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Abstract

We develop and implement methods for determining whether relaxing sparsity con-

straints on portfolios improves the investment opportunity set for risk-averse investors.

We formulate a new estimation procedure for sparse second-order stochastic spanning

based on a greedy algorithm and Linear Programming. We show the optimal recovery

of the sparse solution asymptotically whether spanning holds or not. From large equity

datasets, we estimate the expected utility loss due to possible under-diversification,

and find that there is no benefit from expanding a sparse opportunity set beyond 45

assets. The optimal sparse portfolio invests in 10 industry sectors and cuts tail risk

when compared to a sparse mean-variance portfolio. On a rolling-window basis, the

number of assets shrinks to 25 assets in crisis periods, while standard factor models

cannot explain the performance of the sparse portfolios.
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1 Introduction

We know for decades that the diversification benefits measured by the volatility of portfolio

returns are limited when we invest beyond 10 to 20 assets; see e.g. Evans and Archer (1968),
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Klemkosky and Martin (1975), Elton and Gruber (1977). Practitioners coin the term over-

diversification. At the opposite end of the spectrum, we often observe under-diversification

among households (Campbell (2006), Calvet, Campbell and Sodini (2007)). It might be

caused by information acquisition costs (Van Nieuwerburgh and Veldkamp (2010)), overcon-

fidence (Anderson (2013)), solvency requirements (Liu (2014)), or overweighting low prob-

ability events (Dimmock et al. (2021)). A characteristic-based demand system might also

explain why institutions and households hold a small set of stocks (Koijen and Yogo (2019)).

Possible over-diversification contributes to motivating the recent literature on sparse con-

struction of mean-variance (MV) portfolios within the Modern Portfolio Theory (Markowitz

(1952)) through imposing constraints on the portfolio weights; see e.g. Jagannathan and Ma

(2003), DeMiguel et al. (2009), Brodie et al. (2009), Fan, Zhang and Yu (2012), Ao, Li and

Zheng (2019), and Caner, Medeiros and Vasconscelos (2023). Such a construction limits the

impact of transaction costs, and eases monitoring and risk management. It also achieves

statistical regularisation of the investment portfolio in the presence of ill-conditioned large

covariance matrices. Whether limitations of diversification benefits beyond a given small

number of assets still hold true when we leave the MV paradigm is an open problem. This

paper targets the following questions: Is it possible to build a sparse portfolio of dimension

q from a large set of assets of dimension p so that we cannot get further improvement from

considering additional assets in a second-order stochastic dominance (SSD) paradigm? If

not, how much do we lose by limiting ourselves to this sparse portfolio in terms of expected

utilities compatible with SSD? Can we design an optimization algorithm to compute this

sparse portfolio from available data? Do we have the asymptotic statistical guarantee that

we cannot improve on the estimated expected utility loss due to under-diversification by

considering another sparse portfolio of the same fixed dimension?

The theory of stochastic dominance (SD) gives a systematic framework for analyzing in-

vestor behavior under uncertainty (see Chapter 4 of Danthine and Donaldson (2014) for an

introduction oriented towards finance). Stochastic dominance ranks portfolios based on gen-

eral regularity conditions for decision making under risk (Hadar and Russell (1969), Hanoch

and Levy (1969), and Rothschild and Stiglitz (1970)). SD uses a distribution-free assumption

framework which allows for nonparametric statistical estimation and inference methods. We

can see SD as a flexible model-free alternative to MV dominance of Modern Portfolio The-

ory (Markowitz (1952)). The MV criterion is consistent with Expected Utility for elliptical

distributions such as the normal distribution (Chamberlain (1983), Owen and Rabinovitch

(1983), Berk (1997)) but has limited economic meaning when we cannot completely char-

acterize the probability distribution by its location and scale. Simaan (1993), Athayde and

Flores (2004), and Mencia and Sentana (2009) develop a mean-variance-skewness framework
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based on generalizations of elliptical distributions that are fully characterized by their first

three moments. SD presents a further generalization that accounts for all moments of the

return distributions without necessarily assuming a particular family of distributions.

Second-order SD (SSD) spanning (Arvanitis et al. (2019)) is a model-free alternative

to MV spanning of Huberman and Kandel (1987) (see also Jobson and Korkie (1989), De

Roon, Nijman, and Werker (2001), Ardia, Laurent, and Sessinou (2024)). Spanning occurs if

introducing new securities or relaxing investment constraints does not improve the investment

possibility set for a given class of investors. MV spanning checks if the MV frontier of a set

of assets is identical to the MV frontier of a larger set made of those assets plus additional

assets (Kan and Zhou (2012), Penaranda and Sentana (2012)). Here we investigate such a

problem for investors with risk-averse preferences which are interested in the whole return

distributions generated by two sets of assets, a sparse subset of dimension q (10 assets) with

a limited number of assets coming from a much larger set of dimension p (500 assets).

The first contribution of the paper is to introduce the concept of sparse SSD spanning.

We propose a theoretical measure for sparse spanning based on second-order stochastic

dominance. For economic interpretation, we provide a representation based on a class of

concave utility functions without assuming differentiability. When sparse SSD spanning

occurs, a risk-averse investor will not improve her expected utility by shifting from the

sparse subset to the larger investment opportunity set. On the contrary, if it does not occur,

the risk-averse investor suffers an expected utility loss since we work with a subset instead of

the full set of assets. Hence we further provide a lower bound that takes the interpretation of

an optimal expected utility loss that cannot be improved upon by any sparse subset made of

q assets. We know that we suffer a loss because of the sparsity constraint but we cannot do

better though investing optimally in only q assets under an SSD criterion. To check sparse

SSD spanning on data, we develop consistent and feasible estimation procedures based on

Linear Programming (LP) and a greedy algorithm, namely the Forward Stepwise Selection

(FSS) algorithm. We use a finite set of increasing piecewise-linear functions, restricted to the

bounded empirical supports, that are constructed as convex mixtures of appropriate “ramp

functions” (in the spirit of Russel and Seo (1989)) in our representation as in Arvanitis,

Scaillet and Topaloglou (2020a,b). For every such utility function, we solve two embedded

linear maximization problems. It is an improvement over the implementation in Arvanitis

and Topaloglou (2017) and Arvanitis, Scaillet and Topaloglou (2020b) where they formulate

the empirical counterpart in terms of Mixed-Integer Programming (MIP) problems. MIP

problems are NP-complete, and far more difficult to solve. Our numerical approximations

are simple and fast since they are based on standard LP. They suit better computationally

intensive optimisation methods, which otherwise become quickly computationally demanding
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in empirical work on large data sets. Those formulations are reminiscent of the LP programs

developed in the early papers of testing for SSD efficiency of a given portfolio by Post (2003)

and Kuosmanen (2004) (see also Scaillet and Topaloglou (2010)).

Since we aim at a sparse solution computed from a large dimensional problem, we rely on

a greedy optimisation algorithm. We use a discrete combinatorial algorithm for maximizing

a function subject to a cardinality constraint. It starts with the empty set, and then adds

elements to it in r iterations. In each iteration, the algorithm adds to its current solution

the single element increasing the value of this solution by the most, i.e., the element with the

largest marginal value with respect to the current solution. In the context of submodular

maximization (see Buchbinder and Feldman (2018) for a survey), this simple FSS algorithm

checking for incremental gain at each step using nested models is usually referred to simply

as “the greedy algorithm”. In the case of submodular functions, it returns a solution that is

provably within a constant factor of the optimum (Nemhauser, Wolsey and Fisher (1978)),

and it turns out to be the best approximation ratio possible for the problem (Nemhauser and

Wolsey (1978)). Submodular functions have a natural diminishing return property: adding

an element to a larger set results in smaller marginal increase in the value of the function

compared to adding the element to a smaller set. Submodular functions share also a natural

sub-additivity property: for two disjoint sets, submodularity implies sub-additivity (but the

converse is not true). In the context of risk measures, sub-additivity is related to the notion

of diversification, a desirable property to be classified as a coherent risk measure (Artzner

at al. (1998)). The lower partial moments that we use below to construct our test statistics

have a type of put option pay-off and are measure of downside risk (Bawa (1975), Fishburn

(1977)). They are known to be coherent risk measures and, as such, benefit from the sub-

additivity property. Bian et al. (2017) extend guarantee results of the greedy algorithm

for cardinality constrained maximization of non-submodular nondecreasing set functions, in

particular nondecreasing standard LP problems with non-degenerate basic feasible solution

(Bertsimas and Tsitsiklis (1997), Ch. 3) that we implement in our empirics.

We choose that approach over penalization methods currently used for building sparse

MV portfolios for two reasons. First, we wish to bound the relative error without any

assumptions on the underlying sparsity for the true parameter. It is useful to show the

consistency of our empirical strategy irrespective of sparse spanning being present or absent.

Our proof relies on the recent work of Elenberg et al. (2018) (see Das and Kempe (2011)

for the linear regression case). Contrary to prior work in the MV setting, we require neither

assumptions on the sparsity of the underlying problem nor i.i.d. returns. We establish

multiplicative approximation guarantees from the best-case sparse solution. Our results

improve over previous work by providing bounds on a solution that is guaranteed to match
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the desired sparsity and cannot be further decreased. Convex methods for linear regressions

such as the standard LASSO objective (Tibshirani (1996)) require strong assumptions on

the model and the data, such as the irrepresentable condition on the design matrix (and

parameter vector) and i.i.d. data (Zhao and Yiu (2006), Meinshausen and Buhlmann (2006)),

in order to provide exact sparsity guarantees on the recovered solution (see Zhang (2009)

for use of these assumptions in greedy least squares regression).1 More specifically, in our

case, when the number r of iterations is equal to r = q lnT , T being the time-series sample

size, we show that the algorithm provides a consistent estimate of the bound of the expected

utility loss computed from financial returns satisfying a mixing condition. Mixing holds true

for many time series models such as ARMA models as well as several GARCH and stochastic

volatility processes (see Francq and Zakoian (2011) for several examples). It allows us to

build a path of the estimated bound as a function of the sparsity constraint q, and verify

when we have a sufficiently large q to get sparse SSD spanning, namely when the bound

vanishes. Second, the only input we need is the sparsity number q of assets. Hence, we

avoid the selection problem of a tuning parameter, namely the regularization parameter

in penalization methods. As discussed in Brodie et al. (2009), a portfolio selection with

a LASSO approach regulates the amount of shorting. In our setting, we use short-sales

constraints which corresponds to using an implicit large regularisation parameter for the

LASSO penalty. Our numerical approach based on a greedy algorithm however does not

require the true portfolio to be sparse, and a large regularisation parameter is not required for

developing valid statistical inference. As a by-product, our approach also provides a selection

algorithm for sparse MV spanning under multivariate normality using the equivalence with

sparse SSD spanning for elliptical distributions. It allows to bypass the regularization of

ill-conditioned estimates of large covariance matrices (see e.g. Fan, Liao, and Shi (2015),

Ledoit and Wolf (2017)).

The second contribution of the paper aims at checking on large datasets of equity returns

whether sparse SSD holds or not. We find that there is no benefit from expanding a sparse

opportunity set beyond 45 assets. The optimal sparse portfolio invests in 10 industry sectors

and cuts tail risk when compared to a sparse MV portfolio. On a rolling-window basis, the

number of assets shrinks to 25 assets in crisis periods, while standard factor models cannot

explain the performance of the sparse portfolios. .

The paper is organized as follows. In Section 2, we establish our probabilistic framework,

and review the definition of SSD. In Section 3, we define the relevant concept of sparse SSD

spanning and provide convenient functional representations. In Section 4, we construct an

1The irrepresentable condition is necessary and sufficient for the LASSO estimator to exhibit model
selection consistency.
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estimate of the bound for sparse SSD spanning by using empirical analogues. We exploit the

limiting distribution of the empirical process underlying the estimator which has the form of

a Gaussian process. Our estimation strategy builds on LP and an FSS algorithm. We show

the asymptotic optimal recovery of the sparse solution, namely statistical approximation

guarantee of the greedy algorithm output for a given q when T becomes large. In Section 5,

we describe the numerical implementation aspects of our empirical procedures. In Section

6, we analyze large datasets of equity returns to study whether sparse SSD holds or not and

compare with results given by the construction of sparse MV portfolios with the MAXSER

approach of Ao, Li and Zheng (2019). We provide concluding remarks in Section 7. We

provide our proofs and the list of factors used in the empirical application in the Appendix.

The Online Appendix discusses the concept of approximate sparse spanning. Given a fixed

support dimension, it specifies the low dimensional portfolio set that comes closer (in an

appropriate sense defined later on in the paper) spanning the high dimensional one. It also

gathers Monte Carlo experiments to assess the finite sample properties of our procedure for

sparse SSD spanning.

2 Background-Second Order Stochastic Dominance

We describe our limiting economy for a large number of financial assets. We denote the

financial returns by a process X∞ living in ℓ∞ (N,R), which is the space of bounded real

valued sequences equipped with the uniform metric. X(i) denotes the ith, i ∈ N coordinate,

X denotes the projection of X∞ in the first p coordinates, and P denotes the distribution of

X∞. We suppress dependence on p for brevity.

We introduce the associated portfolio weights with short-sales constraints. Short-sales con-

straints on the asset allocation promote sparsity (Brodie et al. (2009)); our approach can be

used to trace further patterns of (desired) sparsity. The set Λ∞ is a non-empty subset of the

N-simplex
{

λ ∈ RN : λi ≥ 0, i ∈ N,
∑∞

i=0 λi = 1
}

, and for p ∈ N, Λ =
{

λ ∈ Λ∞,
∑p−1

i=0 λi = 1
}

denotes the p−1 dimensional unit sub-simplex of Λ∞ and K is a non-empty closed subset of

Λ.2 In the present context, X is a random vector of financial returns for p base assets, while

Λ represents a set of portfolios formed on X. The process X∞ idealizes the high dimensional

situation in the limiting case where p → +∞. Given the restrictions that its elements satisfy,

2Positive portfolio weights summing to one induce compactness of the parameter space Λ which facilitates
proofs. If short sales are allowed, we can alternatively assume that portfolio weights lie inside compact
sets because of lending restrictions. The unit ball ℓ1-type restrictions imposed by the simplex consideration
along with the Lipschitz continuity of (x)+ imply distributional robustness: the expectations are equivalent to
expectations w.r.t. the worst case distribution in a Wasserstein neighbourhood of the underlying distribution;
see Theorem 1 of Gao, Chen, and Kleywert (2017).
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Λ∞ is considered topologized by the l1 norm and λ, κ denote generic elements of Λ∞.

Our first assumption specifies probabilistic properties for X∞. It requires mild moment

existence conditions (bounded sequence of first order moments), and a lower bound on the

associated supports consistent with non-logarithmic returns. There, supp denotes support

of the distribution of the random variable involved, c̄o denotes the closure of the convex hull,

and (x)+ := max(0, x).

Assumption 1. max0<i≤+∞ E
[∣

∣X(i)
∣

∣

]

< +∞. Z := c̄o
[

∪isupp
(

X(i)
)]

and inf Z > −∞

The assumption implies that for any λ ∈ Λ∞,
∑∞

i=0 λiX
(i) is a well defined random

variable and that the Lower Partial Moment Differential (LPMD) defined by

D (z, κ, λ,P) := E

[(

z −
∞
∑

i=0

κiX
(i)

)

+

]

− E

[(

z −
∞
∑

i=0

λiX
(i)

)

+

]

, (1)

is also bounded (and hence exists) and continuous in z, λ, κ.3 The LPMD (1) takes the in-

terpretation of the difference between two coherent risk measures evaluated on the portfolios

at hand. Assumption 1 facilitates the definition of SSD for the constructed portfolios:

Definition 1. κ SSD dominates λ, written κ ⪰
SSD

λ, iff D (z, κ, λ,P) ≤ 0, for all z ∈ Z.

The definition is simply an adaptation of the usual SSD relation in our high dimensional

framework. Using the classical Russell and Seo (1989) utility representations, we obtain the

well known result that κ ⪰
SSD

λ iff the former is preferred to the latter by every increasing

and concave utility. Thus, SSD exemplifies universal choices w.r.t. every insatiable and risk

averse investor.

3 Sparse SSD Spanning

Arvanitis et al. (2018) define the notion of SSD Spanning as an extension of the MV analogue.

It involves comparison of portfolio sets that are not necessarily singletons.

3This is due to the monotonicity of the integral, supλ∈Λ∞

E
[
∣

∣

∑

∞

i=0 λiX
(i)
∣

∣

]

≤ maxi E
[
∣

∣X(i)
∣

∣

]

< +∞.

The assumption implies that the partial moment E
[

(

z −∑∞

i=0 λiX
(i)
)

+

]

is continuous in z, λ via dominated

convergence, and that it is also bounded in λ for any z, even though Λ∞ is not (l1-) totally bounded. Along
with the Lipschitz continuity property of (·)+, it also implies that for any λ ̸= κ,

sup
z∈R

∣

∣

∣

∣

∣

E

[(

z −
∞
∑

i=0

κiX
(i)

)

+

]

− E

[(

z −
∞
∑

i=0

λiX
(i)

)

+

]
∣

∣

∣

∣

∣

≤ max
i

E
[∣

∣

∣
X(i)

∣

∣

∣

]

∞
∑

i=0

(κi + λi) = 2max
i

E
[∣

∣

∣
X(i)

∣

∣

∣

]

.
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Definition 2 (SSD Spanning). K ⪰
SSD

Λ iff ∀λ ∈ Λ, ∃κ ∈ K : κ ⪰
SSD

λ.

If the sets are not related by inclusion and K ⪰
SSD

Λ, then we have necessarily K ⪰
SSD

K ∪ Λ. Furthermore, spanning would be trivial if K ⊇ Λ were allowed. Hence, we can

always consider that K lies inside Λ. Spanning admits an economic interpretation when

K ⊆ Λ; it means that extension of the investment opportunity set from K to Λ does

not improve investment possibilities for any risk averter. Hence, no spanning means that

the extension contains a non dominated element. It is formalized as follows: K �
SSD

Λ iff

∃λ ∈ Λ : ∀κ ∈ K, κ �
SSD

λ, i.e., λ is maximal (efficient) w.r.t. K.

Under some further structure on K, SSD spanning admits an empirically useful charac-

terization involving a saddle-type point of the LPMDs.

Lemma 1. Under Assumption 1, K ⪰
SSD

Λ iff supΛ infκ∈K supz∈Z D (z, κ, λ,P) ≤ 0.

We extend the notion in the high dimensional setting, by also allowing a potentially

unknown low dimensional investment opportunity set to SSD span a high dimensional su-

perset. In order to formally define this and extend it to the limiting case where p →
+∞, we introduce the following notation for the support of a portfolio set: csupp (K) :=

# {i : ∃κi ̸= 0, κ ∈ K}. By construction csupp (Λ) = p. We suppose that as p → +∞ and

limp→+∞ Λ = Λ∞, where the limit is interpreted in the Painleve-Kuratowski convergence

mode. The sequence (Λ)p is by construction monotone increasing.

Definition 3 (Sparse Spanning SSD). For some fixed q, there exists a K ⊂ Λ with csupp (K) ≤
q and such that K ⪰

SSD
Λ.

Definition 3 generalizes Definition 2 in a twofold manner. First, it allows for a limiting

high dimensional setting thus providing the proper framework for addressing the empirical

questions listed in the introduction. Second, it only prescribes the existence of a “low-

dimensional” spanning subset of Λ, whereas for the original definition the spanning subset

is exogenously given. It implies that any procedure designed to test whether SS-SSD holds

would have to search for a spanning set inside the collection of “low-dimensional” subsets of

Λ. It is useful even in the case where SS-SSD does not hold. As the following paragraph

suggests, such a procedure, if consistent, would end up with a sparse portfolio set that “comes

as close as possible” to SSD span its high dimensional universe of portfolios.

As in Lemma 1, we obtain a useful characterization of SS-SSD by considering the collec-

tion Lp,q = {K ⊂ Λ : K closed, 0 < csupp (K) ≤ q}:4
4When Λ is itself a simplicial complex, then Lp,q is also a simplicial complex of dimension q−1. Then and

if p ≥ 2q, Lp,q has a geometric realization as a sub-simplex of the standard p− 1 simplex (see the Geometric
Realization Theorem in Edelsbrunner (2014)).
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Lemma 2. Under Assumption 1, for large enough p and fixed q, SS-SSD is equivalent to

infK∈Lp,q
supΛ infκ∈K supz∈Z D (z, κ, λ,P) ≤ 0, and the latter is equivalent to

infL∞,q
supΛ∞

infκ∈K supz∈Z D (z, κ, λ,P) ≤ 0.

The possibility of interchanging the order of appearance of the optimization operators in

the characterization infK∈Lp,q
supΛ infκ∈K supz∈Z D (z, κ, λ,P) ≤ 0 to supz∈Z supΛ infK∈Lp,q

infκ∈K

will greatly facilitate numerical aspects as well as the derivations of limiting properties for

the empirical procedures. It actually holds via the use of appropriate minimax theorems and

the extension of our assumption framework.

Lemma 3. Suppose that Assumption 1 holds. Then, for all p,

inf
K∈Lp,q

sup
Λ

inf
κ∈K

sup
z∈Z

D (z, κ, λ,P) = sup
z∈Z

sup
Λ

inf
K∈Lp,q

inf
κ∈K

D (z, κ, λ,P) .

We have supΛ infK∈Lp,q
infκ∈K D (z, κ, λ,P) = infK∈Lp,q

infκ∈K E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

− infλ∈Λ E

[

(

z −∑∞
i=0 λiX

(i)
t

)

+

]

, given an arbitrary threshold z, so that we can separate

the optimizations w.r.t. the “parameter sets” Λ and Lp,q ×K. It is useful especially in the

case where we approximate the outer optimization over Z by some discretization, as in our

empirical numerical implementations.

4 Sparse Optimization: Greedy Algorithm and Statisti-

cal Guarantees

In this section, and given the latency of P, we are interested in the empirical approximation of

the element of Lp,q that approximately spans Λ for a fixed q, and the subsequent estimation of

the associated diversification loss. We employ the empirical analogues of the functionals that

characterize spanning, and design the sparse optimization involved via a greedy algorithm.

We establish consistency using the results on statistical guarantees by Elenberg et al. (2018).

We derive the usual parametric
√
T rate and the limiting distribution, and construct a

conservative inferential procedure based on fast subsampling.

Consider the sequence (X∞
t )t∈Z where for all t, X∞

t =
d
X∞ and =

d
denotes equality in

distribution. Suppose, that for some p, a sample of (Xt)t=1,...,T is available from the sequence

(Xt)t∈Z. Denote with PT its empirical distribution function in Rp (in what follows P also

identifies the distribution of X0 in Rp without inconsistency due to the Daniel-Kolmogorov

Theorem). We approximate D (z, κ, λ,P) by D (z, κ, λ,PT ) and design a procedure that

evaluates infK∈Lp,q
supΛ infκ∈K supz∈Z D (z, κ, λ,PT ).
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Given Lemma 3, we design our empirical procedure as follows: for fixed q, formulate the

empirical optimization problem supz∈Z supΛ infK∈Lp,q
infκ∈K D (z, κ, λ,PT ), as

M (Λ,Lp,q,PT ) := supz∈Z [K (Λ,Lp,q, z,PT )− J (Λ, z,PT )] ,

K (Λ,Lp,q, z,PT ) := infK∈Lp,q
infκ∈K

1
T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+

J (Λ, z,PT ) := infλ∈Λ
1
T

∑T
t=0

(

z −∑∞
i=0 λiX

(i)
t

)

+
.

, (2)

Given K (Λ,Lp,q, z,PT ) the numerical technology evaluating J (Λ, z,PT ) and M (Λ,Lp,q,PT )

is the same as the one employed in the SD literature in the low dimensional settings. The

main issue here is to design a procedure that evaluates K (Λ,Lp,q, z,PT ). The outer optimiza-

tion there involves searching over low dimensional subsets of Λ. As explained in the introduc-

tion, we favor a procedure based on a greedy algorithm that approximates K (Λ,Lp,q, z,PT )

over procedures based on penalization. We use the FSS Algorithm (Algorithm 2 in Elenberg

et al. (2018)). Let us denote rT (q) the number of iterations performed.

Algorithm 1. Forward Stepwise Selection (see p. 3542 of Elenberg et al. (2018)).

Inputs: the sparsity Parameter q < p, the # of iterations rT (q), for a given set S the

set function 2p → R defined as

f (S) := inf
S:csupp(S)≤q

1

T

T
∑

t=0

(

z −
∞
∑

i=0

κiXi,t

)

+

.

a Choose the initial set S0,

b for i = 1, . . . , rT (q) do,

c s := argmaxj∈[p]/Si−1
f (Si−1 ∪ {j})− f (Si−1),

d Si := Si−1 ∪ {s}.

The last step (d), for i = rT (q), returns KFS (Λ,Lp,q, z,PT , rT (q)), namely the numerical

approximation of K (Λ,Lp,q, z,PT ) in (2) by the greedy algorithm. The next section provides

details on the numerical aspects of the three optimizations appearing in (2), including the

implementation of FSS.

We examine the issues of consistency, rates of convergence and limiting distribution of

the KFS (Λ,Lp,q, z,PT , rT (q)) based M (Λ,Lp,q,PT ). Our analysis depends on the asymptotic

behavior of the empirical process
√
TD (z, κ, λ,PT − P), and of the process GT (z, κ, λ) :=√

T [g (z, λ,PT )− g (z, λ,P)]T (κ− λ), as well as of the empirical moment process
1
T

∑T
t=0

(

zT −∑∞
i=0 λiX

(i)
t

)

+
, where the subdifferential g (z, λ,Q) := EQ

[

XI
{

z ≥∑∞
i=0 λiX

(i)
}]

10



and EQ denotes integration w.r.t. the measure Q. Specifically, consistency is facilitated if

the first and the second processes are asymptotically tight over appropriate subsets of pa-

rameters, and the third process (locally) uniformly converges to its population counterpart.

This behavior depends on stationarity and mixing rates for the returns process involved as

well as a stricter moment existence condition compared to Assumption 1.

Assumption 2. (X∞
t )t∈Z is strictly stationary and absolutely regular with mixing coefficients

(βm)m∈N that satisfy βm ∼ bm for some b ∈ (0, 1), as m → ∞, and max0<i≤+∞ E
[

∣

∣X(i)
∣

∣

2+ε
]

<

+∞, for some ε > 0.

The stationarity, ergodicity and mixing rates conditions as well as the moment existence

condition hold for several geometrically ergodic (finite dimensional), linear as well as GARCH

type models with values in Euclidean spaces. Those are frequently employed in empirical

finance with data consistent parameter restrictions; see Francq and Zakoian (2011). Using

the Daniell-Kolmogorov Theorem we have that stationarity and mixing rates hold for the

(X∞
t )t∈Z process whenever they hold uniformly over the collection of finite dimensional parts

of the process. Thereby, they hold whenever the finite dimensional parts of the process are

consistent with the aforementioned models with uniform parameter restrictions.

We obtain the following limit theory; in what follows, let ℓ∞ (Z × Λ∞ × Λ∞) denote the

space of real valued bounded functions on Z × Λ∞ × Λ∞ equipped with the sup norm. We

use ⇝ to denote weak convergence. We also denote Λ with Λp whenever it is important to

keep track of the dimension of the portfolio space. For p ≫ m ∈ N, we use Λ(m) to denote

the set {(λ, λ⋆) ∈ Λp × Λp : csupp (λ) ≤ m, csupp (λ⋆) ≤ m, csupp (λ− λ⋆) ≤ m}. Also, Λ̃(m)

denotes the set obtained by keeping the first component λ of the pairs (λ, λ⋆) that define

the elements of Λ(m).

Theorem 1. Suppose that Assumptions 1, 2 hold. Then, (a) 1
T

∑T
t=0

(

zT −∑∞
i=0 λiX

(i)
t

)

+
⇝

E

[

(

z −∑∞
i=0 λiX

(i)
t

)

+

]

, for any z, zT ∈ Z with zT → z, and uniformly in Λ∞. Furthermore,

suppose also that ln p√
T
→ 0. Then as T → ∞, with κ ∈ Λ̃(⌊q(lnT+1)⌋) (b)

√
TD (z, κ, λ,PT − P)⇝

G (z, κ, λ), in ℓ∞ (Z × Λ∞ × Λ∞), where G (z, κ, λ) is a zero mean Gaussian process with co-

variance kernel defined by

V [(z1, κ1, λ1) , (z2, κ2, λ2)] :=
∑

t∈Z Cov [I (z1, κ1, λ1, X0) , I (z2, κ2, λ2, Xt)] ,

where I (z, κ, λ,Xt) :=
(

z −∑∞
i=0 κiX

(i)
t

)

+
−
(

z −∑∞
i=0 λiX

(i)
t

)

+
. Finally, (c)

lim sup
T→∞

E[sup
z

sup
Λ(⌊q(lnT+1)⌋)

GT (z, κ, λ)] < ∞.
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The condition ln p√
T
→ 0 that appears in the final pair of results of the theorem is somewhat

stricter than the usual ln p
T

→ 0 that appears in the literature, it however facilitates standard

rates and limiting Gaussianity for the empirical processes involved and thus the results that

go beyond consistency. It ensures that the bracketing entropy of Λ grows at an appropriate

rate in order for tightness to hold in the limit. For the notion of the bracketing entropy

numbers of a metric space, see Section 5 of Andrews (1994) and Ch. 2 of van der Vaart

and Wellner (1996). In our context, it corresponds to the mapping that keeps track of the

logarithm of the minimal number of δ-brackets (w.r.t. the l1 norm) of real sequences with

absolutely convergent series needed to cover the particular neighborhood, for each δ > 0.

We furthermore use an assumption concerning a property of restricted strong convexity

(see Ch. 9 of Wainwright (2019) for reviewing restricted strong convexity in high-dimensional

statistics) for the LPMs as p → +∞.

Assumption 3. [Restricted Strong Convexity (RSC)] X has a continuous density f . For

m⌊q(ln(T+1))⌋ denoting the supremum over Λ(⌊q(ln(T+1))⌋), of the smallest eigenvalues of the

Hessian matrix of E (z −∑∞
i=0 κiX0,i)+ as a function of κ, we have that as T → ∞,

m⌊q(ln(T+1))⌋ lnT → +∞, locally uniformly in Z − {inf Z}.

Due to Assumption 1, the existence of the continuous density f , Theorem 1 of Savare

(1996) and given the distributional derivative of (x)+ (see p. 1 in Savare (1996)), we ob-

tain that E (z −∑∞
i=0 κiX0,i)+ is twice differentiable and the Hessian assumes the form

∫

Rq XXT δ
(

z − κTX
)

f (X) dX, where δ denotes the Dirac Delta function. Using Example

27 in Estrada and Kanwal (2012), the latter equals
∫

z=κTX
XXTf (X) dX. The eigenvalue

restriction part of Assumption 3 thus follows whenever the minimum eigenvalue of V , the

second moment matrix of X, is dominated by lnT as T → ∞, due to the Cauchy’s eigenvalue

interlacing theorem (see for example Hwang (2004)). It means that we can also accommodate

second moment matrices that become asymptotically singular at a slowly varying rate.5 Con-

trolling the asymptotic singularity of the Hessian is related to the geometric interpretation

provided in Remark 4 of Elenberg et al. (1998). By doing so, we control the way the set func-

tion values diminish via adding individual features through a stepwise procedure compared

to adding multiple features at once as in a LASSO penalization, approximating the dimin-

ishing return property of a submodular function. The analysis in Par. 5 of Kim and Pollard

(1990) implies that the same control suffices when f is continuously differentiable, which is

more in line with the bounded support framework of our applications. When V has a Kac-

Murdock-Szego type Toeplitzian structure (Trench (1999)), where Vi,j = v|i−j|, i, j = 1, . . . , p

for v ∈ [0, 1), Assumption 3 holds trivially since the minimum eigenvalue of the matrix is

5Such a singularity is ruled out by the irrepresentable condition in the LASSO literature.
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then uniformly bounded in p (Trench (1999), p. 182). Such matrices appear in zero mean

normalised autoregressive progresses. In the case of the zero mean spiked identity model (Ex-

ample 7.18 in Wainwright (2019)), where V = Id+µ11′ for some µ ∈ [0, 1), the results in the

aforementioned example imply that Assumption 3 holds for every fixed value of µ as well as

when µ converges to one with T at a slower than logarithmic rate. It fails to hold whenever

µ becomes asymptotically null with faster rates. When X is not necessarily zero mean, then

the variational representation of the minimum eigenvalue λmin(A), of a p.d. matrix A, implies

that Assumption 3 holds whenever min {λmin(E(X)E(X)′), λmin(Var(X))} lnT → ∞. Due

to Λ being simplicial, no restricted smoothness conditions for the maximum eigenvalue of

the Hessian are required. Hence, the assumption can accommodate without such restrictions

covariance matrices for models arising in strong factor settings where the largest eigenvalue

is of the same order as the number of assets.

The RSC assumption along with Assumption 2 imply analogous RSC properties for the

empirical LPMs 1
T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+
with probability converging to one (w.h.p.). It

enables the use of the results of Elenberg et al. (2018) on statistical guarantees for the FSS

Algorithm. Using the above, we first obtain the following consistency result.

Theorem 2. Suppose that Assumptions 1, 2, 3, hold, and that ln p√
T
→ 0. Then, as T → ∞,

and uniformly in Z,

KFS (Λ,Lp,q, z,PT , q lnT )⇝ K (Λ∞,L∞,q, z,P) . (3)

Consequently, MFS (Λ,Lp,q,PT , q lnT )⇝M (Λ∞,L∞,q,P), where MFS (Λ,Lp,q,PT , rT (q)) :=

supz∈Z
[

KFS (Λ,Lp,q, z,PT , rT (q))− J (Λ, z,PT )
]

.

Whenever Assumption 3 holds for some q⋆ ∈ N, Theorem 2 implies then that the mapping

q → MFS (Λ,Kp,q,PT , q lnT ) converges in probability to q → M (Λ∞,K∞,q,P) uniformly in

q ≤ q⋆.

Theorem 2 holds whether we have sparse spanning or not at the limit. We do not need to

assume sparsity in the population. The statistical guarantee result of Theorem 2 is a strong

advantage of the greedy algorithm over penalization methods.

We are further occupied with the determination of the rates of convergence and the dis-

tributional limit for the deviation MFS (Λ,Lp,q,PT , q (lnT )
ϵ)−M (Λ∞,L∞,q,P), that gauges

the gap between MFS (Λ,Lp,q,PT , q (lnT )
ϵ), which is returned by the greedy algorithm on

the data, and the limit M (Λ∞,L∞,q,P). To this end, we augment rT to q (lnT )ϵ for some

arbitrary ϵ > 1, in order to facilitate arguments that estimate the rate of the approximation

of the infimum of 1
T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+
over the empirical solution in Lp,q, by the

13



infimum of E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

over the population solution. Given the second result

of Theorem 1, we obtain standard rates and a distributional limit defined as a saddle type

point of a zero mean Gaussian process, using among others the generalized Delta method

applicable due to the Hadamard directional differentiability of the optimization functionals

that appear in the definition of spanning (see Cárcamo et al. (2020)).

Theorem 3. Suppose that Assumptions 1, 2, 3 hold, and that ln p√
T
→ 0. Then as T → ∞,

√
T
(

MFS (Λ,Lp,q,PT , q (lnT )
ϵ)−M (Λ∞,L∞,q,P)

)

⇝ sup inf
(z,λ,κ)∈Γ

G (z, λ, κ) , (4)

where G (z, λ, κ) is a zero mean Gaussian process with covariance kernel defined by

V [(z1, λ1, κ1) , (z2, λ2, κ2)] :=
∑

t∈Z Cov [I (z1, λ1, κ1, X0) , I (z2, λ2, κ2, Xt)] ,

I (z, λ, κ,Xt) as in Theorem 1, and Γ := argmaxz∈Z,λ∈Λ∞ mincsupp(κ)≤q D (z, λ, κ,P).

In practice, for fixed p, and as long as p > q lnT , ϵ can be chosen conveniently close

to 1, so that p > q(lnT )ϵ and the method is applicable. Theorem 3 allows for the con-

struction of a feasible inferential procedure based on subsampling in the spirit of Lin-

ton et al. (2014) (see also Linton et al. (2005)) that approximates the asymptotic quan-

tiles of the limit in (4). To get a viable numerical strategy, we design the subsampling

technique to avoid the costly numerical search of the FSS algorithm inside each subsam-

ple. To this end, let κz,T denote the solution of infcsupp(κ)≤q
1
T

∑T
t=0

(

zt −
∑∞

i=0 κiX
(i)
t

)

+
over Lp,q. Denote with Γ⋆ the subset of Γ that contains the triplets at which some ac-

cumulation point of κz,T appears. Let 0 < bT ≤ T , and consider the subsamples from

the original observations (Xj)j=t,...t+bT−1 for all t = 1, 2, . . . , T − bT + 1. For α ∈ (0, 1),

denote with qT,BT
(1− α) the 1 − α quantile of the subsample empirical distribution of

(√
bT

(

supZ×Λp
D (z, κz,T , λ,Pt,bT )−MFS (Λ,Lp,q,PT , q (lnT )

ϵ)
))

t=1,...,T−bT+1
, where Pt,bT de-

notes the empirical distribution of (Xj)j=t,...t+bT−1 and we use the same κz,T across subsam-

ples. Hence, we get a fast subsampling method (Hong and Scaillet (2006)) that we use in

our empirics to build confidence intervals for the estimated diversification loss.

Our final result depends on a condition on the elements of Γ⋆ that avoids limiting de-

generacies (Condition ND below). They would imply poor higher order properties for the

conservative inference that we consider in Proposition 1. We say that a triplet in Γ⋆ is trivial

if the variance of G there is zero. We have triviality when the first element of the triplet

is inf Z. It is also the case when λ coincides with the κ appearing in the triplet. Then, λ

is by construction an efficient element of Λ∞ that is also q-sparse. Whenever the elements
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of Xp are linearly independent for p larger than the maximum desired value of q for the

analysis at hand, trivialities can occur only if SS-SSD holds. This linear independence holds

for Gaussian returns for example.

Proposition 1. Suppose that (Condition ND) for the given q, Γ⋆ contains at least one non

trivial triplet. Under the premises of Theorem 3, if bT → ∞, bT
T

→ 0 and α < 1
2
, then we

get the conservative result:

lim inf
T→∞

P

[

M (Λ∞,L∞,q,P) ∈
(

ZMFS(q),MFS (Λ,Lp,q,PT , q (lnT )
ϵ) +

qT,BT
(1− α)√
T

)]

≥ 1−α,

(5)

where ZMFS(q) := max(0,MFS (Λ,Lp,q,PT , q (lnT )
ϵ)− qT,BT

(1−α)√
T

). If moreover there exists a

unique q-sparse element of Λ that appears in every triplet in Γ⋆, then we get the exact result:

lim
T→∞

P

[

M (Λ∞,L∞,q,P) ∈
[

ZMFS(q),MFS (Λ,Lp,q,PT , q (lnT )
ϵ) +

qT,BT
(1− α)√
T

]]

= 1− α.

(6)

When spanning does not hold, then a form of non-degeneracy of P suffices for ND; for

any optimal K ∈ L∞,q, it suffices that no random variables in X exist, corresponding to

coordinates outside the support of K, that are obtainable as linear combinations of elements

of X that correspond to coordinates in the support of K. When spanning holds, the same

non-degeneracy condition suffices, as long as there are triples in Γ⋆ that correspond to z ̸=
inf Z. The latter can be achieved by trimming z to be greater than or equal to an arbitrarily

close number above the infimum of the minima of the empirical supports of the elements

of X. It comes at the cost of weakening the SD relation. The non-degeneracy condition

can be empirically tested via augmenting the vector of the elements of X that correspond

to coordinates in the support of the FS solution for the optimal K, with a single at a time

element of X outside K and performing rank tests for the relevant (q+1)× (q+1) empirical

covariance matrices-see for example Robin and Smith (2000).

The evaluation of the subsample quantile has small computational burden since we avoid

the costly sparse optimization w.r.t. κ inside each subsample. Usually, Z is approximated by

some finite discretization and optimization w.r.t. λ is performed via linearization of the SD

conditions and the use of LP methods. Then, the computational cost of sparse optimization

is avoided and the asymptotic results in (5)-(6) hold as long as the discretized set converges

to a dense subset of Z.

In the special case where the problem M (Λ∞,L∞,q,P) has a unique optimizer - pos-

sible only if SS-SSD does not hold, (4) implies asymptotic normality. It occurs whenever

the maximal expected utility difference between an efficient element of Λ∞ and its approxi-
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mate counterpart of dimension q occurs at a unique Russell-Seo utility for a unique pair of

efficient-approximate efficient portfolios. In such a case, we can exploit normality to obtain

a result like (6). A feasible normality result requires a consistent estimator for the limiting

variance. It can be obtained via a subsampling methodology that does not involve subsam-

ple optimizations, as long as stricter moment conditions hold for X0, and a non-degeneracy

condition for the covariance kernel of G holds in some neighborhood of the optimizer.

Proposition 1 also implies an obvious conservative Kolmogorov-Smirnov testing procedure

for the null hypothesis of q sparse spanning based on subsampling. The null hypothesis is

rejected iff zero does not lie inside the confidence interval. Given a finite set Q ⊂ N⋆, it

is also easy to use the result above in order to test more complicated hypotheses; e.g. the

hypothesis that sparse spanning holds for at least some q ∈ Q would be rejected iff zero lies

outside the associated confidence interval for max {q ∈ Q}. An interesting extension would

be the construction of a test for the null of SS-SSD spanning when q is allowed to diverge

with rates dominated by the logarithm of the sample size.

5 Numerical Implementation

For q < p, we consider the following empirical optimization problem

sup
z∈Z

sup
Λ

inf
K∈Lp,q

inf
κ∈K

D (z, κ, λ,PT ) , (7)

The utility class interpretation of Arvanitis, Scaillet and Topaloglou (2020a,b) implies

that we can represent (7) in terms of expected utility as:

sup
λ∈Λ;u∈U

inf
K∈Lp,q

inf
κ∈K

EPT

[

u
(

XT
λ
)

− u
(

XT
κ
)]

,

with U :=
{

u ∈ C0 : u(y) =
∫ x

x
v(x)r(y; x)dx v ∈ V

}

, V :=
{

v : X → R+ :
∫

X v (x) = 1
}

, and

r(y; x) := (y − x)1(y ≤ x), (x, y) ∈ X 2.

The set U is comprised of normalized, increasing, and concave utility functions that

are constructed as convex mixtures of elementary Russell et Seo (1989) ramp functions

r(y; x), x ∈ X . This representation is used in the numerical implementation via

sup
u∈U

(

sup
λ∈Λ

EPT

[

u
(

XT
λ
)]

− sup
Lp,q

sup
κ∈K

EPT

[

u
(

XT
κ
)]

)

.

We approximate every element of U with arbitrary prescribed accuracy using a finite set
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of increasing and concave piecewise-linear functions in the following way:

For N1, N2 integers greater than or equal to 2, first, X is partitioned into N1 equally

spaced values as x = z1 < · · · < zN1 = x, where zn := x + n−1
N1−1

(x − x), n = 1, · · · , N1.

Second, [0, 1] is partitioned as 0 < 1
N2−1

< · · · < N2−2
N2−1

< 1. Using these partitions, an

approximate optimization problem is considered:

sup
u∈U

(

sup
λ∈Λ

EPT

[

u
(

XT
λ
)]

− sup
κ∈K

EPT

[

u
(

XT
κ
)]

)

, (8)

where U :=
{

u ∈ C0 : u(y) =
∑N1

n=1 vnr(y; zn) vn∈V
}

, and the set of allowable weights

V :=

{

v ∈
{

0, 1
N2−1

, · · · , N2−2
N2−1

, 1
}N1

:
∑N1

n=1 vn = 1

}

.

By construction, every u ∈ U consists of at most N2 linear line segments with end-

points at N1 possible outcome levels. Furthermore, U ⊂ U , which is finite as it has

N3 := 1
(N1−1)!

∏N1−1
i=1 (N2 + i − 1) elements and subsequently (8) approximates (5) from be-

low as the partitioning scheme is refined; (N1, N2 → ∞). Then, for every u ∈ U , the two

embedded utility maximization problems in (8) can be solved using LP. Consider c0,n :=
∑N1

m=n (c1,m+1 − c1,m) zm, c1,n :=
∑N1

m=n wm, and N := {n = 1, · · · , N1 : vn > 0}⋃ {N1}.
Then, for any given u ∈ U , sup

λ∈ΛEPT

[

u
(

XT
λ
)]

is the optimal value of the objective func-

tion of the following LP problem in canonical form: maxT−1
∑T

t=1 yt s.t. yt−c1,nX
T
t λ ≤ c0,n,

t = 1, · · · , T , n ∈ N ,
∑M

i=1 λi = 1, λi ≥ 0, i = 1, · · · ,M , and yt free, t = 1, · · · , T . The

LP problem always has a feasible solution and has O(T + N) variables and constraints.

In the empirical application, we take N1 = 10 and N2 = 5. Thus, we end up with

N3 = 1
9!

∏9
i=1(4 + i) = 715 distinct utility functions and 2N3 = 1 430 small LP problems,

which is time manageable with modern-day computer hardware and solver software. We

use a desktop PC with a 3.6 GHz, 24-core Intel i7 processor, with 128 GB of RAM, using

MATLAB and GAMS with the Gurobi optimization solver. We start with an empty set,

and then we gradually increase the number of assets adding 1 asset at a time until we find a

set K ⊂ Λ with csupp (K) ≤ q and such that K ⪰
SSD

Λ. In each iteration, we search for the

asset that increases (7) the most.

The overall procedure consists of the following steps:

For w = 1 to q:

1. If w = 1, we search for the single asset that maximizes the value of (7).

2. For 1 < w < q, we solve (7) for each additional asset, and we keep the subset K with

dimension w, that maximizes (7).

3. If we find a spanning set K inside the collection of all possible subsets of Λ with
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dimension w, then the procedure stops.

4. Else, if w = q or the maximum amount of iterations q ln⌊T + 1⌋ is reached, we end up

with a sparse portfolio set K that "comes as close as possible" to SSD spanning its

high dimensional universe of portfolios, and we evaluate the utility loss.

Given the output of the last step of the procedure above, and since in the empirical

applications p is fixed, the optimal q, i.e., the one that provides the portfolio that comes

closest in eliminating the empirical utility loss, can be readily estimated. To do so, and if the

output of step 4 does not already imply zero optimal empirical utility loss, we may continue

for w > q up to p.

6 Empirical Application

We analyze large datasets of equity returns. We investigate the performance of our strategy

based on the S&P 500 index constituents, and we compare the results with the sparse mean-

variance efficient portfolios (MAXSER) of Ao, Li, and Zheng (2019). We consider the period

from January 1981 to December 2020, namely a total of 480 monthly return observations.

6.1 In-Sample Analysis

6.1.1 Diversification Loss

Starting with the empty set, we implement our sparse dominance methodology as described

above, adding one element at a time in r iterations. In each iteration, the algorithm adds to

its current solution the single element decreasing the value of this solution by the most, i.e.,

the element with the largest marginal value with respect to the current solution. The target is

to get the optimal portfolio with size q that yields the minimal empirical diversification loss.

Whenever the latter is zero, a sparse portfolio of support q is built from a large set of assets

of support p which cannot be improved in terms of expected utility from the consideration

of additional assets (full diversification).
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Figure 1: The upper panel plots the diversification loss w.r.t. the number of assets for the SS-SSD optimal
portfolios. The lower panel plots the diversification loss of the optimal MAXSER portfolio with respect to
the SS-SSD portfolio with zero loss, and the upper bound of a 95% and 90% one-sided confidence intervals
(CI).
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In Figure 1, we observe that the number of assets that yield zero diversification loss is

45 (upper panel)6. In the same figure (lower panel), we also observe that the MAXSER

portfolio of Ao, Li, and Zheng (2019) consists of 32 assets.7 We evaluate the diversification

loss, namely the estimated expected utility loss, of the optimal MAXSER portfolio with

respect to the SSD portfolio with the smallest number of stocks reaching the zero bound. In

the same graph, the upper bound of a 95% as well as 90% one-sided confidence intervals (CI)

corresponding to the portfolio reaching the zero bound (45 assets) are additionally reported.

We build them with the fast subsampling method of Section 4 whose validity is established in

6Analogous analysis has been done for the FTSE100 constituents as well as the 49 Industry portfolios of
Kenneth French. For the FTSE100, we get a subset K with size q = 25 that yields zero diversification loss,
while, for the 49 Industry portfolios, the size is 13 assets.

7The tuning parameter λ in MAXSER is the regularisation parameter in the LASSO penalization. To
determine it, we use the 10-fold cross-validation procedure, which is described in Section 1.5.1. of their paper.

19



Proposition 1. We observe that the diversification loss of the MAXSER portfolio is between

the loss of the SS-SSD portfolio for q = 32 and the 90% confidence interval.

6.1.2 Performance Summary of the Optimal Portfolios

We compare the in-sample performance of the MAXSER and the SS-SSD optimal portfolios

as well as the 1/N (equally-weighted) portfolio with N = p = 500. We compute the first

four moments of portfolio returns (Average, Standard Deviation, Skewness and Kurtosis),

as well as a number of commonly used parametric performance measures for portfolios: the

Sharpe Ratio, the Downside Sharpe Ratio of Ziemba (2005), the 95% Value-at-Risk (with

a positive sign for a loss), the 95% Expected Shortfall (with a positive sign for a loss), the

Upside Potential and Downside Risk (UP) ratio of Sortino and van den Meer (1991), the

Opportunity Cost, and the Certainty Equivalent return (CEQ).

The definition of Downside Sharpe Ratio uses the downside variance (or more precisely

the downside risk) defined as σ2
P−

=
∑T

t=1(Rt)2−
T−1

, where (Rt)− is the return of portfolio P at

day t which is below zero (i.e., those with losses). Given that the total variance equals twice

the downside variance 2σ2
P−

, the Downside Sharpe Ratio is given by SP =
R̄P−R̄f√

2σP−
, where R̄P

is the average period return of portfolio P and R̄f is the average risk free rate.

The UP ratio compares the upside potential to the shortfall risk over a specific target

(benchmark): UP ratio =
1
T

∑T
t=1(RP,t−Rf,t)+√

1
T

∑T
t=1((Rf,t−RP,t)+)2

, where RP,t is the realized monthly return

of the portfolio P for the out-of-sample period, T is the number of experiments performed,

and Rf,t is the monthly return of the benchmark (the riskless asset). The numerator equals

the average excess return over the benchmark reflecting the upside potential while the de-

nominator measures the downside risk (i.e., shortfall risk over the benchmark).

Both the Downside Sharpe and UP Ratios are viewed to be more appropriate measures

of performance than the typical Sharpe Ratio given the asymmetric return distribution of

assets.

Moreover, we compute a certainty equivalent return (CEQ) for the three portfolios based

on the exponential and power utility functions: EPT
[u(1 + RP)] = u(1 + CEQ). For its

calculation, exponential and power utility functions are used, consistent with second degree

stochastic dominance. For the coefficient of risk aversion alternative values are employed.

Finally, the Opportunity Cost θ of Simaan (2013) is used, which is a useful measure for

the economic significance of the performance difference of two portfolios. It is defined as

the return that needs to be added to (or subtracted from) the MAXSER portfolio return

RMAXSER, so that the investor is indifferent (in utility terms) between the the two different

portfolios: EPT
[u(1+RMAXSER+θ)] = EPT

[u(1+RSS−SSD)]. A positive (negative) Opportunity

Cost implies that the investor is better (worse) off if he invests in the SS-SSD over the
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MAXSER portfolio. We use the same type of definition for the Opportunity Cost for the

1/N portfolio. Given that this measure takes into account the entire probability distribution

of asset returns, it is suitable to evaluate strategies even when the asset return distribution

is not normal. Again we use exponential and power utility functions under alternative values

for the coefficient of risk aversion.

Table 1 reports the performance and risk measures of the in-sample performance of the

three portfolios. They allow to finer distinguish the differences between the portfolios. We

observe that the Average as well as the Standard Deviation for the SS-SSD portfolio are

higher that those of the MAXSER portfolio, while the Sharpe Ratio is slightly lower. It

is expected, since the Sharpe Ratio is the maximization target in the construction of the

MAXSER portfolio. The Skewness is less negative and the Kurtosis is higher. Although

the Sharpe Ratio of the SS-SSD portfolio is slightly lower, the Downside Sharpe Ratio as

well as the UP Ratio are higher. The VaR and the Expected Shortfall (with a positive

sign for a loss) are lower as expected when investors want to mitigate the impact of large

losses. The SS-SSD portfolio targets and achieves a transfer of probability mass from the

left to the right tail of the return distribution when compared to the MAXSER portfolio.

We also observe that both the SS-SSD and the MAXSER portfolios outperform the 1/N

portfolio in all performance and risk measures. The CEQ is higher for the SS-SSD portfolio,

and the Opportunity Cost is always positive, indicating that a positive return should be

added in the MAXSER or the 1/N portfolio to achieve the same expected return with the

SS-SSD portfolio. The CEQ for the optimal SS-SSD with q = 45 range from 0.958% to

1.183% for the exponential utility and from 1.184% to 6.214% for the power utility. For the

optimal MAXSER portfolio with q = 32, we get a CEQ between 0.855% and 1.060% for

the exponential utility and an Opportunity Cost between 1.060% and 5.536% for the power

utility. For the 1/N portfolio, we get a CEQ between 1.016% and 0.670% for the exponential

utility and between 1.016% and 5.243% for the power utility.

In order to economically quantify the diversification loss in Figure 1, we also report in

Table 1 the performance measures for P (5) and P (10) i.e., optimal portfolios P (q) with

cardinality constraints q = 5 and q = 10 assets. We observe that both portfolios exhibit

significantly worse performance than the SS-SSD and MAXSER portfolios. Moreover, we

get a very negative Skewness and positive Kurtosis, while the VaR and Expected Shortfall

are huge. We also calculate the CEQ as well as the Opportunity Cost θ: EPT
[u(1 + RP(q) +

θ)] = EPT
[u(1 + RSS−SSD)]. For q = 5, the CEQ ranges from 0.496% to 0.815% for the

exponential utility and from 0.916% to 4.257% for the power utility, while the Opportunity

Cost ranges from 0.042% to 0.062% for the exponential utility and from 0.051% to 0.122% for

the power utility. For q = 10, the CEQ ranges from 0.629% to 0.928% for the exponential
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utility and from 1.019% to 4.910% for the power utility, while the Opportunity Cost for

the diversification loss ranges from 0.047% to 0.068% for the exponential utility and from

0.069% to 0.145% for the power utility. We observe differences in the CEQ between the

various portfolios around 0.1%, 1%, or 1.5% depending on the chosen utility function. They

correspond to around 1.2%, 12%, or 18% on an annual basis.

Table 1: In-sample performance: risk and performance measures

SS-SSD MAXSER 1/N P (5) P (10)

Measures

Average 0.0129 0.0126 0.0133 0.0114 0.0118
Standard Deviation 0.0331 0.0314 0.0458 0.0480 0.0481
Skewness -0.1986 -0.2122 -0.2689 -0.5747 -0.5025
Kurtosis 1.7595 1.2521 2.9690 5.4234 3.2736
Sharpe Ratio 0.3904 0.4013 0.2899 0.2199 0.2353
Downside Sharpe Ratio 0.6613 0.6036 0.4453 0.3825 0.4195
Value-at-Risk 0.0396 0.0430 0.0615 0.0683 0.0672
Expected Shortfall 0.0617 0.0651 0.0959 0.1196 0.0983
UP ratio 0.9019 0.8739 0.7780 0.0655 0.7102
Certainty Equivalent
Exponential Utility
ARA=2 1.183% 1.060% 1.016% 0.815% 0.978%
ARA=4 1.071% 0.958% 0.898% 0.706% 0.831%
ARA=6 0.958% 0.855% 0.670% 0.496% 0.629%
Power Utility
RRA=2 1.184% 1.060% 1.016% 0.916% 1.019%
RRA=4 3.638% 3.250% 3.125% 1.801% 2.464%
RRA=6 6.214% 5.536% 5.242% 4.257% 4.910%
Opportunity Cost
Exponential Utility
ARA=2 0.090% 0.081% 0.062% 0.068%
ARA=4 0.087% 0.075% 0.051% 0.056%
ARA=6 0.077% 0.061% 0.042% 0.047%
Power Utility
RRA=2 0.093% 0.072% 0.051% 0.069%
RRA=4 0.156% 0.121% 0.092% 0.112%
RRA=6 0.189% 0.162% 0.122% 0.145%

Entries report the risk and performance measures (Sharpe Ratio, Downside Sharpe Ratio, VaR, ES, UP
Ratio, Opportunity Cost and Certainty Equivalent) for the SS-SSD, the MAXSER, the P(5) and P(10)
optimal portfolios (with cardinality constraints q = 5 and q = 10) as well as for the 1/N portfolio. The data
cover the period from January, 1980 to December, 2020.

Finally, Table 2 reports the average and standard deviation of asset weights of the major

Industries selected by each one of the two portfolios. We observe that both portfolios are

well diversified and invest in almost the same Industries, with different overall weights. The

table also exhibits the % of overlap, between assets selected by SS-SSD and MAXSER.

The overlap is high, since both strategies select assets from the same industries. Moreover,

Table 3 shows the average skewness and kurtosis of the assets selected by both strategies.

We observe that the SS-SSD strategy picks assets with higher skewness and kurtosis, as an

attempt to increase the right tail and diminish the left one.
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Table 2: S&P 500 Industry weights

SS-SSD MAXSER

Weights Average St. Dev Average St. Dev % overlap

Capital Goods 3.43% 3.17% 4.50% 3.26% 29.24%
Consumer Services 6.57% 4.11% 8.39% 5.97% 32.77%
Financial 3.60% 2.97% 4.73% 3.88% 27.39%
Consumer Staples 3.24% 1.89% 0% - 0%
Food 2.70% 1.25% 3.21% 2.67% 45.34%
Health care 8.31% 5.41% 7.43% 4.74% 51.25%
Household 4.37% 3.26% 5.58% 4.12% 44.12%
IMedia 4.34% 3.29% 4.58% 3.66% 51.25%
Pharm 5.69% 4.23% 6.89% 5.47% 45.96%
Retailing 19.43% 9.34% 17.21% 9.39% 61.56%
Software 16.21% 8.95% 14.51% 8.34% 39.43%
Technology 12.79% 7.94% 11.45% 7.38% 37.94%
Transportation 4.81% 3.76% 5.62% 3.87% 41.12%

Entries report the average and standard deviation of Industry weights of the SS-SSD and the MAXSER
portfolios in the major Industries of the S&P 500 Index, as well as the % of overlap, between assets selected
by SS-SSD and MAXSER.

Table 3: Average Skewness and Kurtosis of the selected S&P 500 Industry assets

SS-SSD MAXSER

Weights Skewness Kurtosis Skewness Kurtosis

Capital Goods 0.239 2.339 0.166 1.799
Consumer Services -0.163 2.098 -0.303 1.614
Financial 0.104 2.360 -0.027 1.815
Consumer Staples 0.122 1.460 - -
Food 0.188 2.644 0.171 2.034
Health care -0.203 1.552 -0.348 0.348
Household -0.128 3.377 -0.475 2.367
IMedia 0.148 1.628 0.053 1.175
Pharm 0.110 1.325 -0.233 0.327
Retailing 0.023 1.194 0.021 0.725
Software 0.107 1.652 0.119 1.194
Technology -0.256 1.679 -0.395 1.138
Transportation 0.086 1.386 0.096 0.587

Entries report the average skewness and kurtosis of assets selected by the SS-SSD and the MAXSER portfolios
in the major Industries of the S&P 500 Index.

6.2 Rolling-Window Analysis

6.2.1 Diversification Loss

We conduct out-of-sample backtesting experiments and we evaluate the optimal SS-SSD

portfolios achieving a zero diversification loss in a rolling-window scheme. We use a window

width of 240 monthly return observations. A stock is excluded from the asset pool if it

has missing data in the 240-month training period; the number of stocks varies over time

and can be smaller than the total number of constituents of the S&P 500. Each month the

portfolios are constructed using the monthly returns during the prior 240 months. The clock

23



is advanced and the realized returns of the optimal portfolios are determined from the actual

returns of the various assets. The same procedure is then repeated for the next time period

and the ex post realized returns over the period from 01/2001 to 12/2020 (240 months) are

computed. The out-of-sample test is a real-time exercise avoiding a potential look-ahead

bias and mimicking the way that a real-time investor acts in practice.

Figure 2: The upper panel plots the number of stocks of the optimal SS-SSD portfolios through time that

eliminate the diversification loss, as well as the number of stocks of the efficient MV portfolios. The lower

panel plots the estimated expected loss of the optimal MAXSER portfolios corresponding to the inefficient

SS-SSD portfolios with the same number of stocks as MAXSER. The grey areas are the NBER recession

periods
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We again compare the performance of the optimal SS-SSD portfolios with that of the

MAXSER portfolios of Ao, Li, and Zheng (2019). The upper panel of Figure 2 plots the num-

ber of stocks of the optimal SS-SSD portfolios through time that eliminate the diversification

loss, as well as the number of stocks of the efficient MAXSER portfolio. The lower panel

plots the estimated expected loss of the optimal MAXSER corresponding to the inefficient

SSD portfolios with the same number of stocks as MAXSER. The diversification loss is zero
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for the efficient SS-SSD portfolios corresponding to the upper panel by construction. On a

rolling-window basis, the number of assets in the SS-SSD portfolios is always higher than in

the MAXSER portfolios. It shrinks to around 25 assets in the crisis periods of 2008-2009

and at the beginning of the Covid-19 period. Otherwise the number of assets in the SS-SSD

portfolios is stable between 30 and 35. The number of assets in the MAXSER portfolios is

more volatile.

Figure 3 illustrates the out-of-sample cumulative returns of the SS-SSD, the MAXSER,

the 1/N and the S&P 500 portfolios during the period (January 2001 to December 2020).

The grey areas are the NBER recession periods. We observe that the SS-SSD optimal

portfolio has a 19.3 times higher value at the end of the holding period compared to the

beginning, while the MAXSER portfolio has a 17.1 times higher value. The 1/N portfolio

follows with 14.3 higher value than at the beginning of the period. Finally, the S&P 500

portfolio exhibits the worst performance, with 4.2 higher value than the initial.

Figure 3: Cumulative performance of the MAXSER, the SS-SSD, the 1/N and the S&P 500 portfolios

for the out-of-sample period from January 2001 to December 2020. The grey areas are the NBER recession

periods.
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Next, we compare the performance of the SS-SSD optimal portfolio with the performance

of the MAXSER optimal portfolio using both nonparametric tests as well as parametric

performance measures.
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6.2.2 Nonparametric Stochastic Dominance Performance Test

We use the pairwise (non-)dominance test of Anyfantaki et al. (2022), for a risk-adjusted

comparison of the out-of-sample performance of the SS-SSD and MAXSER portfolios.

The definition for second order stochastic non-dominance is the following:

Definition 4. (Stochastic non-dominance): The SS-SSD portfolio λ does not strictly

second order stochastically dominate the MAXSER portfolio κ, say λ ⊁F κ, iff ∃z ∈ Z :

D (z, λ, κ, F ) > 0, or ∀z ∈ Z : D (z, λ, κ, F ) = 0.

Strict second order stochastic non-dominance holds iff κ achieves a higher expected utility

for some non-decreasing and concave utility function or achieves the same expected utility

for every non-decreasing and concave utility function. Equivalently, strict stochastic non-

dominance holds iff κ is strictly preferred to λ by some risk averter, or every risk averter is

indifferent between them.

We test the null hypothesis H ′
0 vis-à-vis the alternative hypothesis :

H′
0: SS-SSD portfolio λ does not strictly second order stochastically dominate MAXSER

portfolio κ.

H′
1: SS-SSD Portfolio λ stochastically dominates MAXSER portfolio κ.

For the pairwise test of the two portfolios, the test statistic is ξT = supz∈Z D (z, κ, λ, F ).

To calculate the p-value, we use block-boostrapping. The p-value is approximated by p̃j =
1
R

∑R
r=1{ξ⋆T,r > ξT}, where ξT is the test statistic, ξ⋆T,r is the bootstrap test statistic, averaging

over R = 1000 replications. We reject the null hypothesis of non-dominance if the p-value

is lower than 5%. The test statistic ξT is -0.0012, and the p-value is estimated at 4.4%. We

thus reject the null hypothesis of non-dominance of portfolio SS-SSD over MAXSER.

6.2.3 Performance Summary of the Optimal Portfolios

We also compute a number of parametric performance measures to compare the out-of-

sample performance of the optimal portfolios. Apart from the performance measures we

used in the in-sample analysis, we additionally compute the Portfolio Turnover (PT), which

measures the degree of rebalancing required to implement each one of the two strategies.

For any portfolio strategy P , the portfolio turnover is defined as the average of the absolute

change of weights over the T rebalancing points in time and across the N available assets:

PT = 1
T

∑T
t=1

∑N
i=1(|wP,i,t+1 − wP,i,t|), where wP,i,t+1 and wP,i,t are the optimal weights of

asset i under strategy P (SS-SSD or MAXSER) at time t and t+ 1, respectively.
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The performance of the portfolios is also assessed under the risk-adjusted (net of trans-

action costs) returns measure of DeMiguel et al. (2009) which is an indicator of how the

proportional transaction cost generated by the portfolio turnover affects the portfolio re-

turns. We use a transaction cost of 35 bps, which is typical in the literature. For this, the

change in the net of transaction cost wealth NWP of portfolio P through time is defined as

NWP,t+1 = NWP,t(1+RP,t+1)[1− trc×∑N
i=1(|wP,i,t+1−wP,i,t|), where trc is the proportional

transaction cost and RP,t+1 is the realized return of portfolio P at time t + 1. Then, the

portfolio return net of transaction costs is defined as RTCP,t+1 =
NWP,t+1

NWP,t
− 1.

The return-loss measures the additional return needed so that the MAXSER optimal

portfolio performs equally well with the SS-SSD portfolio is defined as RLoss = µSSD

σSSD
×

σMAXSER − µMAXSER, where µMAXSER and µSSD are the out-of-sample mean of monthly RTC

for the MAXSER and the SS-SSD opportunity set, and σMAXSER and σSSD are the corre-

sponding standard deviations.

Table 4: Out-of-sample performance: risk and performance measures

SS-SSD MAXSER 1/N

Measures

Average 0.0127 0.0122 0.0121
Standard Deviation 0.0239 0.0258 0.0450
Sharpe Ratio 0.4571 0.4056 0.2313
Downside Sharpe Ratio 1.1188 0.8614 0.9311
Value-at-Risk 0.0295 0.0403 0.0744
Expected Shortfall 0.0476 0.0532 0.1004
UP ratio 1.2014 1.0864 0.7704
Portfolio Turnover 8.835% 8.477% 0.0
Return Loss 0.087% 0.156%
Certainty Equivalent
Exponential Utility
ARA=2 1.211% 1.155% 1.010%
ARA=4 1.152% 1.086% 0.794%
ARA=6 1.091% 1.016% 0.567%
Power Utility
RRA=2 1.211% 1.156% 1.009%
RRA=4 3.725% 3.549% 3.089%
RRA=6 6.366% 6.058% 5.257%
Opportunity Cost
Exponential Utility
ARA=2 0.073% 0.126%
ARA=4 0.081% 0.139%
ARA=6 0.092% 0.152%
Power Utility
RRA=2 0.070% 0.132%
RRA=4 0.079% 0.144%
RRA=6 0.091% 0.159%

Entries report the risk and performance measures (Sharpe Ratio, Downside Sharpe Ratio, VaR, ES, UP
Ratio, Portfolio Turnover, Returns Loss, Opportunity Cost and Certainty Equivalent) for the SS-SSD, the
MAXSER and for the 1/N portfolios. The realized monhtly returns cover the period from January, 2001 to
December, 2020.

Table 4 reports the parametric performance measures (monthly) for the MAXSER, the

SS-SSD optimal portfolios and the 1/N portfolio for the sample period. The higher the
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value of each one of these measures, the greater the investment opportunities for the relative

portfolio.

We observe that the Average, the Sharpe Ratios and the Downside Sharpe Ratios of

the SS-SSD optimal portfolios are higher than those of the MAXSER optimal portfolios. It

reflects an increase in the risk-adjusted performance (i.e., an increase in the expected return

per unit of risk) and hence expands the investment opportunities for risk-averse investors.

The same is true for the UP Ratio. The Value-at-Risk and the Expected Shortfall (with a

positive sign for a loss) of the SS-SSD portfolios are lower, indicating lower downside losses.

Furthermore, the MAXSER portfolios induce slightly less portfolio turnover than the SS-

SSD portfolios. The SS-SSD strategy may have more frequent rebalancing and incur higher

transaction costs, but the additional performance justifies the additional cost; see Carroll et

al. (2017). The return-loss measure that takes into account transaction costs, is positive. The

CEQ of the SS-SSD optimal portfolios is the highest in all cases. Finally, the Opportunity

Cost is always positive, indicating that a positive return should be added in the MAXSER

or in the 1/N portfolio to achieve the same expected return with the SS-SSD portfolio. The

1/N portfolio exhibits again the worst performance, dominated by both the SS-SSD as well

as the MAXSER portfolios.

Let us now analyze the composition of the SS-SSD and the MAXSER portfolios through

time. Figure 4 reports the optimal average weights of the major Industries selected by each

one of the two portfolios during the out-of-sample period. We observe that both portfolios

are well diversified and invest in almost the same Industries, with different overall weights.

We further analyze the characteristics of the SS-SSD and the MAXSER portfolios through

time, by estimating the Jensen Alpha and Beta coefficients of the individual stocks of these

portfolios, each month. Figures 5 and 6 exhibit the range (max, min, and quartiles) of the

Jensen Alpha and Beta coefficients, estimated from the CAPM, of the individual stocks of

these portfolios during the out-of-sample period. For the estimation of the Alpha and Beta

coefficients, the previous 5 years of individual monthly returns have been used (60 monthly

returns). We can observe that the Beta coefficients in the SS-SSD portfolios have a more

defensive profile. The heterogeneity of Alpha and Beta coefficients is lower in the SS-SSD

portfolios.
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Figure 4: Average Industry weights through time. The upper panel plots the average Industry weights

of the optimal SS-SSD portfolios, while the lower panel plots the average Industry weights of the optimal

MAXSER portfolios, for the out-of-sample period from January 2001 to December 2020. The grey areas are

the NBER recession periods.
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Figure 5: The upper panel plots the range (min, max, and quartiles) of the Jensen Alpha coefficients of

the individual stocks of the optimal SS-SSD portfolios through time. The lower panel plots the range (min,

max, and quartiles) of the Beta coefficients of the individual stocks of the optimal SS-SSD portfolios through

time. The grey areas are the NBER recession periods. The CAPM is used for the estimation of the Jensen

Alpha and Beta coefficients, using the previous 5 years of individual monthly returns (60 monthly return

observations).
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Figure 6: The upper panel plots the range (min, max, and quartiles) of the Jensen Alpha coefficients of

the individual stocks of the optimal MAXSER portfolios, and the lower panel plots the range (min, max,

and quartiles) of the Beta coefficients of the individual stocks of the optimal MAXSER portfolios, for the

out-of-sample period from January 2001 to December 2020. The grey areas are the NBER recession periods.

The CAPM is used for the estimation of the Jensen Alpha and Beta coefficients, using the previous 5 years

of individual monthly returns (60 monthly return observations).
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Finally, we investigate which factors explain the returns of the active investors with

SSD preferences. To do so, we start with the classical single factor model (CAPM), and

we additionally use five asset pricing models that are popular in the literature. First, we

use, the Fama-French 6-factor model (2016), which is the Fama and French 3-factor model

augmented by profitability (RMW - robust minus weak), investment (CMA - conservative

minus aggressive), and momentum (UMD - up minus down). Second, the q-6-factor model of

Hou, Xue and Zhang (2015), including the original market and size factors of Fama-French

model, augmented by a profitability (ROE - return on equity) and investment factor (I/A -

investment to assets). Third, the M4 4-factor model of Stambaugh and Yuan (2017) including

the standard market and size factors along with two composite factors for profitability (PERF
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- performance) and investment (MGMT - management). Fourth, the Barillas and Shanken

6-factor model (2018), who use a Bayesian approach, suggesting the model of six factors

including market, I/A, ROE, SMB, the value factor HMLm from Asness and Frazzini (2013),

and UMD. Finally, the 3-factor model of Daniel, Hirshleifer, and Sun (2020) introducing

behavioral-related factors such as the market factor augmented by long- and short-term

mispricing factors (FIN and PEAD, respectively). The last is included to give an economic

insight on behavioral influence. A brief description of the factors is given in the Appendix.

We consider linear regression models of the following form: RP,t−Rf,t = a+
∑

i biRi,t+et,

where RP,t − Rf,t is the excess return of either the SS-SSD or MAXSER optimal portfolio

at period t, Ri,t is the return on the ith factor and et is the error term. If the exposures bi

to the various factors capture all variation in expected returns, the intercept a is zero since

the factors are tradable.

Table 5: Single factor model (CAPM)

a RM −RF

SS-SSD

Coef. 0.0119 -0.0077
t-stat 7.186 -0.201
p-value 0.0 0.8411

MAXSER

Coef. 0.0105 -0.0148
t-stat 5.772 -0.348
p-value 0.0 0.7275

1/N

Coef. 0.0067 0.9499
t-stat 9.543 58.086
p-value 0.0 0.0

Entries report the coefficients, their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2020 for optimal portfolios computed with 240-month windows rolled over one month.
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Table 6: Daniel, Hirshleifer, and Sun (2020), 3-factor model

a RM −RF PEAD FIN

SS-SSD

Coef. 0.0120 0.0293 -0.0643 0.0776
t-stat 6.7823 0.6026 -0.7328 1.4454
p-value 0.0 0.5474 0.4654 0.1498

MAXSER

Coef. 0.0097 0.0740 0.0359 0.1362
t-stat 5.0996 1.4214 0.3817 2.3676
p-value 0.0 0.1567 0.7030 0.0188

1/N

Coef. 0.0066 0.9722 -0.0720 0.0745
t-stat 8.9460 48.1833 -1.9779 3.3402
p-value 0.0 0.0 0.0492 0.0010

Entries report the coefficients, their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2018 for optimal portfolios computed with 240-month windows rolled over one month.

Table 7: Barillas and Shanken (2018), 6-factor model

a RM −RF SMB R-IA R-ROE HMLm UMD

SS-SSD

Coef. 0.0116 0.0065 -0.0808 -0.0634 0.0666 0.1202 0.0261
t-stat 6.7464 0.1350 -1.0955 -0.5364 0.6409 1.4021 0.4103
p-value 0.0 0.8927 0.2745 0.5922 0.5222 0.1623 0.6820

MAXSER

Coef. 0.0104 0.0004 -0.0695 0.0492 0.0123 0.0466 0.0148
t-stat 5.4458 0.0079 -0.8498 0.3756 0.1071 0.4898 0.2104
p-value 0.0 0.9937 0.3964 0.7075 0.9148 0.6248 0.8336

1/N

Coef. 0.0057 0.9156 0.1945 0.0336 0.0943 0.1824 0.0314
t-stat 10.353 59.506 8.228 0.887 2.831 6.642 1.542
p-value 0.0 0.0 0.0 0.3759 0.0 0.0 0.1246

Entries report the coefficients and their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2020 for optimal portfolios computed with 240-month windows rolled over one month.
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Table 8: Fama-French (2016), 6-factor model

a RM −RF SMB HML RMW CMA Mom

SS-SSD

Coef. 0.0121 -0.0040 -0.0708 0.0770 0.0153 -0.0503 -0.0139
t-stat 6.8617 -0.0788 -0.9930 0.9747 0.1512 -0.4443 -0.3544
p-value 0.0 0.9372 0.3218 0.3308 0.8799 0.6572 0.7234

MAXSER

Coef. 0.0104 0.0044 -0.0586 -0.0472 0.0180 0.1355 -0.0154
t-stat 5.3465 0.0795 -0.7455 -0.5413 0.1605 1.0840 -0.3541
p-value 0.0 0.9367 0.4567 0.5888 0.8726 0.2796 0.7236

1/N

Coef. 0.0056 0.9274 0.2262 0.0427 0.1507 0.0877 -0.0511
t-stat 10.009 58.145 9.976 1.697 4.671 2.433 -4.083
p-value 0.0 0.0 0.0 0.0910 0.0 0.0158 0.0

Entries report the coefficients and their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2020 for optimal portfolios computed with 240-month windows rolled over one month.

Table 9: Stambaugh and Yuan(2017), M4 4-factor model

a RM −RF SMB MGMT PERF

SS-SSD

Coef. 0.0129 0.0026 -0.0498 0.1094 -0.0520
t-stat 6.7428 0.0464 -0.6478 1.5526 -1.1453
p-value 0.0 0.9630 0.5179 0.1222 0.2535

MAXSER

Coef. 0.0105 0.0045 -0.0131 0.1789 -0.0710
t-stat 5.2433 0.0777 -0.1626 2.4328 -1.4994
p-value 0.0 0.9381 0.8710 0.0159 0.1355

1/N

Coef. 0.0063 0.9090 0.2510 0.0789 -0.0200
t-stat 9.259 46.482 9.202 3.157 -1.243
p-value 0.0 0.0 0.0 0.0 0.2153

Entries report the coefficients and their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2016 for optimal portfolios computed with 240-month windows rolled over one month.
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Table 10: Hou, Xue and Zhang (2015), q-4-factor model

a RM −RF ME IA ROE

SS-SSD

Coef. 0.0122 0.0263 -0.0452 0.0503 0.0331
t-stat 6.9438 0.5218 -0.6424 0.5270 0.4361
p-value 0.0 0.6024 0.5213 0.5987 0.6632

MAXSER

Coef. 0.0106 0.0301 -0.0521 0.1102 0.0181
t-stat 5.5931 0.5541 -0.6879 1.0715 0.2213
p-value 0.0 0.5801 0.4923 0.2852 0.8251

1/N

Coef. 0.0063 0.9016 0.2028 0.1513 -0.0386
t-stat 10.398 51.890 8.382 4.602 -1.475
p-value 0.0 0.0 0.0 0.0 0.1416

Entries report the coefficients and their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2020 for optimal portfolios computed with 240-month windows rolled over one month.

Tables 6 - 10 report the coefficient estimates of the factor models, as well as their re-

spective t-statistics and p-values. The results indicate that none of the factor models could

explain the performance of the two strategies. In particular, a close to zero market loading

indicates a market neutral exposure. The intercept a is statistically different from zero in

all cases.

For all factor models, we observe that the beta market is smaller than one (defensive) for

both portfolios as expected. When the Fama and French 6-factor model is used, the negative

sign for the SMB factor loading and positive sign for the HML factor loading correspond to

an additional defensive tilt of the SS-SSD portfolio returns. Defensive strategies overweight

large value stocks and underweight small growth stocks (Novy-Marx (2016)).

We also observe that the only factors that are significant for the MAXSER returns are

the FIN factor of the 3-factor model of Daniel, Hirshleifer, and Sun (2020), and the MGMT

factor of the Stambaugh and Yuan(2017), four-factor model. The FIN factor (long-horizon

financing factor) exploits the information in manager decisions to issue or repurchase equity

in response to persistent mispricing, while the MGMT, or Management factor, is the excess

returns of stocks with high ranking on management-related anomalies over the return of

those with low ranking. On the other hand, there is no statistically significant factor that

explains the returns of the SS-SSD portfolios.

Finally, in order to understand whether the results are explained by the long-short na-

ture of the factors, we construct long-only factors for the Fama and French 5-factor model.
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Table 11 confirms that the performance of the SS-SSD and MAXSER optimal portfolios is

not explained by traditional factors even if we consider their long-only legs.

Table 11: Fama-French (2015), 5-factor model (long-only)

a RM −RF SMB HML RMW CMA

SS-SSD

Coef. 0.0116 -0.0119 -0.0104 0.0745 -0.0532 -0.0121
t-stat 6.6020 -0.3053 -0.1836 1.1470 -0.7859 -0.1246
p-value 0.0 0.7604 0.8545 0.2526 0.4328 0.9010

MAXSER

Coef. 0.0106 -0.0171 -0.0419 -0.0014 0.0141 0.0454
t-stat 5.4283 -0.3990 -0.6711 -0.0198 0.1885 0.4224
p-value 0.0 0.6903 0.5029 0.9842 0.8507 0.6731

1/N

Coef. 0.0065 0.9488 0.0136 0.0551 -0.0071 -0.0400
t-stat 8.8016 58.4311 0.5779 2.0299 -0.2495 -0.9850
p-value 0.0 0.0 0.5639 0.0436 0.8032 0.3257

Entries report the coefficients and their respective t-statistics and p-values for the SS-SSD portfolio (upper
panel), the MAXSER portfolio (second panel), and for the 1/N portfolio (lower panel). The dataset spans
01/2001-12/2020 for optimal portfolios computed with 240-month windows rolled over one month.

The results seem to indicate that other factors drive the performance of these portfolios.

We also observe that most of the factors in all factor models are significant in the case of the

1/N portfolio (apart from the long-only factors), with a positive significant market loading.

This observation exemplifies that the two dynamic strategies are markedly different from the

naive 1/N one.

7 Concluding Remarks

Our new methodology designed to target sparse spanning portfolios shows that we can

often limit ourselves to a subset of a large investment opportunity set without sacrificing

expected utility because of under-diversification. It also reveals that a sparse mean-variance

portfolio selection (MAXSER) yields under-diversification w.r.t. an optimal sparse spanning

portfolio. This paper focuses on second-order stochastic dominance but could be modified to

accommodate higher-order stochastic dominance. We could then check whether the empirical

findings extend in such settings as well.

The methodology avoids the use of LASSO-type regularizations on the stochastic domi-

nance inequalities. It does not require fine tuning regularization parameters. Its asymptotic
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behavior is known whether sparse spanning holds of not. Importantly, it enables the in-

vestigation of the relation between under-diversification loss and the sparsity (cardinality)

constraint.

The FSS greedy algorithm technology can be felt as time consuming especially if it

is employed in resampling frameworks to get suitable statistical inference. Even though

our fast subsampling methodology avoids this, it could however be of interest to alleviate

its associated numerical cost, and provide paths for further research. One example is the

possibility of exploiting the geometric realization of Lp,q as a sub-simplex of Λ, when the latter

is a simplex for large enough p - see Edelsbrunner (2014). Another example concerns the

investigation of the existence of suitable smooth approximations of the Russell-Seo utilities,

for the subsequent use of greedy algorithms that exploit smoothness; e.g. the Orthogonal

Matching Pursuit in Elenberg et al. (2018).

In relation to the cost of resampling, it could be of interest to approximate the upper

tail behavior of the limiting distribution of the under-diversification loss. The latter could

be related to extensions of approximations of the analogous probabilities for the supremum

of Gaussian random fields via topological features of the underlying parameter space like

its Euler characteristic-see for example Takemura and Kuriki (2003). Another approach,

especially when testing for sparse spanning, is via the combined use of Empirical Likelihood

Ratio statistics with conservative chi-squared based rejection regions formed by moment

selection; see for example Arvanitis and Post (2024).

The sparse spanning methodology could be used as an alternative selection framework

to identify the factors out of a large set of factors and anomalies (for example, the set of 153

factors of Jensen, Kelly and Pedersen (2023), or the set of 193 factors of Hou, Chen, and

Zhang (2020, 2021) that explain the returns of funds. Chen et al. (2023) impose a sparsity

assumption via a regularized regression approach, the adaptive LASSO estimator, from the

machine learning literature, to select a model of 9 factors.
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Appendix

The appendix contains the proofs of our results and the list of factors used in the empirical

application.

Proofs

Proof of Lemma 1. The result is obtained by exploiting the continuity of D w.r.t. its first

triplet of arguments, and the compactness of the parameter space K × Λ. It evolves by

iteratively establishing that infκ∈K supz∈Z D (z, κ, λ,P) is continuous in λ, which then im-

plies that it has a maximizer. Specifically, D (z, κ, λ,P) is continuous in (z, κ, λ) (w.r.t. the

product of the Euclidean topology on R, l1 on K, Λ, respectively), due to the continuity of
(

z −∑∞
i=0 κiX

(i)
t

)

+
−
(

z −∑∞
i=0 λiX

(i)
t

)

+
, Assumption 1 and Dominated Convergence. The

CMT implies that supz∈Z D (z, κ, λ,P) is continuous in (κ, λ). We have that K �
SSD

Λ iff

∃λ⋆ ∈ Λ −K such that ∀κ ∈ K, supz∈Z D (z, κ, λ⋆,P) > 0. The compactness of K and the

continuity of supz∈Z D (z, κ, λ⋆,P) on the second argument imply that the latter holds iff

infκ∈K supz∈Z D (z, κ, λ⋆,P) > 0. The compactness of K also implies via Theorem 3.4 of

Molchanov (2006) that infκ∈K supz∈Z D (z, κ, λ,P) is continuous w.r.t. its third argument.
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Hence, infκ∈K supz∈Z D (z, κ, λ⋆,P) > 0 is equivalent to supΛ infκ∈K supz∈Z D (z, κ, λ,P) >

0.

Proof of Lemma 2. It follows by Lemma 1 and the monotonicity of Λ as a function of p.

Proof of Lemma 3. The proof evolves in the following steps: (i) we majorize supz∈Z D (z, κ, λ,P)

by the supremum of
∫

Z
D (z, κ, λ,P) d· w.r.t. a set of linear operators, (ii) we validate a max-

min result to interchange the order of optimization operators for infκ∈K sup·
∫

Z
D (z, κ, λ,P) d·,

(iii) we use an appropriate topology for Lp,q and establish appropriate continuity and general-

ized convexity properties for infκ∈K supF∈P(Z)

∫

Z
D (z, κ, λ,P) dF (z) as a function on Λ×Lp,q,

so that we validate a max-min result to interchange the order of the outer pair of optimization

operators in infK∈Lp,q
supΛ sup· infκ∈K

∫

Z
D (z, κ, λ,P) d·, (iv) Analogously to (iii), we validate

a max-min result to interchange the order of the middle pair of optimization operators in

supΛ infK∈Lp,q
sup· infκ∈K

∫

Z
D (z, κ, λ,P) d·, (v) we finally use the extreme point properties of

the set of linear operators in (i) and the max-min inequality to obtain the result. Specifically,

for (i), consider the space P (Z) comprised by the probability distributions that are supported

on Z, and equipped with the weak topology. The space is convex and contains the degenerate

distributions on the elements of Z as its extreme points. Then, by Theorem 15.9 of Aliprantis

and Border (2006), we deduce that supz∈Z D (z, κ, λ,P) ≤ supF∈P(Z)

∫

Z
D (z, κ, λ,P) dF (z).

For (ii), we have that due to Assumption 1, and the Lipschitz continuity property of

(·)+, we have that supZ,Λ2 |D (z, κ, λ,P)| ≤ 2maxi E
[∣

∣X(i)
∣

∣

]

< +∞, hence the linear func-

tional F →
∫

Z
D (z, κ, λ,P) dF (z) is also continuous w.r.t. F for all κ, λ, due to the Port-

manteau Lemma. Furthermore, E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

is convex in κ, due to the con-

vexity and monotonicity of (·)+ and the linearity of z − ∑∞
i=0 κiX

(i)
t w.r.t. κ. Hence,

since K ∈ Lp,q is closed and Λ is compact, the dual version of the Kneser-Fan Theorem

(see Theorem 4.2’ of Sion (1958)) implies that infκ∈K supF∈P(Z)

∫

Z
D (z, κ, λ,P) dF (z) =

supF∈P(Z) infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) . For (iii), equip Lp,q with the PK-topology (see Def-

inition 3.1.4 of Klein and Thompson (1984)). Due to Theorem 4.3.4-5 of Klein and Thompson

(1984), Lp,q is compact. Due to Theorem 3.4 of Klein and Thompson (1984) and the bounded-

ness and continuity of D (·, ·, ·,P), the mapping infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) : Lp,q ×Λ → R

is jointly continuous for all F . Then, the boundedness of D (·, ·, ·,P) and the CMT imply

that supF∈P(Z) infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) : Lp,q × Λ → R is also jointly continuous.

For any t ∈ (0, 1) and any K1, K2 ∈ Lp,q, we have that

t infK1

∫

Z
D (z, κ, λ,P) dF (z) + (1− t) infK2

∫

Z
D (z, κ, λ,P) dF (z)

≥ min
[

infK⋆
i

∫

Z
D (z, κ, λ,P) dF (z) , i = 1, 2

] ,
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where K⋆
i is any element of Lp,q of support q that contains Ki, i = 1, 2. Analogously, we

obtain from the previous and the monotonicity of sup

t supF∈P(Z) infK1

∫

Z
D (z, κ, λ,P) dF (z) + (1− t) supF∈P(Z) infK2

∫

Z
D (z, κ, λ,P) dF (z)

≥ mini=1,2 infK⋆
i

∫

Z
D (z, κ, λ,P) dF (z)

supF∈P(Z)

[

t infK1

∫

Z
D (z, κ, λ,P) dF (z) + (1− t) infK2

∫

Z
D (z, κ, λ,P) dF (z)

]

≥
supF∈P(Z) mini=1,2 infK⋆

i

∫

Z
D (z, κ, λ,P) dF (z)

,

and the previous pair of displays implies that the mapping infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) :

Lp,q → R is convex-like for all (F, λ), and the mapping supF∈P(Z) infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) :

Lp,q → R is convex-like for all λ (see Section 2 of Sion (1958)). For any t ∈ (0, 1) and any

λ1, λ2 ∈ Λ we have that due to Theorem 15.9 of Aliprantis and Border (2006)

t supF∈P(Z) infκ∈K
∫

Z
D (z, κ, λ1,P) dF (z) + (1− t) supF∈P(Z) infκ∈K

∫

Z
D (z, κ, λ2,P) dF (z)

= t supz∈Z infκ∈K D (z, κ, λ1,P) + (1− t) supz∈Z infκ∈K D (z, κ, λ2,P)
,

and the rhs of the previous display is less than or equal to maxλ supz∈Z infκ∈K D (z, κ, λ,P)

and the maximum exists due to the joint continuity and boundedness of D (·, ·, ·,P), the CMT

and the compactness of Λ. Hence, the mapping supF∈P(Z) infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) :

Λ → R again see Section 2 of Sion (1958)).

For (iv), for any t ∈ (0, 1) and any F1, F2 ∈ P (Z), we have that

t infκ∈K
∫

Z
D (z, κ, λ,P) dF1 (z) + (1− t) infκ∈K

∫

Z
D (z, κ, λ,P) dF2 (z)

≥ infκ∈K
∫

Z
D (z, κ, λ,P) d [tF1 (z) + (1− t)F2 (z)]

,

and thereby the mapping infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) : P (Z) → R is concave and hence

concave-like for all K ∈ Lp.q and λ. Using the previous and applying twice the dual version

of the Kneser-Fan Theorem, we jointly obtain the required results in steps (iii)-(iv) as,

infK∈Lp,q
supΛ supF∈P(Z) infκ∈K

∫

Z
D (z, κ, λ,P) dF (z)

= supΛ infK∈Lp,q
supF∈P(Z) infκ∈K

∫

Z
D (z, κ, λ,P) dF (z)

= supΛ supF∈P(Z) infK∈Lp,q
infκ∈K

∫

Z
D (z, κ, λ,P) dF (z) .

Finally, for (v), again due to Theorem 15.9 of Aliprantis and Border (2006), we get

supΛ supF∈P(Z) infK∈Lp,q
infκ∈K

∫

Z
D (z, κ, λ,P) dF (z) = supΛ supz∈Z infK∈Lp,q

infκ∈K D (z, κ, λ,P) .

The result follows by the max-min inequality.

Proof of Theorem 1. For (a), we use the Ergodic Theorem uniformly in λ and continuously

in z. Specifically, we derive the limiting behavior of 1
T

∑T
t=0

(

z −∑∞
i=0 λiX

(i)
t

)

+
from the
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locally uniform in z and uniform in λ, version of the Ergodic Theorem applied on the function
1
T

∑T
t=0

(

z −∑∞
i=0 λiX

(i)
t

)

+
, noting that it is applicable due to Assumption 1 and the l1

boundedness of Λ∞-see also footnote 3. Continuously uniform convergence then implies

continuous hypo-convergence by Molchanov (2006)-see the paragraph immediately after Ch.

5, Theorem 3.14.

For (b)-(c), (i) we establish that the associated set of functions has an integrable envelope,

(ii) we use the fact that the associated sets of functions-which admit generalized derivatives

w.r.t. the sample arguments-are bounded subsets of a weighted Sobolev space, and thus

have controllable bracketing entropy numbers, and (iii) we use the above and the time series

properties of X to verify the validity of an appropriate FCLT or maximal inequality. For (i)

we have that due to Jensen’s inequality,

E



supz,κ

(

µT

(

(

z −∑∞
i=0 κiX

(i)
)

+
−
(

z −∑∞
i=0 λiX

(i)
)

+

XT I
{

z ≥∑∞
i=0 λiX

(i)
}

(κ− λ)

))2+ε




≤ CE

[

(

supz,κ

(

(

z −∑∞
i=0 κiX

(i)
)

+
−
(

z −∑∞
i=0 λiX

(i)
)

+

))2+ε
]

+CE
[

(

supz,κ

(

XT I
{

z ≥∑∞
i=0 λiX

(i)
}

(κ− λ)
))2+ε

]

≤ CE

[

(

supz,κ

((

∑∞
i=0 (λi − κi)X

(i)
t

)))2+ε
]

+ CE
[

maxi
(

X(i)I
{

z ≥∑∞
i=0 λiX

(i)
})2+ε

]

≤ 21+εC
(

E
[

(

supz,κ

((
∑∞

i=0 λiX
(i)
)))2+ε

]

+ E
[

(

supz,κ

((
∑∞

i=0 κiX
(i)
)))2+ε

])

+CE
[

maxi
(∣

∣X(i)
∣

∣

)2+ε
]

≤ 21+εCE
[

maxi
(

X(i)
)2+ε

]

< +∞.

(9)

For (ii), we have that for any l ≥ 1, δ > 0, the function class

M1 :=
{

R⌊q(lnT+1)⌋ ∋ x →
(

z − xTλ
)

+
−
(

z − xTκ
)

+

}

, as well as the function class

M2 :=
{

R⌊q(lnT+1)⌋ ∋ x → xT I
{

z ≥∑⌊q(lnT+1)⌋
i=0 κ∗

iX
(i)
}

(κ− κ∗) , z, κ, κ∗
}

are bounded sub-

sets of the weighted Sobolev space H1
l

(

R⌊q(lnT+1)⌋, ⟨x⟩2+δ
)

, i.e. the semi-normed space










f : R⌊q(lnT+1)⌋ → R,
∥f∥l,2+δ,µ :=

(

∫

R⌊q(lnT+1)⌋

[

∣

∣

∣

f(x)

(1+∥x∥)2+δ

∣

∣

∣

l

+
∣

∣

∣
D f(x)

(1+∥x∥)2+δ

∣

∣

∣

l
]

dµ

)1/l

< +∞











, where D

denotes partial derivation in the sense of distributions, and µ denotes the Lebesgue measure

on R⌊q(lnT+1)⌋ - see 3.3.2 of Nickl and Potcher (2007), due to the l1-boundedness of K. In

the notation of the aforementioned paper, choosing l such that ⌊q(lnT+1)⌋
l

→ 0, r = 2+ ε and

γ = 3+ δ, β = 2+ δ, M the set of finite dimensional distributions of X∞, we have that, due

to Corollary 4.2 of Nickl and Potcher (2007), and for large enough T , the bracketing entropy

of Mi, i = 1, 2, as a function of ϵ > 0, is universally bounded from above by cϵ−⌊q(lnT+1)⌋ for

some universal constant c > 0.
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Then, from (i) above, (ii) the fact that βk ∼ bk, and (iii) the fact that the class has an

L2+ε (P)-integrable envelope due to (9), we get that Theorems 1 and 2 of Doukhan, Massart,

and Rio (1995) are applicable and the results in (b) and (c) follow since
ln ( p

⌊q(lnT+1)⌋)√
T

+
⌊q(lnT+1)⌋√

T
→ 0. The latter holds since ln p√

T
→ 0 via Stirling’s approximation on factorials and

first order Taylor expansions on the logarithms.

Proof of Theorem 2. The proof works by (i) establishing that the empirical LPM,
1
T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+
, satisfies uniformly over z, w.h.p. the weak sub-modularity prop-

erty of Elenberg et al. (2018), so that (ii) the guarantees results on the Forward Selection

Algorithm of the aforementioned paper hold w.h.p.. We do so by (iii) establishing that

the first order Taylor expansion restricted on appropriate parts of the empirical LPM, is

approximated by the analogous expansion of its population counterpart, uniformly over z,

w.h.p.. Given (i), the statistical guarantees for the overall optimization problem follow (iv)

by standard results on approximation of optimization problems and the CMT.

First, the restricted smoothness condition that implies the middle lower bound for the

submodularity ratio in Theorem 1 of Elenberg et al. (2018) holds trivially in our case ,

namely MΩ can be fixed to one in their notation, since Λ and thereby K have simplicial

structures. Indeed, the denominator in the aforementioned upper bound can be chosen as

any real number that satisfies the r.h.s. of the inequality that appears in Definition 3 of

Elenberg et al. (2018), for any pair of elements of K that satisfies the following: the ℓ0

norm of the difference equals at most one. The ℓ0 norm being less than or equal to 1 means

that the vectors should disagree at most at one coordinate, and thus they must agree at the

remaining coordinates by construction. Since the weights sum to one, it is only possible if the

aforementioned pair contains the same vector, which implies that the r.h.s. of the inequality

holds trivially for any possible MΩ.

Then, we recall some notation mainly from convex analysis. Specifically, in what fol-

lows ∂ denotes the sub-gradient of an arbitrary real valued convex function defined on a

locally convex space (see Ch. D of Hiriart-Urruty and Lemaréchal (2004)-HUL). Besides,

for Q := P,PT and EQ denoting integration w.r.t. Q, EQ

[

(z −∑∞
i=0 κiX0,i)+

]

is convex in

the second argument due to the convexity and monotonicity of (·)+ and the linearity of

z −∑∞
i=0 κiX

(i)
t w.r.t. κ.

Then, for any κ ∈ Λ we obtain the inclusion gz,T (κ) := 1
T

∑T
t=0 XtIz≥∑∞

i=0 κiX0,i+ ∈
∂EPT

(z −∑∞
i=0 κiX0,i)+ due to Theorems 4.1.1. and 4.2.1 of HUL. Furthermore, due to The-

orem 1 of Savare (1996) and the fact that Xt has a continuous density, we have that gz (κ) :=
∂E(z−

∑∞
i=0 κiX0,i)

+

∂κ
= E

[

XtIz≥∑∞
i=0 κiX

(i)
t

]

. Then, for any (κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋), define the Tay-

lor expansion Ez,T (κ⋆, κ) := 1
T

∑T
t=0

(

z −∑∞
i=0 κ

⋆
iX

(i)
t

)

+
− 1

T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+
−
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(κ⋆ − κ)′ gz,T (κ), and similarly the Taylor expansion Ez (κ⋆, κ) := E

[

(

z −∑∞
i=0 κ

⋆
iX

(i)
t

)

+

]

−

E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

− (κ⋆ − κ)′ gz (κ).

Working towards (iii), and using the previous theorem, we have that for any δ > 0 and

any C > 0, 0 < ϵ < 1
4
:

P
(

supz supΛ(⌊q(ln(T+1))⌋),∥κ−κ⋆∥> C
Tϵ

(

1
∥κ−κ⋆∥2 |Ez,T (κ, κ⋆)− Ez (κ, κ⋆)|

)

≥ δ
)

≤ P
(

supz supΛ(⌊q(ln(T+1))⌋),∥κ−κ⋆∥> C
Tϵ

(T 2ϵ |Ez,T (κ, κ⋆)− Ez (κ, κ⋆)|) ≥ δ
C

)

≤ P
(

supz supΛ(⌊q(ln(T+1))⌋)

∣

∣

∣

√
TD (z, κ, κ⋆,PT − P)

∣

∣

∣
≥ 2δT

1
2−2ϵ

3C

)

+P
(

supz supΛ(⌊q(ln(T+1))⌋)
|GT (z, κ, κ⋆)| ≥ δT

1
2−2ϵ

3C

)

= o (1) ,

(10)

where the final equality in (10) follows from the first two parts of Theorem 1, the Lipschitz

property of D w.r.t. the parameters, the fact that T
1
2
−2ϵ → +∞, and the Portmanteau

Theorem.

Due to the bounds on the eigenvalues of E (z −∑∞
i=0 κiX0,i)+ of Assumption 3, Theorem

6.1.2 of HUL, Paragraph 1.3.(d) in Ch. 4 of Hiriart-Urruty and Lemaréchal (2013), and the

dual form of Remark 1 of Elenberg et al. (2018), we have that uniformly w.r.t. z and for any

(κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋),
m⌊q(ln(T+1))⌋

2
∥κ− κ⋆∥2 ≤ Ez,T (κ⋆, κ). Due to this, and (10), uniformly

w.r.t. z and for any (κ⋆, κ) ∈ Λ(⌊q(lnT+1)⌋) ∩
{

∥κ− κ⋆∥ > C
T ϵ

}

,
m⌊q(ln(T+1))⌋+op(1)

2
∥κ− κ⋆∥2 ≤

Ez,T (κ⋆, κ) , w.h.p., where the op (1) terms are independent of z, λ. Thus (i) is established.

Then, for (ii), by noting that Theorem 1 of Elenberg et al. (2018) is also valid if

the gradient in its proof is substituted by any fixed element of the sub-gradient, and us-

ing the previous display, the inclusion Λ(⌊q(lnT+1)⌋) ∩
{

∥κ− κ⋆∥ > C
T ϵ

}

⊆ Λ(⌊q(lnT+1)⌋) and

the discussion immediately after Remark 1 of Elenberg et al. (2018), we get that w.h.p.

KFS (Λ,Lp,q, z,PT , q lnT ) ≤
(

1 + 1
T γT

)

infK∈Lp,q
infκ∈K

1
T

∑T
t=0

(

z −∑∞
i=0 κiX

(i)
t

)

+
, where

γT := m⌊q(ln(T+1))⌋ + op (1), and this along with the fact that Lp,q converges-being mono-

tone increasing w.r.t. set inclusion-in the Painleve-Kuratwski sense to L∞,q, establishes (ii).

Finally, working towards (iv), note that Assumption 3, Theorem 1, the PK-convergence of

Λ(⌊q(lnT+1)⌋)∩
{

∥κ− κ⋆∥ > C
T ϵ

}

to Λ(⌊q(lnT+1)⌋), and the CMT imply then (3). The final result

follows from the dual version of Theorem 3.4 (Ch. 5, p. 338) of Molchanov (2006) and the

CMT.

Proof of Theorem (3). The strategy of the proof evolves as: (i) we establish the op(
1√
T
)

approximation of the empirical optimum by the FS solution for the particular choice of r.

Then, (ii) we apply the generalized Delta method (see Cárcamo et al. (2020)) on the relevant

empirical process.
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For (i), first, due to Theorem 1 of Elenberg et al. (2018), the results of Theorem 2 are valid

since r = q (lnT )ϵ. Using the final result of Theorem 1 and Theorem 3.4 (Ch. 5, p. 338) of

Molchanov (2006), then we have the approximation√
T
∣

∣

∣
inf 1

T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+ − infcsupp(κ)≤q

1
T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+

∣

∣

∣
= op (1), where

the remainder is independent of z and the first empirical infimum is derived via forward selec-

tion, since this first empirical infimum is tight. For (ii), we can then use part (b) of Theorem

1 which establishes the limiting behavior of the empirical process
√
TD (z, κ, λ,PT − P),

Theorem 2.1 and Proposition 2.1 of Cárcamo et al. (2020) and the chain rule for Hadamard

directional differentiability (see Shapiro (1990)) to the optimizations appearing in the empir-

ical process. The limits in Theorem 2.1 Cárcamo et al. (2020) are in our case the convex sets

of optimizers of the functions involved, due to the convexity properties of those functions

and of the parameter spaces involved.

Proof of Proposition 1. The proof proceeds as follows: (i) we establish the weak convergence

of the scaled-by-bT discrepancy between the subsampling empirical process, evaluated at

any convergent subsequence of the FSS optimizers, and the population optimum, to the

sup inf of the Gaussian process appearing in the previous result over Γ⋆, (ii) we establish

conservativeness by showing that the cdf of the weak limit is continuous at its 1−α quantile.

For (i), we have that from the weak convergence to the empirical process in the proof of

Theorem 3, and applying Proposition 7.3.1 of Politis, Romano and Wolf (1999), we obtain

that
√
bT (E⋆ [D (z, κ, λ,Pt,bT )]−D (z, κ, λ,PT ))⇝ G (z, λ, κ) , in ℓ∞ (Z × Λ∞ × Λ∞), where

E⋆ [·] denotes expectation w.r.t. the empirical distribution of D (z, κ, λ,Pt,bT ) across t =

1, . . . , T − bT + 1.

In what follows, we also denote with (T ) the index set of the subsequence of κz,T associated

with the examined accumulation point, for notational simplicity. Due to that (see the proof of

Theorem 3),
√
T
∣

∣

∣
inf 1

T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+ − infcsupp(κ)≤q

1
T

∑T
t=0 (z −

∑∞
i=0 κiXi,t)+

∣

∣

∣
=

op (1) uniformly in z, the definition of κz,T , and that bT
T

→ 0, we have that√
bT
(

infcsupp(κ)≤q D (z, κ, λ,PT )−D (z, κz,T , λ,PT )
)

= op (1) uniformly on Z×Λ∞. It implies

that
√
bT
(

supZ×Λ infcsupp(κ)≤q D (z, κ, λ,PT )− supZ×Λ D (z, κz,T , λ,PT )
)

= op (1). Employ-

ing a) the use of Skorokhod representations, applicable due to Theorem 3.7.25 of Giné and

Nickl, (2016), b) the convergence above, c. Theorem 3.4 of Molchanov (2006), d) Theorem

2.1 and Proposition 2.1 of Cárcamo et al. (2020)-working similarly to the proof of Theorem 3,

e) the fact that (κz,T )z are optimizers of KFS (Λ,Lp,q, z,PT , rT (q))−J (Λ, z,PT ), which due

to Theorem 2 converges to the deterministic K (Λ∞,L∞,q, z,P) − L (Λ∞, z,P), and thereby

(κz,T )z are asymptotically independent to the process
√
bT (supZ×Λ E

⋆ [D (z, κz,T , λ,Pt,bT )]

−MFS (Λ,Lp,q,PT , q (lnT )
ϵ)), and f) the fact that bT

T
→ 0, we then obtain the convergence√

bT
(

supZ×Λ E
⋆ [D (z, κz,T , λ,Pt,bT )]−MFS (Λ,Lp,q,PT , q (lnT )

ϵ)
)

⇝ sup infΓ⋆ G (z, λ, κ) . For
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(ii), first, the definition of Γ⋆ implies that sup infΓ⋆ G (z, λ, κ) ≥ sup infΓ G (z, λ, κ). Then

conservativeness follows from this inequality as long as the cdf of sup infΓ⋆ G (z, λ, κ) is con-

tinuous at its 1 − α quantile. From Lemma 18.15 of van der Vaart (2000), we have that

for µ, v ∈ Γ⋆ and Gµ,Gv the Gaussian process G evaluated there, 0 ≤ σ2 := supΓ⋆ E
[

G2
µ

]

≤
supµ,v∈Γ⋆ E

[

(Gµ − Gv]
2) < +∞. Hence due to the zero mean function of Gµ, and Furnique’s in-

equality (see Relation (1,1) in Samorodnitsky (1991)), we have that for 0 < ε < 1, there exists

a κ (ε), such that E
[

supΓ⋆ G2
µ

]

=
∫ +∞
0

P
(

supΓ⋆ |Gµ| > √
y
)

dy ≤ 2κ (ε)
∫ +∞
0

exp
(

−(1−ε)
2σ2 y

)

dy <

+∞. Then, Ch. 2 of Nualart (2006), (see the remark after the proof of Proposition 2.1.11

(p. 109)), implies the existence of the square integrable Malliavin derivative for Gµ. Nu-

alart (2006) implies then that the Malliavin derivative of Gµ equals zero only at triv-

ial triplets. The previous imply the validity of Assumption 1 of Arvanitis, Scaillet and

Topaloglou (2019) for T = {0} in their notation, when trivial triplets exist, and T = ∅
when trivial triplets do not exist. In the latter case, Theorem 1 of Arvanitis, Scaillet and

Topaloglou (2019) implies (5), for any α ∈ (0, 1). In the former case, ND assumes the exis-

tence of the non trivial (λ⋆, κ⋆, z⋆) ∈ Γ⋆ for which we have that P (sup infΓ⋆ G (z, λ, κ) > 0) ≥
P (sup infΓ⋆ G (z, λ, κ⋆) > 0) ≥ P (G (z⋆, λ⋆, κ⋆) > 0) = 1

2
, due to non-degeneracy and zero

mean Gaussianity. The result then follows again from Theorem 1 of Arvanitis, Scaillet and

Topaloglou (2019), and (6) follows from the previous by noting that in this special case,

Γ = Γ⋆ due to Theorem 3.4 of Molchanov (2006).

List of Factors

We consider 6 different factor models:

1. The CAPM:

• Market (RM): Market excess return over the risk-free rate.

2. The Daniel, Hirshleifer, and Sun (DHS-2020) consists of the following 3 factors

• Market (RM): Market excess return over the risk-free rate.

• The long-horizon financing factor (FIN) exploits the information in managers decisions

to issue or repurchase equity in response to persistent mispricing.

• The short-horizon earnings surprise factor (PEAD) is motivated by investor inattention

and evidence of short-horizon underreaction, and captures short-horizon mispricing.

3. The Barillas and Shanken (2018), 6-factor model

• Market (RM): Market excess return over the risk-free rate.
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• Profitability (ROE): difference between the return on a portfolio of high return on

equity (ROE) stocks and the return on a portfolio of low return on equity stocks

• Investment (I/A): difference between the return on a portfolio of low-investment stocks

and the return on a portfolio of high-investment stocks

• Size (SMB): Excess return of small firms over that of the large ones.

• Value (HMLm): Based on book-to-market rankings that use the most recent monthly

stock price in the denominator.

• Momentum (UMD): Equal-weight average of firms with the highest 30 percent eleven-

month returns lagged one month minus the equal-weight average of firms with the

lowest 30 percent eleven-month returns lagged one month.

4. The Fama-French model (FF6 - 2016) consists of the following 6 factors:

• Market (RM): Market excess return over the risk-free rate.

• Size (SMB): Excess return of small firms over that of the large ones.

• Value (HML): Excess return of high book-to-market stocks over those with low book-

to-market.

• Operating Profitability (RMW): Excess returns of firms with high profitability over

those with low.

• Investment (CMA): Excess returns of firms with low investment over those with high.

• Momentum (Mom): winners minus losers.

5. The Stambaugh-Yuan (M4-2016) construct their factors from the same universe with

that used in FF5, although they adopt an approach that takes into account the commonality

that is present in 11 well-documented anomalies. Their model (M4) comprises 4 factors:

• Market (RM): Market excess return over the risk-free rate, calibrated however to the

set of the 11 stock anomalies.

• Size (SMB): Excess return of small firms over that of the large ones, calibrated again

to the set of anomalies.

• Management (MGMT): Excess returns of stocks with high ranking on management-

related anomalies (Net Stock Issues, Composite Equity Issues, Accruals, Net Operating

Assets, Asset Growth, Investment to Assets) over the return of those with low ranking.
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• Performance (PERF): Excess returns of stocks with high ranking on “performance”-

related anomalies (Distress, O-Score, Momentum, Gross Profitability, Return on As-

sets) over the return of those with low ranking.

6. The Hou, Xue and Zhang (2015) q-4-factor model.

• Market (RM): Market excess return over the risk-free rate.

• Size (SMB): Excess return of small firms over that of the large ones.

• Profitability (ROE): difference between the return on a portfolio of high return on

equity (ROE) stocks and the return on a portfolio of low return on equity stocks.

• Investment (I/A): difference between the return on a portfolio of low-investment stocks

and the return on a portfolio of high-investment stocks.
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INTERNET APPENDIX

Sparse spanning portfolios and under-diversification

with second-order stochastic dominance

Stelios Arvanitis, Olivier Scaillet, Nikolas Topaloglou

In Appendix A, we present a result that justifies the characterization of M (Λ,Lp,q,P)

as optimal diversification loss, and an interpretation of the sparse optimal portfolios as

approximately efficient. We gather Monte Carlo experiment to assess the finite sample

properties of our procedure for sparse SSD spanning in Appendix B.

A. Theory

Approximate Sparse Spanning

We consider the optimization problem M (Λ,Lp,q,P) := supz∈Z supΛ infK∈Lp,q
infκ∈K D (z, κ, λ,P).

Even if M (Λ,Lp,q,P) > 0, so that there exists no K with csupp (K) ≤ q for which SS-SSD

holds, any solution to this problem has an interpretation as an approximate sparse spanning

subset of Λ in the sense of an expected utility loss as stated in the next proposition. For

P (Z) the set of probability distributions (or equivalently cdfs) supported on Z, and for any

Q there, consider the Russell-Seo increasing and concave utility (see Russell and Seo (1989))

uQ (x) :=
∫

Z
min (0, x− z) dQ.

Proposition 2. K ∈ Lp,q does not solve supΛ supz∈Z infK∈Lp,q
infκ∈K D (z, κ, λ,P), iff there

exists some λ ∈ Λ and some uQ such that E
[

uQ

(
∑∞

i=0 λiX
(i)
)]

− E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

>

M (Λ,Lp,q,P), for any κ ∈ K.

Proof. K does not solve supz∈Z supΛ infK∈Lp,q
infκ∈K D (z, κ, λ,P) iff

supz∈Z supΛ infκ∈K D (z, κ, λ,P) > M (Λ,Kp,q,P). Using the same argument as in the proof of

Lemma 3 the latter is equivalent to supF∈P(Z) supΛ infκ∈K
∫

Z
D (z, κ, λ,P) dF (z) > M (Λ,Lp,q,P).

Now, due to Fubini’s Theorem we have that

supF∈P(Z) supΛ infκ∈K
∫

Z
D (z, κ, λ,P) dF (z)

= supF∈P(Z) supΛ infκ∈K
∫

Z
E
[

(

z −∑∞
i=0 κiX

(i)
)

+

]

− E
[

(

z −∑∞
i=0 λiX

(i)
)

+

]

dF (z)

= supF∈P(Z) supΛ infκ∈K
∫

Z
E
([

min
(

0,
∑∞

i=0 λiX
(i) − z

)

−min
(

0,
∑∞

i=0 κiX
(i) − z

)])

dF (z)

= supF∈P(Z) supΛ infκ∈K E
[∫

Z
min

(

0,
∑∞

i=0 λiX
(i) − z

)

−min
(

0,
∑∞

i=0 κiX
(i) − z

)

dF (z)
]

= supF∈P(Z)

[

supΛ E
(

uQ

(
∑∞

i=0 λiX
(i)
))

− supK E
(

uQ

(
∑∞

i=0 κiX
(i)
))]

,
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and the result follows.

Hence, M (Λ,Lp,q,P) is the optimal expected utility difference that the elements of

any sparse subset of Λ of support dimension equal to q can achieve w.r.t. the elements

of Λ uniformly over the Russell-Seo utilities. It is thus interpreted as the minimal ex-

pected utility diversification loss occurring from ignoring investment opportunities of sup-

port greater than q uniformly over the set of increasing and concave utilities. The solutions

to supΛ supz∈Z infK∈Lp,q
infκ∈K D (z, κ, λ,P) are those subsets that actually achieve this opti-

mality bound. We are interested in the investigation of M (Λ,Lp,q,P) as a function of q. This

is obviously in any case non increasing and bounded below by zero to which it converges as

q → ∞; it is though of further interest to examine whether zero is approximately achieved

for small values of q. Lemma 3 along with the monotonicity of (Λp) implies also that as

p → +∞, M (Λ,Lp,q,P) → M (Λ∞,L∞,q,P). Besides, due to the transitivity property of the

relation, it is impossible for sparse spanning to hold as p → +∞ without holding for every

p > q.

Sparse Approximately Efficient Elements

For any z ∈ Z, since every increasing and concave utility up to a translation constant is repre-

sented via a convex combination of the Russell-Seo utilities (see Russell and Seo (1989)), and

due to the utility representations in Proposition 2, any solution to infλ∈Λ E

[

(

z −∑∞
i=0 λiX

(i)
t

)

+

]

is an efficient element of Λ; it must be non-dominated as an optimizer of the utility that

corresponds to F that concentrates its mass on z. Thus any portfolio that results from

the solution to infK∈Lp,q
infκ∈K E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

must be a sparse element of Λ of

support at most q. That sparse element optimally approximates the efficient element since

supΛ E
[

uQ

(
∑∞

i=0 λiX
(i)
)]

− supLp,q
supK E

[

uQ

(
∑∞

i=0 κiX
(i)
)]

is less than or equal to

supΛ

[

uQ

(
∑∞

i=0 λiX
(i)
)]

−E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

, for any κ of support at most q. It is also an

efficient element of maximizer over Lp,q of supK E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

. When M (Λ,Lp,q,P) ≤
0, the solution to infK∈Lp,q

infκ∈K E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

is also efficient in Λ. When

K ∈ Lp,q maximizes supK E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

uniformly in z, but does not span Λ, then

there necessarily exist efficient elements of Λ that are not in K. Then the portfolio that

solves supK E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

uniformly in z is by construction an efficient element of K

that minimizes E
[

uQ

(
∑∞

i=0 λiX
(i)
)]

−E
[

uQ

(
∑∞

i=0 κiX
(i)
)]

uniformly w.r.t. the efficient set

of Λ and the Russell-Seo utilities. Interestingly, it is an efficient element of K that maximizes

a utility that corresponds to a distribution F that concentrates its mass on some threshold

z.
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As p → +∞, any accumulation point of the solution to infK∈Lp,q
infκ∈K E

[

(

z −∑∞
i=0 κiX

(i)
t

)

+

]

is a q-sparse approximate efficient element of Λ∞. If it is unique and independent of z, then

it is also a portfolio bound for the set of q-sparse portfolios (for the concept of portfolio

bounds on finite dimensional portfolio spaces, see Arvanitis et al. (2021)). In this case, every

efficient element of Λ∞ is approximated by the same q-sparse approximate efficient element

of Λ∞. If infΛ∞ E

[

(

z −∑∞
i=0 λiX

(i)
t

)

+

]

has also a unique solution independent of z, then

this is also a portfolio bound of potentially infinite support of Λ∞. When SS-SSD holds and

q is large enough, then those two bounds coincide, and thereby Λ∞ admits a q-sparse bound.

B. Monte Carlo Experiments

We gauge the finite sample properties of our sparse SSD Spanning methodology via two

Monte Carlo (MC) experiments. We rely on data generated processes driven by multivariate

Gaussian distributions in i.i.d. settings.

First Experiment

The first MC experiment is based on a problem with N = p = 49, 100, 500 mutually i.i.d.

normally distributed assets with T = 300, 500, 1000 observations. Mutual i.i.d.-ness is

used to invoke the aforementioned argument by Samuelson (1967) and it can be empirically

motivated by the analysis of hedged returns of well-diversified portfolios. The number of

assets are selected to match the results of the empirical application, where we use 49, 100,

and 500 assets.

The covariance matrix is fitted to the historical monthly returns of three datasets: the 49

Industry portfolios from Kenneth French’s web page, the 100 assets of the FTSE 100 index,

and the 500 assets of the S&P 500 index. The mean vector in each case is calculated from

the historical monthly returns of these assets.

Based on the empirical application, we set q = 13, for N = 49, q = 25, for N = 100, and

finally, q = 45, for N = 500. We set the weights of the N − q assets to zero to get sparse

SSD spanning. For each combination of N and T , we repeat 500 times the sparse selection

procedure described in the main text, and check how many times we get a number of assets

close to q on average. We additionally compute the average estimated loss across the Monte

Carlo samples. Table A.1 exhibits the results of the first MC experiment. They show that

our sparse SD Spanning methodology is accurate in recovering the number of assets and the

expected utility loss.
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Table A.1: First Experiment

Sample size T 300 500 1000

Case 1: N = 49, q = 13

Assets selected:
Average number 11.45 12.04 12.54
St Deviation 1.18 1.12 1.13
Variability of the Loss:
Average Loss 0.003 0.001 0.0007
Standard Error 10−4 10−4 10−4

Case 2: N = 100, q = 25

Assets selected:
Average number 22.57 23.02 23.88
St Deviation 1.33 1.30 1.29
Variability of the Loss:
Average Loss 0.0009 0.0005 0.0002
Standard Error 10−4 10−5 10−5

Case 3: N = 500, q = 45

Assets selected:
Average number 42.3 42.85 43.34
St Deviation 1.68 1.57 1.54
Variability of the Loss:
Average Loss 0.0008 0.0004 0.0001
Standard Error 10−4 10−5 10−5

The experiment is based on a problem with N = 49, 100, 500 normally distributed assets and T = 300, 500,
1000 time series observations. We compute the average number of assets selected and the standard deviations
of these. We also measure the variability of the loss, by computing the average loss and the standard error
of the loss.

Second Experiment

The second MC experiment is based on a problem with N = p = 50 jointly normally

distributed assets with T = 300, 500, 1000 observations. In this experiment, we evaluate

the expected utility loss if q is lower than the minimal spanning support size, or q equals

exactly the minimal spanning support size. Specifically, we consider a set A of 5 asset

returns with equal means µA = 0.3 and equal standard deviations σA = 0.15, and a set B

of 5 asset returns with equal means µB = 0.15 and equal standard deviations σB = 0.1.

Since (µA − µB)/(σB − σA) < 0, there is no portfolio in set A that dominates any portfolio

in set B by SSD, and vice versa. The other 40 generated asset returns have equal means

µ = 0.1 and equal standard deviations σ = 0.5. The correlation coefficient of all N asset

returns is set to ρi,j = 0.001 for any pairs of i, j = 1, . . . , N, i ̸= j. Any convex combination

of assets that belong to sets A and B dominate any portfolio constructed from the other

40 assets by SS-SSD. We set q equal to either 5 (no spanning) or 10 (spanning). For each

T , we repeat 500 times the sparse procedure described in main text, and we compute the

average number of selected assets and average estimated loss. Table A.2 exhibits the results.

They show that our sparse SSD Spanning methodology is also accurate in recovering the
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number of assets and the expected utility loss when the cardinality constraint is binding,

here q=5. Under a Gaussian design (elliptical distribution), SS-SSD corresponds to sparse

MV-spanning. So the good performance of our methodology shows that we can also use it

to get sparse MV-spanning portfolios even if the true data generating process is not sparse

(asymptotic statistical guarantee).

Table A.2: Second Experiment

Sample size T 300 500 1000

Case 1: q = 5

Assets selected:
Average number 4.82 4.88 4.94
St Deviation 0.0135 0.0108 0.0086
Variability of the Loss:
Average Loss 0.022 0.015 0.009
Standard Error 0.0003 0.0003 0.0002

Case 2: q = 10

Assets selected:
Average number 9.86 9.91 9.96
St Deviation 0.0116 0.0102 0.0086
Variability of the Loss:
Average Loss 0.007 0.004 0.001
Standard Error 10−4 10−4 10−4

The experiment is based on a problem with N = 50 normally distributed assets and T = 300, 500, 1000
time series observations. We compute the average number of assets selected and the standard deviations of
these. We also measure the variability of the loss, by computing the average loss and the standard error of
the loss.
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