
Queen's Economics Department Working Paper No. 1530

Empirically Implementing a Social Welfare Inference
Framework

Charles Beach

Russell Davidson
McGill University

Department of Economics
Queen's University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

2-2025



1 

 

 

 

Empirically Implementing a Social Welfare Inference 

Framework* 

By 

Charles M. Beach 

Department of Economics 

Queen’s University 

Kingston, Ontario, Canada K7L 3N6 

email: beach.chaz3@gmail.com 

and 

Russell Davidson  

Department of Economics and CIREQ Aix-Marseille Universite 

McGill University CNRS, EHESS, AMSE 

Montreal, Quebec, Canada 13205 Marseilles cedex 01, France 

Email: russell.davidson@mcgill.ca 

 

 

Key words: social welfare tests, income distribution comparisons, implementing social welfare 

criteria_JEL codes: C10, D31, D63, 131 

*The authors thank Stefan Fassler for remarkably able computer RA work and Roda Mendoza for 

excellent technical assistance for this paper, and James Davies for helpful comments on an 

earlier working paper on this topic by the first author. The authors bear full responsibility for any 

shortcomings of this paper. 

February 2025 

mailto:beach.chaz3@gmail.com
mailto:russell.davidson@mcgill.ca


2 

 

ABSTRACT 

This paper builds on recent econometric developments establishing distribution-free 

statistical inference methods for quantile means and income shares for a sample distribution of 

microdata to propose an approach to empirically Implement several dominance criteria for 

comparing economic well-being and general income inequality between distributions.  It 

provides straightforward variance-covariance formulas in a set of practical empirical procedures 

for formally testing economic well-being and inequality comparisons such as rank dominance, 

Lorenz dominance and generalized Lorenz dominance between distributions. 

The tests and procedures are illustrated with Canadian census data between 2000 and 

2020 on women's and men's incomes.  It is found that both women's and men's economic well-

being statistically significantly improved over this period, while income inequality significantly 

increased over 2000-15 and then fell over 2015-20. 
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1. Introduction 

Since about 1980 to the early twenty-first century, income inequality in many developed 

economies rose dramatically to historic levels (Guvenen et al., 2022; Hoffman et al., 2020).  

Structural factors behind these changes have been extensively reviewed in, for example, 

Acemoglu et al. (2016); Autor, Dorn and Hanson (2013); Beach (2016); Goos, Manning and 

Salomons (2014); and Saez and Veall (2007), and have highlighted the major roles of automation 

and technological advances, globalization and trade, as well as demographics, deregulation and 

policy changes such as minimum wages.  More recently, world events such as the COVID 

pandemic, the war in Ukraine and growing trade restrictions with China have elicited major 

economic adjustments as supply chains are reworked and much basic and high-tech 

manufacturing is being reshored, and as income support programs burgeon (at least 

temporarily) and then labour markets tightened — resulting in notable improvements in lower 

incomes and a new "unstuck middle" (The Economist, 2023).  Such complex developments give 

rise to quite different effects over different groups of workers in the labour market and over 

different regions of the income distribution.  Clearly, a disaggregative approach to examining 

distributional changes is much more informative than conventional summary measures of 

inequality (such as a Gini coefficient or coefficient of variation). 

Such major developments have given rise to issues of "equitable growth"(Drummond, 

2021), and "common prosperity" (The Economist, 2021a, 2021b) and ways of linking GDP and 

social welfare measurement (Fleurbaey, 2009; Jones and Klenow, 2016; and Jorgenson, 2018).  

Statistical agencies and National Accounts analysts are part of a burgeoning interest in the 

broad endeavour of distributional National Accounts (see, eg., Alvaredo et al., 2018, 2020; 
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Zucman et al., 2018; and Rapley, 2024).  The theoretical economics literature has been examining 

the distributional incidence of growth and its social welfare implications (Palmisano and 

Peragine, 2015) and its related implications for equality of opportunity in a growing economy 

(Peragine, 2004; Bosmans and Ozturk, 2021).  Empirically implementing such concerns has been 

reviewed, for example, in Cowell (2021), and Duclos and Araar (2006).  In both Canada and the 

United States, federal governments have also been focusing policies to better target low-

incomes and middle-class families.  And in Canada, dramatic increases in immigration rates and 

inflows of low-wage temporary foreign workers have led to debate on whether the growth 

objective should be for GDP or GDP per capita as economic growth rates broadly decline 

(Rendell, 2024).  All these developments call for an empirically implementable set of criteria or 

tools to blend these various objectives and to better evaluate if people are indeed better (or 

worse) off, income inequality has been reduced, or economic opportunities have been improved. 

The availability of such tools — as provided in this paper — is based on three advances 

in the area.  First is the advent of large publicly-available microdata sets — such as census files 

in Canada, the United States and elsewhere — that allow for very detailed analysis of different 

groups within the overall income distribution.  The second is the development in the theoretical 

social welfare literature of various criteria for judging whether a change in income distributions 

leaves the population as a whole better (or worse) off.  Thirdly, in the econometrics literature, 

Beach and Davidson (2024a) establish the basis for drawing statistical inferences on 

disaggregative inequality measures by deriving the (asymptotic normality and asymptotic) 

variance-covariance structure of the sample means and income shares of quantile groups across 

a distribution (eg., for each decile group within a distribution). 
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This paper applies the formulas of Beach and Davidson (2024a) and offers an empirical 

approach to evaluate distributional changes in an easily implementable (distribution-free) 

framework of statistical inference based on well-known disaggregative distributional statistics.  

The paper shows how various theoretical criteria can be implemented in practice in 

straightforward fashion using explicit formulas and without having to know the underlying 

income distribution function.  It imbeds this implementation within a standard statistical 

inference framework in terms of a practical empirical criterion (PEC) for empirically testing 

hypotheses of distributional dominance and establishing whether such distributional 

comparisons are indeed statistically significant.  And it helps unify the applicability of various 

social welfare and general inequality comparisons within a common framework of formulas and 

procedures for hypothesis testing. 

The paper is organized as follows.  The next section sets out the quantile function 

approach for establishing statistical inference formulas for quantile-group means and income 

shares.  These are the basis for the rest of the paper.  Section 3 explains the normative 

perspective underlying the various distributional dominance criteria used in the paper.  Then 

Sections 4-7 apply these developments to a range of dominance criteria for both social welfare 

and general inequality comparisons typically involving Lorenz curves and their extensions.  The 

distributional statistics and test criteria are then empirically illustrated with Canadian census 

public use microdata files over 2000 - 2020 in Sections 8 and 9.  The final section reviews the 

main results of the paper and draws some implications. 
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2. Quantile Function Approach for Quantile Means and Income Shares 

Empirical measures of economic well-being and income inequality are built up from 

disaggregative statistics on quantile income shares and quantile mean income levels.  Quantile 

statistics are those that are expressed in terms of given percentage groups of the ranked or 

ordered observations in a microdata sample.  In the case of income distribution statistics, the 

data observations in a sample are ordered by income from the lowest income observation to the 

highest income observation.  The ordered observations are then divided into non-overlapping 

income groups, say, in terms of ten deciles or twenty vigintiles (generically referred to as 

quantile income groups or simply quantiles).  So the first decile group consists of those 

observations with the 10 percent lowest incomes, the second decile group includes the next 10 

percent lowest income recipients, and so on up to the top or tenth decile group which includes 

those 10 percent of income recipients with the highest income levels in the sample.  The 

standard Lorenz curve (of cumulated income shares), for example, is based around such 

percentile groups.  Quantile means and income shares can be expressed in terms of integrals of 

underlying distribution functions, what we will call quantile functions.  The quantile function 

approach used in this paper involves suitably approximating the quantile functions that the 

distributional statistics are based on in order to identify and establish the asymptotic properties 

of the corresponding sample statistics.  The approach is applied to quantile means and quantile 

income shares. 

The key feature of these quantile statistics is that the relative sizes of the quantile groups 

are given percentages of the sample or distribution.  This turns out to simplify quite dramatically 

the sampling properties of quantile-based statistics.  (Contrast this with, say, median-based 
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income groups where the middle-income group consists of those with incomes between, say, 50 

percent and 200 percent of the median income level — a common designation of the so-called 

Middle Class.  In this case, the size of the group is not given, but is a consequence of the 

sampling process.  As a result, the sampling properties of median-based statistics are 

considerably more complex and are distribution-dependent, so are less convenient to deal with 

(Beach and Davidson, 2024b). 

 

2.1 Quantile Function Approach for Quantile Means 

 To formalize the quantile function approach taken in this paper, we summarize the 

analytical statistical development in Beach and Davidson (2024a). 

 Suppose the distribution of income Y is divided into K ordered income groups.  Let the 

dividing proportions of recipients be 𝑝𝑝1  <  𝑝𝑝2  < … <  𝑝𝑝𝐾𝐾−1 (with 𝑝𝑝0=0 and 𝑝𝑝𝐾𝐾=1).  The mean 

income of recipients with incomes between the 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖−1 quantiles, for i=1, 2,…, K, is given by 

the quantile function 

𝜇𝜇𝑖𝑖  =  � 𝑦𝑦𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1 𝑑𝑑𝑑𝑑(𝑦𝑦)  � 𝑑𝑑 𝑑𝑑(𝑦𝑦)
𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1�  =  � 1𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖−1�  � 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑦𝑦)

𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1  

 

where 𝜉𝜉𝑖𝑖 is the 𝑝𝑝𝑖𝑖 quantile cut-off income level of the distribution F, and 𝜉𝜉0 is taken to be the 

smallest (possibly negative) income in the support of the distribution.  Let 

𝑛𝑛𝑖𝑖 =  � 𝑦𝑦 𝑑𝑑𝑑𝑑(𝑦𝑦)
𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1  =   (𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑖𝑖−1) 𝜇𝜇𝑖𝑖 

for i = 1,…, K, and consider the constructed variable 𝑊𝑊𝑖𝑖 = 𝑌𝑌 ⋅ 𝐼𝐼 (𝜉𝜉𝑖𝑖−1  < 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖)−  𝜉𝜉𝑖𝑖  ⋅ 𝐼𝐼 (𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) +  𝜉𝜉𝑖𝑖−1  ⋅ 𝐼𝐼 (𝑌𝑌 ≤  𝜉𝜉𝑖𝑖−1) 
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where 𝐼𝐼 (⋅) is an indicator function which takes the value 1 if the condition in the parentheses 

holds, and 0 otherwise.  𝑛𝑛𝚤𝚤�  is the sample estimate of 𝑛𝑛𝑖𝑖 and 𝜇̂𝜇𝑖𝑖 is the sample estimate of 𝜇𝜇𝑖𝑖 . 
 Then it can be shown that the set of 𝐾𝐾 𝑛𝑛𝚤𝚤� ’s are asymptotically joint normally distributed, 

and the asymptotic variance of 𝑛𝑛�𝑖𝑖 =  (𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑖𝑖−1) 𝜇̂𝜇𝑖𝑖  

is the same as the regular variance of the constructed random variable 𝑊𝑊𝑖𝑖 which in turn is 

derived to be 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣 (𝑛𝑛�𝑖𝑖) = 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑊𝑊𝑖𝑖)  

=  𝜎𝜎𝑖𝑖2 +  𝜉𝜉𝑖𝑖2𝑝𝑝𝑖𝑖  (1− 𝑝𝑝𝑖𝑖) + 𝜉𝜉𝑖𝑖−12𝑝𝑝𝑖𝑖−1(1− 𝑝𝑝𝑖𝑖−1)− 2 𝜉𝜉𝑖𝑖−1 𝜉𝜉𝑖𝑖 𝑝𝑝𝑖𝑖−1 (1− 𝑝𝑝𝑖𝑖) − 2 𝑛𝑛𝑖𝑖 [𝜉𝜉𝑖𝑖  (1−  𝑝𝑝𝑖𝑖) +  𝜉𝜉𝑖𝑖−1 𝑝𝑝𝑖𝑖−1]     (1) 

 

where 𝜎𝜎𝑖𝑖2 = 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑌𝑌 | 𝜉𝜉𝑖𝑖−1 < 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖).  The first term in this expression represents the variability 

of Y within the 𝜉𝜉𝑖𝑖 −  𝜉𝜉𝑖𝑖−1 range, the next three terms capture the randomness of the sample 

estimates 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖−1, and the last combined term captures the covariance of the first two 

effects.  Thus 

𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣 (𝜇̂𝜇𝑖𝑖) =  � 1𝑝𝑝𝑖𝑖− 𝑝𝑝𝑖𝑖−1�2  ⋅  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣 (𝑛𝑛�𝑖𝑖).       (1a) 

Similarly, for the covariances, for 𝑗𝑗 < 𝑖𝑖, 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐� 𝑜𝑜𝑣𝑣 �𝑛𝑛�𝑖𝑖,𝑛𝑛�𝑗𝑗� =  𝐶𝐶𝑜𝑜𝑣𝑣 �𝑊𝑊𝑖𝑖 ,𝑊𝑊𝑗𝑗�  

=  (𝜉𝜉𝑖𝑖 −  𝜉𝜉𝑖𝑖−1) �𝑝𝑝𝑗𝑗 𝜉𝜉𝑗𝑗 −  𝑝𝑝𝑗𝑗−1 𝜉𝜉𝑗𝑗−1 −  𝑛𝑛𝑗𝑗�  

 − �𝑛𝑛𝑗𝑗 −  𝑝𝑝𝑗𝑗  𝜉𝜉𝑗𝑗 +  𝑝𝑝𝑗𝑗−1 𝜉𝜉𝑗𝑗−1� (𝑛𝑛𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜉𝜉𝑖𝑖 + 𝑝𝑝𝑖𝑖−1 𝜉𝜉𝑖𝑖−1)  

=  �𝑝𝑝𝑗𝑗  𝜉𝜉𝑗𝑗 −  𝑝𝑝𝑗𝑗−1 𝜉𝜉𝑗𝑗−1 −  𝑛𝑛𝑗𝑗� [𝑛𝑛𝑖𝑖 +  𝜉𝜉𝑖𝑖  (1− 𝑝𝑝𝑖𝑖)−  𝜉𝜉𝑖𝑖−1 (1−  𝑝𝑝𝑖𝑖−1)].    (2) 
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The variance and covariances are consistently estimated by replacing all unknown terms by their 

sample counterparts.  Also, 

𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑜𝑜𝑣𝑣 �𝜇̂𝜇𝑖𝑖, 𝜇̂𝜇𝑗𝑗� =  
𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛�𝑖𝑖,𝑛𝑛�𝑗𝑗�

(𝑝𝑝𝑖𝑖− 𝑝𝑝𝑖𝑖−1)(𝑝𝑝𝑗𝑗−𝑝𝑝𝑗𝑗−1)
                (3) 

and 𝑆𝑆.𝐸𝐸(𝜇̂𝜇𝑖𝑖) =  �𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐�𝑎𝑎𝑎𝑎 (𝜇𝜇�𝑖𝑖)𝑁𝑁 �1 2�                           

=  � 𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐�𝑎𝑎𝑎𝑎 (𝑛𝑛�𝑖𝑖)𝑁𝑁 (𝑝𝑝𝑖𝑖− 𝑝𝑝𝑖𝑖−1)2�1 2� . 

Denote the asymptotic variance-covariance matrix of the 𝜇̂𝜇𝑖𝑖’s in (1a) and (3) by 𝑉𝑉𝐴𝐴 and the 

estimated regular variance-covariance matrix of the 𝜇̂𝜇𝑖𝑖’s as 𝑉𝑉� , whose elements are gotten by 

dividing the estimated elements of (1a) and (3) by sample size N. 

 Note that all of these expressions are distribution-free in that they do not involve F( ) or 

its density f( ) in their calculations.  Thus one avoids the need for computer-based estimation 

techniques for density ordinate evaluation such as kernel estimation methods; and since we 

have specific variance-covariance estimation formulas, computer-based bootstrapping methods 

are no longer needed as well. 

 

2.2 Quantile Function Approach for Income Shares 

 In similar fashion, one can express the income share that accrues to recipients with 

income between 𝜉𝜉𝑖𝑖−1 and 𝜉𝜉𝑖𝑖 in terms of the quantile function 

𝐼𝐼𝑆𝑆𝑖𝑖 =  �1𝜇𝜇�  � 𝑦𝑦𝑑𝑑𝑑𝑑(𝑦𝑦)
𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1 =  (𝑝𝑝𝑖𝑖 −  𝑝𝑝𝑖𝑖−1)

𝜇𝜇𝑖𝑖𝜇𝜇 =  
𝑛𝑛𝑖𝑖𝜇𝜇   

for i=1, …, K.  If 𝐼𝐼𝑆𝑆� 𝑖𝑖 is the natural sample estimator of 𝐼𝐼𝑆𝑆𝑖𝑖, then again it can be shown that the set 

of 𝐼𝐼𝑆𝑆� 𝑖𝑖’s are asymptotically joint normal, and the asymptotic variance of 𝐼𝐼𝑆𝑆� 𝑖𝑖 can be shown to be 

the same as the regular variance of the constructed variable 
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𝑉𝑉𝑖𝑖 =  �1𝜇𝜇�  �𝑊𝑊𝑖𝑖 −  
𝑛𝑛𝑖𝑖 𝑌𝑌𝜇𝜇 � . 

  As useful definitions, let 

𝑚𝑚𝑖𝑖 =  ∑ 𝑛𝑛𝑘𝑘𝑖𝑖𝑘𝑘=1        and  𝑛𝑛2𝑖𝑖 =  ∫ 𝑦𝑦2𝜉𝜉𝑖𝑖𝜉𝜉𝑖𝑖−1 𝑑𝑑𝑑𝑑(𝑦𝑦). 

Then it can be shown that  𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣 �𝐼𝐼𝑆𝑆� 𝑖𝑖� = 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑉𝑉𝑖𝑖)  

=  � 1𝜇𝜇4�  �𝜇𝜇2 ⋅  𝑉𝑉𝑣𝑣𝑣𝑣 (𝑊𝑊𝑖𝑖) +  𝑛𝑛𝑖𝑖2  ⋅ 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑌𝑌) −  2𝜇𝜇 𝑛𝑛𝑖𝑖  ⋅ 𝐶𝐶𝑜𝑜𝑣𝑣 (𝑊𝑊𝑖𝑖 ,𝑌𝑌)�   (4) 

where 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑊𝑊𝑖𝑖) is given in (1), 𝑉𝑉𝑣𝑣𝑣𝑣 (𝑌𝑌) =  𝜎𝜎2 for the distribution, and  𝐶𝐶𝑜𝑜𝑣𝑣 (𝑊𝑊𝑖𝑖 ,𝑌𝑌) =  𝑛𝑛2𝑖𝑖 −  𝜇𝜇 𝑛𝑛𝑖𝑖 −  𝜉𝜉𝑖𝑖  (𝑚𝑚𝑖𝑖 −  𝑝𝑝𝑖𝑖𝜇𝜇) + 𝜉𝜉𝑖𝑖−1 (𝑚𝑚𝑖𝑖−1 −  𝑝𝑝𝑖𝑖−1𝜇𝜇). 

Then the standard error of 𝐼𝐼𝑆𝑆� 𝑖𝑖 is given by 

𝑆𝑆.𝐸𝐸. �𝐼𝐼𝑆𝑆� 𝑖𝑖� =  �𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐�𝑎𝑎𝑎𝑎 (𝐼𝐼𝐼𝐼� 𝑖𝑖)𝑁𝑁 �1 2�   

where again the estimated asymptotic variance has all its unknown elements replaced by their 

sample estimates. 

 As for the asymptotic covariances, 𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐𝑜𝑜𝑣𝑣 �𝐼𝐼𝑆𝑆� 𝑖𝑖, 𝐼𝐼𝑆𝑆�𝑗𝑗� = 𝐶𝐶𝑜𝑜𝑣𝑣 �𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗�  

=  � 1𝜇𝜇2�  ⋅ 𝐶𝐶𝑜𝑜𝑣𝑣 �𝑊𝑊𝑖𝑖,𝑊𝑊𝑗𝑗�+  �𝑛𝑛𝑖𝑖 𝑛𝑛𝑗𝑗𝜇𝜇4 �  ⋅ 𝑉𝑉𝑣𝑣𝑣𝑣(𝑌𝑌)      (5) 

−  �𝑛𝑛𝑖𝑖𝜇𝜇3�  ⋅ 𝐶𝐶𝑜𝑜𝑣𝑣 �𝑊𝑊𝑗𝑗 ,𝑌𝑌� −  �𝑛𝑛𝑗𝑗𝜇𝜇3�  ⋅ 𝐶𝐶𝑜𝑜𝑣𝑣 (𝑊𝑊𝑖𝑖 ,𝑌𝑌) 

and again 𝐶𝐶𝑜𝑜𝑣𝑣�  �𝐼𝐼𝑆𝑆� 𝑖𝑖, 𝐼𝐼𝑆𝑆�𝑗𝑗� =  
𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐� 𝑐𝑐𝑐𝑐 �𝐼𝐼𝐼𝐼� 𝑖𝑖,𝐼𝐼𝐼𝐼� 𝑗𝑗�𝑁𝑁 . 

Note as well that all the above formulas are again distribution-free.  Again, denote the 

asymptotic variance-covariance matrix of the 𝐼𝐼𝑆𝑆� 𝑖𝑖’s in eqs (4) and (5) by 𝑊𝑊𝐴𝐴 and the estimated 
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regular variance-covariance matrix of the 𝐼𝐼𝑆𝑆� 𝑖𝑖’s by 𝑊𝑊� , whose elements are gotten by dividing the 

estimated elements in (4) and (5) by N. 

 Note also the flexibility of the quantile function approach applied to percentile income 

groups.  The latter groups do not have to be of uniform size.  Depending on the empirical 

analysis being undertaken, one may wish to have narrower groups (eg., deciles or vigintiles) 

towards the two ends of the distribution and wider groups (eg., quintiles) over the middle range 

of the distribution. 

 

2.3 Illustration: Mean Differences and Growth Rates 

 One can also apply the above results to look at differences in individual quantile means 

between different population groups — such as quantile mean earnings differences between 

female and male workers in the labour market — and at changes in separate quantile means 

between time periods.  So long as the estimates being compared are from independent 

samples, the variance of the difference in sample estimates is simply the sum of the respective 

variances, and the standard error of the differences is given by 

𝑆𝑆.𝐸𝐸. (𝜇̂𝜇𝑖𝑖(𝑏𝑏)−  𝜇̂𝜇𝑖𝑖(𝑣𝑣)) =  �𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣� 𝑣𝑣𝑣𝑣 (𝜇̂𝜇𝑖𝑖(𝑏𝑏))𝑁𝑁(𝑏𝑏)
+ 
𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣� 𝑣𝑣𝑣𝑣 (𝜇̂𝜇𝑖𝑖(𝑣𝑣))𝑁𝑁(𝑣𝑣)

�1 2�  

 

where designators a and b refer to the two separate sample estimates.  A quantile analysis thus 

allows for potentially quite detailed disaggregative examination of differences between 

distributions.  Beach and Davidson (2024a) sets out a range of toolbox measures available to 

further the perspective and flexibility of such analyses. 
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 Following a concern for issues of equitable growth, one could also express quantile 

mean differences in relative or percentage terms — or what The Economist (2021c, p.24) refers 

to as Piketty lines of different growth rates of quantile means across the various regions of the 

income distribution.  In this case, if 

𝑞𝑞�𝑖𝑖 =  (𝜇̂𝜇𝑖𝑖(𝑏𝑏)−  𝜇̂𝜇𝑖𝑖(𝑣𝑣)) 𝜇̂𝜇𝑖𝑖 (𝑣𝑣)⁄  =   � 𝜇̂𝜇𝑖𝑖(𝑏𝑏)𝜇̂𝜇𝑖𝑖 (𝑣𝑣)
� − 1, 

between time periods a and b, then approximately 

𝑉𝑉𝑣𝑣�𝑣𝑣(𝑞𝑞�𝑖𝑖) =  � −𝜇̂𝜇𝑖𝑖(𝑏𝑏)

(𝜇̂𝜇𝑖𝑖(𝑣𝑣))2�2 ⋅  𝑉𝑉𝑣𝑣�𝑣𝑣�𝜇̂𝜇𝑖𝑖(𝑣𝑣)�+  � 1𝜇̂𝜇𝑖𝑖(𝑣𝑣)
�2  ⋅  𝑉𝑉𝑣𝑣�𝑣𝑣(𝜇̂𝜇𝑖𝑖(𝑏𝑏)) 

 

=  � 𝜇̂𝜇𝑖𝑖(𝑏𝑏)

(𝜇̂𝜇𝑖𝑖(𝑣𝑣))2�2  ⋅  �𝐴𝐴𝐴𝐴𝑦𝑦 𝑣𝑣� 𝑣𝑣𝑣𝑣�𝜇̂𝜇𝑖𝑖 (𝑣𝑣)�𝑁𝑁 (𝑣𝑣)
�                      

 

+ � 1𝜇̂𝜇𝑖𝑖(𝑣𝑣)
�2  ⋅  �𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣� 𝑣𝑣𝑣𝑣 �𝜇̂𝜇𝑖𝑖(𝑏𝑏)�𝑁𝑁 (𝑏𝑏)

�,  
and again 

𝑆𝑆.𝐸𝐸. (𝑞𝑞�𝑖𝑖) =  �𝑉𝑉�𝑣𝑣𝑣𝑣 (𝑞𝑞�𝑖𝑖)�1 2� . 

 The quantile means and income shares serve as the basis for operationally implementing 

the evaluation of changes in social welfare and general income inequality in the next several 

sections of this paper. 

 

3. A Normative Perspective for Evaluating Changes in Social Welfare and Inequality  

The traditional way of measuring income inequality in an income distribution is in terms 

of some summary or aggregate measure of inequality such as the Gini coefficient (G), coefficient 
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of variation (C), relative mean (absolute) deviation (M), or the standard deviation of the logs of 

income (L).  But such measures are subject to two basic criticisms.  First is the aggregation 

problem: various summary measures aggregate income differences in different ways, so that 

different measures can give different results when comparing two distributions.  One way 

(partially) to address this is to identify several desirable properties we may want such summary 

measures to satisfy.  These could include for example:  

i) Symmetry (or Anonymity) - An inequality measure depends only on incomes in a 

distribution and not on who has which incomes;  

ii) Mean Independence - An inequality measure is invariant to proportional changes 

(eg., doubling) of all incomes (ie., it is a relative measure of inequality); 

iii) Population Homogeneity - An inequality measure is invariant to replication of the 

population (eg., doubling the number of persons in the distribution while keeping 

the shape of the distribution the same); 

iv) Principle of Transfers - Any transfer of $x from a richer person to a poorer person so 

that y(i) + x < y(j) - x if initially y(i) < y(j) should reduce inequality; 

v) Transfer Sensitivity - A transfer of $x such as envisioned in (iv) should reduce 

inequality more if it occurs among a lower-income pair of individuals than if it occurs 

among a higher-income pair of individuals.  This is obviously a stronger form of the 

Principle of Transfers. 

It turns out that (i), (ii) and (iii) are satisfied by all the above four inequality measures, but (iv) is 

satisfied only by C and G, and (v) is not satisfied by any of them. 
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  Alternatively, another way to address the aggregation problem is to rely on a 

disaggregative measure of inequality or a set of multiple statistics linked up graphically such as 

a Lorenz curve.  A problem here, though, is that two empirical Lorenz curves being compared 

often cross, so a clear comparison is not straightforward. 

The second basic criticism of conventional summary measures of inequality is the implicit 

value judgement problem.  That is, any summary inequality measure involves implicit value 

judgements or weightings of different persons' incomes (or economic well-being), and thus 

contains embedded in it an implicit social welfare function (SWF).  For example, various 

inequality measures differently emphasize income differences at the bottom, middle or upper 

end of the distribution.  Consequently, it can be argued, it would be better to choose desirable 

SWF properties explicitly and then derive the implied inequality measure from the desired SWF. 

To do so is to take a normative approach to measuring inequality (originated by Atkinson, 1970) 

rather than the traditional descriptive approach.  This normative approach is the one followed in 

the current paper.  

To implement such a normative approach, one first needs to define a social welfare 

function and its basic properties.  For a much more expansive discussion of the normative 

approach, see for example, Boadway and Bruce (1984), Blackorby et al. (1999), Lambert (2001), 

or Cowell (2011).  Specifically, social welfare function W(.) is any function 

 W = f(𝑈𝑈1, …, 𝑈𝑈𝑁𝑁)  

that has as arguments 𝑈𝑈𝑖𝑖 individual (or household) utility functions and that incorporates social 

values used to aggregate economic well-being across the population.  The 𝑈𝑈𝑖𝑖 can thus be 

viewed as a 'social income valuation function".  To do this, we require that:  



15 

 

- the 𝑈𝑈𝑖𝑖 's must be at least cardinal scale measurable in order to be aggregated across 

persons; 

- the 𝑈𝑈𝑖𝑖 's must have at least some degree of comparability across persons in the 

population (ie., if utilities are cardinally measured for each individual, the units of 

measurement must be the same across individuals); and 

- for technical convenience, each 𝑈𝑈𝑖𝑖 depends only on incomes and indeed only on 

individual i's income (ie., 𝑈𝑈𝑖𝑖 = 𝑈𝑈𝑖𝑖 (𝑌𝑌𝑖𝑖), so there is no envy or altruism). 

  One can then identify several possible desirable properties for such a social welfare 

function: 

i) Pareto Principle - State X is socially preferred to state Y if at least one person strictly 

prefers X to Y and no one prefers state Y to X (ie., 𝜕𝜕𝑈𝑈𝑖𝑖 / 𝜕𝜕𝑌𝑌𝑖𝑖 > 0 and social indifference curves in 𝑌𝑌𝑖𝑖 , 𝑌𝑌𝑗𝑗 space have negative slopes); 

ii) Symmetry or Anonymity - Everyone’s incomes are evaluated by using the same U(.) 

function (ie. 𝑈𝑈𝑖𝑖 (.) = U(.) for all i =1, …, N); 

iii) Population Invariance - If the population is replicated K times, then social welfare 

increases K-fold (ie., W(𝑌𝑌1, …, 𝑌𝑌𝐾𝐾𝑁𝑁) =K.  W(𝑌𝑌1, …, 𝑌𝑌𝑁𝑁); 

iv) Strict Concavity of the SWF or the Principle of Transfers - A strictly concave SWF is 

such that 𝜕𝜕2𝑈𝑈𝑖𝑖 / 𝜕𝜕𝑌𝑌𝑖𝑖2 < 0 for all i (this implies that social indifference curves are strictly convex to 

the origin).1  This is sometimes referred to as an “egalitarian SWF”; 

 

1
 Actually, strict concavity is sufficient for the Principle of Transfers to hold.  A weaker necessary and 

sufficient property for the Principle of Transfers is referred to as Schur concavity.  See general discussion 

in Lambert (2001). 
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  v) Transfer Sensitivity or the Principle of Diminishing Transfers – A transfer-sensitive SWF 

is such that 𝜕𝜕3𝑈𝑈𝑖𝑖 / 𝜕𝜕𝑌𝑌𝑖𝑖3 >0.  Again, this is a stronger version of the Principle of Transfers. 

Atkinson (1970) uses this normative approach to show that, under properties (i) - (iv), an 

empirical proxy of social welfare or economic well-being (𝑆𝑆𝑊𝑊𝑝𝑝) can be expressed as  

          𝑆𝑆𝑊𝑊𝑝𝑝 = 𝑌𝑌�.  (1 – 𝐼𝐼𝐴𝐴)  

= 𝑌𝑌�.  E 

where 𝑌𝑌� is the mean income level of a distribution and 𝐼𝐼𝐴𝐴 is a measure of inequality based on 

the above four properties and where it turns out that 0 ≤ 𝐼𝐼𝐴𝐴 ≤ 1 where higher values indicate 

greater levels of inequality in the distribution.  That is, 𝑆𝑆𝑊𝑊𝑝𝑝 can be decomposed into two 

(multiplicative) components — an efficiency dimension (𝑌𝑌�) or average per capita income and an 

equity dimension (E) where E = 1- 𝐼𝐼𝐴𝐴. 

If one further assumes a specific functional form for U(.) — in the convenient form of an 

iso-elastic social welfare function — Atkinson (1970) then derives a specific formula for the 

calculation of 𝐼𝐼𝐴𝐴.  An iso-elastic SWF is general and flexible enough to incorporate a wide range 

of social attitudes to income inequality from a Benthamite utilitarian SWF to Rawls’ maxi-min 

SWF. 

But 𝐼𝐼𝐴𝐴 is still a summary or aggregate measure of income inequality.  What the social 

choice literature since Atkinson’s (1970) paper has tried to do is to extend or apply Atkinson’s 

normative perspective to develop a set of disaggregative criteria for comparing different income 

distributions based on the above properties, so that both criticisms of traditional inequality 

measures are addressed.  The rest of this paper examines several such disaggregative criteria 

from the theoretical social choice literature and proposes ways to operationalize or empirically 
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implement these criteria in terms of vectors of quantile means and income shares and related 

disaggregative distributional statistics.  The paper also develops inference procedures to allow 

for formal statistical testing for these criteria.  This development is applied to four such criteria in 

the following sections. 

 

4. Applications to Rank Dominance and a Practical Empirical Criterion 

One early example of a disaggregative normative ranking criterion for distributions 

comes from Saposnik (1981) and involves what may be called the quantile curve (Duclos and, 

Araar, 2006, p. 45) which is essentially the inverse of the cumulative distribution function of an 

income distribution.  Saposnik's rank dominance theorem says that, for any social welfare 

function satisfying the properties of symmetry, population invariance and the Pareto principle 

(ie., social welfare conditions (i) - (iii)), distribution A is socially preferred to distribution B if the 

quantile curve for A is everywhere higher than that for B.  Note that there is no egalitarianism 

built into this criterion.  It essentially says that, if everyone has higher incomes in A than in B, 

then they must be better off.  This is useful in comparing distributions many years apart, say for 

example, the Canadian income distributions for 1970 versus 2020.  But in many practical cases 

faced by empirical researchers, this situation doesn't apply. 

Nonetheless, it is useful to begin our application of dominance criteria with this relatively 

simple criterion.  To empirically implement it, one represents the two distributions or quantile 

curves being compared by their respective vectors of sample quantile means, 𝜇̂𝜇𝑖𝑖, for the i = 1, …, 

K quantiles.  The actual decision rule for determining the outcome of the comparison of vectors 
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requires some practical empirical criterion (or PEC) based on the principles of statistical 

inference. 

 

4.1 A Practical Empirical Criterion for Quantile Means 

Following Beach, Davidson and Slotsve (1994) and Davidson and Duclos (2000), one can 

set out a two-step test procedure for the PEC.  It is assumed that the data samples for the two 

distributions being compared are independent and hence do not overlap.  Examples are, say, 

two different years of data (with no overlapping samples) being compared or two different 

(non-overlapping) population groups such as age, racial, or sex groups. 

Step 1 - Test the joint null hypothesis of equality of the two (population) quantile mean 

vectors versus the alternative hypothesis of non-equality.  This can be done by a standard (but 

asymptotic) chi-square test with K degrees of freedom, where K is the number of quantiles.  For 

a meaningful disaggregative analysis, it makes sense to let K = 10 or 20, say, rather than a small 

number such as 4 or 5.  If the null hypothesis is not rejected, then the two sets of quantile means 

can be said to be not statistically significantly different, and further comparison is not pursued.  

This is taken as an empirical proxy for comparison of the two underlying quantile curves. 

Step 2 - If, however, the null hypothesis in Step 1 is rejected — which is the typical case 

when using large microdata sets for the sample distributions — then proceed to calculate 

separate t-statistics for differences in respective means for each of the individual quantile 

means.  These K individual t-statistics, however, are correlated, and hence comparing each test 

statistic to the critical value on an (asymptotic) normal distribution would not be appropriate.  

One has to recognize that this Step 2 involves correlated multiple comparisons.  Following the 
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work of Beach and Richmond (1985) and Bishop, Formby and Thistle (1989, 1992) on multiple 

comparison testing, one should compare the K separate t-statistics (for differences in quantile 

means) to critical values on the Studentized Maximum Modulus (or SMM) distribution.  If at least 

one of the quantile mean difference t-statistics has the appropriate sign and is statistically 

significant (based on the SMM distribution) and none of the t-statistics of the remaining 

quantile mean differences has the wrong sign and is significant, then conclude that the quantile 

curve with the higher sample quantile means rank dominates (or is socially preferred to) that 

with the lower quantile means.  If not, then one can say only that the two quantile curves are 

statistically significantly different and not reach a preferred or dominance conclusion.  Note that 

this is an asymptotic test and critical values from the SMM distribution correspond to K and 

infinite degrees of freedom.  Typically useful critical values from the SMM distribution are: 

 alpha = .01 alpha = .05 alpha = .10 

K = 5 3.289 2.800 2.560 

K = 10 3.691 3.254 3.043 

K = 20 4.043 3.643 3.453 

Source: Stoline and Ury (1979), Tables 1-3. 

 

4.2 Full Variance-Covariance Matrix for Quantile Means 

 The first step in the above practical empirical criterion (PEC) involves a joint test of the 

difference between two vectors or sets of estimated quantile means.  If the two quantile curves 

being compared are designated A and B, then the vectors of quantile means can be represented 

as 
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𝜇̂𝜇𝑎𝑎 =  (𝜇̂𝜇1𝑎𝑎 , … , 𝜇̂𝜇𝐾𝐾𝑎𝑎)1,    𝜇𝜇𝑎𝑎 =  (𝜇𝜇1𝑎𝑎 , … , 𝜇𝜇𝐾𝐾𝑎𝑎)1 

and     𝜇̂𝜇𝑏𝑏 =  �𝜇̂𝜇1𝑏𝑏 , … , 𝜇̂𝜇𝐾𝐾𝑏𝑏�1,    𝜇𝜇𝑏𝑏 =  �𝜇𝜇1𝑏𝑏 , … , 𝜇𝜇𝐾𝐾𝑏𝑏�. 
A standard result from statistics, then, shows that, if the random vector 𝜇̂𝜇𝑎𝑎 is normally 

distributed with mean 𝜇𝜇𝑎𝑎 and variance-covariance matrix 𝑉𝑉𝑎𝑎, 𝜇̂𝜇𝑏𝑏 is normally distributed with 

mean 𝜇𝜇𝑏𝑏 and variance-covariance matrix 𝑉𝑉𝑏𝑏, and 𝜇̂𝜇𝑎𝑎and 𝜇̂𝜇𝑏𝑏 are statistically independent, then 𝜇̂𝜇𝑏𝑏 −  𝜇̂𝜇𝑎𝑎 is also normally distributed with mean  𝜇𝜇𝑏𝑏 −   𝜇𝜇𝑎𝑎 and variance-covariance matrix 𝑉𝑉𝑎𝑎 +

 𝑉𝑉𝑏𝑏.  Under the null hypothesis that the two vectors 𝜇𝜇𝑎𝑎 and 𝜇𝜇𝑏𝑏 are the same (ie., 𝜇𝜇𝑏𝑏 −   𝜇𝜇𝑎𝑎 = 0) 

then the quadratic form 

�𝜇̂𝜇𝑏𝑏 −  𝜇̂𝜇𝑎𝑎�1 [𝑉𝑉𝑎𝑎 +  𝑉𝑉𝑏𝑏]−1 �𝜇̂𝜇𝑏𝑏 −  𝜇̂𝜇𝑎𝑎� 
is distributed as a chi-squared random variable with K degrees of freedom.  If 𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑏𝑏 are 

estimated consistently, then the test statistic for Step 1 of the PEC, 

�𝜇̂𝜇𝑏𝑏 −  𝜇̂𝜇𝑎𝑎�1 �𝑉𝑉�𝑎𝑎 +  𝑉𝑉�𝑏𝑏�−1 �𝜇̂𝜇𝑏𝑏 −  𝜇̂𝜇𝑎𝑎�     (6) 

is asymptotically distributed as a chi-squared variate with K degrees of freedom.  The elements 

of 𝑉𝑉�𝑎𝑎 and 𝑉𝑉�𝑏𝑏 are gotten from eq (1a) and (3), where each 

𝑣𝑣�𝑖𝑖 𝑗𝑗 =  
𝐴𝐴𝐴𝐴𝑦𝑦. 𝑐𝑐� 𝑜𝑜𝑣𝑣 �𝜇̂𝜇𝑖𝑖, 𝜇̂𝜇𝑗𝑗�𝑁𝑁  

and N is the respective sample size. 

 To perform the individual tests in Step 2 of the PEC, compute the standard “t-statistic” 

ratio for the difference between two independent random variables (𝜇̂𝜇𝑖𝑖𝑎𝑎 and 𝜇̂𝜇𝑖𝑖𝑏𝑏) as 

𝑡𝑡𝑖𝑖 =  
𝜇̂𝜇𝑖𝑖𝑏𝑏 −  𝜇̂𝜇𝑖𝑖𝑎𝑎

[𝑣𝑣�𝑎𝑎(𝑖𝑖, 𝑖𝑖) +  𝑣𝑣�𝑏𝑏 (𝑖𝑖, 𝑖𝑖)]
1 2�  

and compare this to the appropriate critical value on the SMM distribution. 
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 Note that, in the above test procedure, the quantile income curve is approximated or 

represented by a vector of quantile means (𝜇̂𝜇𝑖𝑖’s) and not by a vector of quantile cut-off levels 

(𝜉𝜉𝑖𝑖 ’s).  This is because the latter have a variance-covariance structure that is distribution-

dependent (ie., involving f(·)’s), while the variance-covariance structure of the former has been 

shown to be (asymptotically) distribution-free.  So the use of quantile means is convenient and 

sensible. 

It could be argued that the test reliance on a set of quantile points is arbitrary and 

doesn't provide adequate coverage of the income distribution as a whole.  But such a choice of 

quantiles is quite conventional and even standard in the income distribution literature — as 

witness by published official distribution statistics in terms of deciles and quintiles.  This is in 

contrast, say, to the ranking of investment opportunities on financial portfolios where all 

alternatives need to be examined.  The availability of large microdata files nowadays also allows 

considerable disaggregative detail (such as vigintiles, say, or even percentiles in large census or 

administrative files) as well as a flexible differentiated focus (such as vigintiles in the tails of the 

distribution and quintiles or deciles over the mid-range of the distribution). 

 

5. Application to Lorenz Dominance 

The same approach can be applied to an inequality-based dominance criterion (for more 

extensive discussions of Lorenz curve comparisons, see Maasoumi, 1998; Lambert, 2001; and 

Aaberge, 2000, 2001).  Atkinson, in his famous 1970 paper, forwarded what has come to be 

known as the Lorenz dominance theorem.  For any (summary) inequality measure (such as a Gini 

coefficient) satisfying symmetry, mean independence, population homogeneity, and the 
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principle of transfers (ie., essentially inequality criteria (i) – (iv) above), if the Lorenz curve for 

distribution A lies everywhere above the Lorenz curve for distribution B, then all inequality 

measures satisfying these properties will indicate that (summary) inequality in A is less than in B.  

Note that this theorem does not say anything about social welfare; it refers only to inequality.  It 

also does not say anything if the two Lorenz curves cross.  Interestingly, comparing quantile 

curves and Lorenz curves can also serve as the basis for the measurement of first- and second-

order earnings discrimination, such as between men and women (Le Breton et al., 2012). 

  To empirically implement this dominance criterion, one can again represent a Lorenz 

curve or cumulative income shares by a vector of its estimated ordinates.  Testing between 

Lorenz curves then amounts to tests of differences between the estimated ordinate vectors. 

Again, if the two distributions whose inequality is being compared are designated A and B, then 

the vectors of Lorenz curve ordinates can be represented by 𝐼𝐼𝑎𝑎�  = (𝐼𝐼𝑎𝑎�  (1), … 𝐼𝐼𝑎𝑎�  (K-1))’,  𝑙𝑙𝑎𝑎= (𝑙𝑙𝑎𝑎(1), …, 𝑙𝑙𝑎𝑎(K-1))’ 

and  𝐼𝐼𝑏𝑏�  = (𝐼𝐼𝑏𝑏�  (1), …, 𝐼𝐼𝑏𝑏�  (K-1) )’,  𝑙𝑙𝑏𝑏 = (𝑙𝑙𝑏𝑏(1), …, 𝑙𝑙𝑏𝑏(K-1))’ 

 

and their respective variance-covariance matrices by Φ𝑎𝑎 and Φ𝑏𝑏. The ordinates l(1), …, I(K-1) 

correspond to the given (cumulative) proportions p(1), …, p(K-1).  Since the two end points on a 

Lorenz curve are fixed at p(0) = 0 and p(K) = 1, only K -1 ordinates are random variables. 

The actual decision rule or PEC for comparing the vectors of Lorenz curve ordinates 

again involves two steps.  And again, it is assumed that the two sets of ordinate estimates are 

statistically independent and based on two quite separate samples. 

Step 1 — Test the joint null hypothesis of equality of the two ordinate vectors (ie., 𝑙𝑙𝑏𝑏 – 𝑙𝑙𝑎𝑎 

= 0) versus the alternative hypothesis of non-equality.  In this case, the test statistic is 
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(𝐼𝐼𝑏𝑏�  - 𝐼𝐼𝑎𝑎� )’ [Φ�𝑎𝑎  +  Φ�𝑏𝑏]−1 (𝐼𝐼𝑏𝑏�  - 𝐼𝐼𝑎𝑎� )      (7) 

which is distributed asymptotically as a chi-square random variable with K - 1 degrees of 

freedom.  If the null hypothesis is not rejected, then the two estimated Lorenz curves can be said 

to be not statistically significantly different, and further comparison is not pursued. 

Step 2 — If, however, the null hypothesis in Step 1 is rejected, then undertake separate t-

statistic calculations for differences on each of the individual estimated Lorenz curve ordinates.  

If at least one of the t-statistics has the appropriate sign and is statistically significant compared 

to critical values on the SMM distribution with K – 1 and infinite degrees of freedom and none 

of the t-statistics (if any) that has the wrong sign is statistically significant (again based on the 

SMM distribution), then one can conclude that one set of estimated ordinates statistically 

dominates the other.  If statistical dominance is found, this implies dominance for all summary 

inequality measures satisfying inequality properties (i) – (iv).  Again, typical useful SMM critical 

values are: 

 alpha = .01 alpha = .05 alpha = .10 

K – 1 = 4 3.430 2.631 2.378 

K – 1 = 9 3.634 3.190 2.976 

K – 1 = 19 4.018 3.615 3.425 

Source: Stoline and Ury (1979), Tables 1-3. 

This test procedure raises the issue of how to determine the statistical properties of the 

estimated Lorenz curve ordinates in order to make statistical inference decisions. 

 

5.1 Inference for Lorenz Curve Ordinates 
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Recall that Lorenz curve ordinates are simply cumulative income shares (which have 

already been considered in Section 2 above).  Let the K-vector of individual income share 

statistics be  𝐴̂𝐴 = (𝐴̂𝐴 (1), …, 𝐴̂𝐴 (K))’ 

with corresponding population shares s = (s(1), …, s(K))’.  Then it can be seen that  𝐼𝐼 = U. 𝐴̂𝐴           (8) 

where U is a (K-1)xK summation matrix with ones on its i-i elements and below, and zeros 

elsewhere.  U is given and non-random.  Since (8) is a linear transformation, if 𝐴̂𝐴 is 

(asymptotically) joint normally distributed with mean vector s and asymptotic variance-

covariance matrix Ws, then 𝐼𝐼 is also (asymptotically) joint normally distributed with mean I = U.s 

and asymptotic variance-covariance matrix 

Φs = U.Ws.U’ 

and the corresponding estimated regular variance-covariance matrix is given by 

Φ�  = U. 𝑊𝑊� .U’          (9) 

where W is given by (4) and (5) with each element divided by N. 

So to perform Step 1 of the PEC for comparing two vectors of estimated Lorenz curve 

ordinates, 𝐼𝐼𝑎𝑎�  and 𝐼𝐼𝑏𝑏� , first calculate estimates of all the asymptotic variances and covariances for 

the two estimation samples from equation (5) by replacing population parameters by their 

consistent sample estimates, rescale the (asymptotic) variance and covariance estimates to the 

estimated regular variances and covariances (𝑊𝑊𝑎𝑎�  and 𝑊𝑊𝑏𝑏� ), calculate the Lorenz curve ordinates 

by 𝐼𝐼 = U. 𝐴̂𝐴 from equation (8) and the regular estimated variances and covariance for the 

ordinates from 
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Φ�  = U. 𝑊𝑊� .U’ , 

and then finally calculate the joint chi-squared test statistic in equation (7). 

To perform the individual tests in Step 2 of the PEC, again use the standard t-statistic 

ratio for the difference between two independent random variates (𝐼𝐼𝑎𝑎�  (i) and 𝐼𝐼𝑏𝑏�  (i)) as 

  t(i) = (𝐼𝐼𝑏𝑏�  (i) - 𝐼𝐼𝑎𝑎�  (i)) / [Φ�𝑎𝑎(𝑖𝑖, 𝑖𝑖) + Φ�𝑏𝑏 (i, i)]1/2 
and compare this to the relevant critical value on the SMM tables. 

As an aside, it can be noted that the Gini coefficient of overall income inequality can be 

approximated by (twice) the area between the estimated Lorenz curve ordinate segments and 

the 45 degree equality diagonal.  If one represents each of these segments as a quadrilateral, 

one can calculate 𝐺𝐺� =  ∑ (1 𝐾𝐾⁄ ).𝐾𝐾𝑖𝑖=1  [((i/K) – 𝐼𝐼 (i)) + ((i-1/K) – 𝑙𝑙 (𝑖𝑖 − 1))]. 

Since this is a linear function of the ordinates 𝐼𝐼 (i), one can calculate the estimated variance of 𝐺𝐺� 
as a simple quadratic form in the estimated variance-covariance matrix Φ�  of the Lorenz curve 

ordinates.  Once again, the standard error of 𝐺𝐺� is the square root of the estimated variance of 𝐺𝐺�, 
and once again the standard error is distribution-free. 

 

6. Application to Generalized Lorenz Dominance 

A blending of the first two dominance criteria is provided in a third application of 

empirically implementing curve-based dominance criteria.  Shorrocks (1983) uses a transformed 

Lorenz curve as a basis for social welfare inferences, not just inequality conclusions.  The 

generalized Lorenz dominance theorem of Shorrocks (1983) says that, for any additively 

separable social welfare function essentially satisfying social welfare conditions (i) - (iv) including 
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the principle of transfers, distribution A is socially preferred to distribution B if the generalized 

Lorenz curve for A lies everywhere above the generalized Lorenz curve for B.  The generalized 

Lorenz curve ordinates for an income distribution are obtained by scaling up the Lorenz curve 

ordinates of the distribution by the distribution’s overall mean income level: 

g(i) = µ . I(i)  and 𝑔𝑔�(i) = 𝜇̂𝜇 . 𝐼𝐼(i).      (10) 

Essentially, the argument is that, if the mean income of the distribution A is sufficiently higher 

than that in distribution B, this can compensate for some greater degree of inequality in A than 

in B, so that social welfare will still be greater in distribution A than in B.  It turns out that this 

rule is very convenient for ranking social welfare among quite disparate countries, or for ranking 

income distributions in a given country (or group) over long periods of time (eg., the Canadian 

income distribution across the decades of 1950, 1960, 1970, and 1980, say).  The use of 

generalized Lorenz curves for dominance comparisons has also been applied to earnings 

discrimination analysis over an entire distribution (Jenkins, 1994: del Rio et al., 2011; and Salas et 

al., 2018). 

To implement this dominance criterion, one can again represent a generalized Lorenz 

curve by a vector of its estimated ordinates: 

g = (g(1), …, g(K-1))’  and 𝑔𝑔� = (𝑔𝑔�(1), …, 𝑔𝑔� (K-1))’. 

Testing between generalized Lorenz curves then amounts to tests of differences between the 

estimated ordinate vectors 𝑔𝑔�𝑎𝑎 and 𝑔𝑔�𝑏𝑏.  The respective generalized Lorenz curve estimated 

ordinate variance-covariance matrices may be labelled  Ψ�𝑎𝑎 and Ψ�𝑏𝑏. 

The corresponding decision rule or PEC for comparing vectors 𝑔𝑔�𝑎𝑎 and 𝑔𝑔�𝑏𝑏 once again 

involves two steps where, as above, the estimation samples are statistically independent.  
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Step 1 — Test the joint null hypothesis of equality of two estimated generalized Lorenz 

curve ordinate vectors (ie., 𝑔𝑔𝑏𝑏 – 𝑔𝑔𝑎𝑎 = 0) versus the alternative hypothesis of non-equality.  In this 

case, the test statistic is 

(𝑔𝑔�𝑏𝑏- 𝑔𝑔�𝑎𝑎)’ [Ψ�𝑎𝑎 + Ψ�𝑏𝑏]−1 (𝑔𝑔�𝑏𝑏- 𝑔𝑔�𝑎𝑎)       (11) 

which, under the null hypothesis, is asymptotically distributed as a chi-square random variable 

with K-1 degrees of freedom.  If the null hypothesis is not rejected, then the two generalized 

Lorenz curves can be said to be not statistically significantly different, and further comparison is 

not warranted. 

Step 2 — If, however, the null hypothesis in Step 1 is rejected, then proceed to compute 

separate t-statistic ratios for differences on each of the respective individual generalized Lorenz 

curve ordinates.  If at least one of the t-statistics has the appropriate sign and is statistically 

significant compared to critical values on the SMM distribution with K-1 and infinite degrees of 

freedom and none of the t-statistics (if any) that have the wrong sign is statistically significant 

(again on the SMM critical values), then one can conclude that the distribution with the higher 

sample generalized Lorenz curve ordinates dominates (or is socially preferred to) the 

distribution with the corresponding curve with lower ordinates.  If not, then one can say only 

that the social welfare of the two distributions are statistically significantly different, but not 

reach a preferred or dominance social welfare conclusion. 

 

6.1 Inference for Generalized Lorenz Curve Ordinates 

Since Lorenz curve ordinates are calculated from income shares, it makes sense to 

consider the relationship of generalized Lorenz curve ordinates to these underlying income 
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shares as well.  To go back to first principles, consider µ.IS(i) as the dollar contribution of the ith 

income group to the overall mean income of the distribution.  So we can represent it by the 

“contribution” 

c(i) = µ . IS(i) 

= D(i) . µ(i)          (12) 

where µ(i) is the quantile mean of the ith income group and D(i) = p(i) - p(i-1).  So c(i) is simply a 

scalar transform of the quantile mean µ(i) and 𝑐̂𝑐(i) = D(i) . µ�(i).  Or more generally, c = D . µ and 𝑐̂𝑐 
= D . µ� where D is a (KxK) diagonal matrix with elements D(i) on its principal diagonal.  Thus the 

set of 𝑐̂𝑐(i)’s are also asymptotically joint normally distributed and the elements of the asymptotic 

variance-covariance matrix of the vector of sample contributions 𝑐̂𝑐 = (𝑐̂𝑐 (1), …, 𝑐̂𝑐 (K))’ are simply 

scalar transforms of the corresponding elements of the asymptotic variance-covariance matrix of 

the vector of quantile means µ� = (µ� (1), …, µ� (K))’ given by equations (1) and (3) above.  That is, if 𝑉𝑉�  is the estimated variance-covariance matrix of vector µ�, then the estimated variance-

covariance matrix of 𝑐̂𝑐 is 

  Γ�  = D. 𝑉𝑉� . D.           (13) 

Note, interestingly, that the economic contribution term c(i) here is exactly the statistical term 

n(i) in section 2.1 above.  Thus the asymptotic variances and covariances for the 𝑛𝑛�(i)’s in 

equations (1) and (2) are exactly those for the 𝑐̂𝑐(i)’s as well. 

The ordinates of the generalized Lorenz curve can be readily obtained from the 𝑐̂𝑐(i)’s by 

straightforward cumulation: 
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𝑔𝑔� (i) = ∑ 𝑐̂𝑐𝑖𝑖𝑗𝑗=1 (𝑗𝑗)  and g(i) = ∑ 𝑐𝑐(𝑗𝑗)𝑖𝑖𝑗𝑗=1  

or more generally, 

𝑔𝑔� = U . 𝑐̂𝑐   and g = U . c 

 where again U is a (K-1)xK non-random matrix with ones on its principal diagonal and below, 

and zeros above the diagonal.  Again, since the 𝑔𝑔�(i)’s are linear functions of the 𝑐̂𝑐(i)’s, the 𝑔𝑔�(i)’s 

are also asymptotically joint normally distributed with means g(i)’s and a regular variance-

covariance matrix that can be consistently estimated by 

Ψ�  = U. Γ� . U’          (14) 

where the elements in Γ� are given by equation (13).  Once again, all terms in Γ and Ψ are 

distribution-free, and thus can be readily estimated consistently and directly. 

To perform Step 1 of the PEC for comparing two vectors of generalized Lorenz curve 

ordinates 𝑔𝑔�𝑎𝑎 and 𝑔𝑔�𝑏𝑏, calculate 𝑔𝑔�𝑎𝑎 and 𝑔𝑔�𝑏𝑏 and all the estimated variances and covariances in Γ�𝑎𝑎 

and Γ�𝑏𝑏 by (i) calculating the results in equations (1) and (2), and (ii) rescaling these equation 

results by their respective sample sizes, then compute Ψ�𝑎𝑎 and Ψ�𝑏𝑏 from equation (14), and finally 

calculate the joint chi-squared test statistic in equation (11). 

To perform the individual tests in Step 2 of the PEC, again use the standard t-statistic 

ratio for the difference between two independent variates (𝑔𝑔�𝑎𝑎(i) and 𝑔𝑔�𝑏𝑏(i)) as 

t(i) = (𝑔𝑔�𝑏𝑏(i) - 𝑔𝑔�𝑎𝑎(i)) / [Γ�𝑎𝑎(𝑖𝑖, 𝑖𝑖) + Γ�𝑏𝑏(𝑖𝑖, 𝑖𝑖)]1/2  
and compare this to the relevant critical value on the SMM distribution.  
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7. Inequality and Crossing Lorenz Curves 

7.1 Single Lorenz Curve Crossing 

What can one infer if Lorenz curves cross? This is not uncommon when comparing two 

empirical curves, and the above Lorenz dominance criterion is of no help in such situations.  

However, Shorrocks and Foster (1987) extend the latter criterion to cases of single crossings of 

Lorenz curves.  If the Lorenz curve for distribution A crosses the Lorenz curve for distribution B 

once from above, then all inequality measures satisfying the inequality properties (i) - (iv) plus 

property (v) — transfer sensitivity — will indicate that summary inequality in A is less than that in 

B if the coefficient of variation for distribution A is lower than that for distribution B.  The 

coefficient of variation is the ratio of the standard deviation of the distribution to the mean; ie., 𝐶̂𝐶 = σ� / µ� in the estimation sample.  Thus, by adding the one further property of transfer 

sensitivity, one can get a stronger practical result that helps rank aggregate income inequality 

across distributions even when their Lorenz curves cross (once).  Again, this provides a potential 

ranking of overall income inequality between distributions, and not of social welfare more 

generally. 

Implementing this stronger dominance rule is also feasible in light of the approach in 

this paper.  All it requires is some revision of the Lorenz dominance PEC of Section 5. 

A transfer sensitive Lorenz dominance PEC criterion can now be stated as follows: 

Step 1 — Same as before.  Test the joint null hypothesis of equality of the two Lorenz 

curve ordinate vectors (ie., 𝑙𝑙𝑏𝑏 – 𝑙𝑙𝑎𝑎 = 0) versus the alternative hypothesis of non-equality.  As 

before, the test statistic is 
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(𝐼𝐼𝑏𝑏 - 𝐼𝐼𝑎𝑎)’ . [Φ�𝑎𝑎 + Φ�𝑏𝑏]−1 . (𝐼𝐼𝑏𝑏 - 𝐼𝐼𝑎𝑎). 

If the null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

Step 2 — If the null hypothesis in Step 1 is rejected and there is a single crossing of 

Lorenz curve ordinates, then undertake separate t-statistic calculations for differences in each of 

the respective individual estimated Lorenz curve ordinates up to the cross-over point.  If at least 

one of the t-statistics below the cross-over point is statistically significant compared to critical 

values on the SMM distribution with K-1 and infinite degrees of freedom, one can conclude that 

the distribution with the initially higher ordinates initially Lorenz dominates the lower Lorenz 

curve distribution.  If no such t-statistic is statistically significant, further comparison is not 

pursued. 

Step 3 — If one distribution indeed initially Lorenz dominates the other, then compare 

the estimated coefficients of variation of the two distributions.  If the coefficient of variation for 

the distribution with the initially higher Lorenz curve ordinates (say 𝐶𝐶𝑎𝑎� ) is statistically 

significantly smaller than the coefficient of variation for the other distribution (𝐶𝐶𝑏𝑏�) on the basis 

of a one-tailed asymptotically normal “t-test” (ie., Ho: 𝐶𝐶𝑎𝑎 – 𝐶𝐶𝑏𝑏 = 0 vs H1: 𝐶𝐶𝑎𝑎 – 𝐶𝐶𝑏𝑏 < 0), then one 

can conclude that distribution A transfer-sensitive Lorenz dominates distribution B.  That is, 

summary inequality in distribution A is statistically significantly smaller than in distribution B for 

all inequality measures satisfying inequality properties (i) - (v).  If 𝐶𝐶𝑎𝑎�  is not statistically 

significantly smaller than 𝐶𝐶𝑏𝑏� , do not draw any inequality dominance inference. 
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In order to perform the above test, one can make use of Ahn and Fessler (2003) who 

show that 𝐶̂𝐶 from an i.i.d sample is asymptotically normally distributed with a standard error 

given by 

S.E.(𝐶̂𝐶) = 100 𝐶̂𝐶 . [1 + 2𝐶̂𝐶2 / 2N]1/2 
where 𝐶̂𝐶 is expressed as a proportion.  Thus for independent samples, the estimated variance of 𝐶𝐶𝑎𝑎�  - 𝐶𝐶𝑏𝑏� is 

𝑉𝑉𝑣𝑣𝑣𝑣�  (𝐶𝐶𝑎𝑎�- 𝐶𝐶𝑏𝑏�) = [S.E. (𝐶𝐶𝑎𝑎� )]2 + [S.E. (𝐶𝐶𝑏𝑏�)]2, 
and the (asymptotic) normal t-ratio test statistic is 

t = (𝐶𝐶𝑎𝑎�  – 𝐶𝐶𝑏𝑏�) / [𝑉𝑉𝑣𝑣𝑣𝑣�  (𝐶𝐶𝑎𝑎�  – 𝐶𝐶𝑏𝑏�)]1/2. 
 

7.2 Multiple Lorenz Curve Crossings  

But what of the situation where two Lorenz curves cross more than once?  The transfer-

sensitivity-based approach of Shorrocks and Foster (1987) has been extended by Davies and 

Hoy (1994) to address just this situation.  They posit a coefficient of variation condition for each 

cross-over point (including the top right-hand (1,1) point on the Lorenz curve). 

More specifically, Davies and Hoy (1994, 1995) argue that a sufficient condition for all 

summary measures of inequality satisfying inequality properties (i) - (v) — ie., including transfer 

sensitivity — to show a reduction in inequality is that, at all cross-over points k = 1, 2, … of the 

Lorenz curves for two distributions, the cumulative coefficients of variation at points k are 
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smaller for the distribution with the initially higher Lorenz curve2.  The cumulative coefficient of 

variation (CC) is the ratio of the standard deviation over the mean where both are calculated 

over all observations in the distribution with incomes less than or equal to the cross-over 

income level at point k3. 

To empirically implement a test for this situation, one follows a similar set of PEC steps as 

for the single-crossing situation, but with some refinement. 

Step 1 — Same as before.  Do a chi-square test of the joint null hypothesis of equality of 

the two Lorenz curve ordinate vectors versus the alternative hypothesis of non-equality.  If the 

null hypothesis is not rejected, the two Lorenz curves can be said to be not statistically 

significantly different, and further comparison is not pursued. 

Step 2 — Similar to the single-crossing case.  If the null hypothesis in Step 1 is rejected 

and there are one or more crossings of the Lorenz curve ordinates, then undertake separate t-

statistic calculations for differences in each of the respective individual estimated Lorenz 

ordinates up to the lowest or first cross-over point.  If at least one of the t-statistics below this 

first cross-over point is statistically significant compared to critical values on the SMM 

distribution with K-1 and infinite degrees of freedom, one can conclude that the distribution 

with the initially higher ordinates initially Lorenz dominates the lower Lorenz curve distribution.  

If no such t-statistic is statistically significant, further comparison is not pursued. 

 

2
 For a fuller explication of the necessary and sufficient conditions for this multi-crossing point criterion, 

see Chiu (2007) and Davies, Hoy and Lin (2022). 
3
 Note that this is a stronger sufficient condition than in Shorrocks and Foster (1987) in that a single-

crossing test now involves two coefficient of variation tests rather than one. 
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Step 3 — Here is where the PEC for crossing Lorenz curves changes.  Now compare the 

cumulative coefficients of variation (𝐶𝐶𝐶𝐶�  (i)) for the two distributions (A and B) for all quantile 

points i = 1, …, K (note that 𝐶𝐶𝐶𝐶� (K) = 𝐶̂𝐶) and undertake separate “t-statistic” calculations for 

differences of each of the individual estimated quantile cumulative coefficients of variation (𝐶𝐶𝐶𝐶𝑎𝑎�  

(i) – 𝐶𝐶𝐶𝐶𝑏𝑏�  (i)).  If at each cross-over point, the immediately following quantile 𝐶𝐶𝐶𝐶� (i) is statistically 

significantly smaller for the initially higher Lorenz (as well as for the full-sample 𝐶̂𝐶) on the basis 

of the SMM distribution with K and infinite degrees of freedom, then one can conclude that 

inequality in the distribution with the initially higher Lorenz curve (distribution A, say), 

statistically significantly dominates inequality in distribution B for all summary inequality 

measures satisfying inequality properties (i) – (v) — including transfer sensitivity.  If one or more 

of these individual t-statistic tests is not one-tailed statistically significant, do not draw any 

inequality dominance inferences. 

 To implement Step 3 of this PEC involves doing statistical inference on the 𝐶𝐶𝐶𝐶�𝑖𝑖’s.  To do 

so, one can make use of results in Beach, Davidson and Slotsve (1994) who establish the 

asymptotic joint normal distribution of the full set of 𝐶𝐶𝐶𝐶�𝑖𝑖’s and derive their full asymptotic 

variance-covariance structure when calculated from a random sample.  More specifically, they 

show that, for i=1, …,K, the asymptotic variance of 𝐶𝐶𝐶𝐶�𝑖𝑖 is given by 

𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣𝑣𝑣𝑣𝑣 �𝐶𝐶𝐶𝐶�𝑖𝑖� =  � 𝜙𝜙𝑖𝑖𝑝𝑝𝑖𝑖 𝜆𝜆𝑖𝑖 𝛾𝛾𝑖𝑖2�2 ⋅  𝑝𝑝𝑖𝑖  �𝜙𝜙𝑖𝑖 −  𝛾𝛾𝑖𝑖2 + (1 − 𝑝𝑝𝑖𝑖)(𝜉𝜉𝑖𝑖 −  𝛾𝛾𝑖𝑖)2� 
−2 � 𝜙𝜙𝑖𝑖𝑝𝑝𝑖𝑖 𝜆𝜆𝑖𝑖 𝛾𝛾𝑖𝑖2�  � 1

2𝑝𝑝𝑖𝑖 𝜆𝜆𝑖𝑖 𝛾𝛾𝑖𝑖�  ⋅  𝑝𝑝𝑖𝑖  �𝜒𝜒𝑖𝑖 −  𝛾𝛾𝑖𝑖𝜙𝜙𝑖𝑖 + (1− 𝑝𝑝𝑖𝑖)(𝜉𝜉𝑖𝑖 − 𝛾𝛾𝑖𝑖)�𝜉𝜉𝑖𝑖2 −𝜙𝜙𝑖𝑖�� 
+ � 1

2𝑝𝑝𝑖𝑖 𝜆𝜆𝑖𝑖 𝛾𝛾𝑖𝑖�2 ⋅  𝑝𝑝𝑖𝑖  �𝜓𝜓𝑖𝑖 −  𝜙𝜙𝑖𝑖2 +  (1− 𝑝𝑝𝑖𝑖)�𝜉𝜉𝑖𝑖2 − 𝜙𝜙𝑖𝑖�2� 
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where  𝜉𝜉𝑖𝑖 is the i’th quantile cut-off income level, 

 𝛾𝛾𝑖𝑖 = 𝐸𝐸(𝑌𝑌 | 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) is the cumulative mean, 

 𝜆𝜆𝑖𝑖2 = 𝐸𝐸[(𝑌𝑌 − 𝛾𝛾𝑖𝑖)2 | 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖] is the cumulative variance, 

 𝜙𝜙𝑖𝑖 =  𝜆𝜆𝑖𝑖2 + 𝛾𝛾𝑖𝑖2 = 𝐸𝐸(𝑌𝑌2|𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) is the cumulative second moment, 

 𝜒𝜒𝑖𝑖 = 𝐸𝐸(𝑌𝑌3| 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) is the cumulative third moment, and 

 𝜓𝜓𝑖𝑖 =  𝐸𝐸(𝑌𝑌4| 𝑌𝑌 ≤  𝜉𝜉𝑖𝑖) is the cumulative fourth moment. 

All of these terms can be estimated consistently in straightforward fashion (that is again 

distribution-free) by their sample analogues to yield 

𝐴𝐴𝐴𝐴𝑦𝑦.� 𝑣𝑣𝑣𝑣𝑣𝑣 (𝐶𝐶𝐶𝐶�𝑖𝑖). Thus 

𝑆𝑆.𝐸𝐸. �𝐶𝐶𝐶𝐶�𝑖𝑖� =  �𝐴𝐴𝐴𝐴𝐴𝐴.𝑐𝑐�𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶� 𝑖𝑖)𝑁𝑁 �1 2� . 

Again, for independent samples, the estimated variance of 𝐶𝐶𝐶𝐶�𝑖𝑖𝑎𝑎 −  𝐶𝐶𝐶𝐶�𝑖𝑖𝑏𝑏 is 

𝑉𝑉�𝑣𝑣𝑣𝑣 �𝐶𝐶𝐶𝐶�𝑖𝑖𝑎𝑎 −  𝐶𝐶𝐶𝐶�𝑖𝑖𝑏𝑏� =  �𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣� 𝑣𝑣𝑣𝑣 �𝐶𝐶𝐶𝐶�𝑖𝑖𝑎𝑎�𝑁𝑁𝑎𝑎 �+ �𝐴𝐴𝐴𝐴𝑦𝑦. 𝑣𝑣� 𝑣𝑣𝑣𝑣 �𝐶𝐶𝐶𝐶�𝑖𝑖𝑏𝑏�𝑁𝑁𝑏𝑏 � 
and the (asymptotic) normal t-ratio statistic is 

𝑡𝑡 =  
𝐶𝐶𝐶𝐶�𝑖𝑖𝑎𝑎 −  𝐶𝐶𝐶𝐶�𝑖𝑖𝑏𝑏�𝑉𝑉𝑣𝑣�𝑣𝑣 �𝐶𝐶𝐶𝐶�𝑖𝑖𝑎𝑎 −  𝐶𝐶𝐶𝐶�𝑖𝑖𝑏𝑏��1 2� . 

It should be noted that Stage 3 tests take place over the pre-specified quantile points 

and not at estimated cross-over points.  This is done for convenience because of the known and 

distribution-free (asymptotic) variance-covariance structure of the quantile 𝐶𝐶𝐶𝐶�  (i) statistics.  In 
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the authors’ experience, one cross-over point is quite common, two such points have been 

observed on rare occasions, but more than two have never been encountered when using decile 

or vigintile intervals.  We would thus argue that, for the purpose of inequality rankings for 

income distributions as a whole, decile breakdowns are quite sufficient to pick up relevant 

Lorenz curve cross-overs and few, if any, 𝐶𝐶𝐶𝐶�  (i) difference tests are required. 

Note also that the above PEC empirical implementation criteria are only sufficient and 

specified to be fairly strong in order to yield pretty convincing dominance conclusions when 

they are indeed satisfied.  Certainly, alternative weaker PEC criteria could also be specified for 

Steps 2 and 3 that are more likely to lead to more — but perhaps less convincing — dominance 

conclusions. 

Note further that quantile mean dominance, Lorenz curve dominance and transfer 

sensitivity dominance essentially correspond to first-order, second-order and third-order 

stochastic dominance of one distribution by another.  This analytical framework has generated a 

huge literature, especially in the finance field where testing for stochastic dominance efficiency 

is applied over a class of portfolio returns and investor preference toward risk (Post, 2003; 

Scaillet and Topaloglou, 2010; and Linton et al., 2014).  Application of the stochastic dominance 

framework to income distributions and income inequality comparisons are found in Anderson 

(1996) based on Pearson goodness-of-fit tests and in Maasoumi and Heshmati (2000), Barrett 

and Donald (2003), and Linton et al. (2005) based on forms of Kolmogorov-Smirnov goodness-

of-fit tests and on resampling/simulation procedures and bootstrapping methods.  The 

stochastic dominance approach also underlies Davidson and Duclos’ (2000) application of 

statistical inference to poverty rankings along with welfare and inequality comparisons in a 
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unified analytical framework.  While they rely on bootstrapping for inference results, they note 

that use of (asymptotic) variance information is known to improve inference results (ie., make 

tests more powerful).  Applications of their test procedures are found in Duclos and Araar 

(2006). 

 

8. Empirical Application: Basic Distributional Statistics 

 We now illustrate the application of the various tests of this paper with Canadian census 

data over 2000-2020.  We consider four censuses for the years 2001, 2006, 2016, and 2021 –— 

in the 2011 Census, Statistics Canada changed their methodology, so its data are not completely 

comparable to the other years’ data; consequently, the results for the 2011 Census are not 

included.  We make use of the Statistics Canada Public Use Microdata Files (PUMFs) on 

Individuals and consider the total income of individuals, separately for women and men.  Since 

income refers to that reported for the previous full calendar year, the income years are 2000, 

2005, 2015, and 2020.  Since we are testing for changes in economic well-being, families or 

household may be considered the more natural record unit.  But there is not sufficient 

consensus in the literature on how a family unit is defined (the PUMF files include three different 

definitions) or on how best to adjust for family size and composition (say, on an adult-equivalent 

scale).  In the name of simplicity in the application of the various tests of this paper and to focus 

on the tests themselves, we opt for total income of individual income recipients.  Since the 

labour market activity patterns and experiences have considerable differences between men and 

women, we treat these two groups separately.  We thus consider changes in income inequality 
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and economic well-being within these two groups of income recipients in Canada over the 

period of 2000-2020. 

 The estimation samples for the study consist of those records on the PUMF files for 

individuals age 18 or over who did not attend school (either full-time or part-time) in the 

income year and whose total income that year was at least $1000.  Total income consists of 

wages and salaries, net self-employment income, investment income, retirement pensions, and 

other money income (e.g., disability benefits).  Summary statistics on mean income and sample 

size of each of the estimation samples are provided in appendix Table A1.  Incomes are in real 

2020 Canadian dollars (adjusted by Statistics Canada’s annual CPI series, Table 18-10-0005-01).  

As can be seen, all the sample sizes are quite large and vary between 254,607 and 345,002 

observations.   

 Tables 1a and 1b present decile mean incomes for women (1a) and men (1b) for each of 

the four census years.  Figures in parentheses are standard errors.  Given the large sample sizes, 

it is not surprising that these decile means are all highly statistically significant.  From simple 

inspection, it can be seen that the real decile mean income levels generally increase over time 

with typically weaker increases (or even some declines) over 2000-05 and much stronger 

increases over 2015-20 (except at the top end of the distributions).  As expected, men’s decile 

means are considerably higher than women’s. 

 Decile income shares (expressed as percentages) over the four censuses appear in Table 

2a (for women) and Table 2b (for men), again with standard errors in parentheses.  And again, 

the large sample sizes ensure highly statistically significant results.  One notes that in 2005, 2015 
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and 2020 the lower nine decile shares are generally higher for women than for men, while the 

top share is distinctly higher for men than for women.  This would suggest that, at the simple 

level of inspection, income inequality is more marked in the distribution of men’s incomes than 

for women’s incomes. 

 As to distributional changes over time, two periods are noticeable.  First, between 2000 

and 2005 for both women and men, the lower nine decile shares fell, while the top decile share 

rose quite dramatically, suggesting a marked rise in income inequality over this period.  The 

changes were more marked for men than for women.  Second, between 2015 and 2020 and 

again for both men and women, the lower eight or nine decile shares rose quite substantially, 

while the top decile shares fell quite markedly, in turn suggesting a notable reduction in income 

inequality over this period.  As found by Beach (2016), workers’ earnings — by far the largest 

component of total income — over the 2000-05 period were continuing their longer-run 

dramatic widening of earnings differentials and particularly the growing gap between middle 

and upper earnings levels.  These changes were apparently driven by the major economic forces 

of automation and technological change; globalization, off-shoring, and changing international 

trade patterns; and deregulation and growing industrial concentration.  The apparent strong 

reduction in income inequality over the 2015-20 period likely reflects the large federal 

government payouts of income support payments in the face of the 2020-21 COVID pandemic. 

 Cumulative income shares or Lorenz curve ordinates for the four census years are 

presented in Tables 3a (for women) and 3b (for men).  In comparison between men and women, 

only in 2005 and 2015 are the Lorenz curves for women uniformly above those for men 

suggesting greater income inequality within the men’s income distribution.  For 2000 and 2020, 
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the results are not so clear-cut.  Comparing Lorenz curves across time, one sees that over 2000-

05, Lorenz curves for both men’s and women’s incomes indeed shifted consistently down or out, 

more strongly so for men.  In contrast, over 2015-20, the Lorenz curves again for both men and 

women shifted consistently up and quite strongly so for both groups of income recipients.  Over 

the longer 2005-15 period, both Lorenz curves continued their earlier downward shift, but only 

weakly so.  These results suggest a strong increase in overall income inequality between 2000 

and 2005, followed by a continuing but weaker inequality increase through to 2015, but then a 

quite sharp reversal and marked reduction in inequality between 2015 and 2020.  Whether this 

reversal will hold after the COVID government transfer payouts stop remains to be seen. 

 Results for generalized Lorenz curves (GLCs) appear in Tables 4a and 4b (again standard 

errors are in parentheses).  For women’s income distributions, the GLCs rise consistently across 

all four census years suggesting an on-going improvement in overall economic well-being.  

However, this is not the case for the men’s income distributions.  Between 2000 and 2020 as a 

whole, all men’s GLC ordinates rose.  But this did not occur over all subperiods.  Between 2005 

and 2015, men’s GLCs rose over all deciles.  But between 2000 and 2005, men’s GLC ordinates 

fell over the lowest six deciles, changed very little over deciles 7-9, and rose strongly for the top 

ten percent of the distribution.  Between 2015 and 2020, however, men’s GLC ordinates rose 

strongly over the lower nine deciles, but fell for the top decile.  Thus gains and losses were not 

uniform over the first two decades of this century, and conclusions as to changes in men’s 

overall economic well-being are not straightforward. 
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9. Empirical Application: Testing for Distributional Changes 

 9.1 Testing for Rank Dominance 

 The first step in the practical empirical criterion (PEC) of Section 4 for rank or quantile 

mean dominance is a chi-square test of equality of the full set of decile mean vectors (with K=10 

degrees of freedom).  The resulting chi-square statistics are as follows: 

 2000-05 2005-15 2015-20 2000-20 

Women 2922.0 6481.2 8159.9 33,400. 

     

Men 2483.9 1456.9 4570.6 7417.5 

     

With a 99 percent confidence critical value of 23.2, one can quite definitely reject the null 

hypothesis of no change in the set of quantile means in all eight cases considered. 

 Tables 5a and 5b present the actual changes in the estimated individual decile means 

over four time intervals: 2000-05, 2005-15, 2015-20 and for the full period 2000-20.  In the 

tables of this section, however, the figures in parentheses are now (absolute values of) 

asymptotic t-ratios of the decile mean differences.  In the case of women in Table 5a, all the 

decile mean changes are highly statistically significant on the basis of the SMM distribution 

critical values of Section 4 — including the negative difference for the tenth decile between 

2015 and 2020.  Thus one can conclude that women experienced rank dominance 

improvements in their incomes and thus economic well-being over 2000-05, 2005-15, and over 

the full period 2000-20 under quite weak social welfare conditions (i) – (iii).  But one cannot 
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reach this conclusion over the 2015-20 period because of the one statistically significant loss of 

incomes for the one top decile group. 

 In the case of men in Table 5b, there are evidently some not statistically significant 

changes in decile means and indeed some highly significant negative changes.  One can 

conclude that men have experienced statistically significant improvements in economic well-

being over the ten-year interval 2005-15 and over the full twenty-year period 2000-20.  But over 

the 2000-05 period and over the 2015-20 period there are statistically significant winners and 

losers.  So we cannot reach a conclusion of whether economic well-being improved as a whole 

for male income recipients over these two periods under such weak social welfare conditions. 

 

9.2 Testing for Lorenz Dominance 

 The first step in testing for Lorenz dominance involves testing for whether the vectors of 

Lorenz curve ordinates are jointly statistically significantly different (the test is also equivalent to 

testing for differences in the set of income shares).  The estimated chi-square statistics are as 

follows: 

 2000-05 2005-15 2015-20 2000-20 

Women 2289.7 237.85 4009.8 4778.7 
     

Men 2989.9 321.79 3976.6 4066.7 

 

Again, these are all highly statistically significant, indicating that the Lorenz curves have indeed 

changed significantly. 
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 Changes in the individual Lorenz curve ordinates (expressed as percentage points) are 

presented in Tables 6a (for women) and 6b (for men).  Again, the figures in parentheses are 

(absolute values of) t-ratios for the decile changes.  Negative values for the ordinate changes 

indicate the Lorenz curve is shifting down or out, while positive values correspond to a Lorenz 

curve moving up or inward towards the 45 degree equality diagonal in a Lorenz curve diagram.  

Again, almost all the estimated ordinate changes are individually highly statistically significant 

on the basis of the SMM distribution — see the critical values in Section 5 above. 

 For both women and men, there are seen to be consistent statistically significant 

downward shifts in their respective Lorenz curves over both 2000-05 and 2005-2015, followed 

by a consistent statistically significant upward shift over 2015-20.  One can thus conclude that, 

for both women and men, overall income inequality (under inequality conditions (𝑖𝑖)− (𝑖𝑖𝑣𝑣)) rose 

or worsened over periods 2000-05 and 2005-15, but then declined or improved over the 

following 2015-20 period.  However, again for both women and men, over the 2000-20 period 

as a whole — see the right-hand column of results in Tables 6a and 6b — there are statistically 

significant positive and negative changes across the decile ordinates.  Thus one cannot say 

conclusively whether overall income inequality improved or worsened for the period as a whole 

(on the basis of inequality conditions (𝑖𝑖)− (𝑖𝑖𝑣𝑣)), only that it has indeed statistically significantly 

changed. 

 

9.3 Testing for Generalized Lorenz Dominance 
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 As with the above empirical testing criteria, the first stop involves a chi-square test of 

equality of two vectors of generalized Lorenz curve (GLC) ordinates.  The corresponding test 

statistics for generalized Lorenz dominance are as follows: 

 2000-05 2005-15 2015-20 2000-20 

Women 29.214 64.889 81.591 334.02 

     

Men 24.847 14.554 45.707 74.184 

     

With a 99 percent confidence level critical value of 23.2 (and 18.3 for the 95 percent confidence 

level) with 10 degrees of freedom, all but one are highly statistically significant, thus allowing 

one to infer that overall economic well-being indeed changed over the corresponding periods.  

For men between 2005 and 2015, the p-value of the above test statistic is p=0.15, so that at 

conventional levels of confidence one cannot infer statistically significant change in economic 

well-being, though the relatively low p-value still suggests change likely did occur. 

 Tables 7a and 7b provide changes in GLC ordinates over the four periods of interest, 

again separately for women and men.  Positive values indicate an upward shift in the 

generalized Lorenz curve, and negative values show a downward shift of the curve.  And again, 

the reported t-ratios in parentheses are to be compared to SMM distribution critical values in 

Section 4.  So, for example (with 10 and infinite degrees of freedom), the 99 percent confidence 

level value is 3.691 and the 95 percent value is 3.254. 

 Over the 2000-20 period as a whole, the GLC ordinate changes for both men and women 

are consistently positive and all individually highly statistically significant.  So one can conclude 
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that, for both sex groups, there was indeed an improvement in their overall economic well-being 

based on social welfare conditions (𝑖𝑖) − (𝑖𝑖𝑣𝑣) — including the principle of transfers, but not 

transfer sensitivity.  Over the 2005-15 middle time period, a similar conclusion holds for 

women’s economic well-being.  The very weak “t-statistics” for men back up the finding of a 

non-significant chi-square statistic over this period. 

 Over the 2015-20 period, women’s GLC ordinates also show consistent and highly 

statistically significant upward shifts, so again one can infer an increase in their general 

economic well-being.  For men, all but one of the GLC changes are positive and the lower five 

ordinate changes are statistically significant, while the one negative change (at the top end) is 

highly non-significant.  So men’s overall economic well-being can also be inferred to have 

increased. 

 Finally, over the 2000-05 time interval, women’s GLC ordinate changes are also all 

consistently positive with one — the top — statistically significant.  So one can again infer an 

improvement in their economic well-being.  Men’s GLC ordinate changes over this period show 

a mix of positive (at the upper end of the distribution) and negative (at the lower and mid 

regions of the distribution) values.  However, the top value is again statistically significant at 

conventional confidence levels while none of the negative changes is remotely significant.  So 

once again, one can infer an improvement in men’s general economic well-being over this 

period according to Section 6’s PEC. 

 

9.4 Testing for Transfer-Sensitive Lorenz Dominance 
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 As has been seen, estimated changes in regular Lorenz curve ordinates over the full 

2000-20 time period could not be conclusively evaluated on the basis of income inequality 

conditions (𝑖𝑖)− (𝑖𝑖𝑣𝑣).  Imposing the additional stronger condition of transfer sensitivity, however, 

may allow for more conclusive results. 

 The first step in Section 7’s PEC again involves general chi-square tests of no change in 

the vectors of Lorenz curve ordinates.  These have already been calculated in section 9.2 above 

indicating highly statistically significant Lorenz curve changes in all cases.  Step 2 results on 

changes in the individual Lorenz curve ordinates yielded conclusive inferences on changes in 

overall income inequality over the three time intervals 2000-05, 2005-15 and 2015-20.  Only for 

the 2000-20 period as a whole were the results inconclusive.  Consequently, the discussion here 

focuses just on the latter period. 

 Tables 8a and 8b present the cumulative coefficients of variation for the full sets of 

Lorenz curve ordinates for 2000 and 2020 along with their differences.  Since there is only one 

crossing in the Lorenz curves for women and for men, we need to examine the tenth decile or 

unconditional coefficient of variation difference in the bottom right corner of the tables.  If this 

figure is statistically significantly negative (based on a one-tailed test of the SMM distribution 

(with 10 and infinite degrees of freedom), one could infer a significant reduction in overall 

income inequality over this period.  But for both women and men, the figure turns out positive, 

so cannot possibly lie in the rejection region of the alternative one-tailed hypothesis (and 

indeed the 𝐶̂𝐶 differences are not at all significant with t-ratios on the unconditional difference of 

0.365 for women and 1.127 for men).  So even with the stronger condition (𝑣𝑣) of transfer 
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sensitivity, one still cannot reach a conclusion of Lorenz dominance for an overall reduction in 

inequality between 2000 and 2020 for either women or men. 

 Further examination of the PUMF documentation, however, leads to some concerns as to 

the general usefulness of the Lorenz dominance tests based on transfer sensitivity.  Between 

2001 and 2006, Statistics Canada made some major changes to their top-coding procedures for 

total income (and other major income sources) on the PUMF Individual files.  The effect was to 

raise the nominal values of the top-coded figures reported on the PUMF quite considerably (as 

well as vary these by sex and geographic area).  Subsequent refinements followed in later 

censuses (see “2021 Census Public Use Microdata File (PUMF) : Individuals File — 

Documentation and User Guide,” Statistics Canada’s cat. no. 98M 0001X (2024), pp. 155-158, 

and the corresponding Statistics Canada documentation for the earlier census PUMF files).  Even 

though only about one percent of income recipients are affected, these changes have led to 

substantial jumps in the estimates of the overall or unconditional coefficient of variation (𝐶̂𝐶) 

from census to census:  

 2000 2005 2015 2000 

Women 0.79793 1.02708 1.05356 0.88389 

     

Men 0.80861 1.39846 1.43448 1.17690 

     

Such major changes in such a robust summary statistic from our census samples — even more 

remarkably for men — are quite unusual in such large samples only a few years apart. 
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 It would thus appear that applying transfer-sensitive Lorenz dominance tests to public 

use microdata files (that contain top-coding) is problematic.  One alternative could perhaps be 

to work with the (confidential) census Master Files for this test. 

 

10. Review and Conclusions 

 The theoretical literature on social choice and economic welfare evaluations for some 

while has offered several dominance criteria for ranking key aspects of income distributions — 

such as rank dominance or Lorenz dominance — based on comparing curves such as quantile 

curves or Lorenz curves.  But empirical application of these criteria has proved challenging 

because (i) they involve restrictive assumptions about the form of the distributions being 

compared or the computational burden of density estimation from available microdata, and (ii) 

the applications are typically not accompanied by methods of statistical inference to indicate 

how reliable their results are.  This paper provides the statistical tools and procedures for 

actually implementing these dominance criteria empirically with microdata sets that can be 

readily obtained from statistical agencies such as Statistics Canada and the U.S. Bureau of the 

Census. 

 More specifically, this paper builds on recent statistical developments in Beach and 

Davidson (2024a) establishing distribution-free statistical inference methods for quantile means 

and income shares for a sample distribution, and applies their variance – covariance formulas in 

a set of practical empirical procedures for formally testing general social welfare and income 

inequality dominance comparisons between distributions within a conventional statistical 
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inference framework.  Four sets of dominance rules are examined: rank dominance, Lorenz curve 

dominance, generalized Lorenz curve dominance, and transfer-sensitive Lorenz dominance — 

the first and third refer to social welfare or economic well-being comparisons, the second and 

fourth refer to income inequality comparisons.  The paper thus offers an empirical approach to 

evaluate distributional changes in an easily implementable distribution-free framework of 

statistical inference based on well-known disaggregative distributional statistics. 

 The process for implementing the developments of this paper involve three stages.  The 

first stage consists of representing a dominance curve by a vector of the curve’s estimated 

ordinates — in terms of either quantile means or income shares — for a set of specified quantile 

points (such as deciles or percentiles).  This transforms a theoretical problem into a statistical 

one.  The second stage involves establishing the statistical properties of this vector of sample 

ordinates through use of recent developments on quantile-based inferences that are 

distribution-free and yield variance-covariance formulas that are very straightforward to 

implement directly.  This transform the statistical problem into an inferential one by providing a 

framework for basing comparisons between sample vectors on formal statistical inference and 

testing procedures.  The third stage involves proposing specific practical empirical criteria (or 

PECs) — one can think of these as a type of decision tree — for using formal statistical inference 

tests to reach empirical conclusions about the ranking (in terms of better or worse) or 

dominance of the key aspects of income distributions being compared. 

 The tests and procedures are illustrated with Canadian census public use microdata for 

women’s and men’s incomes between 2000 and 2020.  There were five principal empirical 

findings.  First, given the large sample sizes (between 254 and 345 thousand observations over 
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eight census files) involved in the analysis, all the estimated decile means and income shares 

turn out to be highly statistically significant, thus providing lots of opportunity to obtain quite 

strong and convincing dominance conclusions. 

 Second, in terms of the formal inequality dominance tests, for both women and men, it is 

found that overall income inequality statistically significantly increased or worsened over both 

2000-05 and 2005-15 and statistically significantly decreased or improved over 2015-20.  Over 

the full 2000-20 period, however, for both women and men, statistically significant inferences 

could not be reached, apart from that significant changes had indeed occurred. 

 Third, in terms of formal tests of welfare dominance, again for both women and men, it is 

found that statistically significant improvement in overall economic well being occurred over all 

three subperiods as well as for the 2000-20 period as a whole. 

 Fourth, statistical inference-based conclusions and simple descriptive – or inspection-

based conclusions are found to typically be pretty similar.  In only one of the sixteen cases 

examined in this paper did the two differ — that for the comparison of generalized Lorenz 

curves for men over the 2000-05 period. 

 Fifth, transfer-sensitive Lorenz dominance results are found to be sensitive to top-coding 

procedures typically done by statistical agencies on their public use microdata files.  Economic 

well-being dominance results, however, are surprisingly strong and robust and more successful 

in ranking distributions than inequality dominance results. 

 The analysis and findings in this paper have several implications.  First, they show that 

quite broad inferences can be drawn as to inequality and social welfare that do not rely on 
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single aggregate or summary measures and can be much more general.  Thus there should be a 

shift of attention from various summary measures to sets of disaggregative measures such as 

quantile mean incomes and quantile income shares.  The analysis of the paper shows that these 

disaggregative distributional statistics can provide not just descriptive information on changing 

distributional patterns, but also normative insights and the basis for formal statistical inference 

for evaluating distributional changes.  Indeed, future advances in ranking criteria that involve 

comparisons of specified ordered-income curves can also, in principle, be implemented 

empirically in terms of the approach forwarded in this paper. 

 Second, the simple and straightforward test procedures for statistical dominance 

presented in the paper have broad applicability, such as in the empirical analysis of earnings, 

say, or wealth, or even more generally in terms of, say, test statistics.  While all the examples 

provided in this paper refer to changes over time in the income distribution for a given 

population group, they could also be applied to comparisons of distributions between separate 

groups or even comparisons over time between groups (difference in differences). 

 Third, public debate on the objectives of economic policy should no longer focus on 

simply GDP or GDP per capita or on simply efficiency vs. equity.  Discussion should now also 

include effects on empirically evaluated economic well-being — say in the form of a generalized 

Lorenz curve — that incorporates both efficiency and equity concerns, and that reflects rational 

distributional trade-offs between winners and losers and the reliability of judging these trade-

offs. 
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Table 1a 

Women’s Decile Mean Incomes 

(Canada, 2020 $) 

 

 

Decile 2000 2005 2015 2020 

     

1 4212 

(23.81) 

4667 

(28.41) 

5414 

(28.68) 

7733 

(39.10) 
     

2 10,584 

(36.98) 

11,441 

(32.93) 

13,304 

(37.81) 

17,423 

(39.99) 
     

3 15,701 

(35.92) 

16,482 

(40.55) 

18,991 

(39.93) 

23,568 

(35.21) 
     

4 19,890 

(40.82) 

21,080 

(34.08) 

24,326 

(44.64) 

29,510 

(54.60) 
     

5 24,847 

(54.00) 

26,430 

(58.65) 

31,046 

(64.97) 

36,309 

(57.34) 
     

6 31,248 

(68.94) 

33,275 

(70.51) 

38,857 

(74.24) 

43,636 

(65.33) 
     

7 39,150 

(74.14) 

41,082 

(67.68) 

47,493 

(71.19) 

52,028 

(70.23) 
     

8 48,021 

(84.14) 

50,528 

(90.70) 

58,435 

(103.09) 

62,980 

(91.06) 
     

9 61,366 

(116.62) 

65,082 

(127.12) 

76,066 

(133.23) 

80,464 

(128.70) 
     

10 98,150 

(213.83) 

125,426 

(516.60) 

148,312 

(595.41) 

142,289 

(465.86) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 1b 

Men’s Decile Mean Incomes 

(Canada, 2020 $) 

 

 

Decile 2000 2005 2015 2020 

     

1 7371 

(43.61) 

7205 

(40.81) 

7593 

(42.96) 

10,622 

(48.10) 
     

2 17,634 

(53.56) 

17,356 

(57.34) 

18,068 

(45.57) 

21,657 

(39.85) 
     

3 25,528 

(64.28) 

25,416 

(62.01) 

26,064 

(64.87) 

29,117 

(56.83) 
     

4 33,979 

(79.33) 

34,012 

(79.62) 

35,363 

(80.85) 

37,499 

(70.95) 
     

5 42,526 

(77.95) 

42,371 

(71.78) 

44,506 

(75.58) 

46,061 

(74.41) 
     

6 51,293 

(94.19) 

51,436 

(95.19) 

54,348 

(94.25) 

55,566 

(82.66) 
     

7 60,916 

(92.69) 

62,014 

(102.43) 

65,969 

(108.08) 

66,860 

(94.84) 
     

8 73,462 

(120.27) 

75,425 

(123.01) 

81,039 

(136.91) 

81,352 

(120.67) 
     

9 91,841 

(157.04) 

95,689 

(177.83) 

104,119 

(169.78) 

103,869 

(170.77) 
     

10 158,080 

(467.66) 

231,264 

(1448.4) 

255,668 

(1505.8) 

221,073 

(1066.4) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 2a 

Decile Income Shares for Women 

(percentages) 

 

 

Decile 2000 2005 2015 2020 

     

1 1.1926 

(0.006388) 

1.1801 

(0.006957) 

1.1712 

(0.006072) 

1.5593 

(0.007575) 
     

2 2.9968 

(0.009271) 

2.8929 

(0.008188) 

2.8781 

(0.008057) 

3.5131 

(0.007668) 
     

3 4.4456 

(0.008521) 

4.1675 

(0.009831) 

4.1083 

(0.008734) 

4.7522 

(0.007261) 
     

4 5.6319 

(0.008939) 

5.3299 

(0.009585) 

5.2627 

(0.009779) 

5.9501 

(0.009634) 
     

5 7.0354 

(0.010684) 

6.6828 

(0.013033) 

6.7163 

(0.01260) 

7.3214 

(0.010037) 
     

6 8.8479 

(0.012515) 

8.4137 

(0.014970) 

8.4060 

(0.014087) 

8.7986 

(0.011002) 
     

7 11.0854 

(0.012496) 

10.3873 

(0.015709) 

10.2747 

(0.014977) 

10.4907 

(0.011864) 
     

8 13.5971 

(0.013596) 

12.7759 

(0.018591) 

12.6415 

(0.018082) 

12.6990 

(0.013900) 
     

9 17.3758 

(0.018770) 

16.4559 

(0.022993) 

16.4556 

(0.021894) 

16.2243 

(0.017707) 
     

10 27.7914 

(0.045172) 

31.7140 

(0.084147) 

32.0857 

(0.082610) 

28.6913 

(0.063352) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 2b 

Decile Income Shares for Men 

(percentages) 

 

 

Decile 2000 2005 2015 2020 

     

1 1.3101 

(0.007364) 

1.1218 

(0.006540) 

1.0961 

(0.006349) 

1.5767 

(0.007208) 
     

2 3.1343 

(0.008509) 

2.7026 

(0.009887) 

2.6082 

(0.008116) 

3.2147 

(0.007355) 
     

3 4.5373 

(0.009594) 

3.9577 

(0.011790) 

3.7624 

(0.011103) 

4.3221 

(0.009634) 
     

4 6.0391 

(0.011083) 

5.2963 

(0.014928) 

5.1049 

(0.013949) 

5.5664 

(0.011651) 
     

5 7.5585 

(0.010558) 

6.5979 

(0.016565) 

6.4246 

(0.015610) 

6.8373 

(0.012912) 
     

6 9.1167 

(0.011859) 

8.0094 

(0.019735) 

7.8455 

(0.018502) 

8.2482 

(0.014666) 
     

7 10.8267 

(0.011853) 

9.6567 

(0.022678) 

9.5227 

(0.021517) 

9.9247 

(0.016835) 
     

8 13.0569 

(0.013871) 

11.7450 

(0.026547) 

11.6985 

(0.025371) 

12.0758 

(0.019674) 
     

9 16.3236 

(0.016977) 

14.9006 

(0.031589) 

15.0297 

(0.030612) 

15.4183 

(0.023889) 
     

10 28.0968 

(0.055288) 

36.0119 

(0.138202) 

36.9073 

(0.131164) 

32.8160 

(0.101537) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 3a 

Lorenz Curve Ordinates for Women’s Income 

(percentages) 

 

 

Decile 2000 2005 2015 2020 

     

1 1.1926 

(0.006388) 

1.1801 

(0.006957) 

1.1712 

(0.006072) 

1.5593 

(0.007575) 
     

2 4.1894 

(0.01443) 

4.0730 

(0.01392) 

4.0493 

(0.01299) 

5.0723 

(0.01380) 
     

3 8.6350 

(0.02108) 

8.2405 

(0.02197) 

8.1576 

(0.02013) 

9.8246 

(0.01928) 
     

4 14.2670 

(0.02735) 

13.5704 

(0.02938) 

13.4202 

(0.02796) 

15.7747 

(0.02657) 
     

5 21.3024 

(0.03416) 

20.2532 

(0.03940) 

20.1365 

(0.03785) 

23.0961 

(0.03398) 
     

6 30.1503 

(0.04104) 

28.6669 

(0.05051) 

28.5425 

(0.04858) 

31.8947 

(0.04166) 
     

7 41.2357 

(0.04629) 

39.0542 

(0.06190) 

38.8172 

(0.05964) 

42.3854 

(0.04938) 
     

8 54.8328 

(0.04862) 

51.8301 

(0.07375) 

51.4587 

(0.07123) 

55.0844 

(0.05704) 
     

9 72.2086 

(0.04517) 

68.2860 

(0.08415) 

67.9143 

(0.08261) 

71.3087 

(0.06335) 
     

10 100. 

 

100. 

 

100. 

 

100. 

 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 3b 

Lorenz Curve Ordinates for Men’s Income 

(percentages) 

 

 

Decile 2000 2005 2015 2020 

     

1 1.3101 

(0.007364) 

1.1218 

(0.006540) 

1.0961 

(0.006349) 

1.5767 

(0.007208) 
     

2 4.4444 

(0.01451) 

3.8244 

(0.01521) 

3.7043 

(0.01332) 

4.7914 

(0.01322) 
     

3 8.9817 

(0.02202) 

7.7822 

(0.02545) 

7.4667 

(0.02306) 

9.1135 

(0.02142) 
     

4 15.0208 

(0.03026) 

13.0785 

(0.03857) 

12.5716 

(0.03540) 

14.6799 

(0.03141) 
     

5 22.5792 

(0.03740) 

19.6764 

(0.05306) 

18.9962 

(0.04919) 

21.5171 

(0.04243) 
     

6 31.6959 

(0.04439) 

27.6858 

(0.07035) 

26.8417 

(0.06550) 

29.7653 

(0.05486) 
     

7 42.5226 

(0.05001) 

37.3425 

(0.09015) 

36.3644 

(0.08432) 

39.6900 

(0.06894) 
     

8 55.5795 

(0.05457) 

49.0875 

(0.11300) 

48.0629 

(0.10594) 

51.7658 

(0.08469) 
     

9 71.9032 

(0.05529) 

63.9881 

(0.13820) 

63.0927 

(0.13117) 

67.1840 

(0.10154) 
     

10 100. 

 

100. 

 

100. 

 

100. 

 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 4a 

Generalized Lorenz Curve Ordinates for Women’s Income 

(Canada, 2020 $) 

 

 

Decile 2000 2005 2015 2020 

     

1 421.18 

(23.810) 

466.71 

(28.406) 

541.36 

(28.682) 

773.32 

(39.099) 
     

2 1479.6 

(56.697) 

1601.9 

(57.033) 

1871.8 

(61.531) 

2515.6 

(72.710) 
     

3 3049.6 

(86.971) 

3259.1 

(90.896) 

3770.8 

(94.599) 

4872.4 

(101.00) 
     

4 5038.6 

(119.86) 

5367.0 

(118.21) 

6203.5 

(130.60) 

7823.4 

(144.57) 
     

5 7523.3 

(167.07) 

8010.0 

(165.40) 

9308.1 

(183.37) 

11,454 

(190.07) 
     

6 10,648 

(218.12) 

11,338 

(221.94) 

13,194 

(242.93) 

15,818 

(240.94) 
     

7 14,563 

(276.20) 

15,446 

(274.60) 

17,943 

(297.85) 

21,021 

(293.82) 
     

8 19,365 

(338.54) 

20,499 

(342.08) 

23,787 

(374.28) 

27,319 

(360.03) 
     

9 25,502 

(419.31) 

27,007 

(430.79) 

31,393 

(467.56) 

36,365 

(449.25) 
     

10 35,317 

(556.82) 

39,549 

(775.79) 

46,225 

(870.41) 

49,594 

(746.31) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 4b 

Generalized Lorenz Curve Ordinates for Men’s Income 

(Canada, 2020 $) 

 

 

Decile 2000 2005 2015 2020 

     

1 737.12 

(46.605) 

720.43 

(40.810) 

759.32 

(42.959) 

1062.2 

(48.102) 
     

2 2500.6 

(90.077) 

2456.0 

(90.319) 

2566.1 

(81.682) 

3227.9 

(80.653) 
     

3 5053.4 

(143.78) 

4997.6 

(142.05) 

5172.5 

(135.70) 

6139.6 

(126.63) 
     

4 8451.2 

(209.48) 

8398.8 

(208.12) 

8708.9 

(203.23) 

9889.5 

(184.60) 
     

5 12,704 

(272.55) 

12,636 

(265.73) 

13,159 

(264.49) 

14,496 

(244.25) 
     

6 17,833 

(346.20) 

17,780 

(340.37) 

18,594 

(338.87) 

20,052 

(309.02) 
     

7 23,925 

(415.41) 

23,981 

(418.00) 

25,191 

(421.43) 

26,738 

(381.38) 
     

8 31,271 

(501.97) 

31,523 

(507.39) 

33,295 

(522.03) 

34,873 

(470.13) 
     

9 40,455 

(607.65) 

41,092 

(629.24) 

43,707 

(639.15) 

45,260 

(588.64) 
     

10 56,263 

(901.63) 

64,219 

(1739.5) 

69,274 

(1801.6) 

67,368 

(1363.3) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Standard errors in parentheses. 
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Table 5a 

Changes in Women’s Decile Mean Incomes Between Censuses 

(Canada, 2020 $) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 455.22 

(12.28) 

746.49 

(18.49) 

2319.59 

(47.84) 

3521.30 

(76.92) 
     

2 857.50 

(17.32) 

1862.90 

(37.16) 

4118.63 

(74.84) 

6839.04 

(125.6) 
     

3 781.70 

(14.43) 

2508.45 

(44.08) 

4577.77 

(85.99) 

7867.93 

(156.4) 
     

4 1189.75 

(22.37) 

3246.19 

(57.80) 

5183.48 

(73.50) 

9619.42 

(141.1) 
     

5 1582.99 

(19.85) 

4616.21 

(52.74) 

5263.11 

(60.74) 

11,462 

(145.5) 
     

6 2027.21 

(20.56) 

5581.93 

(54.52) 

4779.12 

(48.33) 

12,388 

(130.4) 
     

7 1932.40 

(19.25) 

6411.17 

(65.27) 

4534.66 

(45.35) 

12,878 

(126.1) 
     

8 2506.96 

(20.26) 

7907.97 

(57.59) 

4544.67 

(33.04) 

14,960 

(120.7) 
     

9 3716.07 

(21.54) 

10,985 

(59.65) 

4397.59 

(23.74) 

19,098 

(109.9) 
     

10 27,275 

(48.17) 

22,887 

(29.03) 

-6023.14 

(7.97) 

44,139 

(84.82) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 5b 

Changes in Men’s Decile Mean Incomes Between Censuses 

(Canada, 2020 $) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 -166.89 

(2.79) 

388.81 

(6.56) 

3028.75 

(46.96) 

3250.66 

(50.07) 
     

2 -278.62 

(3.55) 

712.16 

(9.72) 

3588.83 

(59.28) 

4022.38 

(60.25) 
     

3 -122.00 

(1.25) 

648.10 

(7.22) 

3052.91 

(35.40) 

3589.02 

(41.83) 
     

4 33.42 

(0.30) 

1351.14 

(11.91) 

2135.94 

(19.86) 

3520.50 

(33.08) 
     

5 -155.02 

(1.46) 

2135.35 

(20.49) 

1554.56 

(14.66) 

3534.89 

(32.80) 
     

6 142.59 

(1.06) 

2912.62 

(21.74) 

1217.96 

(9.72) 

4273.17 

(34.10) 
     

7 1097.62 

(7.95) 

3954.89 

(26.56) 

891.28 

(6.20) 

5943.80 

(44.82) 
     

8 1963.15 

(11.41) 

5613.68 

(30.51) 

312.93 

(1.71) 

7889.76 

(46.31) 
     

9 3848.41 

(16.22) 

8429.32 

(34.28) 

-249.68 

(1.04) 

12,028 

(51.85) 
     

10 73,183 

(48.08) 

24,404 

(11.68) 

-34,595 

(18.75) 

62,993 

(54.10) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 6a 

Changes in Women’s Lorenz Curve Ordinates Between Censuses 

(percentage points) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 -0.0125 

(1.326) 

-0.0089 

(0.965) 

0.3881 

(39.98) 

0.3667 

(37.01) 
     

2 -0.1164 

(5.806) 

-0.0237 

(1.246) 

1.0231 

(53.98) 

0.8829 

(44.22) 
     

3 -0.3945 

(12.96) 

-0.0830 

(2.785) 

1.6670 

(59.80) 

1.1895 

(41.63) 
     

4 -0.6966 

(17.35) 

-0.1502 

(3.702) 

2.3545 

(61.04) 

1.5078 

(39.54) 
     

5 -1.0492 

(20.12) 

-0.1167 

(2.136) 

2.9596 

(58.19) 

1.7937 

(37.23) 
     

6 -1.4835 

(22.79) 

-0.1243 

(1.774) 

3.3522 

(52.38) 

1.7444 

(29.83) 
     

7 -2.1815 

(28.22) 

-0.2370 

(2.757) 

3.5682 

(46.08) 

1.1497 

(16.98) 
     

8 -3.0027 

(33.99) 

-0.3714 

(3.622) 

3.6257 

(39.73) 

0.2516 

(3.36) 
     

9 -3.9226 

(41.07) 

-0.3717 

(3.152) 

3.3944 

(32.61) 

-0.8999 

(11.57) 
     

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 6b 

Changes in Men’s Lorenz Curve Ordinates Between Censuses 

(percentage points) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 -0.1883 

(19.12) 

-0.0257 

(2.822) 

0.4806 

(50.03) 

0.2666 

(25.87) 
     

2 -0.6200 

(29.49) 

-0.1201 

(5.940) 

1.0871 

(57.93) 

0.3470 

(17.67) 
     

3 -1.1995 

(35.65) 

-0.3154 

(9.185) 

1.6468 

(52.33) 

0.1318 

(4.291) 
     

4 -1.9423 

(39.62) 

-0.5068 

(9.681) 

2.1082 

(44.55) 

-0.3409 

(7.816) 
     

5 -2.9029 

(44.72) 

-0.6802 

(9.400) 

2.5209 

(38.81) 

-1.0621 

(18.78) 
     

6 -4.0101 

(48.21) 

-0.8441 

(8.782) 

2.9236 

(34.22) 

-1.9306 

(27.36) 
     

7 -5.1801 

(50.25) 

-0.9780 

(7.923) 

3.3255 

(30.53) 

-2.8326 

(33.26) 
     

8 -6.4920 

(51.74) 

-1.0246 

(6.615) 

3.7029 

(27.30) 

-3.8138 

(37.85) 
     

9 -7.9151 

(53.17) 

-0.8954 

(4.699) 

4.0914 

(24.67) 

-4.7191 

(40.82) 
     

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 7a 

Changes in Women’s Generalized Lorenz Curve Ordinates Between Censuses 

(Canada, 2020 $) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 45.525 

(1.228) 

74.655 

(1.849) 

231.96 

(4.784) 

352.14 

(7.692) 
     

2 131.28 

(1.632) 

260.92 

(3.110) 

643.83 

(6.759) 

1036.0 

(11.24) 
     

3 209.47 

(1.665) 

511.73 

(3.901) 

1101.6 

(7.962) 

1822.8 

(13.68) 
     

4 328.38 

(1.951) 

836.46 

(4.749) 

1619.9 

(8.315) 

2784.7 

(14.83) 
     

5 486.70 

(2.095) 

1298.0 

(5.256) 

2146.3 

(8.127) 

3931.0 

(15.70) 
     

6 689.44 

(2.216) 

1856.1 

(5.641) 

2624.2 

(7.670) 

5169.8 

(15.91) 
     

7 882.56 

(2.266) 

2497.5 

(6.165) 

3077.6 

(7.356) 

6457.6 

(16.01) 
     

8 1133.3 

(2.355) 

3288.2 

(6.485) 

3532.0 

(6.801) 

7953.5 

(16.09) 
     

9 1504.9 

(2.503) 

4386.5 

(6.900) 

3971.8 

(6.125) 

9863.3 

(16.05) 
     

10 4232.6 

(4.432) 

6675.3 

(5.725) 

3369.5 

(2.939) 

14,277 

(15.33) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 7b 

Changes in Men’s Generalized Lorenz Curve Ordinates Between Censuses 

(Canada, 2020 $) 

 

 

Decile 2000-05 2005-15 2015-20 2000-20 

     

1 -16.693 

(0.280) 

38.892 

(0.656) 

302.86 

(4.696) 

325.06 

(5.007) 
     

2 -44.569 

(0.349) 

110.13 

(0.904) 

661.72 

(5.765) 

727.28 

(6.015) 
     

3 -55.790 

(0.276) 

174.89 

(0.890) 

967.06 

(5.210) 

1086.2 

(5.669) 
     

4 -52.342 

(0.177) 

310.05 

(1.066) 

1180.6 

(4.300) 

1438.3 

(5.151) 
     

5 -67.878 

(0.178) 

523.50 

(1.396) 

1336.2 

(3.711) 

1791.8 

(4.896) 
     

6 -53.658 

(0.111) 

814.83 

(1.697) 

1457.9 

(3.179) 

2219.0 

(4.782) 
     

7 56.293 

(0.096) 

1210.2 

(2.039) 

1547.1 

(2.722) 

2813.6 

(4.989) 
     

8 252.55 

(0.354) 

1771.7 

(2.434) 

1578.3 

(2.247) 

3602.5 

(5.238) 
     

9 637.32 

(0.729) 

2614.4 

(2.915) 

1553.5 

(1.788) 

4805.3 

(5.680) 
     

10 7955.6 

(4.060) 

5055.1 

(2.019) 

-1906.3 

(0.844) 

11,104 

(6.794) 

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 

 

Absolute values of asymptotic “t-ratios” in parentheses. 
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Table 8a 

Cumulative Coefficients of Variations for Women’s Income 

2020-2020 

 

 

Decile 2000 2020 Difference 

    

1 0.48452 0.53936 0.05484 
    

2 0.49802 0.46666 -0.03136 
    

3 0.49152 0.43788 -0.05364 
    

4 0.48226 0.43340 -0.04886 
    

5 0.48863 0.44350 -0.04513 
    

6 0.51102 0.45916 -0.05186 
    

7 0.54271 0.47943 -0.06328 
    

8 0.57499 0.50885 -0.06614 
    

9 0.62280 0.56059 -0.06221 
    

10 0.79793 0.88389 0.08596 

    

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 
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Table 8b 

Cumulative Coefficients of Variations for Men’s Income 

2020-2020 

 

 

Decile 2000 2020 Difference 

    

1 0.51383 0.50927 -0.00456 
    

2 0.48141 0.42565 -0.05576 
    

3 0.47404 0.41109 -0.06295 
    

4 0.48383 0.42236 -0.06147 
    

5 0.49454 0.43817 -0.05637 
    

6 0.50570 0.45776 -0.04794 
    

7 0.51855 0.48231 -0.03624 
    

8 0.54005 0.51484 -0.02521 
    

9 0.57840 0.56809 -0.01031 
    

10 0.80861 1.17690 0.36829 

    

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

Censuses. 
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Table A1 

Summary Statistics 

(Individual Censuses - 2020 $) 

 

 

a) Women     

 2000 2005 2015 2020 

     

Mean Income - $35,317 $39,549 $46,225 $49,594 
     

NOBS - 256,129 274,147 313,063 345,002 
     

     
     

b) Men     

 2000 2005 2015 2020 
     

Mean Income - $56,263 $64,219 $69,274 $67,368 
     

NOBS - 254,607 266,549 304,245 338,219 
     

     

 

Source:  Authors’ calculations from Statistics Canada’s Public Use Microdata Files for Canadian 

censuses. 
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