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Abstract

The present note provides an initial theoretical explanation of the way norm regularizations

may provide a means of controlling the non-asymptotic probability of False Dominance

classification for empirically optimal portfolios satisfying empirical Stochastic Dominance

restrictions in an iid setting. It does so via a dual characterization of the norm-constrained

problem, as a problem of Distributional Robust Optimization. This enables the use of

concentration inequalities involving the Wasserstein distance from the empirical distribu-

tion, to obtain an upper bound for the non-asymptotic probability of False Dominance

classification. This leads to information about the minimal sample size required for this

probability to be dominated by a predetermined significance level.
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1 Introduction

Portfolio optimization based on stochastic dominance (SD) restrictions is a non-
parametric generalization of the standard mean-variance approach, for optimal port-
folio weights’ selection regarding investment strategies outside the realm of satiation
and/or elliptical returns’ distributions.
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A recent literature in operations research and econometrics have addressed the
analytical challenges for numerical optimization and statistical inference, largely
making SD portfolio optimization empirically applicable. Indicative such applica-
tions include [1]; [2]; [3]; [4]. There portfolio selection is usually performed via the
optimization of an empirical criterion under the constraint that the choice set is
comprised by portfolios that empirically dominate a benchmark portfolio. The em-
pirically optimal portfolio by construction dominates the benchmark in the sample,
it is however susceptible to the decision error of False Dominance (FD) classification
in the population.

Under general sampling schemes this decision error becomes asymptotically neg-
ligible. Controlling the probability of this error for fixed sample size is however
important in applications, especially when the sample size is not particularly large
compared to the dimensionality of the portfolios considered. In some of the appli-
cations mentioned above, a heuristic used in the underlying empirical optimization
seems to improve the out-of-sample properties of the optimal portfolio. The optimiza-
tion problem is augmented by a restriction on the distance of the portfolio sought
compared to the benchmark. The studies [2], [3], and [4] demonstrate enhancements
in both in-sample and out-of-sample performance for the optimized portfolios. This
finding aligns with similar observations noted within the portfolio selection literature,
which do not necessarily lie inside the stochastic dominance framework; refer to [5],
[6], and [7] for further examples.

The present note provides an initial theoretical explanation of the way suchlike
restrictions may provide a means of controlling the fixed sample size probability of
FD classification in an iid setting. It does so first, via the conditional on particular
events characterization of the norm-constrained problem, as a problem of Distribu-
tional Robust Optimization (DRO). There strong convex duality results (see [8])
enable the representation of the original problem as a problem of conservative opti-
mization over a Wasserstein ball centered at the empirical distribution, as long as
the criterion has a Lipschitz continuity property. Second, using this characteriza-
tion along with concentration inequalities involving the Wasserstein distance from
the empirical distribution, an upper bound for the non-asymptotic probability of
FD classification is obtained, leading among others to considerations about the min-
imal sample size required for this probability to be dominated by a predetermined
significance level.

The structure of the note is the following: the second section analyzes the SD
framework for portfolio optimization and its’ regularized formulation. The third sec-
tion derives the DRO characterization, the non-asymptotic bounds for the probability
of FD, and briefly discusses some paths for future research.
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2 Stochastic dominance and portfolio optimization framework

(Xt)t∈Z is a process with values in some subset of Rd. The random vector Xt repre-
sents the one period returns of d financial assets, P denotes their latent time-invariant
joint distribution, and X ⊂ Rd is the pointwise bounded from below support of P.
Boundedness from above is considered plausible for moderate observation frequen-
cies. The researcher has at her disposal an observable sample from the process,
(Xt)t=1,··· ,T ; PT denotes the empirical distribution of the sample.

A portfolio on X0 is any element of the dual space of Rd; the elements of its
representing vector are the portfolio weights. Alternative portfolios are evaluated
inside the expected utility paradigm, using utility functions u : X → R that are
increasing, continuous, and concave. These populate the closed (in the topology of
uniform convergence on compacta), convex set U2 while U⋆

2 denotes the set of Russell-
Seo utilities-see [9], i.e. the utilities of the form u(x) = −(z − x)+, z ∈ X , those
constitute the extreme points of U2; U⋆

2 − {0} does not contain the constant utility
at zero-corresponding to the threshold that equals the pointwise infimum of X . U=

2

is the set of constant utilities, subsequently, U2−U=
2 analogously denotes U2 without

constant utilities.
The analysis involves a set of portfolios Λ ⊆ Rd. It is considered convex and

compact. In what follows λ, τ denote respectively a typical element of Λ and a
distinguished benchmark portfolio inside Λ.

The above enable the definition of a stochastic dominance relation on the sets of
prospects, via U2: in the stationary framework considered, λ is said to dominate τ

w.r.t. the utility class U2 iff D(u, τ ,λ,P) := EP(u(λ′X0)) − EP(u(τ ′X0)) ≥ 0, ∀u ∈
U2-here EP denotes integration w.r.t. P. Thus, λ is preferred over τ by every utility
in the considered class, this is what is known in the literature as the second order
stochastic dominance of λ over the benchmark τ ; λ �

P,2
τ . The definition remains

invariant if U2 is replaced by U⋆
2 -see [9]. Furthermore, Λ�

P :=

{

λ ∈ Λ;λ �
P,2

τ

}

is the

non-empty convex set of portfolios that dominate the benchmark in the population.
Non-emptyness holds due to reflexivity of the dominance relation, and convexity fol-
lows from the concavity of the utility functions at hand, the linearity of the portfolio
formation and the monotonicity of the integral. Substituting the latent P with PT

in �
P,2

, the empirical analogue Λ
�
PT

is obtained.

Consider a choice λPT
∈ Λ

�
PT

. Controlling the probability of FD for λPT
, i.e.

P(λ �
PT ,2

τ ) � λ 6�
P,2

τ ), can be of particular empirical interest, as FD can lead to

suboptimal portfolio choices. This can asymptotically-as T → ∞-vanish as long
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as the probabilistic properties of the sampling scheme ensure that PT  P where
 denotes convergence in distribution and the existence of some ǫ > 0 such that
supT EPT

(‖X0‖1+ǫ
2 ) < +∞, where ‖ · ‖2 denotes the Euclidean norm. This is due

to that U⋆
2 is uniformly Lipschitz, and due to uniform integrability. The weak con-

vergence is easily establishable in contexts of stationarity and ergodicity for (Xt)t∈Z;
boundedness for the 1 + ǫ moments of the normed process would follow in those
stationary and ergodic frameworks along which a financially plausible assumption
of EP(‖X0‖1+ǫ

2 ) < +∞-see for example Paragraph 3.1 and Theorem 1 of [10]. The
question of controlling this probability is also of interest for fixed-and potentially
realistically large enough T . This is what is investigated in the subsequent analysis.

Every choice λP ∈ Λ
�
P can be represented as a solution-albeit trivial in cases where

a constant criterion is involved-of the optimization problem max
λ∈Λ�

P

EP(u(λ′X0))

for some u ∈ U2. More importantly for a given non-constant u ∈ U2 any solution,
say λ(u,P), to the optimization problem max

λ∈Λ�
P

EP(u(λ′X0)) can be of economic

interest; any such latent portfolio is perceivable as the best a risk averter investor
with preferences represented by the particular u can achieve in terms of expected
utility, if she insists on working with portfolios that would be weakly preferred by
every risk averter to the benchmark. This is a problem of portfolio optimization
augmented with stochastic dominance (second order) SD conditions.

Latency of P implies generally latency of λ(u,P). The latter can be statistically
approximated by its empirical analogue; λ(u,PT ), i.e. the solution to the empirical
portfolio optimization augmented with empirical stochastic dominance conditions
max

λ∈Λ�
PT

EPT
(u(λ′x)). Hence the analysis that follows considers an arbitrary yet

fixed u and asks whether there is a modification of the optimization problem that
enables the non-asymptotic investigation of the probability of FD for its solutions.

2.1 Regularized formulation of portfolio optimization

A modification used in practice augments the expected utility criterion with an ad-
ditive regularization term that depends on the ℓp distance between the portfolio
sought and the benchmark. The intuition is that when the (Lagrange) multiplier of
the aforementioned distance is chosen optimally, then in order for a portfolio that
lies ”away” from the benchmark to solve the optimization problem, it would have to
”strongly” satisfy the empirical dominance conditions at least in some neighborhood
of u.

As mentioned above, the ℓp-distance from the benchmark portfolio weights is

considered here, ‖λ− τ‖p := (
∑d

i=1 |λi − τi|p)1/p, for the case where p ≥ 1, and
maxi=1,...,d |λi − τi| for p = +∞. The regularized optimization portfolio is then de-
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fined by:
λ(u,PT , p, ξT ) ∈ arg max

Λ
P
�
T

(EPT
(u(λ′x)) − ξT ‖λ− τ‖p), (1)

where the random variable ξT ≥ 0 assumes the role of the regularization multiplier.
Existence of the regularized optimization portfolio is ensured by the concavity and
continuity of u, the linearity of EPT

, the convexity and continuity of ‖ · ‖, and the
convexity of the set Λ�

PT
, which holds due to the concavity of the members of U2, and

the Measurable Maximum Theorem-see Theorem 18.19.3 in [11]. Optimal selection
of the multiplier is expected to influence the non-asymptotic properties of the prob-
ability of FD. The modified problem additionally thus depends on both the choice
of the multiplier ξT and the norm order p.

It is possible that Λ already includes (explicit or implicit) pre-existing norm
constraints; then the analysis studies the effect on the probability of FD of tightening
of the existing norm constraints.

Algorithmically, given the U⋆
2 formulation of the dominance relation by [9], and if

u is the identity, something that corresponds to portfolio mean maximization under
dominance constraints, a usual practical specification of Problem (1) is:

max
λ∈Λ

1

T

T
∑

t=1

λ′Xt − ξT ‖λ− τ‖p ,

s.t.
1

T

T
∑

t=1

(z − τ ′Xt)+ − 1

T

T
∑

t=1

(z − λ′Xt)+ ≥ 0, ∀z ∈ X ⋆,

(2)

where now X ⋆ is a finite discretization of the support X . If Λ is convex, and p = 1, or
p = ∞, then Problem (2) is reducible to an O(|X ⋆| × T + d)-LP formulation via the
linear relaxations technology of [12]. Whenever 1 < p < +∞, the aforementioned
relaxations can be combined with piecewise linear approximations of the ℓp norm, in
which case the problem contains O(|X ⋆| ×T + d×S) variables, where S denotes the
number of segments that support the linear pieces. For a general concave u, the prob-
lem can likewise be formulated as a convex optimization problem with linearizable
restrictions-see [13] for a survey of LP relaxations of stochastic dominance problems.
In any case, the solution produced by the LP relaxations, is characterized as any
element of arg maxΛ⋆

P
�
T

(EPT
(u(λ′x)) − ξT ‖λ− τ‖p), where now Λ⋆

P
�
T

is the set of λ

that satisfy the resulting O(|X ⋆| × T ) relaxed empirical dominance inequalities.
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3 Results

The issue of the derivation of non-asymptotic properties for the portfolio solutions of
the empirical regularized problem is considered here, with a view towards the fixed
T properties of the probability of FD.

In the first part of this section the regularized problem is translated to a problem
of distributionally robust optimization (DRO) using a dual formulation of regular-
ized problems involving Lipschitz criteria to problems of conservative optimization
in Wasserstein neighborhoods of PT . There, the Lagrange multiplier ξT plays an im-
portant role in the DRO formulation below, as it determines the radius of pessimism
and at least locally the slacks for the dominance constraints.

In the second part this conservative representation is exploited in order to non-
asymptotically bound the probability of FD characterization via concentration in-
equalities.

Some further notation will be also useful: for Q an arbitrary distribution hav-
ing finite first moment on Rd, and q(p) such that 1

p
+ 1

q
= 1, the first Wasserstein

distance between Q and the empirical distribution PT is defined by W(PT ,Q; p) :=
minγ∈Γ(PT ,Q)

∫

Rd×Rd ‖z − z⋆‖q dγ(z, z⋆), where Γ(PT ,Q) denotes the set of Borel prob-

ability distributions on Rd × Rd that have respective ”marginals” PT , Q, and also
have finite q moments (see [8]). W metrizes weak convergence (see [14]). For ǫ > 0,
Mp(PT , ǫ) := {Q : W(PT ,Q; p) ≤ ǫ} is the Wasserstein closed ball centered at PT

with radius ǫ. Also, d(p) := dl, l := max(1
2
− 1

p
, 1
p
− 1

2
) =

{

1
p
− 1

2
, p ≤ 2

1
2
− 1

p
, p > 2.

3.1 DRO formulation

A characterization of the regularized problem in (1) as a distributionally robust
optimization (DRO) problem is obtained here. It is based on strong convex duality
results for robust optimization (see for example Lemma 1 of [8]).

The event E1 :=
{

∃λ(u,PT , p, ξT ) : infQ∈Mp(PT ,ξT ) D(u, τ ,λ(u,PT , p, ξT ),Q) > 0
}

characterizes the samples for which the empirical regularized program has non triv-
ial solutions. Furthermore, for every sample realization appearing inside E2 :=
{

∀v ∈ U⋆
2 − {0} , ∀λ(v,PT , p, ξT ) : infQ∈Mp(PT ,ξT ) D(v, τ ,λ(v,PT , p, ξT ),Q) > 0

}

, ev-
ery choice of the objective utility results to non-trivial empirical solutions. It is
noted that E2 is a subset of E1 due to the Russell-Seo utility representation-see [9].
Then:
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Proposition 1. (Distributional Robustness). Suppose that u has a unital Lipschitz
coefficient. Then:

1. Given E1, there exists some non-empty open subset U2(u) of U2, for which Prob-
lem (1) is equivalent to:

max
Λ

�
PT

∩Λ�
u

inf
Q∈Mp(PT ,ξT )

EQ(u(λ′x)); (3)

Λ�
u :=

{

λ ∈ Λ : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ,Q) > 0, ∀v ∈ U2(u)

}

. (4)

2. Given E2, Problem (1) is equivalent to:

sup
Λ

�

ξT

inf
Q∈Mp(PT ,ξT )

EQ(u(λ′x)); (5)

where Λ
�
ξT

:=

{

λ ∈ Λ : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ,Q) > 0, ∀v ∈ U⋆
2 − {0}

}

. (6)

Proof. Theorem 1 of [8] implies that

GPT
(τ + (λ− τ )) − ξT (c) ‖λ− τ‖p = infQ∈Mp(PT ,ξT )GQ(τ + (λ− τ ))

D(u, τ , τ + (λ− τ ),PT ) = infQ∈Mp(PT ,ξT )D(u, τ , τ + (λ− τ ),Q) + ξT ‖λ− τ‖p
,

for GP(λ) := EP(u(λ′X)). This and translation in Rd by τ , directly imply that
Problem (1) is equivalent to maxΛ infQ∈Mp(PT ,ξT )GQ(λ). Using a scaling and trans-
lation argument that is allowed for von Neyman-Morgenstern preferences, U2 can
be chosen uniformly bounded due to the uniform Lipschitz property of U⋆

2 and the
Russell-Seo representation-see [9]. This and Lemma 2.7.5 of [15] along with the
compactness of the support, imply that U2 is totally bounded, and thereby equicon-
tinuous. This and uniform integrability then imply that D(u, τ ,λ,P) − ξT ‖λ− τ‖p
is jointly continuous in (u,λ). Since there exists a non trivial solution to (1), it
must satisfy D(u, τ ,λ,PT ) ≥ ξT ‖λ− τ‖p. This then implies the existence of U2(u).
U2(u) is open as a union of open sets; it is obtained as the inverse image of (0,+∞)
w.r.t. the regularized criterion evaluated at the solution, on U2. Finally, similarly to
Theorem 1 of [10], for the portfolio defined as γ = γ(U ,τ )((1 − δ⋆)wu + δ⋆w), with
γ(U ,τ )(w) :=

∫

U⋆
2−{0} λ(u,PT , p, ξT )dw(v), where w lies in the set of non-degenerate

Borel measures on U2, and wu the degenerate measure at u, δ⋆ ∈ (0, 1), we have that
γ ∈ Λ

�
ξT

due to the concavity of the utilities involved; then by the definition of the
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portfolios involved, and due the Lipschitz continuity of D(u, τ , ·,PT ) and of the ℓp
norm, setting λT := λ(u,PT , p, ξT ) it is obtained that

0 ≤ EPT
(u(λ′

T − ξT ‖λT − τ‖p − EPT
(u(γ ′X)) + ξT ‖γ − τ‖p

≤ δ⋆(supQ∈Mp(PT ,ξT ) EQ(‖x‖2) + ξTd
1
p
− 1

2 )diam(Λ),

and (5) holds since δ⋆ can be chosen arbitrarily small.

Lipschitz coefficient unitarity holds for example in the case of portfolio choice via
maximization of expected return; then u is the identity. More generally, given that
utility rescaling does not affect preferences and optimal choice, if u is non-trivial
and has a bounded derivative, then the Lipschitz coefficient can be always equal to
one. The regularized version of the objective function is equal, due to duality, to a
robust expected value of u(·′x); actually this is the most conservative expectation
over the Wasserstein ball centered at the ecdf, with radius formed by the Lagrange
multiplier. The dual representation of W (see [16]) implies that Mp(PT , ξT ) is convex;
then Sion’s Minimax Theorem-see [17]-implies that max

Λ
�
PT

infQ∈Mp
EQ(u(λ′X)) =

infQ∈Mp
max

Λ
�
PT

EQ(u(λ′X)). This conforms to the solution characterization as the

most conservative (over the aforementioned ball) maximizer of expected utility that
stochastically dominates the benchmark.

Due to the equi-continuity properties of U2, and if there exists an empirically
optimal portfolio that strictly dominates the benchmark, i.e. E1 holds, the empirical
problem has a representation where the regularization term, permeates as a positive
slack to a neighborhood of SD conditions around D(u, τ ,λ,PT ); each of these condi-
tions then, by the same duality property, has a conservative characterization given in
(4). Hence, regularizing the objective implies a local regularization for the dominance
conditions. Under the stronger E2, the representation uses the regularization term as
a positive slack on the totality of non-trivial SD conditions. This implies that there
exist elements of λ(u,PT , p, ξT ) that satisfy enhanced versions of the SD inequalities,
resulting into strong properties regarding the probability of FD classifications, as
the result in the following section reveals. It is noted that due to the Russell-Seo
representation-see [9], the linearity of D w.r.t. u and the properties of the infimum,
under E2, the regularization permeates every SD condition involving a non-constant
utility.

3.2 Non-asymptotic bounds for the False Dominance probability

In order to derive non asymptotic bounds for the probability of selecting a port-
folio that does not dominate the benchmark in the population (FD), the event
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Λ
�
PT

− Λ
�
P 6= ∅ is also utilized: it corresponds to the samples for which FD clas-

sification actually occurs, when regularization is not used inside the SD inequal-

ities. Furthermore, for τ > 0 let h(τ) :=
1+lnEP[exp(τ‖x‖22)]

τ
, and for m > 2 let

C(d) := 2 × 3d−log3(d)I(d − log3(d) <
log3(T )

2
) + 4EP[‖x‖m2 ]I(d − log3(d) ≥ log3(T )

2
),

where I denotes the indicator function. Then the following result is obtained via
the use of concentration inequalities involving the Wasserstein distance from the
empirical distribution:

Proposition 2 (False Dominance Classification and Opportunity Loss). Suppose
that (Xt)t∈Z is iid, that d > 2, that for some τ > 0, EP(exp

(

τ ‖x‖22
)

) < +∞, and that

u has unital Lipschitz coefficient. If λT := λ(u,PT , p, ξT ), and E := Λ
�
ξT
−Λ

�
P 6= ∅∩E2,

then,

1. for any T ≥ 1, and if ξT infE ‖λT − τ‖p > 2d(p) sup
λ
‖λ‖2 C(d)T− 1

d ,

P(E) ≤ exp






−

(

1 − C(d)T− d+1
d

)2

TM2(ξT ,Λ, p,U⋆
2 , E)

2 infτ>0 h2(τ)






, (7)

where M(ξT ,Λ, p,U⋆
2 , E) :=

ξT infE ‖λT−τ‖p−supE infU⋆
2
D(v,τ ,λT ,P)

2d(p) supλ‖λ‖2
.

Consequently, if the event E2 holds w.h.p. and Tξ2T infE ‖λT − τ‖2p → ∞, then
the probability of FD classification for any with asymptotically positive proba-
bility λT ∈ Λ

�
ξT

−ΛP, converges to zero.

2. There exists some T0 ≥ 1 such that for any T ≥ T0, if the regularization coeffi-

cient satisfies ξT infE ‖λT−τ‖p > 2d(p) sup
Λ
‖λ‖2 max

{

C(d)T− 1
d ,
√

2 infτ>0 h(τ)
√

lnT
T

}

,

then,
P(Λ�

PT
−Λ

�
P 6= ∅) > P(E). (8)

3. Finally, if λ⋆ denotes the optimal solution to the population problem, then for
any T ≥ 1, and if ξT > C(d)T− 1

d ,

P(
∣

∣EPT
(u (λ′

Tx)) − EP(u
(

λ⋆′x
)

)
∣

∣ > d(p)EPT
‖X0‖2 ‖λT − λ⋆‖p + ‖λ⋆‖2 ξT )

≤ exp



−
(

1−C(d)T−
d+1
d

)2

Tξ2
T

2 infτ>0 h2(τ)



 .

(9)
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Proof. Given E2, the event Λ�
ξT
−Λ�

P 6= ∅ is equivalent to the inequalities’ system com-
prised of infU⋆

2
infP∈Mp(PT ,ξT )D(u, τ ,λT ,P) ≥ 0 and infU⋆

2
D(u, τ ,λT ,P) < 0. Due to

the Kantorovich-Rubinstein representation of W (see [16]), Proposition 1.2, and the
equivalence between the ℓp norms in Rd,

P
(

Λ
�
ξT

−Λ
�
P 6= ∅ ∩ E2

)

≤ P

(

inf
U⋆
2

inf
Q∈Mp(PT ,ξT )

D(v, τ ,λT ,Q) − inf
U⋆
2

D(v, τ ,λT ,P) ≥ − inf
U⋆
2

D(v, τ ,λT ,P) ∩ E2
)

≤ P

(

inf
U⋆
2

(D(v, τ ,λT ,PT ) − ξT‖λT − τ‖p) − inf
U⋆
2

D(v, τ ,λT ,P) ≥ − inf
U⋆
2

D(v, τ ,λT ,P) ∩ E2
)

≤ P

(

inf
U⋆
2

D(v, τ ,λT ,PT ) − inf
U⋆
2

D(v, τ ,λT ,P) ≥ ξT‖λT − τ‖p − inf
U⋆
2

D(v, τ ,λT ,P) ∩ E2
)

≤ P

(

sup
U⋆
2

|D(v, τ ,λT ,PT ) −D(v, τ ,λT ,P)| ≥ ξT‖λT − τ‖p − inf
U⋆
2

D(v, τ ,λT ,P) ∩ E2
)

≤ P

(

2 sup
Λ

‖λ‖2 dmax(0, 1p−
1
2)W (PT ,P; p) ≥ ξT‖λT − τ‖p − inf

U⋆
2

D(v, τ ,λT ,P) ∩ E2
)

≤ P

(

W (PT ,P; p) ≥ ξT‖λT − τ‖p − infU⋆
2
D(v, τ ,λT ,P)

2d(p) supλ ‖λ‖2
∩ E2

)

≤ P

(

W (PT ,P; p) ≥ ξT infE ‖λT − τ‖p − supE infU⋆
2
D(v, τ ,λT ,P)

2d(p) sup
λ
‖λ‖2

)

,

where the final inequality in the previous display follows from the monotonicity of
P. Due to the Bobkov-Godge equivalence (see Theorem 1.3 of [18]-see also Corollary
2.4 and Particular Case 2.5 of [19]), and Theorem 1.1 of [20], the existence of the
exponential squared moment for ‖X0‖2, and relation (14) of [21], for any t⋆ > 0, we
have that

P

(

W
(

PT ,P;
1

2

)

> t⋆ + E

(

W
(

PT ,P;
1

2

)))

≤ exp

( −Tt⋆2

2 infτ>0 h2(τ)

)

.

Setting in the above t⋆ := t− E
(

W
(

PT ,P; 1
2

))

for t > E
(

W
(

PT ,P; 1
2

))

, and ob-

serving that
(

t− E
(

W
(

PT ,P; 1
2

)))

≥
(

1 − C(d)T− d+1
d

)2

t2, whenever t > E
(

W
(

PT ,P; 1
2

))

,

we obtain from the proof of Theorem 2.3 of [22] (where we identify 4 as an upper
bound for the constant cp), as well as from the proof of Theorem 3.1 of [22], where
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first, we identify c ≤ 1− log3(d)
d

due to the equivalence between the Euclidean and the
max norm, and the form of the packing number for closed max-balls, and, second,
let m → ∞ in the case where d − log3(d) < log3(T ) due to the existence of the

exponential squared moment, that if t > C(d)T− 1
d , then

P

(

W
(

PT ,P;
1

2

)

> t

)

≤ exp






−

(

1 − C(d)T− d+1
d

)2

Tt2

2 infτ>0 h2(τ)






.

Setting in the previous t := M(ξT ,Λ, p,U⋆
2 , E) and observing that when the event

Λ
�
ξT

− Λ
�
P 6= ∅ ∩ E2 occurs, the non stochastic term supE infU⋆

2
D(v, τ ,λT ,P) is

negative, establishes (7).
Furthermore, due to Theorem 2 of [23] and the Berry-Esseen Theorem, and for

any v, for which D(v, τ ,λ,P) < 0, we obtain that there exist constants C1, C2, c >

0, independent of T , and a positive asymptotically negligible sequence γ (T ) that
satisfies

√
Tγ (T ) → ∞, such that eventually,

C1√
T (1+T−1)

− C2γ(T )
T (1+T−1)

− o
(

T− 1
2

)

+ exp (−cTD2(v, τ ,λ,P))

≤ P (D(v, τ ,λ,PT ) −D(v, τ ,λ,P) ≥ −D(v, τ ,λ,P)) ≤ P
(

Λ
�
PT

−Λ
�
P 6= ∅

)

.

Then, if (7) holds, and since under E the supE infU⋆
2
D(v, τ ,λT ,P) is negative, if fur-

thermore ξT infE ‖λT − τ‖p > 2
√

2d (p) infτ>0 h(τ) sup
Λ
‖λ‖2

√

1
2
lnT+ln(1+T−1)−lnC1

T
,

the second result in (8) follows. For the final result notice that due to the triangle
inequality, the Lipschitz continuity property of v, the boundedness of the support,
the Cauchy-Schwarz inequality, and the equivalence between the ℓp norms in Rd,

∣

∣EPT
(u (λ′

TX0)) − EP

(

u
(

λ⋆′X0

))∣

∣

≤
∣

∣EPT
(u (λ′

TX0)) − EPT

(

u
(

λ⋆′X0

))∣

∣+
∣

∣EPT

(

u
(

λ⋆′X0

))

− EP

(

u
(

λ⋆′X0

))∣

∣ ,

with
∣

∣EPT
(v (λ′

TX0)) − EPT

(

v
(

λ⋆′X0

))∣

∣ ≤ d (p)EPT
(‖X0‖2) ‖λT − λ⋆‖p ,

and
∣

∣EPT

(

u
(

λ⋆′X0

))

− EP

(

u
(

λ⋆′X0

))∣

∣ ≤ ‖λ⋆‖2 W
(

PT ,P; 1
2

)

,

and thereby

P
(

∣

∣EPT
(u (λ′

TX0)) − EP

(

u
(

λ⋆′X0

))∣

∣ > d (p)EPT
(‖X0‖2) ‖λT − λ⋆‖p + ‖λ⋆‖2 ξT

)

≤ P
(

W
(

PT ,P; 1
2

)

> ξT
)

,

and the result in (9) follows by setting t := ξT in (3.2).
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The results rely first on the iidness of the sample, an assumption that is compati-
ble with our data frequency; it can be extended to m-dependent processes as well as
to a class of Markov processes that possess contractive transition kernels (see [21]).

Second, they rely on the existence of some square-exponential moment for ‖X0‖22.
This is equivalent to the existence of the moment generating function of ‖X0‖22 in
a neighborhood of zero, a condition that fails whenever ‖X0‖ follows a distribution
with the right-tail behavior of the log-normal distribution. The exponential moment
existence holds whenever X is bounded, or more generally whenever its squared
elements follow sub-Gaussian distributions (see indicatively Chapter 2 of [24]). The

maximal moment parameter τ can be estimated via the ratio
(κ+1)EPT (‖X0‖2κ2 )
EPT (‖X0‖2κ+2

2 )
, due

to the power series representation of the exponential moment and the properties of
the ratio test for real series. Given this the optimization resulting to infτ>0 h

2(τ)
can be empirically approximated. The choice of some non-optimal τ can also be
considered at the cost of a potentially less efficient probability bound, and a larger
regularization parameter.

The probability bounds in the first and third cases of the theorem decline ex-
ponentially fast in TM2(ξT ,Λ, p,U⋆

2 , E2) and Tξ2T respectively, and hold for all T

as long as the worst case value, over the adverse event E , of the penalization term
−ξT‖λT − τ‖p, and respectively the penalization coefficient, dominates in absolute
value a sequence of order exp(− lnT

d
); this declines slowly when the base asset dimen-

sionality is large. This low rate of asymptotic negligibility for the penalization term
can be circumvented at either the cost of some positive large multiplicative constant
in front of the probability bound, or at the cost that the results hold eventually for
large enough T that also depends on the regularizer (see for example [20]). The
requirement of existence of squared exponential moments, can also be circumvented
at the cost of loss of exponentially decreasing probability bounds; the existence of
regular (polynomial) moments of some order would imply eventual polynomially de-
creasing probability bounds in in TM2(ξT ,Λ, p,U⋆

2 , E2) and Tξ2T respectively, see also
[20]. It is possible that the form of the bounds as well as the requirements for the pe-
nalization related quantities can be refined using results pertaining to infinitesimally
Hilbertian structures, like Corollary 4.11 in [25].

The first result estimates the probability of the adverse event E ; this corresponds
to the existence of empirically enhanced optimal portfolios that are non-dominant in
the population. It says that if the regularization term ξT infE ‖λT − τ‖p is strictly

greater than a term of the form CT
1
d , then the logarithmic probability that there exist

empirically enhanced portfolios that are non dominant in the population, is bounded

above by the term − (1−C(d)T−
d+1
d )2TM2(ξT ,Λ,p,U⋆

2 ,E)
2 infτ>0 h2(τ)

. It is noted that the ξT infE ‖λT −
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τ‖p term is not linear in the regularization multiplier, since by construction λT ∈
Λ

�
ξT

. Nevertheless the term infE ‖λT − τ‖p can be approximated via resampling,
something that implies that it is statistically feasible to do inference on the validity
of the inequality. The bound depends on the aforementioned worst case value over
the event of the penalization term, the base assets dimensionality, the size of the
portfolio space, through d (p) on the choice of the ℓp norm, the squared exponential
moment parameter, and the supremum over the elements of E of infU⋆

2
D(v, τ ,λ,P);

e.g, if ξT infE ‖λT − τ‖p = 2.1d(p) supλ ‖λ‖2 C(d)T− 1
d , then the result implies that

the probability of FD error is eventually bounded above by exp(−c⋆T 1− 2
d ) for some

(estimable) positive constant c⋆. Thus, for a given significance level α ∈ (0, 1), and if

T ≥ (− ln(α)
c⋆

)
d

d−2 , the probability of FD is thus bounded above by α. The same upper
bound on the probability of FD holds whenever the adverse case regularization term

is greater than the maximum between
√

−2 ln(α) infτ>0 h(τ)
∣

∣

∣1 − C(d)T− d+1
d

∣

∣

∣

−1

T− 1
2

and 2d(p) sup
λ
‖λ‖2 C(d)T− 1

d . Tracing the proof shows that analogous bounds would
hold for all Λ�

PT
, as long as the weaker E1 holds, yet failure of population dominance

only happens inside U⋆
2 (u) with P probability 1.

For an analogous result, regarding the solutions of the LP relaxed formulation
formed as Λ⋆

ξT
:= arg maxΛ⋆

P
�
T

(EPT
(u(λ′x)) − ξT ‖λ− τ‖p), arguing analogously to

the first part of the proof of the proposition, it is not difficult to see that the logarith-
mic probability of the event E⋆ := Λ⋆

ξT
−Λ

�
P 6= ∅ ∩ E2 is bounded above by the term

− (1−C(d)T−
d+1
d )2TM̂2(ξT ,Λ,p,U⋆

2 ,E)
2 infτ>0 h2(τ)

, where now M̂(ξT ,Λ, p,U⋆
2 , E2) := M(ξT ,Λ, p,U⋆

2 , E2)−
supE⋆ (infU⋆

2 (X⋆) D(v,τ ,λT ,P)−infU⋆
2
D(v,τ ,λT ,P))

2d(p) supΛ‖λ‖2
, for U⋆

2 (X ⋆) := {−(z − x)+, z ∈ X ⋆}, and λT ∈
Λ⋆

ξT
. The numerator of the second term above represents a conservative estimate of

the approximation error due to the LP-discretization of the support X ; under the
event E⋆ this term is non-negative, thus augmenting the resulting probability bound
compared to the one regarding the probability of E .

The second result says that for the appropriate choice of the regularization mul-
tiplier the probability of FD for the members of the enhanced set, will eventually
become smaller than the probability of false dominance for the whole of Λ�

FT
, when-

ever failure of population dominance happens due to the complement of U⋆
2 (u). It

shows the significance of the positive slacks implied by the regularization parameters
on the SD conditions, for the small sample mitigation of the particular decision error.

The third result corresponds to an oracle inequality that relates the opportunity
loss entailed by the empirical regularized problem, with the ℓp-deviation between the
empirical and the population solution and the regularization factor. If the empirical
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solution is consistent, it implies asymptotic negligibility for the opportunity loss
w.h.p.

If instead of the regularized problem, the norm-constrained Lagrangean formula-
tion is used,

max
Λp(c)∩Λ�

PT

EPT
(u(λ′x)); (10)

Λp(c) :=
{

λ ∈ Λ : ‖λ− τ‖p ≤ c
}

, (11)

for c > 0, then by the Lagrangian Duality Theorem, see Ch. 8, Theorem 1 of [26],
the above results would transfer in this framework, as long as the term ξT is replaced
by the worst case over the relevant event optimal Lagrange multiplier, and likewise
the term infE ‖λT − τ‖p is replaced by c.

3.3 Discussion

Similar results would be analogously derivable to the above for other stochastic dom-
inance relations, if the relevant set of utility functions that define the relation is
equi-continuous w.r.t. the topology of locally uniform convergence. This could ac-
commodate cases of preferences with non-global disposition towards risk like appro-
priate sets of S-shaped utilities associated with the Prospect Stochastic Dominance
relation-see [27] or [28]. Moreover, it is observed that in these instances, the nu-
merical expression of the related optimization problems may not entirely simplify to
standard LP programs because they may include components of MILP formulations.
In such cases, the associated problems could be solved via cutting plane methods (see
for example [29]), or via the use of meta-heuristic methods like the SMA algorithm
(see for example [30]). The even more complicated issue of deriving the probabilis-
tic properties of solutions emerging from adopting suchlike optimization methods to
stochastic dominance problems is an interesting path for further research.

The iid framework employed in Proposition 2 can be restrictive for economic data
of high to moderate observation frequencies. The extension of such-like results to the
more econometrically plausible framework of ergodicity and strong mixing could be
benefited by analogous extensions of the Wasserstein distance empirical concentration
inequalities to such settings. Bakry-Émery positive curvature-dimension conditions,
as they relate to transportation inequalities and concentration phenomena, could aid
in such considerations; refer to [31] for further insights. Optimality of the probability
bounds is of simultaneous interest for the non-asymptotic control of the probability
of FD in realistically large samples.
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