to changes in the four economy parameters as functions of firms’ relative produc-

tivities. The figure decomposes those responses into the three channels described in Section 4; that
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Table 1: Pass-Through of Cost and Demand Shocks to Equilibrium Outcomes

ϕ δ fe ū

θ∗ 0.7492 0.1223 0.2155 -1.0870
z̃∗ 0.3409 0.0192 -0.1896 -0.1704
V ∗
b -0.4468 -0.0729 -0.1285 1.6482

p∗ 0.2354 0.3145 0.0677 0.3823
Mean transaction price 0.5258 0.0858 0.1513 0.2371
Mean posted price 0.4741 0.1266 0.1364 0.2629
Mean markup -0.1665 0.1311 -0.0479 0.0832

Notes: The estimates show the elasticity of the variables in the rows with respect to the parameters in the columns. The

elasticity estimates use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the

Pareto shape parameter. These estimates also use the following values: φ/δ = 34.43, fe/δ = 1.475 and u/δ = 100.

is, through changes in the maximum price, p∗, changes in the composition of firms, z̃, and, in the

case of a change in ϕ, through a direct change in the variable costs of production. In each figure,

the solid line depicts total pass-through.

Beginning with a change in ϕ in Panel A, we see that there is a non-monotonic relationship

between a firm’s productivity (and, therefore, its size) and pass-through of a common cost change.

Generally, however, the figure shows that small firms change their prices more in response to a

common change in the variable production costs than large firms do. These properties are similar

to the results presented in Chernoff et al. (2024) for the long-run pass-through of a common cost

change.

Looking more carefully into the various forces that affect firm-level pass-through, we note that

the effects of a change in the maximum price, p∗, are straightforward: a fall in the maximum

price due to a fall in ϕ negatively affects all firms’ prices but the effects are strongest for the

lower-productivity firms that are pricing near that maximum price. Similarly, the direct effect of a

change in ϕ causes all firms to lower their prices and the strength of this force rises with a firm’s

productivity. Hence, the non-monotonic shape of the total response is largely determined by the

effects stemming from a change in the composition of the firms operating in the industry.

The generally negative relationship between firm-level pass-through and firm size can be under-

stood as follows: smaller firms tend to be less productive, resulting in higher prices and a customer

base consisting primarily of buyers with limited alternatives. Thus, these firms face higher demand

elasticity and are more responsive to changes in their costs. For these smaller firms, a reduction in
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Figure 2: Pass-through to Firm-Level Prices

A. Pass-through with respect to ϕ B. Pass-through with respect to δ

C. Pass-through with respect to fe D. Pass-through with respect to ū

Notes: All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the Pareto

shape parameter. These plots also use the following values: φ/δ = 34.43, fe/δ = 1.475 and u/δ = 100.
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price—enabled by a cost reduction—allows them to capture significant sales from competitors.

In contrast, larger, more-productive firms are able to charge lower prices and cater to a broader

customer base that includes many households with alternative options. These firms face lower

demand elasticities and, thus, respond less aggressively to cost reductions. Their muted price

adjustments reflect their ability to retain a substantial portion of their sales, even as less-productive

firms make aggressive price reductions.

Next, consider a fall in δ, the fixed cost of operating. In Panel B, we observe a negative

relationship between firm size and its pass-through rate in response to a change in fixed costs.

While changes in δ have no direct effect on pricing, a reduction in the fixed costs increases profits

conditional on z, leading to firm entry, as reflected in a lower θ∗ and lower z̃. The figure shows

that the responses of both p∗ and z̃ play a significant role in determining the overall shape of the

pass-through function. Not surprisingly, these effects are strongest for low-productivity firms that

are pricing near p∗.

The figure shows that the responses of both p∗ and z̃ play a significant role in determining

the overall shape of the pass-through function. Not surprisingly, these effects are strongest for

low-productivity firms that are pricing near p∗.

In Panels C and D, we present firm-level pass-through in response to a change in the entry cost

and a change in the household’s utility parameter, ū, respectively. These pass-through functions

have similar shapes and share the feature that their shapes are primarily determined by the effects

emanating from a change in the composition of the firms in the industry. For those firms above a

certain level of productivity, the pass-through rates for both types of parameter changes are posi-

tive but relatively modest and those rates do not exhibit a monotonic relationship with firm size.

Smaller, less-productive firms exhibit negative pass-through, suggesting that they lower their prices

when entry costs increase and when ū increases. In each case, those firms are strongly respond-

ing to the entry of relatively lower-productivity firms. As noted in the discussion following the

analytical expression for firm-level pass-through, given by equation (39), the relationship between

the movements in z̃ and a firm’s price is ambiguous due to opposing forces. In this computational

example, the positive effects of a change in z̃ appear to dominate for the least-productive firms.

Firm heterogeneity plays a crucial role in affecting the relationships between firm size and the

magnitude and direction of a firm’s response to changes in economy parameters. In Appendix E,
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we present Figure 12, which depicts pass-through rates as a function of relative productivity when

we consider a near-degenerate productivity process (γ = 100). Although the general qualitative

relationships are similar between the two economies (pass-through decreasing in firm size for a

change in ϕ or a change in δ and increasing in firm size for a change in fe or a change in ū), the

shape of the functions are quite different. Furthermore, in the near-degenerate economy, most firms

exhibit either nearly complete or nearly incomplete pass-through in response to changes in economy

parameters, which contrasts with the pass-through rates in our model with heterogeneous firms.

In the computational exercises presented in this section, we employed a specific matching function,

the telephone line matching function. In Appendix F, however, we consider a similar economy

but with an alternative matching function, the urn-ball matching function. There, we show that

the qualitative and quantitative results we documented in this section continue to hold under that

alternate matching technology.

Overall, the results of these computational experiments demonstrate that firms with varying

productivity levels–and, consequently, different sizes–respond quite differently to changes in the

economic environment. We offer additional insights into these specific responses and their impact

on average prices. Hence, our analysis underscores the importance of accounting for the individual

firm price and markup adjustments to fully understand pass-through to average prices.

Furthermore, the substantial heterogeneity in pass-through across firms we document may be

particularly significant when addressing other issues that are beyond our current theoretical frame-

work. In particular, focusing on heterogeneous firm-level responses highlights the potential distri-

butional impact of shocks across households purchasing in different regions of the price distribution.

For example, given that the pass-through function for a change in the variable production costs

is increasing in firms’ prices (decreasing in relative productivities), households that receive more

price quotes will benefit less from the cost reduction than will less-informed households.

6 Conclusion

We construct a model of search frictions driven by consumers’ incomplete information regarding

trading opportunities and we use it to study the determination of market power at both the firm

and industry level in a setting with free entry of firms that are heterogeneous with regard to
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productivity. Using the framework of sequential mixed search, we show how countervailing forces

may make the relationship between market tightness and market power ambiguous. It may be

natural to think of the conditions we expect to be favorable to buyers, such as high matching

relative to that for firms, to be associated with relatively low markups. Here, we show that given

the interaction between directed search and random matching, this may or may not be the case.

In equilibrium, prices fall monotonically with productivity, while markups generally increase

with productivity and firm size. Depending on the conditions, however, specifically when market

tightness is low and the matching rate for buyers is high, markups may be falling in productivity and

firm size for the least-productive (highest-pricing) firms. In contrast to settings with homogeneous

firms, in our environment, firms’ elasticity of demand tends to fall with productivity and size, due

to the interaction between pricing and the distribution of productivity. This results in increasing

markups. But, with low market tightness overall, the least-productive firm must set relatively high

markups to cover its fixed operating costs, given that it has a relatively small number of sales.

This dynamic creates a non-monotonic relationship between firm size and markups, with markups

declining at low productivity levels but rising as productivity increases.

Search and productivity heterogeneity combine to determine how both firm- and industry-level

average prices respond to a variety of exogenous shocks or changes in parameters. At the outset,

directed search determines the maximum price charged in equilibrium, the overall market tightness,

the consumer and firm matching rates, and the distribution of markups across firms by productivity.

At this stage, the factors we think of as improving the position of buyers tend to raise the matching

rate for consumers (lower market tightness) and to lower markups. The random matching that

follows, however, may diminish this effect or even overcome it. Lower market tightness can enable

less-productive firms to survive in the market, thus, tending to raise markups overall. The net effect

depends on the forces driving market tightness. In particular, the fixed costs of entry determine

market tightness but not the probabilities with which consumers meet specific firms and, thus,

drive tightness and average prices in opposite directions.

Pass-through at the firm level varies dramatically across firms of different productivities and the

overall relationship differs substantially by the type of shock. Shocks to fixed operating costs and

common marginal costs are passed through positively at rates that tend to decline with productivity.

Low-productivity firms have to significantly raise their prices to cover their fixed operating costs
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in response to these changes. In contrast, shocks to the entry costs and consumers’ utility from

consumption are passed through at rates that increase with productivity. Moreover, for relatively

unproductive firms, pass-through of these shocks can be negative. That is, those firms at the lower

end of the productivity distribution may lower their prices, even if average prices rise.

Overall, our findings demonstrate that in the presence of search frictions and firm hetero-

geneity, the determinants of market power at both the firm and industry level are complicated.

Consequently, assuming a stable relationship between market tightness and market power can be

misleading. Put differently, market conditions may appear to become more or less favorable to con-

sumers and yet result in either a reduction or an increase in market power. Moreover, pass-through

varies dramatically across firms at different points in the productivity and size distributions. To

the extent that these firms serve consumers with varying levels of information about trading oppor-

tunities, this differential pass-through has welfare implications and may contribute to inequality.
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Appendix A: Proofs and Derivations

Proof of Proposition 1 (Monotonicity of the Pricing Function, p(v))

The approach in this proof follows the approach of the proof of Lemma 1 in Herrenbrueck (2017),

which follows the proof in Burdett and Mortensen (1998). To economize on the notation, here, we

suppress the dependence of the distribution of the posted prices, L(p), on the submarket (p̃, θ. Let

z1 > z2 and let pj ≡ p(zj) for j ∈ {1, 2}. To establish the proposition, it is sufficient to show that

p1 < p2. Let π̃(pj , zi) ≡
(

pj −
φ
zi

)

µA (1− L(pj))−Ψ. We have the following inequalities:

π̃(p1, z1) ≥ π̃(p2, z1) > π̃(p2, z2) ≥ π̃(p1, z2). (56)

The first and third inequalities follow from profit maximization and the second inequality follows

from z1 > z2. Subtracting the fourth term from the first term and the third term from the second

term, we have

π̃(p1, z1)− π̃(p1, z2) ≥ π̃(p2, z1)− π̃(p2, z2), (57)

or

(

p1 −
φ

z1

)

s(θ)D (1− L(p1))−

(

p1 −
φ

z2

)

s(θ)D (1− L(p1)) ≥

(

p2 −
φ

z1

)

s(θ)D (1− L(p2))−

(

p2 −
φ

z2

)

s(θ)D (1− L(p2)) .

(58)

We can rearrange this to derive

(

ϕ

z2
−

ϕ

z1

)

D (1− L(p1)) ≥

(

ϕ

z2
−

ϕ

z1

)

D (1− L(p2)) , (59)

or, since z1 > z2, we have

D (1− L(p1)) ≥ D (1− L(p2)) . (60)

Now, because L(p) is a CDF, L(p) is strictly increasing in p. From the definition of A((1− L(p)),

we see that this function is strictly decreasing in L(p). It follows, then, that A((1− L(p)) is strictly

decreasing in p. Hence, from equation (60), we can conclude that p1 ≤ p2.

Suppose, now, that p1 = p2. Given that the distribution of productivity, F (z), is continuous with

connected support, z1 > z2 implies that there exists a positive measure of firms maximizing profits

by posting the same price. This contradicts the result that L(p) is a continuous distribution with

35



connected support, established by Burdett and Judd (1983), Lemma 1, p.959. ■

Derivation of the Pricing Function, (11)

The first-order condition for profit maximization given by equation (10) can be rewritten as

p′(z) + V (z)p(z) =

(

ϕ

z

)

V (z), (61)

where V (z) ≡ D′(F (z))F ′(z)
D(F (z)) . This is in a standard form of a linear first-order differential equation

whose solution is given by

p(z) =

(

1

χ(z)

)(
∫

χ(z)

(

ϕ

z

)

V (z)dz + C

)

, (62)

where χ(z) = exp
(∫

V (z)dz
)

. Given the definition of V (z), we have χ(z) = exp (ln(A(F (z)))) =

D(F (z)). Substituting this and the expression for V (z) into equation (62) gives

p(z) =

(

1

D(F (z))

)(
∫
(

ϕ

z

)

D′(F (z))F ′(z)dz

)

. (63)

Recalling that an indefinite integral can be written as a definite integral plus an arbitrary constant,

we can write the above as follows:

p(z) =

(

1

D(F (z))

)(

C +

∫ z

z̃

(

ϕ

x

)

D′(F (x))F ′(x)dx

)

, (64)

where C =
∫ z̃
a

(

φ
x

)

D′(F (x))F ′(x)dx with a as an arbitrary constant. We impose the condition

that the maximum price, p̃ is associated with z̃ to solve for C:

p(z) =
C

D(J(z̃))
=

C

q1
−→ C = p̃q1. (65)

Substituting this into equation (64) gives the pricing function, (11):

p(z) =

(

1

D(F (z))

)(

p̃q1 + ϕ

∫ z

z̃

D′(F (x))F ′(x)

x
dx

)

. ■
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Proof of Proposition 2 (Existence and Uniqueness of the SMS Equilibrium)

Let (33) implicitly define a relationship between z̃ and θ, which we refer to as FE as it arises from

the following free-entry condition:

J(z̃FE(θ)) = 1−
fe/δ

c1
c2

[

ū
δ s(θ)(1− ϵθs)− 1

] (66)

= 1−
a1
g(θ)

. (67)

Given that c1 > 0, c2 > 0, s′(θ) > 0, and ϵθs is non-increasing in θ, we have g′(θ) > 0. Thus,

[

J ′(z̃)
] (

z̃′FE(θ)
)

=
a1g

′(θ)

g(θ)2
> 0. (68)

As J ′(z̃) > 0, we then have z̃′FE(θ) > 0. That is, FE is increasing in (z̃, θ) space.

Similarly, let (34) implicitly define a relationship between z̃ and θ, which we refer to as ZP as it

arises from the zero-profit condition in the second stage:

z̃ZP (θ) =
(ϕ/δ)q1

q1
c2

(

ū
δ (1− ϵθs)−

1
s(θ)

) (69)

=
a2
k(θ)

. (70)

Then, as s′(θ) > 0 and ϵθs is non-increasing in θ, we have k′(θ) > 0. Thus,

z̃′ZP (θ) = −
a2k

′(θ)

k(θ)2
< 0 (71)

and ZP is downward sloping in (z̃, θ) space.

Thus, if an SMS equilibrium, (z̃∗, θ∗), exists, then it must be unique. All that remains to be shown

is that FE and ZP cross in an acceptable region of (z̃, θ) space. The free-entry condition (30)

bounds N and thus θ∗ and is required for the derivation of (33). Given a form of s(θ), the choices

of ū, ϕ, q1 and δ that satisfy (9) can be made to guarantee that z̃∗ > zL. This is required for the

derivation of (34). Thus, under these conditions, a sequential mixed-search equilibrium exists and

is unique. ■.
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Proof of Proposition 3 (Slope of the Markup Function at v = 1)

The elasticity of the markup function given by (15) with respect to v is given by

ϵvmkup(v) = ϵvp(v) − 1, (72)

where

ϵvp(v) =

(

h(v)

D(G(v))

)(

ϕ/z − p(v)

p(v)

)

> 0. (73)

Evaluating these expressions for the least-productive firm, v = 1, we have

ϵvmkup(1) =
−2q2G

′(1)

q1× elas(1)
− 1. (74)

Hence, the markup function will be decreasing at v = 1 if and only if

elas(1) <
−2q2G

′(1)

q1
. (75)

Using the zero-profit condition, we have

elas(1) =
q1p

∗s(θ)

δ
. (76)

Hence, the above condition can be written as

(

p∗

δ

)

s(θ) <
−2q2G

′(1)

q21
. (77)

Recall, from above, that the equilibrium maximum scaled price is given by

p∗

δ
=

(

1

c2

)[

u

δ

(

1− ϵθs(θ)
)

−
d2
s(θ)

]

, (78)

where ϵθs(θ) is the elasticity of s(θ). Hence, the condition above, which guarantees that the markup

will be decreasing at v = 1, can be written as

s(θ)
(

1− ϵθs(θ)
)

<
d2q

2
1 − 2c2q2G

′(1)

q21(ū/δ)
. (79)
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Now, since ϵθs(θ) is non-increasing in θ, the left-hand side of equation (79) is increasing in θ and

the result follows. ■

Proof of Proposition 4 (Qualitative Properties of Responses of θ∗ and z̃∗ to Parameter Changes)

From (82) - (85), we know that the determinant of the matrix on the right-hand side of equation

(52) is positive. Hence, using Cramer’s Rule, the sign of ϵxθ∗ is determined by the sign of the

determinant of






−x∂H1(·)
∂x z̃∗ ∂H1(·)

∂z̃∗

−x∂H2(·)
∂x z̃∗ ∂H2(·)

∂z̃∗






, (80)

and the sign of ϵz̃∗ is determined by the sign of the determinant of







θ∗ ∂H1(·)
∂θ∗ −x∂H1(·)

∂x

θ∗ ∂H2(·)
∂θ∗ −x∂H2(·)

∂x






. (81)

Using the signs of these derivatives given in equations (82)-(89), we can definitively determine the

signs of the determinants in equation (80) for x ∈ {ϕ, fe, ū} and the signs of the determinants in

equation (81) for x ∈ {ϕ, fe}. The results then follow. ■.

Appendix B: Linear System of Elasticities

The elements of the matrix on the right-hand side of equation (52) are given by

θ∗
∂H1(·)

∂θ∗
=

c1
c2

ū

δ
(J(z̃∗)− 1)s(θ∗)ϵθsϵ

θ
s′ > 0, (82)

z̃∗
∂H1(·)

∂z̃∗
=

fe
δ

(

z̃∗J ′(z̃∗)

J(z̃∗)− 1

)

< 0, (83)

θ∗
∂H2(·)

∂θ∗
= z̃∗ϵθs

q1
c2

[

ū

δ

(

ϵθs − 1− ϵθs′
)

+
1

s(θ∗)

]

> 0, (84)

z̃∗
∂H2(·)

∂z̃∗
= q1

ϕ

δ
> 0. (85)

The inequality in (82) holds, given that s(θ) is concave, and the inequality in equation (84) holds,

given that ϵθs is non-increasing in θ.

The semi-elasticities of these functions with respect to the various parameters in the vector on
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the right-hand side of (52) are as follows:

−ϕ
∂H1(·)

∂ϕ
= 0 −ϕ

∂H2(·)

∂ϕ
= q1

ϕ

δ
> 0 (86)

−δ
∂H1(·)

∂δ
= (1− J(z̃))

c1
c2

> 0 −δ
∂H2(·)

∂δ
= z̃

q1
c2

1

s(θ)
> 0 (87)

−fe
∂H1(·)

∂fe
=

fe
δ

> 0 −fe
∂H2(·)

∂fe
= 0 (88)

−ū
∂H1(·)

∂ū
=

c1
c2

ū

δ
(1− J(z̃∗))s(θ∗)(ϵθs − 1) < 0 −ū

∂H2(·)

∂ū
= z̃∗

q1
c2

ū

δ
(ϵθs − 1) < 0. (89)

Appendix C: Examples of Matching Functions

C.1: The Telephone Line Matching Function

The telephone line matching function is given by

M(λ,N) =
λN

λ+N
. (90)

In this case, the probability that a firm has a match is given by

s(θ) =
θ

1 + θ
. (91)

The elasticity of s(θ) equals

ϵθs =
1

1 + θ
=

s(θ)

θ
, (92)

and

1− ϵθs = s(θ). (93)

The elasticity of s′(θ) equals

ϵθs′ =
−θ

1 + θ
= −2s(θ). (94)
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C.2: The Urn-Ball Matching Function

The urn-ball matching function is given by

M(λ,N) = N
(

1− e−α(λ/N)
)

, (95)

where α > 0 is a constant. In this case, the probability that a firm has a match is given by

s(θ) =
(

1− e−αθ
)

. (96)

The elasticity of s(θ) equals

ϵθs =
αθe−αθ

1− e−αθ
=

αθ(1− s(θ))

s(θ)
. (97)

The elasticity of s′(θ) equals

ϵθs′ = −αθ < 0. (98)

Appendix D: Robustness of the Computational Example to Alter-

native Values of ū/δ, φ/δ, and fe/δ

To choose the parameters ū/δ, ϕ/δ, and fe/δ for our computational example, we targeted the

mean markup for the Canadian retail clothing subsector reported in Chernoff et al. (2024). This

calibration strategy is only capable of pinning down one of these parameter values. In this section,

we show that our main results are qualitatively robust to two alternative choices of ū/δ, ϕ/δ, and

fe/δ that also generate a mean markup that matches this target.

In our first parameter robustness specification, we set ϕ/δ = 45.84, fe/δ = 0.5455 and u/δ =

100. Comparing the elasticities calculated using the parameters in Table 2 to those in our main

specification in Table 1, we see that there are no sign changes in the elasticities and, in fact, that

the quantitative differences are very small in any of the values in the table. The price, markup, and

revenue distributions for this alternative specification are shown in Figure 3 and show no discernible

differences from the corresponding figures for our main specification in Figure 1. There are also no

qualitative differences in the shape of firm-level pass-through rates when comparing the results for

this specification in Figure 4 to those for our main specification in Figure 2.
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Table 2: Pass-Through to Equilibrium Outcomes, Parameter Robustness Specification I: ϕ/δ =
45.84, fe/δ = 0.5455 and u/δ = 100

ϕ δ fe ū

θ∗ 0.7493 0.1223 0.2155 -1.0870
z̃∗ 0.3409 0.0192 -0.1896 -0.1704
V ∗
b -0.4468 -0.0729 -0.1285 1.6482

p∗ 0.2355 0.3145 0.0677 0.3823
Mean transaction price 0.5258 0.0858 0.1513 0.2371
Mean posted price 0.4741 0.1266 0.1364 0.2629
Mean markup -0.1665 0.1311 -0.0479 0.0832

Notes: The estimates show the elasticity of the row variable with respect to the parameters in the columns. The elasticity

estimates use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the Pareto shape

parameter. These estimates also use the following values: φ/δ = 45.84, fe/δ = 0.5455 and u/δ = 100.

In our second parameter robustness specification, we set ū/δ = 125, ϕ/δ = 43.05, and fe/δ = 1.

Unlike our first alternative specification, where we changed only ϕ/δ and fe/δ, in this case, we also

change ū/δ. Comparing the elasticities calculated using these parameters in Table 3 to those in

our main specification in Table 1, we see some small quantitative differences but, again, there are

no sign changes in the elasticities and the magnitudes are largely unchanged. The price, markup,

and revenue distributions in Figure 5 are very similar in shape to those of our main specification

in Figure 1. The same is true when comparing firm-level pass-through in Figure 6 to our main

specification in Figure 2.

For the sake of brevity, we limited ourselves to presenting our main results for only two alter-

native sets of parameters. Our results in this section and the additional experiments we undertook

suggest, however, that our main results are qualitatively robust in this dimension.
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Figure 3: Markups, Prices and Revenues, Parameter Robustness Specification I: ϕ/δ = 45.84,
fe/δ = 0.5455 and u/δ = 100

A. PDF of the Log of Scaled Price B. PDF of the Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the

search process and the Pareto shape parameter. These plots also use the following values: φ/δ = 45.84, fe/δ = 0.5455 and

u/δ = 100.
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Figure 4: Firm-level Pass-through, Robustness Specification I: ϕ/δ = 45.84, fe/δ = 0.5455 and
u/δ = 100

A. Pass-through with respect to ϕ B. Pass-through with respect to δ

C. Pass-through with respect to fe D. Pass-through with respect to ū

Notes: All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the Pareto

shape parameter. These plots also use the following values: φ/δ = 45.84, fe/δ = 0.5455 and u/δ = 100.
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Figure 5: Markups, Prices and Revenues, Robustness Specification II: ϕ/δ = 43.05, fe/δ = 1 and
u/δ = 125

A. PDF of the Log of Scaled Price B. PDF of the Log of Scaled Revenue

C. Histogram of the Log of Markups D. The log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search

process and the Pareto shape parameter. These plots also use the following values: φ/δ = 43.05, fe/δ = 1 and u/δ = 125.
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Figure 6: Firm-level Pass-through, Robustness Specification II: ϕ/δ = 43.05, fe/δ = 1 and
u/δ = 125

A. Pass-through with respect to ϕ B. Pass-through with respect to δ

C. Pass-through with respect to fe D. Pass-through with respect to ū

Notes: All plots use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the Pareto

shape parameter. These plots also use the following values: φ/δ = 43.05, fe/δ = 1 and u/δ = 125.
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Table 3: Pass-Through to Equilibrium Outcomes, Robustness Specification II: ϕ/δ = 43.05,
fe/δ = 1 and u/δ = 125

ϕ δ fe ū

θ∗ 0.7171 0.1170 0.2063 -1.0404
z̃∗ 0.3409 0.0192 -0.1896 -0.1704
V ∗
b -0.3825 -0.0624 -0.1100 1.5549

p∗ 0.2355 0.3145 0.0677 0.3823
Mean transaction price 0.5258 0.0858 0.1513 0.2371
Mean posted price 0.4741 0.1266 0.1364 0.2629
Mean markup -0.1665 0.1311 -0.0479 0.0832

Notes: The estimates show the elasticity of the row variable with respect to the parameters in the columns. The elasticity

estimates use the parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and the Pareto shape

parameter. These estimates also use the following values: φ/δ = 43.05, fe/δ = 1 and u/δ = 125.
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Appendix E: Alternate Meeting Probability Functions and Produc-

tivity Distributions

E.1: One or Two Meetings Only

Figures 7 and 8 show the same plots as Figure 1 but for a Bernoulli distribution where, conditional

on matching, households have either one or two meetings with firms. Figure 7 is for a model

where consumers have a low probability of meeting just one firm, q1 ≈ 0.18, while in Figure 8, this

probability is much higher, q1 = 0.75.

These parameterizations of the search process are inferior to our baseline specification because

they generate log revenue distributions that are highly left skewed with a large mass of firms at

the high end of the distribution. This is highly counterfactual to the common observation that, in

most industries, there are a relatively small number of dominant firms and a large mass of smaller

firms.
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Figure 7: Markups, Prices and Revenues with q1 = 0.1842 and q2 = 1− q1

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use a search process with q1 = 0.1842 and q2 = 1− q1 and the Pareto shape

parameter estimate from Chernoff, Head, and Lapham (2024). These plots also use the following values: φ/δ = 34.43,

fe/δ = 1.475 and u/δ = 100.
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Figure 8: Markups, Prices and Revenues with q1 = .75 and q2 = 1− q1

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use a search process with q1 = 0.75 and q2 = 1− q1 and the Pareto shape

parameter estimate from Chernoff, Head, and Lapham (2024). These plots also use the following values: φ/δ = 34.43,

fe/δ = 1.475 and u/δ = 100.
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E.2: Poisson Distribution for Meetings

In Figures 9 and 10, we consider Poisson distributions for the meeting rate probabilities. Figure

9 has a lower Poisson arrival rate, using the estimate of 1.624 from Baggs et al. (2018), and

Figure 10 uses a higher arrival rate parameter of 5. Under either specification, the log revenue

distribution looks similar to the figures that use Bernoulli distributions, they are left-skewed and

with an uncharacteristically large mass in the right tail relative to what is commonly observed in

the firm-level revenue data.

It is interesting to note that the level of the price dispersion in the Poisson specification with

an arrival rate equal to 5 is similar to our baseline specification. The Poisson distribution and

our preferred specification share the feature that the maximum number of meetings is infinite.

When the arrival rate in the Poisson distribution is high, there is a large mass of highly informed

consumers who have many meetings. This is also the case in our baseline and this feature partially

explains the relatively higher level of price dispersion that is apparent in both specifications.

51



Figure 9: Markups, Prices and Revenues with Poisson Search and Arrival Rate of 1.624

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use a Poisson search process with an arrival rate of 1.624 and the Pareto shape

parameter estimate from Chernoff, Head, and Lapham (2024). These plots also use the following values: φ/δ = 34.43,

fe/δ = 1.475 and u/δ = 100.
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Figure 10: Markups, Prices and Revenues with Poisson Search and an Arrival Rate of 5

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use a Poisson search process with an arrival rate of 5 and the Pareto shape

parameter estimate from Chernoff, Head, and Lapham (2024). These plots also use the following values: φ/δ = 34.43,

fe/δ = 1.475 and u/δ = 100.

53



E.3: Shape of the Productivity Distribution

In Figure 11 we show the results when we drastically increase the Pareto shape parameter to 100,

which drives the productivity distribution toward being nearly degenerate. As can be seen from

Panel A, this results in a significant reduction in the degree of price dispersion relative to our

baseline. This exercise highlights that firm heterogeneity in productivity is an important feature

of our model that generates price dispersion.

In addition to generating lower price dispersion, the model with a near degenerate productivity

distribution is inferior to our baseline specification because of the qualitative aspects of markups.

In Panel D, we see that markups are decreasing in productivity for much of the productivity

distribution. As firm revenues are monotonic in productivity, markups are also decreasing in firm

revenues for much of the revenue distribution. This is counterfactual to the previously referenced

literature, which consistently finds that markups are increasing in firm size and productivity.
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Figure 11: Markups, Prices and Revenues with a Pareto Shape Parameter, γ = 100

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled prices (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of relative productivity. All plots use the Pareto shape parameter γ = 100, and the parameter estimates from

Chernoff, Head, and Lapham (2024) for the search process. These plots also use the following values: φ/δ = 34.43,

fe/δ = 1.475 and u/δ = 100.
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Figure 12: Pass-through to Firm-Level Prices - Near Degenerate Productivity Distribution

A. Pass-through with respect to ϕ B. Pass-through with respect to δ

C. Pass-through with respect to fe D. Pass-through with respect to ū

Notes: All plots use Pareto shape parameter γ = 100 and the parameter estimates from Chernoff, Head, and Lapham (2024)

for the search process. These plots also use the following values: φ/δ = 34.43, fe/δ = 1.475 and u/δ = 100.
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Appendix F: Robustness of the Computational Examples to Using

an Urn-Ball Matching Function

In this section, we show the robustness of our main results to using a different matching function.

We use the urn-ball matching function, introduced in Appendix B.2, with the parameter α = 1.

We use the same parameter values as our main specification except we lower the parameter ϕ/δ to

26.27. This adjustment is made so that the mean markup continues to match the average markup

for the Canadian retail clothing subsector that is reported in Chernoff et al. (2024).

With the urn-ball matching function, we get qualitatively similar results to our main specifi-

cation. Comparing the elasticities in Table 4 to those for our main specification, we observe that

all reported elasticities exhibit similar magnitudes, with no changes in signs. Next, comparing

the densities in Figure 13 to those in Figure 1, we see that the shape of the revenue, price, and

markup distributions are similar. As with our baseline specification, the markup is increasing with

productivity for much of the productivity distribution under the urn-ball matching-function spec-

ification. Finally, comparing firm-level pass-through in Figures 2 and 14, we see that firms across

the productivity distribution adjust their prices in a qualitatively similar fashion for each of the

shocks we consider.

Table 4: Pass-Through to Equilibrium Outcomes, Robustness Specification: Urn-Ball Matching
Function

ϕ δ fe ū

θ∗ 0.5988 0.0977 0.1722 -0.8687
z̃∗ 0.3267 0.0169 -0.1937 -0.1499
V ∗
b -0.2968 -0.0484 -0.0854 1.4307

p∗ 0.2672 0.3197 0.0769 0.3362
Mean transaction price 0.5455 0.0890 0.1569 0.2085
Mean posted price 0.4959 0.1301 0.1427 0.2313
Mean markup -0.1595 0.1322 -0.0459 0.0732

Notes: The estimates show the elasticity of the row variable with respect to the parameter in the columns. The elasticity

estimates use the urn-ball matching function with parameter α = 1. The estimates use the parameter estimates from

Chernoff, Head, and Lapham (2024) for the search process and the Pareto shape parameter. These estimates also use the

following values: φ/δ = 26.27, fe/δ = 1.475 and u/δ = 100.
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Figure 13: Markups, Prices and Revenues, Robustness Specification: Urn-Ball Matching Function

A. PDF of the Log of Scaled Price B. PDF of Log of Scaled Revenue

C. Histogram of the Log of Markups D. Log of Markups

Notes: Panels A and B display the probability density functions (PDF) of the log of the scaled price (Panel A) and the log of

the scaled revenue (Panel B). Panel C displays a histogram of the log of markups, and panel D plots the log of markups as a

function of the relative productivity. All plots use the urn-ball matching function with parameter α = 1. These plots use the

parameter estimates from Chernoff, Head, and Lapham (2024) for the search process and Pareto shape parameter. These

plots also use the following values: φ/δ = 26.27, fe/δ = 1.475 and u/δ = 100.
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Figure 14: Firm-level Pass-through, Robustness Specification: Urn-Ball Matching Function

A. Pass-through with respect to ϕ B. Pass-through with respect to δ

C. Pass-through with respect to fe D. Pass-through with respect to ū

Notes: All plots use the urn-ball matching function with parameter α = 1. These plots use the parameter estimates from

Chernoff, Head, and Lapham (2024) for the search process and the Pareto shape parameter. These plots also use the following

values: φ/δ = 26.27, fe/δ = 1.475 and u/δ = 100.
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