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Abstract

Within the Frequentist Model Averaging framework for linear models, we introduce a

multi-objective model averaging methodology that extends both the generalized Jackknife

Model Averaging (JMA) and the Mallows Model Averaging (MMA) criteria. Our approach

constructs estimators based on stochastic dominance principles and explores averaging

methods that minimize multiple scalarizations of the joint criterion integrating MMA and

JMA. Additionally, we propose an estimator that can be interpreted as a Nash bargaining

solution between the competing scalar criteria. We establish the asymptotic properties of

these estimators under both correct specification and global misspecification. Monte Carlo

simulations demonstrate that some of the proposed averaging estimators outperform JMA

and MMA in terms of MSE/MAE. In an empirical application to economic growth data,

our model averaging methods assign greater weight to fundamental Solow-type growth

variables while also incorporating regressors that capture the role of geography and insti-

tutional quality.
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1 Introduction

Model Averaging has been proposed as a general framework to address model uncertainty. Two

primary approaches have emerged in the literature: the Bayesian Model Averaging (BMA) and

the Frequentist Model Averaging (FMA). Model uncertainty naturally arises due to the presence

of multiple competing theories, each emphasizing different potential data-generating processes

(DGPs), which are often non-nested.

There is a voluminous amount of work done in the BMA strand, as Bayesian methods are

ideally suited for averaging or combining different models using posterior-based weights; see Steel

(2020) [36] for a very comprehensive survey of the BMA methods. However, in this paper, we

examine an approach that rests within the FMA methodological camp and provide a comparison

with other existing methods in this area.

A prominent field where model uncertainty plays a crucial role is economic growth theory,

which encompasses multiple competing perspectives. The standard production function-based

Solow growth model, the institutional perspective proposed by Acemoglu et al. (2001) [1], and

the geographic determinants emphasized by Sachs (2003) [33] all represent valid but distinct

explanatory approaches. The importance of model uncertainty in assessing the relative influence

of these growth theories has been studied in Kourtellos et al. (2010) [23]. An earlier approach

that aimed to evaluate the robustness of various regressors in growth models is the Extreme

Bounds Analysis (EBA), introduced by Leamer (1983) [24] and applied to economic growth

empirics by Levine and Renelt (1992) [25]. In that study, variables were classified as ”robust” or

”fragile,” with those surviving across different model specifications being primarily associated

with the Solow growth framework.

Within the FMA framework, several model averaging estimators have been developed, in-

cluding the Mallows Model Averaging (MMA) estimator, the Jackknife Model Averaging (JMA)

estimator, its generalized variant, the Focused Information Criterion (FIC), and the Plug-in av-

eraging estimator. The theoretical development of these methods was initiated by Hansen (2007)

[19], Liu (2015) [27], and Zhang and Liu (2019) [38], who analyzed the asymptotic properties

of least-squares-based averaging estimators in linear regression models under local asymptotic

frameworks.

Our main contribution in this paper is to introduce a model averaging methodology that

expands on both the generalized Jackknife Model Averaging (JMA) and the Mallows Model
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Averaging (MMA) criteria in a multi-objective context within a stochastic dominance frame-

work. Specifically, and in the spirit of Zhang and Liu (2019) [38], we consider a variant of the

MMA estimator where the regularization parameter asymptotically vanishes as the sample size

increases. We then construct a multi-objective optimization problem incorporating both the

MMA and JMA criteria, aiming to construct averaging estimators that leverage information

from both methodologies.

Using a multi-objective optimization approach, we consider averaging estimators that ap-

proximate a potentially infeasible solution that jointly minimizes both criteria, emerging from a

stochastic dominance perspective. We also consider averaging estimators derived from different

scalarization techniques of the multi-objective function, including those based on ℓp-norms and

a Nash bargaining solution approach from cooperative game theory. The suggested estimators,

denoted as ℓ1, ℓ2, ℓ∞, and Nash, are analyzed alongside their approximate bound (AB), as

referenced in Arvanitis et al. (2021) [6]. Methodologically, the framework for multi-objective

optimization and the previously mentioned estimators can be easily expanded to incorporate

additional basis averaging estimators, beyond the MMA and the JMA.

We derive the limit theory of the estimators under both correctly specified and globally

misspecified scenarios. In the correctly specified case, all proposed averaging estimators con-

verge in probability to the deterministic vector that selects the minimal well-specified model.

However, in the presence of global misspecification—where all models exclude at least one DGP

regressor—the theory exhibits richer dynamics. While weights eventually stabilize in all cases,

their asymptotic limits vary, reflecting differences in how auxiliary regressors influence estima-

tion. Moreover, the Nash approach appears to provide a systematic method for increasing the

weight given to well-defined regressors with minimal covariance with the omitted ones, while

still preserving aspects of parsimony. Overall, the Nash estimator strikes a balance between

the regularized MMA criterion and the structural properties captured by JMA. This distinc-

tion highlights the Nash estimator’s potential advantage in misspecified stiings, where it retains

greater information on the asymptotic dependence stucture among regressors while still control-

ling overfitting.

Monte Carlo experiments in both correctly specified and misspecified frameworks are con-

ducted. The results suggest that for every considered case, at least one of the proposed multi-

objective model averaging estimators outperforms the base MMA and JMA estimators in terms
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of MSE/MAE criteria. In many cases, the dominant estimator is the Nash averaging estimator.1

An empirical application in economic growth analysis is also provided. Our findings are

compared with those from existing methods, including the classic study of Levine and Renelt

(1992) [25]. Overall, our proposed methods assign heavier weights to models constructed from

fundamental Solow growth regressors (Solow, 1956 [35]; Mankiw et al., 1992 [29]) but do not

entirely discount models incorporating auxiliary regressors linked to geography (Diamond, 1997

[13]; Gallup et al., 1999 [33]; Sachs, 2003 [33]) and institutional quality (Acemoglu et al., 2001

[1]; Rodrik et al., 2004 [32]).

The remainder of the paper is structured as follows: Section 2 provides the background on

regression models. Section 3 introduces the key model averaging criteria, including the modified

MMA and the Zhang and Liu (2019) [38] modification of the JMA criterion. Section 4 derives

the limit theory for the modified MMA estimator and contrasts it with the analogous derivations

of Zhang and Liu (2019) [38] for the JMA case. Section 5 presents the multi-objective model

averaging estimators constructed from both criteria, analyzing their asymptotic properties under

correct specification. Section 6 extends these results to the case of misspecification due to

omitted regressors. Section 7 discusses potential extensions. Section 8 presents Monte Carlo

experiments. Section 9 provides the empirical application to economic growth. Section 10

concludes. The appendix contains tables related to the Monte Carlo experiments and empirical

application. A supplement [5] contains the proofs of theoretical results and additional tables for

further analysis.

2 Background

The linear model background of Zhang and Liu (2019) [38] is considered. In particular, we

analyze the linear regression model expressed in matrix notation as follows:

y = X1β1 +X2β2 + ε, (1)

where the dependent variable y is a random n-vector, X1 is the core regressors n×K1 random

matrix, X2 is the auxiliary regressors n ×K2 random matrix, and ε is the random n-vector of

errors. β1 and β2 are the associated unknown parameter vectors. From the information above
1Unreported results from experiments under alternative settings that violate our assumption framework sug-

gest that this dominance is not universally guaranteed.
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an array of M := K2+1 statistical models is formed. The mth model is formed by the regression

consisting of the core regressors, accompanied by the initial m−1 auxiliary regressors, excluding

the remaining K2−m+1 ones. As in Zhang and Liu (2019) [38], it is assumed that there exists

a maximal K1 ≤ M0 < M for which the models m = 1, . . . ,M0 are considered misspecified, in

the sense that they have non-zero sloped omitted regressors. M0 thus represents the minimal

well-specified regression. The regressors included in the mth model are Xm := XΠ′
m, where

X := (X1,X2), and Πm := (Ikm×km ,0km×(K−km)), where km = K1 + m − 1, K = K1 + K2.

The unrestricted OLSE for β := (β′
1, β

′
2) in the mth model is βm := Π′

m(X
′
mXm)

−1X′
my, and

for w an element of the M − 1 unit simplex, the resulting OLSE averaging estimator of β is

β(w) :=
∑M

m=1 wmβm.

3 Basis Averaging Criteria

Given the projection matrices

Pm := Xm(X
′
mXm)

−1X′
m, m = 1, . . . ,M,

the overall averaging (across models) projection is given by:

P(w) :=
M
∑

m=1

wmPm.

Furthermore, we define the variance estimator:

σ2
n := (n−K)−1∥y −XβM∥2,

where ∥ · ∥ denotes the Euclidean norm. The terms ϕn, ϕ
⋆
n are potentially stochastic or data-

dependent regularization parameters that depend on n.

The notation P(i, i)m refers to the ith diagonal element of Pm, and Dm is a diagonal matrix

with elements:

Dm(i, i) =
1

1−P(i, i)m
, i = 1, . . . , n.

Finally, we define the model complexity vector as: K := (km)m=1,...,M .
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3.1 Mallows Model Averaging (MMA)

The Mallows Model Averaging (MMA) criterion is given by:

Mn(w) := ∥(In×n −P(w))y∥2 + ϕ⋆
nσ

2
nK

′w. (2)

The first term of Mn(w) represents the residual sum of squares (RSS) under the model-

averaged projection, while the second term penalizes model complexity, weighted by ϕ⋆
n. The

original MMA criterion (see Hansen (2007) [19]) is recovered when ϕ⋆
n = 2.

The MMA weights are obtained as the solution to the following optimization problem:

wMMA ∈ arg min
w∈∆M−1

Mn(w),

where ∆M−1 is the standard M − 1 dimensional unit simplex. The corresponding Mallows

averaging estimator of β is given by:

βMMA := β(wm,MMA).

The existence of a solution follows from standard arguments, utilizing the compactness of the

simplex and the continuity of Mn(w) with respect to w.

3.2 Generalized Jackknife Model Averaging (JMA)

The generalized Jackknife Model Averaging (JMA) criterion, introduced by Zhang and Liu

(2019) [38], is given by:

Jn(w) := ∥(Dm(P(w)− In×n) + In×n)y∥2 + ϕnK
′w. (3)

The JMA criterion is designed to minimize predictive risk using a leave-one-out cross-

validation approach, adapting the bias correction from the Jackknife resampling method (see

Racine (1997) [31]).

The JMA weights are obtained by solving:

wJMA ∈ arg min
w∈∆M−1

Jn(w).
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The JMA estimator of β is then:

βJMA := β(wm,JMA).

A key advantage of JMA over MMA is its ability to adjust for potential conditional heteroskedas-

ticity in the errors, as reflected in the structure of Dm. This makes JMA particularly suitable

for cases where residual variance is model-dependent.

4 Limit Theory for the Basis Averaging Estimators

The asymptotic behavior of the generalized MMA estimator is determined as n approaches

infinity. The corresponding asymptotic behavior for the generalized JMA is presented in Zhang

and Liu (2019), particularly in Theorem 5. Initially, a set of mild assumptions is introduced,

closely resembling conditions C.1-C.4 outlined in Zhang and Liu (2019) [38]. The symbol⇝ is

used to signify convergence in distribution:

A.1 n−1X′X⇝ Q := E(X1X
′
1), with Q pd. X1 denotes the first row of X.

A.2 n−1/2X′ε⇝ z ∼ N(0K×1, V ), with V := E(ε21X1X
′
1) positive definite.

A.3 supi≤n supm≤M Pm(i, i) = op(n
−1/2).

A.4 n−1
∑n

i=1 ε
2
iXiX

′
i ⇝ V and n−1

∑n
i=1 ε

2
i ⇝ σ2 > 0.

In time series settings A.1 and A.4 are expected to hold under conditions of stationarity

and ergodicity, as well as tail decay conditions for the marginal distributions of the random

variables involved. Similarly, A.2 would follow under additional mixing conditions, as well as

linear independence for the random elements that appear in the form of the asymptotic variance.

Approrpiate notions of exchangeability could validate the aforementioned assumptions in non-

time series settings. As Zhang and Liu (2019) [38] point out, A.3 is weaker than the analogous

condition in Andrews (1991) [3].

A limit theory for the generalized MMA can be obtained via the proofs of Th. 3-4 of Zhang

and Liu (2019) [38]; here the fact that the matrices Dm and In×n − Dm = diag(
P(i,i)m

1−P(i,i)m
)i do

not affect the criterion, which is also self-normalized due to Assumptions A.1-2, imply that the

rate of divergence of the regularization parameter ϕ⋆
n can be unrestricted. In what follows, and

for k ∈ {M0 + 1, . . . ,M}, w(k) denotes the kth element of the ∆M−1 simplex, i.e., w(k)
m := Ik(m),

with Ik(·) denoting the indicator of the kth coordinate:
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Theorem 1. Suppose that A.1-A.4 hold, and that ϕ⋆
n → ∞. Then,

wMMA ⇝ arg min
w∈∆M−1

0

σ2K′w = σ2K′w(M0+1). (4)

Furthermore,

n
1/2(βMMA − β)⇝ V ⋆z ∼ N(0K×1V

⋆V V ⋆), (5)

with V ⋆ := ΠM0+1(ΠM0+1QΠ′
M0+1)

−1Π′
M0+1. Finally, ϕ⋆

n(wMMA −w(M0+1)) = op(1).

The proof is given in the supplement [5]. Theorem 5 of Zhang and Liu (2019) [38] provides

the limit theory for the JMA estimator; the regularization parameters’ growth to infinity is

restricted due to the dependence of the criterion on the Pm matrices and their asymptotic

behavior as prescribed by A.3:

Theorem 2. Suppose that A.1-A.4 hold, and that ϕn → ∞, while ϕn√
n
→ 0. Then,

wJMA ⇝ arg min
w∈∆M−1

0

K′w = K′w(M0+1), (6)

where ∆M−1
0 :=

{

w ∈ ∆M−1,wm = 0, ∀m = 1, . . . ,M0

}

. Furthermore,

n
1/2(βJMA − β)⇝ V ⋆z. (7)

Finally, ϕn(wJMA −w(M0+1)) = op(1).

The proof is also given in the supplement [5]. Essentially, Jn epi-converges in distribution

(see Knight (1999) [22]) to the linear function w → K′w, something that results to (6) from

Prop. 3.2 in Ch. 5 of Molchanov (2006) [30] via the use of Skorokhod representations justified by

Th. 3.7.25 of Gine and Nickl (2021) [17]. By construction then the limiting criterion is uniquely

minimized at w(M0+1). The rate result along with the restrition ϕn/√n → 0, implies that the

above are non informative on the issue of asymptotic tightness for
√
n(wJMA −w(M0+1)).

Both estimators thus share the limit theory of the OLSE for the (latent) minimal well-

specified model. Asymptotic normality occurs as a result of integrating the diverging penaliza-

tion parameters into their definition.
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5 Multi-objective Model Averaging

The MMA and JMA averaging criteria can be jointly utilized to construct a stochastic dominance

(SD) ordering over the simplex ∆M−1. The fundamental idea behind this ordering is that a

convex combination w dominates another w⋆ if it attains lower values under both the Mallows

and Jackknife criteria, and is thus universally preferred. Formally,

w ⪰ w⋆ iff Mn(w) ≤ Mn(w
⋆), and Jn(w) ≤ Jn(w

⋆).

This (pre-) order defines a multi-objective optimization problem (MOOP) (see Hwang and

Masud (2012) [21]):

min
w∈∆M−1

Wn(w),

where the objective function is given by

Wn(w) := (Mn(w),Jn(w)).

This formulation naturally arises in multi-criteria decision-making settings, where a trade-off

must be made between competing objectives—here, the bias-variance trade-off of MMA and the

robustness properties of JMA.

5.1 Efficient Weights and Pareto Optimality

Any maximal element of this (pre-) order—i.e., a solution that simultaneously minimizes both

criteria—dominates all other possible weight allocations. Such an element would ideally inherit

advantages from both methodologies, balancing Mallows’ bias-variance trade-off with Jackknife’s

robustness against outliers. However, such a solution is expected to be rarely attainable in finite

samples due to the nontrivial structure of the objective functions.

Instead, we focus on Pareto-efficient solutions, where no weight allocation can be improved in

one criterion without worsening the other. A weight w is Pareto-efficient if, for any alternative

weight w⋆, whenever

Mn(w) > Mn(w
⋆)
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(respectively, Jn(w) > Jn(w
⋆)), it must hold that

Jn(w) < Jn(w
⋆)

(respectively, Mn(w) < Mn(w
⋆)).

In other words, efficient weights represent different compromise solutions, reflecting diverse

preferences over the trade-off between the characteristics of the two base criteria.

5.2 Approximate Bound (AB) Weights

A particularly relevant concept in stochastic dominance optimization is the Approximate Bound

(AB), introduced by Arvanitis et al. (2021) [6]. This weight vector is as close as possible to being

maximal, meaning that it minimizes the worst-case deviation from dominance. It is defined as

the solution to:

min
w∈∆M−1

sup
G∈{Mn,Jn},w⋆∈∆M−1

(G(w)−G(w⋆)).

This formulation ensures that the chosen estimator achieves a balanced performance across both

criteria, while also being an efficient element of the stochastic dominance order.

5.3 Scalarization via ℓp-Norms

The AB solution is closely related to scalarization techniques (see Hwang and Masud (2012)

[21]). Instead of treating the problem as a vector optimization, one can convert it into a single-

objective problem by applying an ℓp-norm to the objective:

min
w∈∆M−1

∥Wn(w)∥p. (8)

This generalizes the previous approach, allowing for different prioritization between the two

criteria by varying p. The extreme case p = ∞ recovers the AB estimator, while lower values

of p emphasize global minimization rather than worst-case performance.

Definition 1. The ℓp weights are defined by:

wℓp ∈ arg min
w∈∆M−1

∥Wn(w)∥p.
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The corresponding ℓp estimator of β is then:

βℓp =
M
∑

m=1

wm,ℓpβm.

5.4 The Nash Bargaining Solution and Its Role in Model Averaging

While scalarization provides a structured way to prioritize objectives, it lacks scale-invariance;

the results depend on the relative magnitudes of Mn and Jn. To address this, we turn to the

Nash bargaining solution (see Ch. 32 in Aumann and Hart (1992) [8]).

In this framework, Mallows and Jackknife act as cooperative players negotiating over model

averaging choices. Each player’s utility is defined as the relative improvement over their fallback

(least satisfactory) option:

Mn(wJMA)−Mn(w)

for the Mallows criterion, and similarly

Jn(wMMA)− Jn(w)

for the Jackknife criterion.

The Nash solution selects the weight vector that maximizes the product of these utilities,

ensuring that neither criterion receives an unacceptably poor outcome. This results in an esti-

mator that is efficient, scale-invariant, symmetric, and independent of irrelevant alternatives—

properties highly desirable in model averaging.

Definition 2. The Nash weights are defined by:

wNash ∈ arg min
w∈∆M−1

(Mn(w)−Mn(wJMA))(Jn(wMMA)− Jn(w)),

s.t. Mn(wNash) ≤ Mn(wJMA), Jn(wNash) ≤ Jn(wMMA).

The corresponding Nash estimator of β is:

βNash =
M
∑

m=1

wm,Nashβm.

In the following sections, we establish the asymptotic properties of the proposed estimators,

11



demonstrating that they remain consistent under correct specification while also exhibiting

robustness to misspecification.

5.5 Limit Theory

Theorems 1-2 almost directly provide the limit theory of the multi-objective averaging estimators.

Specifically, the following results are obtained:

Theorem 3. Suppose that A.1-A.4 hold, and that min(ϕn, ϕ
⋆
n) → +∞, ϕ⋆

n

ϕn
→ C ∈ [0,+∞],

while ϕn = op(
√
n). Then,

wAB ⇝ arg min
w∈∆M−1

0

max(σ21C>0, C
−11C>0 + 1C=0)K

′(w −w(M0+1)), (9)

and, max(ϕ⋆
n, ϕn)(wAB −w(M0+1)) = op(1).

Also,

wℓp ⇝ arg min
w∈∆M−1

0

(σ2p1C>0 + (C−11C>0 + 1C=0)
p)

1/pK′w. (10)

and, max(ϕ⋆
n, ϕn)(wℓp −w(M0+1)) = op(1).

Finally,

wNash ⇝ arg min
w∈∆M−1

0

σ2(K′(w −w(M0+1)))2. (11)

and, max(ϕ⋆
n, ϕn)(wNash −w(M0+1)) = op(1).

Subsequently, under the conditions above and for J = AB, ℓp, Nash,

n
1/2(βJ − β)⇝ V ⋆z. (12)

The proof is provided in the supplement [5]. Under the given assumption framework, the

estimators of the weights converge to the minimal well-specified model, ensuring their asymp-

totic scale invariance across all cases. Consequently, the estimators of the parameters exhibit

asymptotic normality, confirming their standard large-sample behavior.

However, the derived limit theory does not possess sufficient granularity to distinguish be-

tween the considered estimators under correct specification. As a result, asymptotically, the

proposed methodologies appear equivalent within the assumed framework.

To further investigate potential differences in finite samples, we employ Monte Carlo experi-

ments. These experiments aim to detect potential discrepancies that may emerge when sample
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sizes are fixed, thus providing empirical motivation for the introduction of the multi-objective

procedures.

5.6 Subsampling Estimation of Asymptotic Variance

The Multi-objective Model Averaging estimators converge to the limiting distribution of the

OLSE for the minimally well specified model. Due to the latency of the latter, the limit theory

cannot be directly used for inference; the asymptotic variance cannot be directly and consis-

tently estimated via analogy. One way to circumvent this is via resampling. In what follows a

subsampling approach for the estimation of the asymptotic covariance matrix is presented in a

stationary and ergodic time series setting which conforms to our empirical application later on.

Specifically, let b < n and given the sample (y,X) consider the b dependent sequence

of sub-samples ((y,X)j,...,j+b−1)j=1,n−b+1. Then, βJ,j denotes the MA estimator over the jth

subsample, for J = AB, ℓp, Nash. The subsampling variance is then defined as Vb,n,J :=

b
n(n−b+1)

∑n−b+1
j=1 (βJ,j − 1

(n−b+1)

∑n−b+1
j⋆=1 βJ,j⋆)(βJ,j − 1

(n−b+1)

∑n−b+1
j⋆=1 βJ,j⋆)

′. In a time series con-

text of strict stationarity and strong mixing we obtain the following weak consistency result:

Theorem 4. Under A.1-A.4, min(ϕn, ϕ
⋆
n) → +∞, and, ϕn = op(

√
n), and if (a.) (y,X)

is stationary and strongly mixing, and (b.) for some ϵ > 0, E(∥X1ε1∥4+ϵ) < +∞, and (c.)

b → ∞, b/n → 0, then and for J = AB, ℓp, Nash:

Vb,n,J ⇝ Var(V ⋆z). (13)

The proof is given given in the supplement [5]. Vb,n,J is a weakly (actually an L2-) consis-

tent estimator of the asymptotic variance, and can therefore be used for inference. The current

linear models framework implies a manageable computational burden for the multi-objective

estimators, and the subsequent subsampling procedure, at least for p = 1, 2,∞. A slight modi-

fication of the estimator, in which the weights are held constant on the original sample can be

also proven consistent in the present framework. This is associated with minimal computational

burden (see for example Section 4 and Proposition 2 in Arvanitis, Scaillet and Topaloglou (2023)

[7] for a similar approach). The result can also be extended in non-time series contexts involving

exchangeability or more generally invariance of the underlying joint distributions under groups

of transformations (see for example Austern and Orbanz (2022) [9]).

13



6 Omitted Variables Misspecification

We now analyze the effects of global misspecification due to omitted variables on the model

averaging procedures. For notational simplicity, and without loss of generality, suppose that

K1 < M0 and that the submatrix of regressors X1 is omitted from all statistical models under

consideration. As a result, every model analyzed is inherently misspecified due to omitted

variables.

Under A.1 and A.2, it follows that

βm ⇝ Π⋆′

m(Π
⋆
m + (Π⋆

mQΠ⋆′

m)
−1Π⋆

mQΠ′
K1
ΠK1)β,

where Π⋆
m := (0(km−K1)×K1 , I(km−K1)×(km−K1),0(km−K1)×(K−km)).

Thus, inconsistency arises in all models, since the omitted variables induce bias in the pa-

rameter estimates. However, partial consistency, where the ordinary least squares estimators

remain consistent for the non-omitted regressors, occurs if and only if Π⋆
mQΠ′

K1
is a zero matrix.

This condition implies that every included regressor must be asymptotically uncorrelated with

every omitted regressor.

The implications of this misspecification framework for model averaging are of key interest.

In particular, do model averaging estimators asymptotically select models that minimize the

limiting term (Π⋆
mQΠ⋆′

m)
−1Π⋆

mQΠ′
K1
ΠK1 , thereby mitigating the inconsistency for the retained

regressors?

6.1 Asymptotics of the MMA Estimator under Misspecification

Consider the limit behavior of the MMA estimator under assumptions A.1, A.2, and A.4.

Define K⋆ := (1, 2, . . . , K2)
′ and

σ2
⋆ := σ2 + β′(Q−QΠ⋆′

K2
(Π⋆

K2
QΠ⋆′

K2
)−1Π⋆

K2
Q)β.

Also, for each m = 1, · · · , k2, let Πc
m := (0K×(K−km), I(K−km)×(K−km)). Then the following result

is obtained; its proof can be also found in the supplement [5].

Theorem 5. Suppose that assumptions A.1, A.2, and A.4 hold under the global misspecification
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framework. Suppose also that ϕ⋆
n

n
→ C ∈ [0,+∞]. Then,

wMMA ⇝ w∞
MMA := arg min

w∈∆M−1
MC(w),

where

MC(w) := Λ(w)1C<+∞ + σ2
⋆(C10<C<+∞ + 1C=+∞)K⋆′w.

Here,

Λ(w) :=

K2
∑

m,m⋆=1

wmwm⋆β′(Π
′

k1
A(m,m⋆)Πk1 +Π

′

k1
B(m,m⋆)Π

c
m⋆ +Πc′

mB
′

(m⋆,m)Πk1 +Πc′

mC(m,m⋆)Π
c
m⋆)β,

where

A(m,m⋆) := Πk1QΠ
′

k1
− Πk1QΠ

′

m(ΠmQΠ
′

m)
−1ΠmQΠ

′

k1
− Πk1QΠ

′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠ
′

k1

+Πk1QΠ
′

m(ΠmQΠ
′

m)
−1ΠmQΠ

′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠ
′

k1
,

B(m,m⋆) := Πk1QΠc′

m⋆ − Πk1QΠ
′

m(ΠmQΠ
′

m)
−1ΠmQΠc′

m⋆ − Πk1QΠ
′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠc′

m⋆

+Πk1QΠ
′

m(ΠmQΠ
′

m)
−1ΠmQΠ

′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠc′

m⋆ ,

C(m,m⋆) := Πc
mQΠc′

m⋆ − Πc
mQΠ

′

m(ΠmQΠ
′

m)
−1ΠmQΠc′

m⋆ − Πc
mQΠ

′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠc′

m⋆

+Πc
mQΠ

′

m(ΠmQΠ
′

m)
−1ΠmQΠ

′

m⋆(Πm⋆QΠ
′

m⋆)−1Πm⋆QΠc′

m⋆ .

This formulation indicates that the limiting behavior of the MMA weights depends on how

regressors interact within the misspecified framework, highlighting the role of dependence among

omitted and included variables. Consequently, when C = +∞, the regularization term dom-

inates, and the estimator asymptotically selects the simplest regression model. This suggests

that, in extreme regularization cases, model averaging leads to highly parsimonious specifica-

tions, potentially sacrificing signal strength for robustness.

6.2 Limit Behavior of the Other Averaging Estimators

The proofs of Th. 3-5 of Zhang and Liu (2019) [38] directly imply that under A.1-A.4, and

if ϕn = op(
√
n), 1

n
J (w) converges weakly, and locally uniformly over ∆M−1, modulo constants

that do not affect optimization, to Λ(w), while 1
ϕn
J (w) is asymptotically non tight, due to the

behavior of the MMA part of the JMA criterion (see Th. 3 of Zhang and Liu (2019) [38]). This
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then implies the following result:

Theorem 6. Suppose that A.1-A.4 hold in the global misspecification framework. Suppose also

that ϕn = op(
√
n). Then,

wJMA ⇝ w∞
JMA := arg min

w∈∆M−1
Λ(w).

If, furthermore, ϕ⋆
n

n
→ C ∈ [0,+∞], then,

wAB ⇝ w∞
MMA,

and

wℓ∞ ⇝ w∞
MMA.

Furthermore, when p < +∞,

wℓp ⇝ w∞
ℓp := arg min

w∈∆M−1
R(w)

1
p ,

where, R(w) := (Λ(w)1C<+∞ + σ2
⋆(C10<C<+∞ + 1C=+∞)K⋆′w)p + (Λ(w)1C<+∞)p. Finally,

wNash ⇝ w∞
Nash := arg min

w∈∆M−1
(MC(w)−MC(w

∞
JMA))(Λ(w

∞
MMA)− Λ(w))

s.t.MC(w) ≤ MC(w
∞
JMA), Λ(w

∞
MMA) ≥ Λ(w).

Consequently, for J = JMA, AB, ℓp, Nash,

βJ ⇝

K2
∑

m=1

w∞
J (m)Π⋆′

m(Π
⋆
m + (Π⋆

mQΠ⋆′

m)
−1Π⋆

mQΠ′
K1
ΠK1)β. (14)

The proof is given in the supplement [5]. The regularization constraints become asymp-

totically negligible for the JMA methodology since the restriction ϕn = op(
√
n) is retained in

order to maintain a unified statistical framework that is consistent with the case of correct

specification.

The limiting behavior of the parameter ϕ⋆
n plays a crucial role in shaping the asymptotics

of the multi-objective methodologies, as they asymptotically incorporate the regularized MMA

criterion. When C = 0, the regularization term vanishes asymptotically, and the weights con-

verge to w∞
MMA across all multi-objective estimators considered in Theorem 6. This implies

that, in such cases, model averaging prioritizes parsimony while effectively utilizing available
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information.

When C = +∞, so that ϕ⋆
n diverges rapidly, the AB and ℓp methodologies remain asymp-

totically equivalent to the MMA, meaning that the model averaging procedure overwhelmingly

selects the minimal simple regression model.

However, this extreme regularization behavior does not apply to JMA and Nash, which con-

tinue to incorporate information on the limiting covariance structure between regressors in the

misspecified models. In particular, the JMA estimator remains asymptotically non-regularized.

However, the Nash estimator achieves an asymptotically persistent regularization. This is due

to Theorem 6 implies that, given that the estimator is asymptotically different from the limiting

MMA and JMA weights, it asymptotically maximizes ln(Λ(w∞
MMA)−Λ(w))+ln(K⋆′(w∞

JMA−w))

under the inequality restrictions that appear in the aforementioned result. Extracting the con-

stant term as a common factor from the first logarithm in the previous expression, considering

a Taylor expansion for the logarithm, and noticing that Λ is strictly convex, we obtain that:

Corollary 1. In the premises of Theorem 6, and if C = +∞, then

w∞
Nash := arg min

w∈∆M−1
Λ(w)− Λ(w∞

MMA) ln(K
⋆′(w∞

JMA −w)) + O(
Λ2(w)

Λ(w∞
MMA)

)

s.t.K⋆′(w∞
JMA −w) ≥ 0, Λ(w∞

MMA) > Λ(w).

Hence, if the MMA regularization parameter diverges fast enough, the Nash methodology

limiting criterion is approximately equal to Λ plus a regularization term that ”punishes” solutions

extremely close to the unique minimizers of Λ, i.e. the limiting JMA weights and advocates for

solutions that promote parsimony.

For intermediate cases where 0 < C < +∞, the Nash estimator has a similar behavior, albeit

via a more complicated limiting criterion. It thus continues to asymptotically achieve weight al-

location that balances the trade off between parsimony and well specified regressors. Something

analogous holds for the ℓp methodology for finite p. The resulting estimators also asymptoti-

cally place greater emphasis on the covariance structure between regressors, as captured by the

presence of Λ(w) in their limiting criteria. They do not entirely discard regularization, as JMA

does, but rather seek a balance between model parsimony and maximizing the signal for the

well-specified regressors. Notice though that for p = 1, the resulting ℓ1 limiting criterion for

the given C, would be equivalent to MC/2, suggesting that the resulting estimator would be
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asymptotically equivalent to an MMA estimator.

The asymptotic framework above provides strong motivation for the use of multi-objective

optimization methodologies in model averaging. In particular, for values of C in the range

0 < C < +∞, the ℓp (for 1 < p < +∞) and Nash methodologies seem to offer a principled way

to enhance the weight allocation towards well-specified regressors while still retaining elements

of parsimony. This property remains valid for the Nash estimator even when C = +∞.

These findings motivate the need for further exploration of fixed-sample discrepancies among

estimators, which is pursued in the Monte Carlo analysis below.

7 Discussion

The limit theory for the case of correct specification allows for a direct extension to data depen-

dent penalization parameters. The results hold unaltered whenever C is a well defined almost

everywhere non-negative random variable that could attain extended values with positive prob-

ability. This seizes to be generally the case in the global misspecification framework; there it is

not difficult to see that when C is a random element, the ℓp, for p < +∞, and the Nash weights

would have stochastic limits. Further investigation of data dependent regularization is also left

for future research.

The misspecification results of Th.6 depend crucially on A.3 that essentially regulates the

asymptotic behavior of Pm. The op(n
− 1

2 ) rate for its diagonal elements, implies locally uniform

asymptotic negligibility for the non-MMA part of the JMA criterion apart from the regular-

ization term. Hence, information on potential forms of conditional heteroskedasticity is lost

by every averaging estimator considered here. This kind of information may be recoverable

under other forms of A.3. For example, when as n → ∞, if Dm, under some appropriate

topology, converges to a tight random operator, then the scaling of the JMA criterion by

(n1C<+∞ + ϕ⋆
n1C=+∞)−1 would produce asymptotic terms that would be associated with this

limit, thus analogously affecting the limit theories of the multi-objective averaging procedures.

Again, the investigation of such extensions is also delegated to further research.
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8 Monte Carlo Experiments

In this section finite sample properties of the averaging estimators considered above are approx-

imated through a Monte Carlo study.

The design follows closely some of the Monte Carlo experiments of Zhang and Liu (2019)

[38]. Specifically the DGP has the linear form that appears in (1), where K1 = 2, K2 = 8,

M = 9, the first column of X1,1, is constant, i.e. X1,1 = (1, 1, . . . , 1)′, for the ith row vector

consisting of the ith elements of the remaining regressors, i.e. (X1,2,X2)i, we have that it follows

N(09×1,ΣX), where ΣX is a 9× 9 matrix with diagonal elements equal to 0.7, and off-diagonal

elements equal to 0.72. Those regressors’ row vectors are independent across i = 1, . . . , 9. εi has

the martingale difference form of uiσi, with the uis being iid and independent of the regressors.

(A) in the homoskedastic case, ui ∼ N(0, 1) and σi = 2.5 identically over i = 1, . . . , n, while (b)

in the heteroskedastic case, ui ∼ t4 and σi = (1+2|X1,2(i)|+4|X2,8(i)|)/3, ∀i = 1, . . . , n. Assumptions

A.1-A.4 are trivially satisfied in this setup. The following cases for the population regression

coefficients are considered:

C.1 β = (1, 1, 0.5, 0.52, 0.53, 0.54, 0, 0, 0, 0)′,

C.2 β = (1, 1, 0.54, 0.53, 0.52, 0.5, 0, 0, 0, 0)′, and,

C.3 β = (1, 1, 0.5, 0.52, 0, 0, 0.53, 0.54, 0, 0)′.

As far as the analysts’ choice of the regressors’ matrix is concerned, two cases of specification

are considered. In the first case of ”correct specification” the regressors’ matrix used is the full

matrix of regressors in the DGP, i.e. X. Thus, M0-that in this case represents the number of

regressors in the minimal correctly specified model-equals 4 in C.1-C.2, and equals 6 in C.3.

In the second case of ”misspecification”, the analyst uses as a regressors’ matrix X without the

second and third core regressors. The analyst erroneously considers as core regressors X1,1 and

X4,1, and 5 auxiliary regressors emerging from X2 by deleting its’ first and second collumns.

Thus in this case, the number of statistical models considered M = 8, and every one of them is

misspecified, i.e. M0 = 8 for C.1, C.2 and C.3.

The sample size, n, is set equal to 100 and 400. The multiplier coefficients that appear in

the definitions of MMA and JMA (i.e. ϕ⋆
n and ϕn respectively) are set equal to 0.01 × n and,

0.05× n1/3 × ln(n) respectively, whereas ϕ⋆
n/n → 0.01, ϕn/√n → 0, and ϕ⋆

n/ϕn → ∞. Those choices

correspond to convergence to non-stochastic weights and asymptotic selection of the narrowest

well-specified model under correct specification for all estimators. Under global misspecification
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those choices are relevant to the limiting choice of the narrowest regression model for all the

considered estimators except for the JMA and Nash.

The numerical evaluation of the MMA and JMA estimators is performed on simple modifica-

tions of the Liu (2015) [27] freely available Matlab code that among others involves optimization

solvers for quadratic programming. The evaluation of the multi-objective estimators is also per-

formed in Matlab using the fmincon solver for non-linear (interior point or convex) programming.

For the sample sizes involved in the experiments and the empirical applications, the cumula-

tive time spent on optimization for all the estimators involved using computers with five-core

chip-sets does not exceed 3-5 seconds.

The number of Monte Carlo replications is set equal to 500. The Frobenius norms of the

Monte Carlo variance, MSE, MAE and bias are reported for the simple averaging (SimAve),

MMA, JMA, ℓ1, ℓ2, ℓ∞, Nash, and AB averaging estimators. In both cases the Monte Carlo

mean of the squared Euclidean norm of the weights as well as the Monte Carlo rounded mean of

the first two models at which the weights are maximally concentrated for all the methodologies

above are also reported. This in order to obtain a sense of the finite sample analogy of the

asymptotic concentration of the averaging estimators as reported by the limit theories of the

previous sections at least in the case of correct specification, as well as the models at which they

maximally concentrate on average.

This information is reported in Tables 1-4 as well as in Table 1 in the supplement [5].

Specifically, Tables 1-2 provide information on the Monte Carlo variance-bias trade-off and the

MSE-MAE divergences from the DGP value in the case of correct specification. Tables 3-4 deal

with the analogous information regarding misspecification. Finally, Table 1 in the supplement [5]

provides the aforementioned information regarding the weights. Specifically, for each averaging

estimator it presents the Monte Carlo mean of the sum of squares of its’ weights, as well as a

vector of two integers. The vector’s first component represents the rounded Monte Carlo mean

of the statistical model at which the maximum weight is attributed, and the second component

the rounded Monte Carlo mean at which the second maximum weight is attributed. Occasional

coincidence between the components is due to rounding. Moreover, the number 1 corresponds to

the narrow model, i.e. the one that contains only what the analyst considers as core regressors,

and the number m > 1 corresponds to the model that besides the core contains also the first

m − 1 regressors from the regressors’ matrix. m ≤ s, where s = 9 in the case of ”correct

specification” and s = 8 in the case of misspecification.
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The simulation results seem to point that in every case there exists at least one of the

proposed multi-objective model averaging estimators that dominate the basis MMA and JMA

in terms of the MSE/MAE Frobenius norm. In most of the cases this is the Nash estimator,

except for the n = 400 case of misspecification, where the ℓ∞ estimator, and in some instances

there the AB estimator appear to dominate the others. The ℓ1 and ℓ2 estimators seem to

usually lie between the MMA and JMA estimators in terms of the MSE/MAE Frobenius norm

performance, except for some instances in the correct specification case of n = 400 where every

multi-objective estimator seem to be uniformly better in these terms. Notably in several cases

the ℓ∞ estimator seem to fall very close to the JMA estimator.

In terms of concentration the results show that the JMA typically is comparatively the

one with maximal concentration, for all the ”large sample” cases of n = 400, while the Nash

estimator replaces it for all the ”small sample” cases of n = 100. For n = 100 all estimators

seem to have similar behavior in terms of the average choice of models. For n = 400 that is no

longer the case with the Nash estimator usually on average favouring narrow models, in contrast

to the ℓ1 and the AB estimators that seem to systematically favor larger models in both the

correct and incorrect specification cases. 2

Overall, the multi-objective model averaging criteria lead to significant small to medium

size sample improvements and may prove useful in applied work for the sample sizes that are

typically found in empirical applications, such as the empirical growth one below.

9 Empirical Application

This section provides an empirical application of the proposed methodologies alongside the stan-

dard model averaging methods. One of the main areas in which the model averaging methods

is the cross-section growth regressions (see, e.g., Steel, (2020) [36]). As extensive numbers of

explanatory variables are needed to explain the growth differences across countries, model aver-

aging provides a valuable and reliable attempt to provide a selection and combination of models

with different numbers of explanatory variables. Therefore, to overcome (or limit) the model
2The results depend among others on the choice of the degrees of freedom parameter in the student’s t

parameterization. Auxiliary results that are not reported here-yet are available upon request- suggest that a
choice of degrees of freedom equal to 2, that would be contrary to a large part of the assumption framework,
show in most cases relatively poor performance for the MMA, compared to the JMA in terms of the MSE/MAE
criteria and concentration. The performance of the multi-objective estimators seems to fall between those two
cases.
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uncertainty, the existing literature has been using model averaging methods (see e.g., Fernandez

et al., (2001) [15]; Sala-i Martin et al., (2004) [34]; Durlauf et al., (2008) [14]; Magnus et al.,

(2010) [28]; Amini and Parmeter, (2012) [2]; Liu, (2015) [27]; Gunby et al., (2017) [18]; Arin

et al., (2019) [4]; Cazachevici et al., (2020) [10], among many others). In this section, we use

the following standard model averaging methods: the Mallows model averaging (MMA; Hansen,

(2007) [19]), the jackknife model averaging (JMA; Hansen and Racine, (2012) [20]); and esti-

mators proposed in this paper: ℓ1, ℓ2, ℓ∞, Nash and AB. To provide a comparison of different

growth regression models, we use the same data set of Magnus et al. (2010) [15] and Liu (2015)

[27], and the following cross-section growth regression model is used:

growth = X1β1 +X2β2 + ε, (15)

where growth is average growth rate of gross domestic product (GDP) per capita between

1960 and 1996. X1 represents the core regressors used in the classical growth theory. In the

application, we use different numbers of core regressors to provide empirical evidence based on

different core regressors. Five core regressors include i) the logarithm of GDP per capita in 1960

(GDP60); ii) the share of the equipment investment as a share of the GDP between 1960 and

1985 (INV); iii) the primary school enrolment rate in 1960 (SCHOOL60); iv) the life expectancy

at birth in 1960 (LIFE60); and v) the population growth rate between 1960 and 1990 (POP).

Finally, a set of auxiliary regressors, X2, is included: i) the rule of law index (RULE) as a proxy

for institutional quality; ii) the proportion of a country’s land area within geographical tropics

(TROPICS); iii) Average of five different indices of ethnolinguistic fragmentation (ETHNO); and

iv) fraction of Confucian population in 1970 and 1980 (CONFUC). A detailed description of the

data set could be obtained from Magnus et al. (2010), and the number of countries used in the

analysis is 74. For comparison of different model averaging methods, we use different number of

core regressors, leading to a set of model setups: i) Model A with one core regressor (GDP60);

ii) Model B with two core regressors (GDP60 and INV); iii) Model C with three core regressors

(GDP, INV and SCHOOL60); iv) Model D with four core regressors (GDP, INV, SCHOOL60,

and LIFE60); and v) Model E with five core regressors (GDP, INV, SCHOOL60, LIFE60 and

POP). All of the models also include a constant term.

Our parameter of interest is the log GDP per capita coefficient in 1960 to examine the

beta convergence. Our analyses for models A to E consider the core regressors and include

each auxiliary regressor one at a time to the model specifications. The penalization parameters
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are both chosen equal to 10−3 ×
√

ln(n) in order to avoid maximal concentration due to large

penalties. The estimation results for Models A, B, are reported Tables 5-6. The ones for C, D,

and E are reported in Tables 2-4 in the supplement [5]. Table 7 provides the weights assigned to

the coefficients of models A, B (respectively Table 5 in the supplement [5] provides the weights

assigned to the coefficients of models C, D and E). Table 8 as well as Table 6 in the supplement

[5] list the regressors included in each sub-model in consideration foe each respective scenario.

Overall, with scenarios A-E, in line with the Monte Carlo simulations, JMA assigns full

weight to the narrow model (i.e., model that contains core regressors) and MMA allocates full

weight to the model that contains all the core and auxiliary regressors. On the other hand,

our model averaging methods assign relatively more weights towards the model with full set of

regressors (i.e., full model) but also assigns some positive weights to the majority of the rest of

the models. Our methods allocate more weights towards to models with all regressors including

extended Solow growth regressors (Solow, (1956) [35]; Mankiw et al., (1992) [29]) and auxiliary

regressors highlighting the importance of the geography (Diamond, (1997) [13]; Gallup et al.,

(1999) [33]; Sachs, (2003) [33]) and institutional quality (Acemoglu et al., (2001) [1]; Rodrik et

al., (2004) [32]). With respect to the initial GDP per capita coefficients, they tend to be closer

to each other.

10 Conclusion

Within a linear model background, we consider averaging methodologies that extend the analy-

sis of both the generalized Jacknife Model Averaging (JMA) and the Mallows Model Averaging

(MMA) criteria in a multi-objective setting within the context of a stochastic dominance per-

spective. We also consider averaging estimators that emerge from the minimization of several

scalarizations of the vector criterion consisting of both the MMA and the JMA criteria as well as

an estimator that can be represented as a Nash bargaining solution between the competing scalar

criteria. We derive the limit theory of the estimators under both a correct specification and

a global misspecification framework and our Monte Carlo experiments suggest that the some

of thee averaging estimators proposed here seem to systematically provide with MSE/MAE

reductions in both the correctly specified and the misspecification scenarios. An empirical ap-

plication using data from growth theory suggests that our model averaging methods assign

relatively higher weights towards the traditional Solow type growth variables, yet they do not

23



seem to exclude regressors that underpin the importance of geography or institutions.

For future research, we would like to extend our framework to some nonlinear settings, such

as threshold regression and kink regression models, where the analysis would allow for possible

discontinuities and/or kinks in the regression function, something that our current analysis has

not considered.

Furthermore, methodologically, the multi-objective optimization framework can be readily

extended to include further basis averaging estimators, like the focused information criterion

(FIC) with a view towards local misspecification; see Claeskens and Hjort, (2003) [11], and/or

modifications of the MMA/JMA procedures so as to incorporate sparsity restrictions in diverging

number of regressors frameworks; see Liao et al. (2021) [26]. A general theory of what properties

of the basis estimators are retained and/or combined via scalarization methodologies with a view

towards the optimal selection of penalization for the basis estimators and scalarization seems

like a fascinating issue for further research.

References

[1] Acemoglu, D., Johnson, S., Robinson, J.A. (2001). The Colonial Origins of Comparative

Development: An Empirical Investigation. American Economic Review, 91(5), 1369-1401.

[2] Amini, S.M., & Parmeter, C.F. (2012). Comparison of model averaging techniques: assess-

ing growth determinants. Journal of Applied Econometrics, 27(5), 870-876.

[3] Andrews, D.W.K. (1991). Asymptotic optimality of generalized CL, cross-validation, and

generalized cross-validation in regression with heteroskedastic errors. Journal of Economet-

rics 47, 359–377.

[4] Arin, K.P., Braunfels, E., & Doppelhofer, G. (2019). Revisiting the growth effects of fiscal

policy: A Bayesian model averaging approach. Journal of Macroeconomics, 62, 103158.

[5] Arvanitis, S., Pinar, M., Stengos T., & Topaloglou, N., (2024). Supplement for: Multi-

Objective Frequentist Model Averaging with an Application to Economic Growth.

[6] Arvanitis, S., Post, T., & Topaloglou, N., (2021). Stochastic Bounds for reference sets in

portfolio analysis. Management Science, 67(12), 7737-7754.

24



[7] Arvanitis, S., Scaillet, O. and Topaloglou, N., (2023). Sparse spanning portfolios and under-

diversification with second-order stochastic dominance. mimeo.

[8] Aumann, R. J., & Hart, S. (Eds.). (1992). Handbook of game theory with economic appli-

cations (Vol. 2). Elsevier.

[9] Austern, M., & Orbanz, P. (2022). Limit theorems for distributions invariant under groups

of transformations. The Annals of Statistics, 50(4), 1960-1991.

[10] Cazachevici, A., Havranek, T., & Horvath, R. (2020). Remittances and economic growth:

A meta-analysis. World Development, 134, 105021.

[11] Claeskens, G. and Hjort, N. L., (2003 a). Frequentist model average estimators. Journal of

the American Statistical Association, 98(464), 879-899.

[12] Claeskens, G., Hjort, N.L. (2003 b). The focused information criterion. Journal of the

American Statistical Association, 98(464), 900-916.

[13] Diamond, J.M. (1997). Guns, germs and steel: The fate of human societies. New York:

W.W. Norton & Co.

[14] Durlauf, S., Kourtellos, A., &Tan, C. (2008). Are any growth theories robust? Economic

Journal, 118, 329-346.

[15] Fernandez, C., Ley, E., & Steel, M. (2001). Model uncertainty in cross-country growth

regressions. Journal of Applied Econometrics, 16, 563-576.

[16] Gallup, J.K., Sachs, J.D., Mellinger, A.D. (1999). Geography and Economic Development.

International Regional Science Review, 22(2), 179-232.

[17] Giné, E., & Nickl, R. (2021). Mathematical foundations of infinite-dimensional statistical

models. Cambridge university press.

[18] Gunby, P., Jin, Y., & Reed, W.R., 2017. Did FDI Really Cause Chinese Economic Growth?

A Meta-Analysis. World Development, 90, 242-255.

[19] Hansen, B.E. (2007). Least squares model averaging. Econometrica 75, 1175–1189.

[20] Hansen, B.E., & Racine, J. (2012). Jackknife model averaging. Journal of Econometrics,

167, 38-46.

25



[21] Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—methods

and applications: a state-of-the-art survey (Vol. 164). Springer Science & Business Media.

[22] Knight, K., (1999). Epi-convergence in distribution and stochastic equi-semicontinuity.

mimeo.

[23] Kourtellos, A., Stengos, T. and Tan, C.M., (2010). Do institutions rule? The role of

heterogeneity in the institutions vs. geography debate. Economics Bulletin, 30(3), pp.1710-

1719.

[24] Leamer, E.E., (1983). Model choice and specification analysis. Handbook of econometrics,

1, pp.285-330.

[25] Levine, R., & Renelt, D. (1992). A sensitivity analysis of cross-country growth regression.

American Economic Review,82, 942-963.

[26] Liao, J., Zou, G., Gao, Y., & Zhang, X. (2021). Model averaging prediction for time series

models with a diverging number of parameters. Journal of Econometrics, 223(1), 190-221.

[27] Liu, C.A. (2015). Distribution theory of the least squares averaging estimator. Journal of

Econometrics, 186, 142-159.

[28] Magnus, J., Powell, O., & Prufer, P. (2010). A comparison of two model averaging tech-

niques with an application to growth empirics. Journal of Econometrics, 154, 139-153.

[29] Mankiw, N.G., Romer, D., Weil, D.N. (1992). A Contribution to the Empirics of Economic

Growth. The Quarterly Journal of Economics, 107(2), 407-437.

[30] Molchanov, I., (2006).Theory of random sets, Springer Science & Business Media.

[31] Racine, J. (1997). Feasible cross‐validatory model selection for general stationary processes.

Journal of Applied Econometrics, 12(2), 169-179.

[32] Rodrik, D., Subramanian, A., Trebbi, F. (2004). Institutions Rule: The Primacy of Insti-

tutions Over Geography and Integration in Economic Development. Journal of Economic

Growth, 9, 131–165.

[33] Sachs, J.D. (2003). Institutions don’t rule: direct effects of geography on per capita income.

National Bureau of Economic Research Working Paper No. 9490.

26



[34] Sala-i Martin, X., Doppelhofer, G., & Miller, R. (2004). Determinants of long-term growth:

a Bayesian Averaging of Classical Estimates (BACE) approach. American Economic Review,

94, 813-835.

[35] Solow, R.M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly

Journal of Economics, 70(1), 65-94.

[36] Steel, M.F.J. (2020). Model Averaging and Its Use in Economics. Journal of Economic

Literature, 58(3), 644-719.

[37] van der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes

with applications to statistics. Springer-Verlag New York.

[38] Zhang, X., & Liu, C. A. (2019). Inference after model averaging in linear regression models.

Econometric Theory, 35(4), 816-841.

Appendix-Monte Carlo Results

Table 1: Simulation results in three cases for n = 100: Correct Specification.

Homoskedastic Setup Heteroskedastic Setup
Method Var MSE MAE Bias Var MSE MAE Bias

Case 1 SimAver 9.6245 10.5711 3.8826 0.2296 8.4327 9.2018 3.6625 0.1634
MMA 6.3838 7.1683 2.6812 0.4079 5.3733 6.1149 2.4777 0.3971
JMA 5.8764 6.6773 2.5861 0.4212 4.9358 5.7230 2.3965 0.4139
ℓ1 6.0049 6.8008 2.6121 0.4208 5.0849 5.8513 2.4236 0.4094
ℓ2 5.9949 6.7914 2.6101 0.4211 5.0778 5.8452 2.4224 0.4097
ℓ∞ 5.8764 6.6773 2.5861 0.4212 4.9357 5.7230 2.3964 0.4139
Nash 5.6997 6.4425 2.5339 0.3884 4.8765 5.5929 2.3566 0.3768
AB 6.0091 6.8030 2.6140 0.4195 5.0857 5.8513 2.4244 0.4083

Case 2 SimAver 8.0651 8.8856 3.5948 0.2760 9.0979 9.9655 3.7859 0.2463
MMA 5.3311 6.1383 2.4998 0.4400 5.8847 6.6502 2.6205 0.4291
JMA 4.9105 5.6983 2.3919 0.4236 5.4273 6.1773 2.5254 0.4283
ℓ1 5.0699 5.8692 2.4287 0.4323 5.5338 6.2902 2.5488 0.4334
ℓ2 5.0622 5.8614 2.4268 0.4321 5.5250 6.2812 2.5470 0.4335
ℓ∞ 4.9111 5.6988 2.3919 0.4234 5.4273 6.1773 2.5254 0.4283
Nash 4.8454 5.6033 2.3700 0.4206 5.3117 6.0391 2.4793 0.4098
AB 5.0592 5.8574 2.4297 0.4328 5.5473 6.3047 2.5532 0.4332

Case 3 SimAver 9.4367 10.3282 3.7791 0.1591 9.3498 10.2862 3.7232 0.0867
MMA 6.3465 7.2173 2.5627 0.3500 5.7249 6.4618 2.4956 0.3342
JMA 5.5417 6.4053 2.4492 0.3295 5.0762 5.7648 2.4163 0.3186
ℓ1 5.7734 6.6344 2.4894 0.3390 5.2626 5.9643 2.4334 0.3275
ℓ2 5.7550 6.6162 2.4868 0.3387 5.2532 5.9550 2.4320 0.3275
ℓ∞ 5.5416 6.4053 2.4492 0.3295 5.0762 5.7648 2.4163 0.3186
Nash 5.5854 6.4242 2.4220 0.3244 5.2025 5.9062 2.3784 0.3125
AB 5.7782 6.6397 2.4904 0.3389 5.2713 5.9754 2.4360 0.3278

Entries report the Frobenius norm of the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value, in the
case of correct specification, for all averaging estimators considered in the text along with the simple averaging (equal weights)
averaging estimator. n = 100 and all three cases for true parameter values of the auxiliary regressors are considered, in both the
homoskedastic and the heteroskedastic scenarios for the regression errors.
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Table 2: Simulation results in three cases for n = 400: Correct Specification.

Homoskedastic Setup Heteroskedastic Setup
Method Var MSE MAE Bias Var MSE MAE Bias

Case 1 SimAver 1.9722 2.1508 1.8049 0.0767 1.9075 2.1132 1.7621 0.1140
MMA 0.8919 1.3982 1.1842 0.5693 0.8406 1.3508 1.1603 0.5703
JMA 1.3058 1.5216 1.3227 0.2720 1.2052 1.4799 1.2864 0.3145
ℓ1 0.9326 1.3419 1.1750 0.4921 0.8729 1.3237 1.1530 0.5153
ℓ2 0.9325 1.3414 1.1748 0.4918 0.8731 1.3234 1.1529 0.5149
ℓ∞ 0.9917 1.2728 1.1568 0.3619 0.9776 1.3263 1.1583 0.3982
Nash 0.8558 1.3861 1.1736 0.5850 0.8088 1.3210 1.1468 0.5736
AB 0.9436 1.3079 1.1620 0.4528 0.8882 1.3001 1.1387 0.4774

Case 2 SimAver 2.0053 2.2162 1.8260 0.2543 2.1856 2.4139 1.8951 0.2075
MMA 0.9404 1.5316 1.2229 0.6430 0.9418 1.6075 1.2315 0.7047
JMA 1.3579 1.6439 1.3776 0.3822 1.4566 1.7712 1.4326 0.4196
ℓ1 0.9952 1.5138 1.2261 0.5898 0.9993 1.5682 1.2412 0.6399
ℓ2 0.9951 1.5134 1.2259 0.5897 0.9990 1.5677 1.2411 0.6398
ℓ∞ 1.0378 1.4426 1.2218 0.5065 1.0699 1.5257 1.2562 0.5531
Nash 0.8950 1.4876 1.1989 0.6408 0.8891 1.5579 1.2106 0.7031
AB 1.0052 1.4793 1.2176 0.5569 1.0143 1.5418 1.2413 0.6103

Case 3 SimAver 2.1177 2.3057 1.8580 0.1038 2.0495 2.2482 1.8414 0.1245
MMA 0.9337 1.3984 1.1842 0.5101 0.9120 1.4644 1.2156 0.6061
JMA 1.4260 1.6544 1.3500 0.2302 1.4251 1.7045 1.4140 0.3281
ℓ1 1.0076 1.3970 1.1836 0.4327 0.9929 1.4679 1.2248 0.5346
ℓ2 1.0076 1.3969 1.1836 0.4325 0.9927 1.4674 1.2246 0.5343
ℓ∞ 1.0899 1.3881 1.1829 0.3274 1.0586 1.4332 1.2292 0.4333
Nash 0.8646 1.3456 1.1659 0.5325 0.8478 1.4064 1.1913 0.6147
AB 1.0281 1.3885 1.1743 0.3989 1.0073 1.4486 1.2180 0.5029

Entries report the Frobenius norm of the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value, in the
case of correct specification, for all averaging estimators considered in the text along with the simple averaging (equal weights)
averaging estimator. n = 400 and all three cases for true parameter values of the auxiliary regressors are considered, in both the
homoskedastic and the heteroskedastic scenarios for the regression errors.

Table 3: Simulation results in three cases for n = 100: Misspesification.

Homoskedastic Setup Heteroskedastic Setup
Method Var MSE MAE Bias Var MSE MAE Bias

Case 1 SimAver 7.5611 8.4754 3.3566 0.5993 7.4849 8.3189 3.2963 0.4193
MMA 5.9170 6.9356 2.5603 0.8646 5.7419 6.5929 2.4421 0.7011
JMA 5.2458 6.2397 2.4665 0.8589 5.3636 6.2161 2.3828 0.6951
ℓ1 5.4284 6.4258 2.4982 0.8669 5.4947 6.3530 2.4027 0.7044
ℓ2 5.4098 6.4068 2.4959 0.8665 5.4873 6.3458 2.4016 0.7046
ℓ∞ 5.2458 6.2397 2.4665 0.8589 5.3637 6.2161 2.3828 0.6951
Nash 5.1935 6.1595 2.4297 0.8466 5.3439 6.1828 2.3545 0.7034
AB 5.4322 6.4282 2.5003 0.8653 5.4959 6.3532 2.4037 0.7034

Case 2 SimAver 7.3529 8.1112 3.2880 0.3343 8.1189 9.0166 3.4136 0.2919
MMA 5.9101 6.6535 2.6144 0.5846 6.3354 7.1587 2.6532 0.5405
JMA 5.5780 6.3126 2.5552 0.5931 5.9138 6.7213 2.6014 0.5598
ℓ1 5.6848 6.4265 2.5754 0.5915 6.0379 6.8474 2.6109 0.5547
ℓ2 5.6792 6.4208 2.5742 0.5917 6.0264 6.8350 2.6095 0.5551
ℓ∞ 5.5780 6.3127 2.5552 0.5931 5.9139 6.7213 2.6014 0.5598
Nash 5.4043 6.1309 2.5095 0.5946 5.7836 6.5569 2.5356 0.5381
AB 5.6875 6.4278 2.5760 0.5899 6.0426 6.8520 2.6130 0.5539

Case 3 SimAver 7.3822 8.1646 3.3097 0.5541 7.4608 8.3906 3.2666 0.3996
MMA 5.5613 6.4352 2.4465 0.7826 5.7883 6.7295 2.4496 0.6600
JMA 5.3043 6.1736 2.4069 0.7718 5.6404 6.5774 2.4305 0.6510
ℓ1 5.3820 6.2561 2.4166 0.7786 5.6755 6.6217 2.4287 0.6604
ℓ2 5.3769 6.2511 2.4158 0.7786 5.6723 6.6187 2.4282 0.6606
ℓ∞ 5.3043 6.1736 2.4069 0.7718 5.6404 6.5774 2.4305 0.6509
Nash 5.1461 6.0027 2.3576 0.7796 5.3865 6.3039 2.3619 0.6697
AB 5.3805 6.2541 2.4183 0.7783 5.6744 6.6195 2.4296 0.6591

Entries report the Frobenius norm of the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value, if the
2nd and 3rd core regressors are dropped from analysis, for all averaging estimators considered in the text along with the simple
averaging (equal weights) averaging estimator. n = 100 and all three cases for true parameter values of the auxiliary regressors are
considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.
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Table 4: Simulation results in three cases for n = 400: Misspesification.

Homoskedastic Setup Heteroskedastic Setup
Method Var MSE MAE Bias Var MSE MAE Bias

Case 1 SimAver 1.7871 2.0373 1.7149 0.3821 1.9078 2.1830 1.7388 0.3966
MMA 0.9295 2.0301 1.3575 1.0270 0.9340 2.1060 1.3910 1.0715
JMA 1.4456 1.8243 1.3989 0.6011 1.6015 1.9969 1.4388 0.6174
ℓ1 1.0171 1.8922 1.3280 0.9228 1.0777 1.9902 1.3609 0.9512
ℓ2 1.0171 1.8913 1.3278 0.9223 1.0777 1.9891 1.3605 0.9507
ℓ∞ 1.1231 1.7100 1.3065 0.7622 1.1905 1.8216 1.3267 0.7954
Nash 0.8853 2.0568 1.3637 1.0592 0.8729 2.1523 1.3954 1.1179
AB 1.0335 1.8131 1.3075 0.8737 1.1035 1.9190 1.3396 0.9012

Case 2 SimAver 1.9309 2.2179 1.7051 0.3983 1.7713 2.0426 1.6799 0.4266
MMA 1.0147 2.4971 1.5367 1.1407 0.9737 2.4913 1.5427 1.1560
JMA 1.7385 2.1896 1.5462 0.6147 1.6153 2.1105 1.5464 0.6699
ℓ1 1.1742 2.2892 1.4866 0.9957 1.1093 2.2759 1.4997 1.0214
ℓ2 1.1740 2.2880 1.4863 0.9954 1.1092 2.2749 1.4994 1.0211
ℓ∞ 1.2481 2.0034 1.4156 0.8396 1.1560 1.9459 1.4203 0.8644
Nash 0.9386 2.5669 1.5463 1.1914 0.8887 2.5706 1.5596 1.2134
AB 1.1993 2.1805 1.4558 0.9386 1.1316 2.1670 1.4667 0.9695

Case 3 SimAver 1.7823 2.1212 1.6987 0.5099 1.7312 2.0563 1.6958 0.5223
MMA 0.9680 2.2470 1.4102 1.1309 0.8299 2.0617 1.3612 1.1115
JMA 1.4185 1.9565 1.4020 0.7491 1.3877 1.8622 1.4010 0.7230
ℓ1 1.0426 2.1238 1.3733 1.0462 0.8995 1.9076 1.3198 1.0174
ℓ2 1.0425 2.1228 1.3731 1.0458 0.8996 1.9071 1.3197 1.0171
ℓ∞ 1.1580 1.9130 1.3421 0.8833 1.0172 1.7563 1.3068 0.8811
Nash 0.9280 2.2725 1.4195 1.1586 0.7958 2.0819 1.3733 1.1351
AB 1.0506 2.0368 1.3530 1.0022 0.9182 1.8321 1.3032 0.9724

Entries report the Frobenius norm of the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value, if the
2nd and 3rd core regressors are dropped from analysis, for all averaging estimators considered in the text along with the simple
averaging (equal weights) averaging estimator. n = 400 and all three cases for true parameter values of the auxiliary regressors are
considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.

Appendix-Empirical Application Results

Table 5: Coefficient estimates with Model A scenario
SimAver MMA JMA ℓ1 ℓ2 ℓ∞ Nash AB

CONSTANT 0.0489 0.0609 0.0018 0.0596 0.0585 0.0573 0.0568 0.0595
(0.0154)(0.0193)(0.0115)(0.0183)(0.0176)(0.0175)(0.0173)(0.0181)

GDP60 -0.0123 -0.0155 0.0014 -0.0153 -0.0149 -0.0146 -0.0144 -0.0152
(0.0022) (0.003) (0.0014)(0.0028)(0.0027)(0.0026)(0.0026)(0.0027)

INV 0.1942 0.1368 0.1686 0.1534 0.1605 0.1681 0.1718 0.1531
(0.0312)(0.0399) (0.015) (0.0386)(0.0370)(0.0373)(0.0370)(0.0380)

SCHOOL60 0.0175 0.017 0.018 0.0178 0.0182 0.0182 0.0177
(0.0059)(0.0085) (0.0079)(0.0076)(0.0074)(0.0074)(0.0079)

LIFE60 0.0006 0.0008 0.0008 0.0008 0.0007 0.0007 0.0008
(0.0002)(0.0003) (0.0003)(0.0002)(0.0002)(0.0002)(0.0003)

POP 0.1486 0.3460 0.3109 0.2783 0.2722 0.2632 0.3014
(0.0973)(0.1908) (0.1708)(0.1569)(0.1529)(0.1482)(0.1678)

LAW 0.009 0.0173 0.0165 0.0148 0.0150 0.0145 0.0157
(0.0024)(0.0058) (0.0051)(0.0045)(0.0046)(0.0045)(0.0049)

TROPICS -0.0028 -0.0075 -0.0065 -0.0058 -0.0055 -0.0053 -0.0063
(0.0012)(0.0036) (0.003) (0.0027)(0.0026)(0.0025)(0.0030)

ETHNO -0.0021 -0.0077 -0.0057 -0.0055 -0.0048 -0.0047 -0.0061
(0.0015)(0.0066) (0.0049)(0.0045)(0.0041)(0.0040)(0.0051)

CONFUC 0.0062 0.0561 0.0407 0.0339 0.0344 0.0340 0.0398
(0.0014)(0.0128) (0.0093)(0.0078)(0.0078)(0.0078)(0.0091)

Note: Standard errors are reported in parentheses.
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Table 6: Coefficient estimates with Model B scenario
SimAver MMA JMA ℓ1 ℓ2 ℓ∞ Nash AB

CONSTANT 0.0573 0.0609 0.0242 0.0599 0.0604 0.0579 0.0574 0.0608
(0.0161)(0.0193)(0.0117)(0.0183)(0.0178)(0.0175)(0.0173)(0.0182)

GDP60 -0.0145 -0.0155 -0.0026 -0.0153 -0.0154 -0.0147 -0.0145 -0.0155
(0.0024)(0.0030)(0.0015)(0.0028)(0.0027)(0.0026)(0.0026)(0.0028)

INV 0.2184 0.1369 0.360 0.1565 0.1679 0.1734 0.177 0.1588
(0.0351) (0.04) (0.032) (0.0388)(0.0379)(0.0377)(0.0374)(0.0385)

SCHOOL60 0.0197 0.017 0.018 0.0183 0.0182 0.0183 0.0182
(0.0066)(0.0085) (0.0079)(0.0078)(0.0074)(0.0074) (0.008)

LIFE60 0.0007 0.0008 0.0008 0.0008 0.0007 0.0007 0.0008
(0.0002)(0.0003) (0.0003)(0.0002)(0.0002)(0.0002)(0.0003)

POP 0.1672 0.346 0.3109 0.2816 0.2723 0.2633 0.3021
(0.1094)(0.1908) (0.1708)(0.1588)(0.1529)(0.1482)(0.1684)

LAW 0.0102 0.0174 0.0164 0.015 0.015 0.0145 0.0158
(0.0027)(0.0058) (0.0051)(0.0046)(0.0046)(0.0045)(0.0049)

TROPICS -0.0032 -0.0075 -0.0065 -0.0058 -0.0055 -0.0053 -0.0063
(0.0013)(0.0036) (0.003) (0.0027)(0.0026)(0.0025) (0.003)

ETHNO -0.0023 -0.0077 -0.0057 -0.0056 -0.0048 -0.0047 -0.0061
(0.0017)(0.0066) (0.0049)(0.0046)(0.0041) (0.004) (0.0051)

CONFUC 0.007 0.0561 0.0407 0.034 0.0344 0.034 0.0394
(0.0016)(0.0128) (0.0093)(0.0078)(0.0079)(0.0078) (0.009)

Note: Standard errors are reported in parentheses.

Table 7: Weights on each model in different scenarios

Panel A. Scenario A

Model MMA JMA ℓ1 ℓ2 ℓ∞ Nash AB

1 0.00 0.53 0.01 0.03 0.02 0.01 0.02

2 0.00 0.47 0.03 0.04 0.06 0.07 0.02

3 0.00 0.00 0.03 0.04 0.07 0.08 0.03

4 0.00 0.00 0.02 0.05 0.04 0.04 0.03

5 0.00 0.00 0.00 0.04 0.00 0.00 0.03

6 0.00 0.00 0.07 0.06 0.11 0.11 0.04

7 0.00 0.00 0.11 0.06 0.09 0.08 0.06

8 0.00 0.00 0.01 0.08 0.00 0.00 0.06

9 1.00 0.00 0.72 0.60 0.61 0.61 0.71

Panel B. Scenario B

Model MMA JMA ℓ1 ℓ2 ℓ∞ Nash AB

1 0.00 1.00 0.04 0.05 0.08 0.08 0.03

2 0.00 0.00 0.03 0.05 0.07 0.08 0.03

3 0.00 0.00 0.02 0.05 0.04 0.05 0.04

4 0.00 0.00 0.00 0.04 0.00 0.00 0.03

5 0.00 0.00 0.07 0.06 0.11 0.11 0.05

6 0.00 0.00 0.11 0.07 0.09 0.08 0.06

7 0.00 0.00 0.01 0.08 0.00 0.00 0.06

8 1.00 0.00 0.72 0.60 0.61 0.60 0.70

Table 8: Regressors for different model scenarios
Panel A. Regressors for model A scenario
Model Regressors
1 CONSTANT, GDP60
2 CONSTANT,GDP60, INV
3 CONSTANT,GDP60,INV, SCHOOL60
4 CONSTANT,GDP60,INV,SCHOOL60, LIFE60
5 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP
6 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP, LAW
7 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW, TROPICS
8 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW,TROPICS, ETHNO
9 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW,TROPICS,ETHNO,CONFUC

Panel B. Regressors for model B scenario
Model Regressors
1 CONSTANT,GDP60, INV
2 CONSTANT,GDP60,INV, SCHOOL60
3 CONSTANT,GDP60,INV,SCHOOL60, LIFE60
4 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP
5 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP, LAW
6 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW, TROPICS
7 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW,TROPICS, ETHNO
8 CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW,TROPICS,ETHNO,CONFUC
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