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Abstract

This paper utilizes a Banach-type fixed point theorem in a functorial context to develop

Universal Choice Spaces for addressing decision problems, focusing on expected utility and

preference uncertainty. This generates an infinite sequence of optimal selection problems

involving probability measures on utility sets. Each solution at a given stage addresses

the preference ambiguity from the previous stage, enabling optimal choices at that level.

The Universal Choice Space is characterized as a collection of finite-dimensional vectors of

probability distributions, with the m
th component being an arbitrary probability measure

relevant to the m
th stage of the problem. The space is derived as the canonical fixed point

of a suitable endofunctor on an enriched category and simultaneously as the colimit of the

sequence of iterations of this functor, starting from a suitable object.

JEL Codes: D81.
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endofunctor, canonical fixed point, initial algebra, colimit, universal choice space.

1 Introduction

The underlying decision problem in the framework of expected utility is about choosing
optimally from a set of probability distributions, that represent forms of uncertainty
about a phenomenon at hand, given the underlying preferences of the decision maker
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on this set. Preferences are represented by a utility function, termed von Neumann-
Morgenstern (vNM) utility, that assumes the form of the integral of an underlying
Bernoulli utility function w.r.t. the probability measure at hand. Conditions for the
existence of a Bernoulli function are well known (see for example Ok and Weaver
(2013) (17) and the references therein). Ambiguity of the decision maker about
her preferences is possible-see for example Schulz (2020) (21). Suchlike uncertainty
could in principle be represented by a set of probability distributions defined now
on the set of possible Bernoulli utilities. Resolution of ambiguity could arise by
choosing optimally among them; convexity of the set of the Bernoulli utilities implies
that the convex combination of those obtained via integrating w.r.t. the optimal
measure would result in the optimal choice of a Bernoulli utility which could then
be used in order to solve the original first order problem. Within this framework,
optimal selection of this second order measure would necessitate preferences among
the underlying set of measures, and thus a second order set of Bernoulli utilities. But
then preference ambiguity could also accrue in this level. This reasoning thereby
forms an infinite sequence (regress) of problems of optimal selection of probability
measures on sets of utilities so that any solution at each stage, resolves the ambiguity
of preferences at the previous stage making possible optimal choice there. The aim
of this note is to show that this infinite regress is resolvable; this means that there
exists a set, called the Universal Choice Space, that incorporates all uncertainty that
appears in the infinite regress and also contains all possible ways in which the agent
can deal with this uncertainty.

The analysis will be based on methods from category theory, a branch of theoretical
and applied mathematics used in the past to analyze problems in economics. In
most cases, the common element of such problems is that they have a recursive
structure and it is precisely the complexity of this recursive-ness that allows or even
necessitates the use of category theory. The classic example here comes from game
theory. In the context of games with incomplete information, Mertens and Zamir
(1985) (15) proved the existence of a space that contains all possible hierarchies
of beliefs that the agents can form in a game. This space is frequently called the
Universal Type Space, and it is constructed as a (what is termed inverse) limit of
a suitable sequence that accommodates hierarchies of beliefs and belief interactions
between agents. The aforementioned result essentially allows the formulation of
the problem through category theory. Indeed, many authors have used category
theory to provide comprehensive accounts regarding the problem of existence of the
Universal Type Space. See for example Vassilakis (1992) (24), Moss and Viglizzo
(2004) (16), Pinter (2010) (18), Blumensath and Winschel (2013) (5), Heinsalu (2014)
(11), Fukuda (2024) (7), Guarino (2024) (10).
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In the context of single agent decision problems, suchlike recursive structures
forming infinite regresses similar to the above, were were considered by Vassilakis
(1989) (22) and Lipman (1991) (12), who gave sufficient conditions for the existence
of a Universal Choice Space; Vassilakis (1991) (23) showed that this was realizable as
a minimal fixed point of a functor defined on a suitable category. A plethora of such
fixed point results are now available in the literature-see for example Adamek, Milius,
and Moss (2018) (1)-hereafter AMM18, potentially making the insights of Vassilakis
(1991) (23) applicable in more general contexts. Indicative literature that uses this
language in the context of decision is Galeazzi and Marti (2023) (8) or Pivato (2024)
(19).

There is a huge literature that could serve as excellent source of formal introduc-
tions to category theory and its useful tools in the above contexts. Classic textbooks
are Arbib and Manes (1986) (6) and MacLane (1978) (14). Categories provide a
general framework for describing mathematical structures and their relationships. An
informal description of tools and notions that will be used below is the following:
A category consists of objects and morphisms (arrows) between these objects that
satisfy two main properties; composition of morphisms is associative, and each object
has an identity morphism. Two objects are considered isomorphic in the category at
hand if there exists a morphism from the first to the second, and a morphism from
the second to the first, that when composed produce the relevant identity. A category
is considered locally small if for every pair of objects the collection of morhisms from
the first object to the second is a set, usually termed as hom-set. A locally small
category is enriched over a second category equipped with a particular algebraic
structure, if every hom-set is also an object of the second category. Thereby in an
enriched category, the sets of morhisms between objects have additional structure
reflecting the properties of the enriching category.

A colimit is a way to “glue together” a collection of objects in a category based
on specified morphisms between them. It generalizes constructions like the direct
sum of vector spaces or the union of sets. Formally, it is the universal co-cone over a
diagram of objects, capturing the idea of a “coherent merging” in the direction of
the morphisms. In other words, given any arbitrary sequence of morphisms between
objects of some category, an ordered pair that constitutes of an object and a collection
of morphisms from each object of the sequence to that object, is considered a colimit
of the sequence if, firstly, the composition of morphisms satisfies a certain naturality
condition, and secondly, there exists a unique mapping from the colimit to any
other ordered pair that satisfies the naturality condition. Colimits are unique up to
isomorphism. Vassilakis (1991) (23) characterizes the Universal Choice Space over a
fixed set of actions, among others, as a colimit of a sequence of objects in a suitable
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category.
A (covariant) functor is a mapping between two categories that preserves their

structure. It assigns to each object and morphism in one category a corresponding
object and morphism in the other, while preserving identities and compositions. A
contravariant functor works as above, except for the fact that it reverses the direction
of morphisms and the order of compositions. An endofunctor is any functor that maps
a category to itself. A fixed point of an endofunctor is an object in the category that
is isomorphic to its transformation by the functor. An algebra of an endofunctor is an
ordered pair consisting of an object together with a morphism from the transformation
of the object by the functor to that object, and an initial algebra is an algebra whose
object defines a unique homeomorphic morphism from that object, to the object of
any other algebra. By Lambek’s lemma, see MacLane (1978) (14), an initial algebra is
a minimal fixed point of a functor; there exists a morphism from the initial algebra to
any other fixed point that respects identifications via the respective isomorphisms. As
such the initial algebra provides with the minimal structure that satisfies a recursive
definition, and can thus provide a model for Universal Choice Spaces. Dually, a
terminal co-algebra of an endofunctor is a maximal fixed point; there exists a unique
morphism from it to any other fixed point of the functor that respects identifications
via the respective isomorphisms. As such it provides with maximal structures that
satisfy co-recursions, providing thus a model for Universal Type Spaces. A fixed point
that is simultaneously isomorphic to an initial algebra and a terminal co-algebra is
termed canonical.

Given the above, the decision theoretic framework of the present note can be
summarized as follows: X is a space upon which the uncertainty of a phenomenon
of interest is structured. ∆(X) is then the set of probability distributions on (some
algebra of subsets of) X, which constitutes the original choice space. The decision
maker has preferences over ∆(X) represented by a Bernoulli utility function u : X → R.
U(X) is the space of the possible suchlike utilities over X. At this stage, ambiguity
over U(X) is introduced, and it is represented by ∆(U(X)); if U(X) is convex,
then choice of a probability distribution P in ∆(U(X)), corresponds to choice of
a utility in U(X) via

∫

u∈U(X)
udP(u), w.r.t. which the original decision problem

is resolvable. Hence ∆(U(X)) is the choice space of the second order problem.
Continuing the regress it is obtained that (∆U)m(X)-with (∆U)m, m > 0 denoting
m-fold composition-corresponds to the choice space available to the decision maker
at the m+ 1th order of the regress. The question is whether this regress converges
to a suitable kind of limit, and if this limit can be considered as a fixed-point of
the infinite regress. If the latter is true, the fixed-point can be characterized as the
the Universal Choice Space, that represents the collection of all available decision
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procedures to the decision maker at every level of uncertainty/ambiguity.
The analysis resolves this issue by first choosing appropriately the category upon

which the regress is unfold. Second, ∆ and U are constructed as endofunctors on this
category. Third, another functor that depends on both ∆ and U is constructed, and
the infinite regress described above is represented as a sequence of self-iterations of
this functor. Then, via a Banach-type fixed point theorem for categories, the functor
is shown to have a canonical fixed point that is simultaneously characterized as the
colimit of the sequence of self-iterations initialized at a suitable object. This is the
Universal Choice Space sought, which can be represented as the collection of finite
dimensional vectors of probability distributions; the first component of such a vector
is some member of ∆(X), and the mth component is a member of (∆U)m, m > 0.
The analysis differs to that of Vassilakis (1991) (23) and Lipman (1991) (12) in that
the decision procedures here do not take the form of trees, but are rather represented
by vectors. Furthermore, the analysis extends Vassilakis (1991) (23) by not requiring
the finite structures supposed there, and also avoids the considerations of sequences
on ordinals larger than ω (the first infinite ordinal) that appear in Lipman (1991)
(12).

The remaining note is structured as follows: the following section presents the
categorical details, the functorial constructions and the result. The final section
presents a characterization of the multi-utility decision procedures of Ok and Weaver
(2023) (17) as particular parts of the Universal Choice Space and briefly discusses
possible extensions of the current results.

2 Categorical framework and result

In what follows λ ∈ (0, 1) is a fixed real number. The analysis considers the CMS
enriched category CompMetCMS. This consists of objects that are compact metric
spaces, with uniformly bounded (by 1) hom-sets formed by complete metric spaces
w.r.t. the uniform metric, featuring non-expansive composition as referenced in
AMM18. Referring to AMM18 (see Notation 5.5) as well as America and Rutten (1989)
(4), and Par. III of Adamek and Reiterman (1994) (2), the category of embeddings
CompMetECMS is also considered. The objects there are the objects ofCompMetCMS,
for which there exist pairs (f, gf ), where f : X → Y , g : Y → X are morphisms within
CompMetCMS, such that gf ◦ f = idX . Those pairs constitute the morphisms in
CompMetECMS. The hom-sets of CompMetECMS are equipped with the max-sup met-
ric d((f, gf ), (h, gh)) := max

{

supx∈X dX(f(x), h(x)), supy∈Y dY (gf (y), gh(y))
}

, under
which they remain complete. The Remark of Par. III of Adamek and Reiterman
(1994) (2) says that the category of embeddings is also CMS-enriched. The analysis
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finally considers the product category G := (CompMetECMS)
2; the previous, along

with example 5.1.(d) of AMM18 show that it is also CMS-enriched via the max-metric.
∆ denotes the probability functor on CompMetCMS; ∆(X) is the set of Borel

probability measures on X, an arbitrary object of CompMetECMS. ∆(X) is equipped
with the λ/2-scaled 1-Wasserstein metric based on the distance function dX equipping
X: for P,Q ∈ ∆(X), dλ1−W (P,Q; dX) := λ/2minγ∈Γ(P,Q)

∫

X
dX(z, z

⋆)dγ(z, z⋆), where
Γ(P,Q) denotes the set of Borel probability distributions on X × X that have
respective ”marginals” P, Q-see Gao, Chen, and Kleywegt (2024) (9). The metric,
being equivalent to the standard form of the 1-Wasserstein metric (this is derived from
above by reversing the scalling, i.e. setting λ = 2), topologizes weak convergence-see
Rahimian and Mehrotra (2019) (20). Given that X is compact the property is
inherited by ∆(X), see Theorem 15.11 of Aliprantis and Border (1999) (3), thereby
∆ maps compact metric spaces to compact metric spaces. If f ∈ Hom(X, Y ), then
∆(f) ∈ Hom(∆(X),∆(Y )), with ∆(f)(P) := P ◦ f−1, and due to the definition of
the 1-Wasserstein metric above, the change of variables property of the Lebesgue
integral and the non-expansive property of f , ∆(f) is non-expansive. Obviously
∆(idX)(P) = id∆(X)(P), and ∆(g ◦ f)(P) = P ◦ (f−1 ◦ g−1) = ∆(g)(P ◦ f−1) = (∆(g) ◦
∆(f))(P), and supf,h,P,Q dλ1−W (P ◦ f−1,Q ◦ h−1; dX) ≤ supf,g supx dX(f(x), g(x)) ≤
1. Applying this reasoning to each element of an arbitrary pair in Hom(X, Y ) in
CompMetECMS, implies that ∆ is a well defined as a covariant endo-functor when
restricted on CompMetECMS. Furthermore, and since for arbitrary f1, f2 : X → Y ,
the inequalities supP∈∆(X) d

λ
1−W ;dX

(P ◦ f−1
1 ,P ◦ f−1

2 ) ≤ λ supx∈X dX(f1(x), f2(x)), and

supP∈∆(Y ) d
λ
1−W ;dY

(P ◦ g−1
f1
,P ◦ g−1

f2
) ≤ λ supy∈Y dY (gf1(y), gf2(y)) hold, ∆ is also λ-

locally contracting in the sense of Definition 5.2 in AMM18 (1) (also referenced in
America and Rutten (1989) (4)); the functor contracts by a factor λ the sup-distance
between every pair of morphisms. Hence:

Lemma 1. ∆ is a λ-locally contracting endofunctor on CompMetECMS.

Additionally, Uλ(X) denotes the set of Bernoulli utilities defined on X, that are
dX-Lipschitz continuous with Lipschitz coefficient bounded above by λ. Notice that
dX-Lipschitz Bernoulli utilities always exist due to Proposition 4.1 of Ok and Weaver
(2023) (17), the fact that every compact metric space is separable, and the fact that
Lipschitz continuous functions X → R, e.g. dX(·, x0) for arbitrary x0 ∈ X. Then, in-
variance of the Bernoulli utilities w.r.t. scalling, and the compactness of (X, dX), imply
that the set Uλ(X) is not empty, as well as a complete and totally bounded metric space
when equipped with the uniform metric. The set Hom(Uλ(X), Uλ(Y )), admits the met-
ric max

{

supu∈Uλ(X),y∈Y dY (f
⋆(u)(y), h⋆(u)(y)), supu∈Uλ(Y ),x∈X dX(gf⋆(u)(x), gh⋆(u)(x))

}

,
which is bounded by 1, and w.r.t. which the hom-set is complete due to the com-
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pleteness of the target spaces. For any non-expansive map f : X → Y , Uλ(f)(u) :=
u ◦ gf : Uλ(X) → Uλ(Y ) is non-expansive since λ < 1, while Uλ(idX) = idUλ(X), and,
if v ∈ Uλ(Z), and h : Y → Z, Uλ(h ◦ f)(v) = (v ◦ h) ◦ f = Uλ(f) ◦ Uλ(h). Applying
this reasoning to each element of an arbitrary pair in Hom(X, Y ) in CompMetECMS

establishes that Uλ is a well defined covariant endo-functor on CompMetECMS. Given
that we have supu∈Uλ(X) supy∈Y |u(gf1(y)) − u(gf2(y))| ≤ λ supy∈Y dY (gf1(y), gf2(y)),
along with supu∈Uλ(Y ) supx∈X |u(f1(x)) − u(f2(x))| ≤ λ supx∈X dX(f1(x), f2(x)), it
follows that the functor Uλ is λ-locally contracting as well.

Lemma 2. Uλ is a λ-locally contracting endofunctor on CompMetECMS.

For a fixed X ∈ CompMetECMS, any decision procedure up to stage m can be
represented by a finite dimensional vector of probability measures, say (Pn)0≤n≤m,
m ∈ ω, where P0 ∈ ∆(X), and, Pn ∈ (∆ ◦ Uλ)

(n)(X) for n > 0, with (∆ ◦ Uλ)
(n)

denoting the nth self-composition of ∆ ◦ Uλ. Letting m vary in ω, denoting by Py,
the degenerate on the element y ∈ Y member of ∆(Y ), it is observable that any such
vector can be uniquely extended to a sequence by setting Pn := PPn−1 for any n > m.
Thus, the resulting set of decision procedures, say C00, is a compact metric space
when equipped with the max between the associated λ scaled 1-Wasserstein metrics,
which can then be considered as an object of the product category G.

Then, the functor Chλ is considered. This is defined on the objects of G via the
product Chλ(Z, Y ) := (∆(X),∆◦Uλ(Y )), and on the morphisms by Chλ((f, gf ), (h, gh)) :=
((id∆(X), id∆(X)), (∆ ◦ Uλ(gf ),∆ ◦ Uλ(f))). Setting (∆ ◦ Uλ)

(0) := idG , considering the
functor’s iteration sequence commencing on (X,X),

(X,X)
Chλ→ (∆(X),∆ ◦ Uλ(X))

Chλ→ · · ·
Chλ→ (∆(X), (∆ ◦ Uλ)

(m)(X))
Chλ→ · · · , (1)

and since for any n > 1, (∆ ◦ Uλ)
(m−1) is embedded in (∆ ◦ Uλ)

(m) due to Theorem
15.8 of Aliprantis and Border (1999) (3), it is obtained that at stage m, the set of
vectors (∆(X), (∆ ◦Uλ)

(m)(X)) represents every decision procedure up to m; the first
part provides information on the initial problem, and the second part summarizes the
scope of ambiguity about preferences up to m. The Universal Choice Space sought
would then be the colimit-if it exists-of the sequence in (1). The derivation of the
existence of this colimit and its identification, would be facilitated by the derivation of
the existence and the identification of the initial algebra of the functor-see Vassilakis
(1991) (23) as well as America and Rutten (1989) (4). If furthermore C00 was proven
isomorhic to this initial algebra, it would then have been characterized as the Universal
Choice Space sought.

Essentially, a contractivity property of the Chλ functor, inherited by Lemmata
1 and 2, leads to a stronger result than the existence of an initial algebra, via
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the application of the Banach type functorial fixed point theorem of Adamek and
Reiterman (1994) (2). The theorem says that a terminal co-algebra also exists and it
is isomorphic to the initial algebra. Those are also identified with C00. This is the
main result:

Theorem 1. The space C00 is the canonical fixed point of Chλ on G, as well as the
colimit of the sequence in (1).

Proof. Lemmata 1 and 2 directly imply that the composite functor ∆ ◦ Uλ is a λ-
locally contracting well-defined endofunctor on CompMetECMS. Then, and since Chλ

is constant in the first argument, the functor is a well-defined λ-locally contracting
endofunctor on G. The existence of a canonical fixed point would be then obtained by
Theorem 3 of Adamek and Reiterman (1994) (2), since (CompMet2CMS)

E ∼= G, as
long as CompMet2CMS has inverse limits for contracting sequences (see the Definition
in Par. II of Adamek and Reiterman (1994) (2)). This is due to that CompMet2CMS

has a terminal object-the self-product on the one point space as the terminal object
in CompMet2CMS, and it is connected since CompMetCMS is; via constant maps.
It suffices that CompMet2CMS has inverse limits, for which it also suffices that
CompMetCMS has inverse limits since then the product respects them.

CompMetECMS has inverse limits since for any ωop-sequence in this category,

represented by the set of non-expansive morphisms {Xn+1
hn→ Xn}n∈ω, the product

∏

n∈ω Xn equipped with the maximum metric, is compact. The inverse limit is
defined as the subset IL = {(x0, x1, ...) ∈

∏

n∈ω Xn xn = hn(xn+1), n ∈ ω}, equipped

with the set of projections {IL
πn→ Xn}n∈ω, where πn(x) = xn, which is obviously

non-expansive, since the following two conditions are satisfied by the construction.
First, πn = hn ◦ πn+1 must hold for all n ∈ ω. It is easy to see to see that this holds
by the definitions. The second condition is that for any other set of non-expansive

morphisms {X
fn
→ Bn}n∈ω such that fn = hn ◦ fn+1 for all n ∈ ω, where A is an

object in the category, a unique morphism f : X → IL such that fn = πn ◦ f for all
n ∈ ω must exist. The proof of latter condition follows easily if we define f in the
only possible way, that is f(y) = (f0(y), f1(y), ...), and notice that f(y) ∈ IL due to
the way each morphism fn is defined. Due to the definition of the max-metric and
the properties of the associated functions f is readily seen to be non-expansive, and
the uniform distances between any such functions are bounded by 1. This shows
that CompMetCMS has inverse limits, which then implies that Chλ has a canonical
fixed point. Finally, the identifications implied by Theorem 15.8 of Aliprantis and
Border (1999) (3) as well as the proof of Corollary 3.15 of America and Rutten (1989)
(4) and their subsequent Remark (see also Definition in Section II of Adamek and
Reiterman (1994) (2), and Theorem 1 of Adamek and Reiterman (1994) (2)) imply
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that C00 is constructed as the colimit (see Ch.3.III of Mac Lane (1978) (14)) of the
sequence in (1), and additionally that Chλ(C00) ∼= C00 establishing the result.

3 Discussion

Theorem 1 says that C00 is the up to isomorphism unique Banach-type fixed point of
the choice functor, establishing it as the Universal Choice Space over the fixed X.
Canonicality of the fixed point implies that it is the initial algebra of the endofunctor;
C00 thus corresponds to the most economical way to construct the collection of
the available decision procedures. It simultaneously is the terminal co-algebra of
Chλ, hence also representing the maximal dynamics of the infinite regress. The local
contractivity of the functor involved makes those two minimal and maximal structures
isomorphic. It also implies that even though no finite structures are involved in the
constructions above, in contrast with Vassilakis (1991) (23) where a finite language
and its finite power set is used in the formation of the infinite regresses there, no
ordinal numbers greater than ω are needed for the establishment of the existence
of the choice space as an inverse limit of the infinite regress, as opposed to the
constructions in Lipman (1991) (12). The fact that vNM preferences are invariant
w.r.t. rescalling of their Bernoulli components, implies that the result holds also for
the more general preference spaces of Lipschitz continuous Bernoulli utilities.

The characterization of the Universal Choice Space above implies a subsequent
characterization of the multi-utility orders in Ok and Weaver (2023) (17) as a
conservative resolution of ambiguity about preferences at m = 1, as well as their
extension to larger stages of the regress. Given Uλ(X), and P1,P2 ∈ ∆(X), P1

dominates P2 w.r.t. to the Uλ utilities if and only if
∫

X
udP1 ≥

∫

X
udP2, ∀u ∈ Uλ(X).

Given that Uλ(X) is uniformly bounded, the envelope function vX(x) := supu∈Uλ
u(x)

is an element of the hom-set, since |vX(x) − vX(x
′)| ≤ supu∈Uλ

|u(x) − u(x′)| ≤
λdX(x, x

′). Also, due to that
∫

X
vXdP ≥ supu∈Uλ

∫

X
u(x)dP for any P ∈ ∆(X), choice

via the envelope vX , is equivalent to choice to the Uλ utilities and represents the most
conservative decision procedure on ∆(X). Thereby, the resolution of ambiguity for
preferences at m = 1 with the Uλ multi-utility ordering, is represented by the subset of
C00, identified by the vectors of the form (P0,PuX

),P0 ∈ ∆(X). Since the construction
of the envelope utility is possible in Uλ(Y ) for any Y in the working category, the
multi-utility ordering as a conservative resolution of ambiguity for preferences is
generalizable for m ≥ 1. Thus, vectors of the form (P0, . . . ,Pm−1,Pu

(∆◦Uλ)(m)(X)
)

identify a part of the choice space that represent the decision procedures that are the
most conservative at their peak level m, thereby defining multi-utility ordering type
resolutions of ambiguity for preferences at stage m ≥ 1. Those vectors could also



3 Discussion 10

represent choices in problems of hierarchical decision making with highly conservative
leaders.

The representation of the Universal Choice Space as a Banach-type fixed point
was facilitated by the consideration of the CompMetECMS category of embeddings,
which allowed covariance in the definition of Uλ. If the analysis is extended to
CompMetCMS, Uλ would need to be defined as a contravariant functor. This change
would result in Chλ losing its covariance and becoming a pro-functor, meaning it
would function as both a covariant and contravariant bi-functor. Further research
into this scenario, which involves examining initial algebras and terminal coalgebras
for profunctors—as discussed by Lorengian (2021)- (13)—appears promising. It could
also facilitate the exploration of the existence of the Universal Choice Space beyond
the constraints of contractivity for the involved functors.
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